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Accurate and efficient localization of root cause instances in large-scale microservice systems is of paramount
importance. Unfortunately, prevailing methods face several limitations. Notably, some recent methods rely on
supervised learning which necessitates a substantial amount of labeled data. However, labeling root cause
instances is time-consuming and laborious, especially with multiple modalities of data including logs, traces,
metrics, and so on. Moreover, some approaches favor deep learning for localization but lack interpretability
and continuous improvement mechanisms.

To address the above challenges, we propose DeepHunt, a novel root cause localization method based on
multimodal data analysis. Firstly, DeepHunt introduces root cause score (RCS) by integrating reconstruction
errors and failure propagation patterns (upstream–downstream relationships), imparting interpretability to
the localization of root causes. Then, it embraces graph autoencoder (GAE) to address the limitation imposed
by scarce labeled data. It employs data augmentation to mitigate the adverse effects of insufficient historical
training samples. We evaluate DeepHunt on two open source datasets, and it outperforms existing methods
when facing a zero-label cold start. DeepHunt can be further improved by continuously fine-tuning through a
feedback mechanism.
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→ Reliability; • Software and its engineering→ Software maintenance tools;
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1 Introduction
With the rising popularity of cloud-native applications, microservice architecture has emerged as
an increasingly attractive choice due to its reliability and scalability [11]. However, the inherent
complexity and dynamism of microservices make failures an unavoidable challenge. A single failure
in a microservice instance can propagate to other interconnected instances, gradually amplifying
its impact, potentially resulting in significant financial losses [56]. An illustration case is the failure
of the microservice instances on Amazon Web Services in December 2021, which reverberated
throughout the entire network. It took more than 4 hours to pinpoint the root cause, leading to
substantial economic repercussions [4]. Consequently, it is critical to localize microservice system
failures promptly and effectively. As businesses expand and demand increases, the microservice
system’s scale and complexity also escalate.This evolution renders traditional root cause localization
methods reliant on human labor increasingly inadequate to meet the requirements. Thus, the
adoption of automated methods becomes imperative.

Extensive research has been dedicated to the automatic localization of failure root causes, aiming
to quickly identify the system instance responsible for failures. The monitoring data used for this
task encompass three distinct modalities, namely traces [11, 24, 29, 52], logs [9, 28, 54, 57], and
metrics [27, 33, 34, 40]. Traces record invocations between microservices. Logs contain runtime
messages and warnings. Metrics monitor resource usage and performance indicators. Figure 1
shows examples of these three modalities. We use unimodal to refer to a single data modality,
while multimodal means combining two or more data modalities. Earlier methods rely primarily
on unimodal data for failure localization. However, recent studies have revealed that more valuable
insights can be obtained by combining all three modalities, as they provide a complete view of
the overall system status [56]. Consequently, an increasing number of approaches [22, 56] fused
multimodal data to localize root causes more effectively.

Nonetheless, unimodal and multimodal approaches encounter a significant limitation: striking a
balance between performance and the manual labeling overhead. Existing methods can achieve
impressive performance but usually require extensive high-quality labeled data. For example,
DiagFusion [56] and Déjàvu [26] need to label each historical failure’s root cause and failure
type. However, obtaining sufficient labeled data is highly challenging for two main reasons. First,
deep learning-based approaches typically necessitate prolonged data collection to acquire enough
training data. This challenge is amplified by the frequent changes in microservice systems due
to software and hardware updates, causing frequent data distribution shifts. Second, manually
annotating such a large volume of training data requires intensive effort from the operator. A similar
work RCLIR [6] shows that labeling 1,000 root cause cases requires four experienced operators to
spend nearly a month. No current approach can simultaneously guarantee high performance while
reducing manual effort satisfactorily. Overcoming this limitation is imperative for effective root
cause localization in continuously evolving microservice systems.

A promising method to address this limitation is to employ self-supervised learning (SSL)
[31]. SSL enables models to extract supervisory signals from large amounts of unlabeled historical
data through pretext tasks, reducing dependence on manual labels [19]. Common SSL tasks include
reconstruction tasks, contrastive learning, prediction tasks, and so on (more details can be seen
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Fig. 1. The multimodal data of a microservice system. S1–S7 are different microservice instances. The values
in the trace represent the latency of an invocation.

in Section 2.2). SSL has been successfully employed in many domains, including computer vision,
natural language processing, and graph learning [18, 32]. Given the straightforward implementation
and adaptation of reconstruction tasks, along with the advantages of graph neural networks
(GNNs) for modeling the structure of microservice systems, we choose to use a graph autoencoder
(GAE), which is a reconstruction task (more details can be seen in Section 3.1). However, to the
best of our knowledge, SSL has not yet been effectively applied for localizing root cause instances
of microservice failures due to three major challenges:

(1) Challenge 1: Lack of an interpretable method to quantify root causes. The results of failure root
cause localization need to be interpretable to help operators take appropriate measures for
failure mitigation. However, the SSL models (e.g., GAE) often lack interpretability, which
hinders operators from making the right decisions and reduces their trust in the localization
results.

(2) Challenge 2: The models lack continuous learning capability. Once deployed, existing ap-
proaches cannot continuously learn and adapt to new data or tasks. However, new failures
persistently emerge as the system operates, evolves, upgrades [38], receives maintenance
[37], and undergoes changes [36]. As the system changes gradually, the performance of
deployed models will become increasingly misaligned, eventually necessitating full retrain-
ing to restore efficacy. According to our investigations, operators can provide incremental
feedback to the root cause localization system. This enables on-the-job learning to improve
model performance dynamically. However, current methods are static and cannot effectively
leverage operator feedback.

(3) Challenge 3: The requirement of GAEs for a large amount of historical training data. Training a
specific GAE model typically requires a significant amount of historical data, although these
data do not require labeling. We have verified this in Figure 3. Insufficient training samples
make it challenging to ensure the model’s effectiveness, consequently impacting the quality
of the features. However, obtaining such data can be challenging in real-world scenarios,
particularly when a system is newly online or undergoes substantial changes.

To address the aforementioned challenges, we propose DeepHunt, an interpretable failure root
cause localization method based on GAEs. We devise an interpretable and learnable root cause
score, which provides a quantified root cause probability for each instance, addressing Challenge 1.
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Furthermore, a feedback mechanism has been incorporated to tackle Challenge 2. During online
localization, operators can contribute valuable feedback labels based on diagnostic results.DeepHunt
can then fine-tune its parameters based on the feedback, enabling continuous learning. Lastly, in
the GAE training process, we introduce a data augmentation module to address Challenge 3.

Our contributions are summarized as follows:

(1) We propose DeepHunt, a GAE-based method for failure root cause instance localization.
DeepHunt achieves a zero-label cold start and demonstrates commendable performance
without necessitating an abundance of labeled failure samples for training. Moreover, it
enhances its generalization capabilities by incorporating a data augmentation module during
training.

(2) We design a root cause score that combines reconstruction error and failure propagation
pattern to execute an interpretable process for quantifying root causes. This overcomes the
challenge of SSL’s lack of interpretability.

(3) We design a feedback mechanism to ensure continuous fine-tuning of DeepHunt through
operators’ feedback. This addresses the challenge of the SSL model’s lack of continuous learn-
ing capability. Additionally, we propose a ranking-oriented loss function, which performs
better when dealing with the imbalance between the root cause instances and non-root cause
instances.

(4) Extensive experiments on the datasets collected from two benchmark microservice systems
demonstrate DeepHunt ’s effectiveness and efficiency. The outcomes demonstrate that Deep-
Hunt achieves a 90+% A@5 accuracy in both datasets, even when trained with merely 1% of
labeled failure samples. DeepHunt ’s implementation is publicly available1 to promote trans-
parency and reproducibility. We make the dataset D1 used in our work publicly available.2

2 Background
2.1 Microservice Systems and System Behavior Graphs (SBGs)
Microservice systems divide a large application into several small, autonomous services, with
each service dedicated to fulfilling a specific business function. Each service can be indepen-
dently deployed, extended, and managed, and communicate with each other through lightweight
communication mechanisms such as remote procedure calls.

Referring to the example in Figure 2, we introduce some essential terms and concepts:
System Instance.Amicroservice system consists of multiple types of instances, including microser-

vice instances and host instances. We refer to them collectively as system instances (or instances
for short). These system instances collectively constitute a microservice system and serve as a
foundation for achieving high availability, scalability, and failure tolerance.

Dependency Relationship. There are various dependencies between system instances, such as
invocation relationships between microservice instances, deployment relationships between mi-
croservice instances and host instances, and so on. The impact of a failure can propagate along the
direction of dependency relationships, resulting in cascading failures and making online failure
root cause instance localization more challenging.

Multimodal Feature. To identify the root cause instances of failures, operators meticulously
monitor the system and record monitoring data. Traces, logs, and metrics are three common
modalities of monitoring data that stand as the three pillars of microservice systems’ observability
[56]. In this article, we concentrate on these three modalities since they collectively encompass more

1https://github.com/bbyldebb/DeepHunt
2https://github.com/bbyldebb/Aiops-Dataset
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Fig. 2. A demonstration of constructing an SBG from a microservice system. In this illustration, the microser-
vice system is simplified. The SBG’s dependencies originate from invocation and deployment relationships.
The instances within the SBG denote either microservice instances or host instances, and each instance has a
feature vector extracted from monitoring data as attributes.

extensive and comprehensive failure information. To fuse the three modalities together, we extract
a unified vector representation from them as the multimodal feature for each system instance (see
Section 4.2 for details).

SBG. To depict the attributes of system instances and the diverse interdependencies among them,
we conceptualize a microservice system utilizing an SBG. A SBG is a directed graph, � = (+ , �, � ).
+ is the set of all candidate instances in a microservices system. An edge (E8 , E 9 ) ∈ � indicates an
actual invocation or deployment from instance E 9 to instance E8 , which can be interpreted as E 9
depending on E8 . � is the feature vectors extracted from the multimodal monitoring data of each
instance (see Section 4.2.2). In our work, we aggregate monitoring data on a minute-by-minute
basis. This allows us to model the microservice system as an SBG every minute, taking into account
various monitoring data and the relationships involving invocation and deployment. Considering
that the features of nodes and edges in SBG vary over time, we construct an SBG every minute.
Figure 2 shows how to construct an SBG from a microservice system when a failure occurs. SBGs
provide valuable insights into the interactions and dependencies between various instances, helping
to understand the system’s overall behavior and potential points of failure.

Root Cause Instance. Root cause instances are the primary system instances that trigger system
failures, such as (4 in Figure 2. These instances are responsible for system performance degradation,
functional failures, or other issues. Given the intricate dependencies between system instances,
the failure of a root cause instance can propagate to some other cases through these relationships,
leading to widespread failures. Promptly identifying the root cause instance when a system failure
occurs is crucial, enabling appropriate measures to be taken to resolve the issue and enhance system
performance. We aim to identify the real root cause instances for failures in microservices systems.

2.2 SSL and GAEs
SSL is a machine learning paradigm that leverages the inherent information within data for training
models, eliminating the need for manual labeling. In contrast to supervised learning, SSL does
not depend on external labels; instead, it designs pretext tasks that enable model learnings [19].
These tasks generate pseudo-labels automatically, compelling the model to extract meaningful
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features from the data to address the problem. Common SSL tasks include reconstruction tasks
[44], prediction tasks (e.g., language modeling [42], image inpainting [41]), generative adversarial
networks [10], and contrastive learning [43].

Among them, GAEs are effective tools for handling graph data. GAEs combine GNNs and
autoencoders (AEs) for representation learning and reconstruction of graph data. The training
process of GAEs is accomplished by minimizing the reconstruction error, which measures the
difference between the reconstructed and original graphs. Benefiting from the graph convolution
mechanisms of GNNs (e.g., GCN [21], GraphSAGE [12], graph attention network (GAT) [47]),
GAEs enable vertices to learn representations not only of themselves but also of their neighbors by
aggregating and propagating information. This allows for capturing the dependency relationships
within the graph structure.

In this article, we model a microservice system as an SBG and employ GAEs to learn the
underlying dependency patterns within and between the system instances. When a failure occurs,
the reconstruction error of each system instance can serve as a crucial indicator for identifying the
culprit system instances.

2.3 Problem Statement
A formal description of localizing the root cause instances of a failure in microservice systems
is as follows. For a failure F, given the trace data T, log data L, metric data M, and deployment
data D in time window before and after the failure, we extract the multimodal data’s features and
dependencies to construct an SBG, � = (+ , �, � ), where + is the collection of system instances,
� is the collection of dependencies, and � is the multimodal data’s feature matrix. The objective
is to find the set of root cause instances {+A2 } which are responsible for this failure. To address
the challenges outlined, the localization approach should (1) possess an interpretable root cause
localization method, (2) be continuously upgraded and optimized based on operators’ feedback, and
(3) not require too much labeled historical data. In addition, please note that failure detection is not
within our research scope in this article, and there are already many methods available [11, 39, 56].

3 Motivations
In this section, we introduce the motivation behind DeepHunt.

3.1 Why GAE?
To reduce the dependence of model training on manual labeling, we employ SSL [31]. As mentioned
in Section 2.2, common SSL tasks include reconstruction tasks, prediction tasks, generative adver-
sarial networks, and contrastive learning. Among them, prediction tasks require the manual design
of complex and difficult tasks that may require domain expertise and experience [32]. Generative
adversarial networks encounter challenges such as unstable training process, potential mode col-
lapse, and high training complexity [45], all of which necessitate careful manual adjustments. As for
contrastive learning, the method of selecting negative samples is likely to affect the performance
of the model, requiring complex designs of sampling strategies [31]. In contrast, reconstruction
tasks such as AEs do not require task-specific guidance and do not necessitate intricate task design,
making their implementation and adaptation more straightforward [31].

AEs are commonly used SSL models, and their reconstruction errors have been widely applied
for metric anomaly detection [1, 2, 8, 16, 25, 50, 60]. Since microservice systems exhibit a graph
structure, we employ GAE to capture complex structures and dependencies effectively.
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Fig. 3. The distribution of root cause instances according to reconstruction errors in 63 failure cases. GAE is
trained using SBG samples constructed from normal uptime data.

3.2 Observation
When a failure occurs in a microservice system, it will not only affect one instance (i.e., the root
cause instance), but it can also propagate to other instances in multiple ways [48]. Thus, the root
cause instance in a microservice system should exhibit both local and global features. We will
demonstrate this idea through an empirical study of 63 failure cases collected from a microservice
system for e-commerce.

3.2.1 Reconstruction Error. Asmentioned earlier, the reconstruction error is commonly employed
for anomaly detection as it indicates the extent to which data deviate from the expected normal
pattern. Therefore, in this work, we explore whether it could be beneficial for root cause instance
localization. We find that the reconstruction errors of the root cause instances indeed rank higher.

Specifically, we utilize the collected historical data to construct SBGs to train a GAE and
reconstruction errors for each instance. Subsequently, we rank instances in descending order
based on their reconstruction errors and obtain the ranking information for root case instances.
The results are displayed in Figure 3, where the root cause instances show high rankings (within
the top five) in most failure cases, suggesting that the reconstruction error is an effective feature for
root cause instance localization. Additionally, in approximately 30% of failure cases we collected,
the root cause instance is not ranked first. Therefore, accurately localizing the root cause using
only reconstruction errors is challenging.

3.2.2 Failure Propagation Pattern. As previously discussed, failures demonstrate a propagation
behavior within microservice systems, where an initial failure in a root cause instance may extend
to some other instances. Consequently, when a failure occurs, the monitoring data of multiple
instances may exhibit anomalies, leading to elevated reconstruction errors that can complicate
the process of identifying the root cause instance. For example, consider a partial SBG of a certain
failure F depicted in Figure 4, where nodes denote system instances, values adjacent to instances
denote reconstruction errors, edges between instances denote dependencies, and arrows denote the
direction of failure propagation. The root cause instance of this failure is (4. However, instances
(1, (2, (3, and (5 also exhibit abnormal behavior, influenced by the propagation of the failure. To
make things worse, (2 and (5 exhibit higher reconstruction errors due to the more pronounced
anomalies they present. This highlights that relying solely on reconstruction error for localizing
the root cause instance is inadequate, as it does not account for failure propagation. To enhance
the accuracy of root cause instance localization, it is imperative to further investigate the role of
failure propagation pattern in conjunction with reconstruction error.

In real-world microservice systems, SBG is much more complex than what is shown in Figure 4.
Therefore, to accurately localize failure root causes, we need to combine reconstruction error and
failure propagation pattern efficiently and effectively to jointly model them. Additionally, operators
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Fig. 4. An example of a partial SBG for a certain failure F, where the truth root cause instance is (4.

Fig. 5. The feedback label provided for failure F.

expect good interpretability, such as which instance becomes anomalous earlier, and how a failure
propagates across different instances. This aids them in promptly determining whether the result is
correct and taking corresponding measures to mitigate the failure.

3.2.3 Feedback. GAE is trained by reconstructing the SBGs constructed from historical data, a
process that does not require manual labeling. However, the method will inevitably mislocalize
for some failures, and it remains difficult to correctly localize the root cause instances of similar
failures without feedback to help the method make corrections. Therefore, we expect the method
can leverage labeled failure cases to enhance performance. For instance, in the failure case described
in Figure 4, providing the root cause instance label, such as Figure 5, as supervisory information
can help extract useful insights. Due to the small number of labeled historical failure cases in most
scenarios, operators’ feedback on root cause instances can help improve the method’s performance.

4 Design
4.1 Design Overview
To precisely and interpretably localize the root cause of the microservice system, we propose a
multimodal data-based approach, DeepHunt. The framework of DeepHunt, as shown in Figure 6,
consists of four components: SBG construction, offline training, interpretable online localization, and
feedback.

In SBG construction, DeepHunt unifies and fuses logs, metrics, and traces information, and
then constructs SBGs by using the deployment topology. For interpretable online localization,
DeepHunt proposes a root cause score to combine reconstruction error and failure propagation
pattern (addressing Challenge 1). In offline training, to solve the problem of insufficient labeled
failure cases and normal training data (Challenge 3), DeepHunt adopts GAE, a typical SSL method
for graph data, and performs data augmentation. At last, DeepHunt achieves continuous learning
and optimization through a feedback mechanism (addressing Challenge 2).

4.2 SBG Construction
Current studies commonly employ two methods to fuse multimodal data: unifying them into stan-
dard events [55, 56] or unifying them into vectors through feature extraction [22, 58]. Considering
that events in various works have varying definitions and additional embedding operations are
required before feeding them into the neural network, the latter approach is adopted in our work
to ensure simplicity and generalization. In the SBG construction phase, DeepHunt commences with
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Fig. 6. The framework of DeepHunt.

multimodal serialization to standardize data from diverse modalities into a time series, followed by
a modal-wise feature extraction process. Finally, SBGs are constructed.

4.2.1 Multimodal Serialization. Inspired by the work [22], we serialize different data modalities
with the following rules:

Traces. The trace data consist of chain-structured records of user request paths, including details
like latency and status codes. Inspired by previous work [30, 51], we extract features including
latency, request count, and status codes for each callee instance. The structural information of
the traces is extracted as dependencies that are used as partial edges of the SBG. These data are
transformed into multivariate time series by computing metrics such as the average latency per
minute, the total number of requests per minute, and the frequency of various status codes per
minute. We extract the trace multivariate time series � (8 )

trace for each instance 8 .
Logs. The logging behavior of microservices can be highly variable and dependent on developers’

expertise, presenting challenges in ensuring consistent log semantics [14]. Moreover, extracting
log semantics often requires computationally intensive natural language processing, which may
hinder real-world applicability [22]. To maintain lightweight preprocessing, we focus on modeling
log template occurrences rather than semantics. We utilize Drain [13] to parse logs into templates,
removing variables from logs. To avoid excessive templates and sparse features, we group log
templates based on frequency and fluctuation. Templates with low frequency and minimal fluc-
tuations are consolidated, while high-frequency or highly fluctuating ones remain separate. For
log templates that did not appear in the historical records, we handle them as follows. Given the
infrequency of new templates in most scenarios, we predefine a time series to track the frequency
of occurrences of new log templates. However, if an abundance of new templates arises, it may
necessitate retraining to update the feature engineering component accordingly. We then treat the
occurrences per minute of a template group as a time series to construct a multivariate log time
series. For each instance 8 , we extract the log time series � (8 )

log . This provides a compact repre-
sentation capturing log-based temporal patterns and dynamics without heavy natural language
processing.

Metrics. The metric data are inherently represented as a time series of performance indicators.
We employ resampling and nearest-neighbor interpolation to standardize all metric intervals to 1
minute. Constructing multivariate time series simply involves aligning all metric data by timestamp.
We extract the metric multivariate time series � (8 )

metric for each instance 8 .
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4.2.2 Modal-Wise Feature Extraction. We perform z-score standardization [46] using a sliding
historical window on multivariate time series� (8 )

modal, wheremodal ∈ {trace, log,metric}, to normal-
ize different magnitudes. To simplify feature extraction and avoid excessive overhead, we directly
treat the standardized data �̂ (8 )

modal as features. Specifically, for each instance 8 at time C , the feature
vector � (8 )

modal = �̂
(8 )
modal (C). We take the union of all features. Next, we concatenate the features into

a fused feature vector � (8 ) =
(
�
(8 )
trace




� (8 )
log




� (8 )
metric

)
. This achieves preliminary fusion across metrics,

logs, and traces. Further inter-modality relationships are learned through the GAE model.

4.2.3 SBG Construction. As shown in Figure 6, we extract the topology from the deployment
relationships within the deployment data and the invocation relationships within the trace data to
form the nodes and edges of the SBG. The feature vectors extracted from multimodal monitoring
data for each instance are utilized as node attributes in the SBG. The SBG represents the state of a
microservices system within a short period and evolves dynamically.

4.3 Offline Training
Consequently, GAE is designed to learn the system’s normal patterns, generating elevated recon-
struction errors as indicative features for root cause localization. During the offline training phase,
DeepHunt trains a GAE using SBGs constructed from historical data.

4.3.1 Model Structure. The GAE in DeepHunt consists of an encoder and a decoder, each com-
prising several layers of GNNs. The operation of the :th layer (: = 1, 2, . . . , # ) of the encoder or
decoder is formulated as

ℎ
(: )
N(8 ) = 066

(
ℎ
(:−1)
9

,∀9 ∈ N (8)
)
,

ℎ
(: )
8

= =>A<

(
f

(
, (: ) · 2>=20C

(
ℎ
(:−1)
8

, ℎ
(: )
N(8 )

)))
, (1)

where ℎ (: )
8

is the :th layer’s representation of instance 8 , N(8) is the set of neighbors of instance
8 , 066 is the operation of aggregating the features of the neighbors (e.g., calculating the mean
value), 2>=20C is the operation of concatenating the feature vectors of the current instance, =>A< is
the normalization operation,, (: ) is the weight matrix of the :th layer, and f is the LeakyReLU
activation function [35].

In each layer of the encoder and decoder, information about the neighbors of each instance
is obtained through neighbor sampling and aggregation. The encoder takes the SBG as input
and performs graph convolution operations to capture the dependencies within and between
instances. The encoder gradually reduces the dimensionality of the instance representation and
finally maps it to a low-dimensional latent space. The decoder takes the feature representations
from the latent space and the structural information of the SBG as input. It then applies graph
convolution operations to reconstruct the features of each instance.

4.3.2 Data Augmentation. Usually, increasing the number of training samples for GAE makes
the reconstruction error more helpful in determining anomalous behaviors [3]. However, in certain
scenarios, like newly deploying a system or undergoing significant changes, it is challenging to
acquire adequate historical data for training in the short term. Enhancing the model’s performance
with limited training data is an important consideration, and data augmentation emerges as a
common practice in this scenario.

Unlike traditional augmentation techniques used for images, such as rotation or cropping, SBGs,
being graph data, require consideration of structural and feature modifications within the graph.
In DeepHunt, GAE primarily focuses on instance features, thus leading toward augmenting the
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information within these instance features. Additionally, we conduct data augmentation aiming to
introduce scenarios that might occur but are not included in the training set. However, altering
the graph structure might introduce improbable scenarios that could mislead the model, like
establishing invocation dependencies between entirely unrelated instances. Consequently, our
choice learns toward augmenting changes in instance features.

To conduct data augmentation, we randomly mask features of each instance in the SBGs before
feeding them into GAE. The data augmentation process is controlled by a probability called the
masking rate. Obviously, the masking rate is an important parameter, and it should be neither
too low nor too high. So, we demonstrate the effect of different masking rates on the model’s
performance in Figure 10. Our core idea for augmentation is to mimic data absence by masking
input features, reducing the possibility of the model overly relying on specific features during
training, which compels the model to learn more robust and generalized features. The evaluation
experiments in Section 5.3 validated the effectiveness of data augmentation.

4.3.3 Training. The training objective of GAE is to reconstruct feature vectors of instances in
SBGs while minimizing reconstruction error. We use MSE to measure the reconstruction error.
Because microservice systems are typically stable most time, GAE learns the normal patterns of
the systems through training.

4.4 Interpretable Online Localization
Even though we recognize that reconstruction error and failure propagation pattern can serve as
features indicating the root cause (see in Section 3.2), quantifying how these two types of features
relate to the root cause remains unknown. In this section, we introduce how DeepHunt provides an
interpretable approach to localize the root cause. Our core idea is to calculate a root cause score for
each instance and subsequently rank the instances based on it. This process consists of two parts:
calculating reconstruction error and quantifying failure propagation pattern.

4.4.1 Calculate Reconstruction Error. When a failure occurs, the entire system has likely under-
gone some minor changes. Therefore, we typically analyze root causes not only at the moment of
failure but also consider the data preceding the failure.This allows us to obtain reconstruction errors
for multiple time intervals. Therefore, our initial consideration is to aggregate the reconstruction
errors from multiple time intervals to obtain local features reflecting the state of instances. A simple
and common method is to take the average of the reconstruction errors across all time intervals.
However, the contribution of features from different time intervals to root cause determination
may not be equal. Therefore, a more effective method is to apply weighted averaging to the recon-
struction errors of each time interval using different importance weights. This can be achieved by
employing a fully connected layer (denoted as ��1) in the process.

4.4.2 Quantify Failure Propagation Pattern. As mentioned in Section 3.2.2, the failure propaga-
tion pattern contributes to achieving more accurate root cause instance localization. Fortunately,
regardless of the SBG’s structural complexity, any anomalous instance has only four potential
first-order upstream and downstream conditions, as depicted in Figure 7. We remove the self-loop
in the SBG because it does not significantly contribute to failure propagation analysis. These four
conditions also apply to certain special scenarios of anomalous instances:

(1) Instances lacking upstream or downstream instances can be regarded as having an upstream
or downstream instance with a reconstruction error of 0;

(2) Instances with bidirectional dependencies (such as (7 and �3 in Figure 7) can be considered
as having the same instance for both upstream and downstream;
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Fig. 7. The four possible states for any anomalous instance in an SBG. Operators consider that the focused
anomalous instances in (C0C41 and (C0C42 are more likely to be the root cause instances.

(3) Instances with multiple upstream or downstream instances (such as (5, (2 in Figure 7) can be
consolidated into one, with the reconstruction error being the maximum value, indicating
the most anomalous part of the upstream or downstream instances.

After operators’ confirmation, anomalous instances in�>=38C8>=1 and�>=38C8>=2 are more likely
to be the root cause than those in �>=38C8>=3 and �>=38C8>=4, as the anomalies in the former two
conditions are not caused by failure propagation.

Consequently, we can quantify the failure propagation pattern through the anomaly degrees
(reconstruction errors) of each instance itself, its first-order upstream, and first-order downstream
instances, enhancing the root cause probabilities of the anomalous instances in �>=38C8>=1 and
�>=38C8>=2. We combine the local features of each instance itself, its first-order upstream instance,
and its first-order downstream instance into a three-dimensional vector. A graph aggregation layer
(denoted as ��) is designed to quantify the failure propagation pattern of the SBG. Subsequently,
we use another fully connected layer (denoted as ��2) to combine each dimension of ��’s output
with different importance weights, calculating the root cause score. ��1,��, and ��2 mentioned
above collectively form the root cause scorer.

4.4.3 Root Cause Score. As mentioned earlier, we require an interpretable approach to integrate
reconstruction errors and failure propagation patterns for improved localization accuracy. Conse-
quently, we employ a root cause scorer (comprising layers ��1,��, ��2) to calculate the root cause
score for each instance, facilitating later interpretability in the localization process. Throughout the
learning procedure, DeepHunt ensures that the root cause score is positively associated with the
root cause probability of each instance. Finally, DeepHunt performs online localization by sorting
each instance in descending order based on their root cause scores. Specifically, the calculation of
the root cause score '�( (8 ) of instance 8 is as follows:

� (8 ) =,1 · �AA>ABF8=3>F (8 ) ,

�
(8 )
?A>?060C8>=

=
©­­«
� (8 )

�
(8 )
3>F=

�
(8 )
D?

ª®®¬ =
©­­­«

� (8 )

�66

(
! ( 9 ) ,∀9 ∈ + (8 )

3>F=

)
�66

(
! (: ) ,∀: ∈ + (8 )

D?

) ª®®®¬ , (2)

'�( (8 ) = B> 5 C<0G (,2 · � (8 )
?A>?060C8>=

),
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Table 1. A Toy Example of the Initialization of,1 and,2

Window_Size ,1 ,2

10 [0.1, 0.1, 0.1, . . . , 0.1, 0.1]10 [1, 0, 0]

where,1 and,2 represent the weight matrix of ��1 and ��2, respectively. �AA>ABF8=3>F (8 ) and
� (8 ) denote the sequence of reconstruction errors in the time window we take and the overall
reconstruction error of instance 8 , respectively. �66 denotes the method of aggregating the features
of the upstream or downstream instances. In this study, we select the<0G function as we focus on
the most anomalous parts during the feature aggregation process.+ (8 )

3>F=
and+ (8 )

D? denote the sets of
first-order downstream and upstream instances in the SBG. � (8 )

3>F=
and � (8 )

D? represent the features
aggregated from the features of instances in + (8 )

3>F=
and + (8 )

D? , respectively. � (8 )
?A>?060C8>=

denotes the
quantified failure propagation pattern.

4.4.4 Interpretability of Online Localization. We elucidate the significance of each parameter
within the root cause scorer to render the process of root cause score calculation transparent. ��1

is employed to compute the reconstruction errors across multiple time intervals, reflecting the
state of an instance within a time window. Consequently, the number of parameters in the weight
matrix,1 of ��1 is equal to the length of the window (a hyperparameter Window_Size), with
each parameter individually denoting the importance weight of different time intervals within that
window. The role of ��2 is to calculate the root cause score from the failure propagation pattern.
Thus, the weight matrix,2 of ��2 contains three parameters, representing the importance weights
of the reconstruction error of each instance, its first-order upstream instance, and its first-order
downstream instance when calculating root cause score.

It is worth noting that for the calculation of the root cause score for each instance,,1 and,2 are
shared. Under the initial conditions, we adopt a fixed initialization for,1 and,2 instead of random
initialization, and a toy example is shown in Table 1. The fixed initialization serves as the foundation
for DeepHunt to achieve a zero-label cold start. When no labels are available, DeepHunt computes
root cause scores using initialized parameters. In this scenario, we assume uniform importance
for each time interval within the time window and do not consider the upstream and downstream
components in the failure propagation pattern when calculating root cause scores. At this stage,
DeepHunt resembles an “inexperienced operator.” Subsequently, through feedback, it learns and
adjusts weights from feedback samples provided by operators, gradually becoming “experienced.”
After receiving the operator’s feedback, DeepHunt continues to update,1 and,2. The refined,1

and,2 after feedback fine-tuning are presented in Section 5.6.

4.5 Feedback
We implement a feedback mechanism that enables operators to interact with DeepHunt, providing
valuable input to progress its performance. For a failure case, the operator can provide feedback
information based on the output of DeepHunt : confirming correctly localized cases and correcting
wrongly localized ones. For cases where DeepHunt fails to localize the root cause, the operator
can point out the real root cause instance(s) of the failure, as shown in Figure 5. DeepHunt then
translates the feedback information from operators into a label vector . = [0, 0, . . . , 1, . . . , 0], and
the value of the 8th dimension indicates whether the 8th instance is a root cause (1 denotes root
cause, and 0 denotes non-root cause). Note that the feedback phase can be periodically triggered or
manually initiated.
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Our training objective is to maximize the root cause score for root cause instances. However, in
real systems, the number of non-root cause instances is significantly larger than the number of
root cause instances. A typical cross-entropy loss function struggles to address such an imbalanced
ratio of instance quantities. Although DéjàVu [26] introduced a weighted binary cross-entropy,
it doesn’t fully mitigate this issue. To address this, we propose a ranking-oriented loss function
(referred to as ranking loss) that ignores the influence of irrelevant instances on the optimization
direction:

!B = − 1
#

#∑
9=1

 9∑
8=1

max{'�( (8 )
9

− '�( 9 · .9 , 0}, (3)

where # denotes the total number of fine-tuned cases,  9 denotes the number of instances of the
9th case, .9 denotes the true labels of the 9th case, '�( 9 denotes the root cause score vector for
all instances in the 9th case, and '�( (8 )

9
denotes the root cause score for the 8th instance within

that case.
A loss function based on cross-entropy calculates the deviation between the output value and

the true label (0 or 1) of each instance, resulting in the domination of loss values for non-root
cause instances due to their overwhelming number. Consequently, the model tends to predict all
instances as non-root causes. The ranking loss addresses this issue by calculating loss values only
for instances ranked before the true root cause instances, and not for instances ranked after the
true root cause instances, thus mitigating the impact of non-root instances that are numerically
dominant. By minimizing the ranking loss, the model gradually optimizes toward prioritizing the
ranking of root cause instances before non-root cause instances, aligning with the objective of
our work.

5 Evaluation
In this section, we evaluate the performance of DeepHunt using the datasets collected from two
microservice systems. We aim to answer the following research questions (RQs):

RQ1: How effective is DeepHunt in failure root cause instance localization?
RQ2 : Does each component of DeepHunt have significant contributions to DeepHunt ’s perfor-

mance?
RQ3: Is the computational efficiency of DeepHunt sufficient for failure diagnosis in the real world?
RQ4: What is the impact of different hyperparameter settings?
RQ5: How do the parameters of DeepHunt ’s interpretability module change after fine-tuning with

feedback?

5.1 Experimental Setup
5.1.1 Dataset. To evaluate the performance of DeepHunt, we conduct extensive experiments

on two datasets D1 and D2 collected from two microservice systems under different business
backgrounds and architectures. Detailed information is listed in Table 2. The systems that produce
D1 and D2 are as follows:

(1) D1. D1 is collected from a simulated e-commerce system with microservice architecture. The
system comprises 46 system instances, including 40 microservice instances and 6 virtual
machines. Its pattern of user requests is consistent with that of a real-world e-commerce
system. Additionally, the failure cases in this dataset are derived from real-world failures and
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Table 2. Detailed Information of Datasets

Dataset # Instances # Normal # Failure # Records Failure Types

D1 46 3,714 210
trace 44,858,388

Container hardware failure

log 66,648,685
Container network failure

metric 20,917,746
Node CPU failure
Node disk failure
Node memory failure

D2 18 12,297 133
trace 214,337,882

JVM memory failure

log 21,356,870

JVM CPU failure

metric 12,871,809

Container memory failure
Container CPU failure
Container network failure
Container disk failure

are replayed in batches. The recorded failures were then labeled with their respective root
cause instances. We have open sourced the raw data and root cause labels of failures for D1.3

(2) D2. D2 is collected from the management system of a top-tier commercial bank. The system
comprises 18 system instances, including Web servers, application servers, databases, and
dockers. Due to the non-disclosure agreement, we cannot make this dataset publicly available.
Two experienced operators examined the failure records from January 2021 to June 2021
and labeled the root cause instances of each failure. The labeling process was conducted
separately by each operator, and they cross-checked their labels with each other to ensure
consensus. This dataset has been used in the International AIOps Challenge 2022.4

5.1.2 Baseline Methods. We select nine advanced methods as the baseline methods, including
non-deep learning-based methods (i.e., MicroHECL [29], MicroRank [52], AutoMAP [34], TraceRCA
[24], Microscope [27], RCD [17]), which employ techniques such as traditional machine learning,
statistical models, or graph algorithms, and three supervised deep learning-based methods (i.e.,
DéjàVu [26], Eadro [22], DiagFusion [56]). More details can be found in Section 7. Among the
baseline methods, MicroHECL, MicroRank, and TraceRCA utilize trace, AutoMAP, RCD,Microscope,
and DéjàVu utilize metric, and Eadro and DiagFusion utilize the three modalities of data including
trace, log, and metric. We configure the parameters (e.g., significance level, feature dimension) of
all these methods according to their original settings depicted in the above works.

5.1.3 Evaluation Metrics. As stated in Section 2.3, DeepHunt aims to localize the root cause
instances for failures. We carefully choose evaluation metrics to better reflect the comprehensive
performance of all selected methods. More specifically, we employ Top-k accuracy (A@k) and Top-5
average accuracy (Avg@5) as the evaluation metrics. A@k quantifies the probability that the top-k
instances output by each method indeed contain the root cause instance. Formally, given � as the
test set of failures, |�| as the size of the test set, '�0C as the ground truth root cause instance of
failure 0, '�0? [:] as the top-k root cause instances set of failure 0 generated by a method, A@k is
defined as

�@: =
1
|�|

∑
0∈�

{
1, if '�0C ∈ '�0? [:] ,
0, otherwise.

(4)

3https://github.com/bbyldebb/Aiops-Dataset
4https://aiops-challenge.com/
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Avg@5 evaluates a method’s overall capability in localizing the root cause instance. In practice,
operators often examine the top five results. Avg@5 is calculated by

�E6@5 =
1
5

∑
1≤:≤5

�@:. (5)

5.1.4 Implementation. We implement DeepHunt and baselines with Python 3.9.13, PyTorch
1.12.1, scikit-learn 1.1.2, and DGL 0.9.0, respectively. We run the experiments on a server with 12 ×
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz and 128 G RAM (without GPUs). We repeat every
experiment five times and take the average result to reduce the effect of randomness.

5.2 Overall Performance (RQ1)
In DeepHunt, we utilize the data from non-failure periods to train the GAE. The failure cases with
root cause labels are utilized to evaluate the effectiveness (test set) and simulate the feedback
information provided by operators (training set). We split the failure cases into training and test
sets chronologically. Specifically, for the evaluation in Table 3, we allocate the first 30% of failure
cases as the training set and the remaining 70% as the test set. To demonstrate the effectiveness
of DeepHunt, we compare its performance on both D1 and D2 with the baseline methods. The
performance comparison result is shown in Table 3.

The labeling ratio in the table indicates the percentage of samples used for supervised learning.
DeepHunt achieves the best performance overall. Without the utilization of labels (the labeling
ratio is 0%), DeepHunt has already achieved good performance. With a labeling ratio as low as
1%, DeepHunt performs closely rivals or even surpasses most baseline methods. As mentioned
earlier, DeepHunt does not necessarily require a large amount of labeled data to start and even
can initiate with a zero-label cold start (see in Section 4.4.4). As the number of feedback samples
increases, the localization accuracy of DeepHunt gradually improves. Take 30% labeling ratio as an
example, supervised methods begin to exhibit a certain level of root cause instance localization
capability. DeepHunt outperforms all baseline methods, demonstrating an improvement in A@5
ranging between 16% and 455%.

Compared to baseline methods that do not utilize supervised information, DeepHunt learns
from historical runtime data and failure cases to enhance the accuracy of root cause localization.
Additionally, the limitations in robustness to noise restrict the accuracy of these unsupervised
methods. In scenarios with limited labels, DeepHunt offers the following two advantages compared
to supervised baseline methods: (1) it utilizes SSL to learn normal patterns from historical runtime
data and extracts reconstruction errors as effective features for root cause instance localization; (2)
its parameters of both the GAE (trained through SSL) and the root cause scorer are well-initialized,
relying less on supervised manual labels of historical failure cases.

Since DeepHunt is a deep learning-based method, we pay extra attention to how it compares
with other deep learning-based methods. We focus on two main points:

(1) How does each method perform under different labeling ratios? We conduct experiments
using supervised samples ranging from 0% to 50% and present the results for Avg@5 in Figure 8.
The experimental results reveal that DeepHunt achieves remarkable performance with limited
supervised information. As the labeling ratio increases, DeepHunt shows an upward trend in its
performance. However, the improvement becomes less significant once the labeling ratio reaches a
certain threshold, such as 1% in D1 and 25% in D2. This suggests that DeepHunt does not necessarily
require a large number of supervised information for optimal performance. Moreover, DeepHunt
consistently delivers higher accuracy with the same labeling ratio compared to other methods. This
indicates that DeepHunt is highly effective in failure root cause instance localization, making it a
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Table 3. Effectiveness of Root Cause Instance Localization

Method D1 D2

Labeling Ratio A@1 A@3 A@5 Avg@5 Labeling Ratio A@1 A@3 A@5 Avg@5

DeepHunt
0% 0.780 0.898 0.959 0.889 0% 0.445 0.772 0.903 0.716
1% 0.795 0.905 0.966 0.894 1% 0.498 0.781 0.910 0.741
25% 0.797 0.902 0.966 0.895 25% 0.783 0.935 0.944 0.900
30% 0.803 0.912 0.966 0.898 30% 0.785 0.936 0.946 0.901

DéjàVu 30% 0.473 0.701 0.793 0.670 30% 0.583 0.733 0.817 0.714
Eadro 30% 0.310 0.446 0.484 0.413 30% 0.214 0.386 0.454 0.361
DiagFusion 30% 0.333 0.500 0.648 0.493 30% 0.398 0.552 0.750 0.532
MicroHECL - 0.091 0.232 0.386 0.236 - 0.068 0.240 0.414 0.242
MicroRank - 0.144 0.218 0.259 0.209 - 0.208 0.365 0.541 0.369
AutoMAP - 0.279 0.574 0.729 0.531 - 0.128 0.271 0.421 0.283
TraceRCA - 0.243 0.310 0.338 0.302 - 0.241 0.368 0.459 0.362
Microscope - 0.074 0.113 0.227 0.127 - 0.030 0.078 0.241 0.117
RCD - 0.095 0.124 0.174 0.128 - 0.106 0.167 0.220 0.170

“-” means this method does not need labeled samples for training. Bold text indicates the highest value in each column.

Fig. 8. Performance of the deep learning-based methods with different labeling ratios.

valuable option for practical deployment, particularly in scenarios where obtaining a large amount
of labeled data is challenging or time-consuming.

(2) How stable is each method’s performance in multiple experiments on the same training data?
We repeat the experiments for each method five times without setting the random seed. To ensure
the effectiveness of supervised baseline methods, we set the supervision rate to 30%. We then
visualize the results using box plots in Figure 9. It clearly indicates that the stability of DeepHunt is
significantly higher than that of the other methods. We attribute this higher stability to the fact that,
unlike other methods that rely on random initialization, the large number of uptime data used to
train the GAE provides good initialization parameters for DeepHunt. As a result, when the training
sample size is limited, the model experiences notably less uncertainty from stochastic operations
like stochastic gradient descent compared to other methods. This robustness and stability further
highlight the effectiveness and reliability of DeepHunt in failure root cause instance localization.

5.3 Ablation Study (RQ2)
To evaluate the effects of the five key technique contributions ofDeepHunt : (1) the data augmentation
module; (2) the GAE; (3) the feedback phase; (4) the root cause scorer; (5) the ranking loss, we
create five variants of DeepHunt. C1: Remove the data augmentation module. C2: Replace GAE with
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Fig. 9. Stability of the deep learning-based methods.

Table 4. Contributions of Components

Method A@1 A@3 A@5 Avg@5

D1

DeepHunt 0.795 0.905 0.966 0.894
C1 0.759 0.901 0.961 0.882
C2 0.488 0.770 0.814 0.706
C3 0.780 0.898 0.959 0.889
C4 0.544 0.829 0.891 0.776
C5 0.776 0.898 0.959 0.888

D2

DeepHunt 0.498 0.781 0.910 0.741
C1 0.426 0.774 0.871 0.699
C2 0.447 0.726 0.873 0.687
C3 0.445 0.772 0.903 0.716
C4 0.138 0.436 0.776 0.457
C5 0.432 0.765 0.896 0.706

Bold text indicates the highest value in each column.

an AE built upon non-GNNs. C3: Remove the feedback phase. C4: Replace our root cause scorer
with random forest regression [5]. C5: Replace our ranking loss with loss function proposed in
DéjàVu [26].

Table 4 lists that DeepHunt outperforms all the variants on D1 and D2, demonstrating each
component’s significance. In C1, the decrease in accuracy highlights the effectiveness of the
data augmentation module. In C2, the replaced AE disregards the inter-instance dependency
information while learning the system’s normal pattern, resulting in a decline in feature quality and
ultimately impacting DeepHunt ’s performance. C3 demonstrates the continuous learning capability
of DeepHunt, enabling it to fine-tune itself through feedback from operators continually. C4 shows
that the necessity of providing interpretability to DeepHunt is affirmed, as other interpretable
traditional methods (such as random forest) fail to deliver satisfactory performance. In C5, our
proposed ranking-oriented loss function exhibits superior advantages in handling the imbalance
between root cause instances and non-root cause instances compared to the loss function proposed
in DéjàVu.

Furthermore, DeepHunt can adapt to the dynamic addition and removal of instances. To verify
this, we conduct additional experiments in which we manually introduce changes in the number of
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Table 5. Performance under the Dynamic Addition and Removal of Instances

Method A@1 A@3 A@5 Avg@5

D1

DeepHunt 0.795 0.905 0.966 0.894
C6 0.788 0.904 0.966 0.892
C7 0.781 0.898 0.959 0.890
C8 0.806 0.918 0.978 0.908
C9 0.801 0.913 0.966 0.904

D2

DeepHunt 0.498 0.781 0.910 0.741
C6 0.473 0.766 0.886 0.721
C7 0.439 0.768 0.901 0.715
C8 0.523 0.815 0.916 0.763
C9 0.482 0.807 0.925 0.757

Bold text indicates the highest value in each column.

instances. Specifically, we randomly remove 20% of the instances in the training set to simulate the
addition of instances in the test set and randomly remove 20% of the non-root cause instances in
the test set to simulate the removal of instances in the test set. We create other four variants of
DeepHunt. C6: Randomly remove 20% of instances in the training set. C7: Remove the feedback
phase in the context of C6. C8: Randomly remove 20% of instances in the test set. C9: Remove the
feedback phase in the context of C8. For each variant, we repeat the experiment five times and
average the results.

The results are shown in Table 5. The outcomes of C6 and C8 indicate that the dynamic addition
and removal of instances have little impact on the accuracy of DeepHunt. Notably, removing
instances in the test set (C8) reduces the number of candidate instances, thereby decreasing the
difficulty of localization, which increases accuracy instead. The accuracy of C7 and C9 is lower than
that of C6 and C8, respectively, suggesting that the feedback phase positively affects DeepHunt ’s
adaptation to the dynamic deletion of instances.

5.4 Efficiency (RQ3)
We record the running time of all methods and compare them in Table 6. It shows that DeepHunt can
localize the root cause instances of a failure within 1 second on average online. This demonstrates
that DeepHunt can meet the needs of online diagnosis.

Offline training time is not sensitive because it does not need to be retrained frequently. However,
we note a significant difference in DeepHunt ’s offline training time between the two datasets. Offline
training time is typically affected by feature engineering, model structure, optimization algorithms,
and hyperparameter settings. We use the same model structure, optimization algorithm, and similar
hyperparameter settings on datasets D1 and D2, so they cannot be the key factors. Specifically,
we use the same model structure for both datasets to ensure consistent model complexity. We
choose Adaptive Moment Estimation (Adam) [20] as the optimization algorithm for its adaptive
learning rate, reducing the need for hyperparameter tuning and ensuring efficient and stable model
convergence. Feature engineering time mainly depends on data volume and complexity, which
differs between datasets. As presented in Table 2, there is a significant difference in the number
of samples used for GAE training (# Normal) between the two datasets. Additionally, the amount
of trace data in D2 is an order of magnitude larger than that in D1. These result in a greater time
overhead for constructing SBG samples on the D2 dataset. In summary, feature engineering is the
key factor influencing DeepHunt ’s offline training time.
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Table 6. Training Time (Offline) and Average Time to Diagnose a Failure Case
(Online)

Method
D1 D2

Offline(s) Online(s) Offline(s) Online(s)

DeepHunt 629.892 0.169 1,961.616 0.262
DéjàVu 429.048 0.318 381.421 0.192
Eadro 1,126.162 5.370 399.251 0.432

DiagFusion 613.919 4.145 308.020 3.297
MicroHECL - 12.233 - 4.193
MicroRank - 42.540 - 28.877
AutoMAP - 3.845 - 0.667
TraceRCA - 34.731 - 92.956
Microscope - 26.685 - 8.548

RCD - 27.072 - 19.283

“-” means this method does not need training.

It’s worth noting that Microscope has been analyzing online for longer than DeepHunt, even
though it’s a simple metric-based approach. The computational complexity of the PC algorithm
used by Microscope is exponentially related to the number of nodes. When the number of metrics
increases, the PC algorithm needs to perform more conditional independence tests and graph
searches, which increases the computational burden. There are quite a number of metrics in
datasets D1 and D2, and the possible combinations of graph structures increase with them, which
increases the complexity of the search and causes the algorithm to take more time to find the
optimal graph structure. So the online time of Microscope is longer compared to DeepHunt.

5.5 Hyperparameter Sensitivity (RQ4)
We discuss the effect of six hyperparameters of DeepHunt. Figure 10 shows how Avg@5 changes
with different hyperparameters.

The Number of Neurons in the Hidden Layer (Hidden_Dim). The performance of DeepHunt demon-
strates relative stability when varying the number of neurons in the hidden layer. It is not a sensitive
parameter for DeepHunt.

The Ratio of Masked Features (Noise_Rate). Randomly masking a certain proportion of features
indeed leads to an improvement in the performance of DeepHunt. However, when the proportion
of injected noise is excessively high, it can compromise the characteristics of the original samples,
resulting in a notable decline in performance.

The Number of Hidden Layers in Encoder/Decoder (Num_layers). As the number of hidden layers
increases, the model becomes more complex, resulting in overfitting with limited samples. DeepHunt
experiences a degradation in performance when this parameter becomes excessive. This parameter
needs to be set based on the specific sample conditions, and we set it to 1 in our study.

The Size of the Data Time Window around the Failure Occurrence Used for Root Cause Localization
(Window_Size). DeepHunt exhibits an overall trend of performance improvement followed by a
decline with varying window sizes. Clearly, a window that is too small fails to encompass complete
failure information, while an excessively large window contains too much irrelevant data. In our
study, setting it to 10 proves to be a suitable choice.
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Fig. 10. The effectiveness of DeepHunt under different hyperparameters.

The Maximum Number of Epochs for Fine-Tuning during Feedback (Max_Epoch). We implement
an early stop strategy during fine-tuning, which might lead to the performance of DeepHunt
being insensitive to Feedback_Epoch. Nevertheless, we still advise against setting this parameter
excessively high, especially when dealing with small sample sizes.

The Initialization Learning Rate for Fine-Tuning during Feedback (Init_LR). We employ the adaptive
learning rate algorithm Adam [20] during fine-tuning. Nonetheless, the init_LR remains a critical
hyperparameter, influencing the speed and effectiveness of convergence in fine-tuning. In our
study, a learning rate setting of 0.01 is deemed an appropriate choice.

5.6 Interpretation of Localization Results (RQ5)
We have described the interpretability of DeepHunt for root cause instance localization in Sec-
tion 4.4.4. In this section, we show in detail the parameters,1 and,2 obtained by fine-tuning the
root cause scorer in D1 and D2 during feedback respectively, whereF8=3>F_B8I4 is set to 10.

The ��1 layer of the root cause scorer, used to calculate the overall reconstruction error of each
instance, initializes each parameter in,1 to 0.1. In Figure 11, we present the heatmaps of the
fine-tuned parameters for the two datasets, each exhibiting a failure case. Intriguingly, the results
differ: in D1, the largest weight appears at the first minute after the failure onset, whereas in D2, the
largest one appears at the fifth minute the failure occurs. We analyze that this scenario relates to
the observational characteristics inherent in the datasets. In D1, most root cause instances exhibit
anomalous fluctuations earlier than the non-root cause instances. Conversely, in D2, most root
cause instances tend to persist in anomalies for an extended period compared to the non-root
cause ones.

The �� layer and the ��1 layer quantify the failure propagation pattern for each instance. They
utilize three parameters,2 = (U, V,W), representing the importance weight of self, downstream,
and upstream dependencies, respectively. They are initialized as (1, 0, 0), respectively, signifying
no aggregation of dependencies by default. We froze the parameter U and exclusively fine-tune
V and W . Table 7 shows the fine-tuned parameters for the two datasets. The outcomes indicate a
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Fig. 11. The heatmap of weights,1 of ��1 layer within a window. Values within cells represent reconstruction
errors, while color shades illustrate weight magnitude. T-/+8 represents the 8th minute before/after the failure.
“RC” denotes root cause instances, “Non-RC” denotes non-root cause instances.

Table 7. The Parameters,2 of ��2 Layer in
the Root Cause Scorer after Fine-Tuning

Dataset U V W

D1 1.000 0.020 0.009
D2 1.000 0.133 −0.002

higher significance of downstream dependencies over upstream dependencies, and the weight of
the upstream ones even displays negativity in D2. This suggests that the local features of upstream
instances are less important for quantifying root causes, to the extent that higher ones diminish
the probability of being a root cause.

6 Discussion
6.1 Limitations and Future Works
When a failure occurs, it is crucial to swiftly localize the instance of the culprit. Operators often
require accurate and detailed information to pinpoint the root cause of the failure. This includes
not only identifying the location of the root cause instance but also obtaining more specific results,
such as the failure type. However, DeepHunt cannot currently determine the failure type. This
limitation arises because the reconstruction errors extracted by the GAE reflect the anomalies of
the instance as a whole, but it’s difficult to capture the nuanced failure details within the instance.
Addressing this limitation would be an important area for future improvements in DeepHunt.

Based on the work of DeepHunt, a potential avenue for future work could involve training a
failure-type classifier using a smaller amount of labeled data. The accurate localization provided
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by DeepHunt helps narrow down the scope of determining the root cause, ideally requiring only
the data from the root cause instance to train the classification model rather than the data of the
entire system. Additionally, the GAE serves another purpose of performing feature dimensionality
reduction, allowing for the extraction of a high-quality, low-dimensional representation of the
initial features. This dimensionality reduction can help reduce the number of parameters required
for the failure type classifier.

6.2 Concerns about Deployment and Validity
Deploying DeepHunt in real-world microservice systems may encounter some concerts: (1) Deep-
Hunt needs to adapt to dynamic microservice architectures. DeepHunt utilizes GraphSAGE layers in
the GAE model that can learn the aggregation of neighboring nodes. GraphSAGE enables individual
nodes to update their representations by leveraging information from neighboring nodes while
facilitating the model’s adaptation to diverse neighbor structures and characteristics across nodes.
This flexibility enables DeepHunt to handle the dynamic increase and decrease of instances in
real-world deployments. (2) Incomplete monitoring of modalities. Some production systems may
not monitor all three modalities (trace, log, and metric) simultaneously. DeepHunt integrates the
various modalities into a unified time series data representation and subsequently extracts features
for fusion. This approach ensures that DeepHunt is not reliant on any specific modal data and can
accommodate any combination of the three modalities. However, it is important to note that the
lack of monitoring data from certain modalities could compromise the observability of failures and
subsequently reduce the accuracy of localization.

This study faces two main threats. Firstly, the limited size of the D1 and D2 datasets used in
this study. These datasets may be less complex and dynamic compared to real-world industrial
microservice systems. Secondly, we evaluate DeepHunt on two datasets, which cannot represent all
microservice systems. However, it is important to note that the two datasets are still valuable for
evaluation. The datasets are sourced from different systems with diverse architectures and business
operations. The validity and generalizability of DeepHunt are supported by the successful results
obtained in our experiments. So, we believe that DeepHunt holds promise for application in larger
industrial microservice systems with more complex failure scenarios.

7 Related Work
Non-Deep Learning-Based Methods. Many studies aim to capture the interactions between system
components during failures by proposing dependency graphs. Examples of such works include
MicroRCA [49], MS-Rank [33], and its extension AutoMAP [34]. Some works construct more fine-
grained graphs to capture causal relationships between metrics, e.g., MicroCause [39], Microscope
[27], and RCD [17]. However, the effectiveness of these approaches heavily relies on the accuracy of
the relational graphs and the appropriate setting of parameters. This reliance on graph accuracy and
parameter tuning reduces their applicability and limits their effectiveness in real-world scenarios.
MEPFL [59], TraceRCA [24], MicroHECL [29], and MicroRank [52] utilize trace information to
localize the root cause service. However, these approaches often focus more on the global charac-
teristics of the system and may overlook the local characteristics of individual service instances.
PDiagnosis [15] combines metrics, logs, and traces to identify root causes. It employs lightweight
anomaly detection in all three modalities to detect anomalous patterns. Based on a voting strategy,
the most severe component is selected as the root cause. However, PDiagnosis does not take into
account the topological characteristics of the microservice system. Nezha [53] converts multimodal
data into a unified event representation and extracts event patterns by constructing and mining the
event graph. It then compares event patterns between failure-free and failure-occurrence phases to
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Table 8. Comparison of Existing Representative Methods

Method DL-Based Modality Pros Cons

DéjàVu
Ø M • Providing fine-grained failure diagnosis for recurring failures; • Requiring a large number of labeled failure cases for training.

• An interpretable module is provided. • Not fusing the multimodal data.

Eadro Ø M, L, T • Fusing multimodal data; • Requiring a large number of labeled failure cases for training.
• Investigating the close connection between detection and localization. • The number of output layer neurons must be equal to that of system instances.

DiagFusion Ø M, L, T • Fusing the multimodal data; • Requiring a large number of labeled failure cases for training.• Overcoming the challenge of unbalanced types of failures.

MicroHECL × T
MicroRank × T
AutoMAP × M • Not requiring labeled failure cases for training. • Lack of a learning process from historical data, limited accuracy;
TraceRCA × M • Based on interpretable methodologies. • Not fusing the multimodal data.
Microscope × M

RCD × M

DL-based is short for deep learning-based. M, L, and T are short for Metric, Log, and Trace.

localize the root cause interpretively. Nezha primarily localizes root causes in code regions and
resource types, differing somewhat from the instance-level localization approach in this article.
ShapleyIQ [23] employs multimodal data to build a causal graph for root cause localization via
counterfactual evaluation and Shapley values. It utilizes a first principles model based on physical
laws and historical observations to evaluate counterfactual effects. However, this method relies
on constructing physical law-based models, whose accuracy hinges on precise assumptions about
system behavior. Deviations from these assumptions may result in inaccurate estimations of causal
relationships.

Deep Learning-Based Methods. In recent years, there has been a growing trend in using GNNs to
capture and learn the topological features of microservices. DéjàVu [26] learns metrics features
and topological features of microservice systems using Gated Recurrent Unit [7] and GATs [47]
for fine-grained diagnosis of recurring failures. Eadro [22] unifies data of different modalities into
vectors and performs joint training for anomaly detection and root cause localization. DiagFusion
[56] unifies data from different modalities into events, performs unified embedding representation,
and learns from historical failure cases to identify root cause instances and failure types. However,
all these methods have a limitation in that they require a large number of high-quality labeled
failure cases for method training; otherwise, it is difficult to achieve good performance. Furthermore,
Eadro and DiagFusion have a specific requirement where the number of output neurons should
equal the number of instances in the system. This constraint limits their applicability in scenarios
where the number of nodes dynamically changes, such as in systems with dynamic scaling or
evolving architectures.

We compare existing representative methods in Table 8, summarizing their classification, data
modalities used, pros, and cons. DeepHunt refines the cons of these methods, summarized as (1)
learning from historical unlabeled data and feedback from failure cases; (2) reducing the requirement
for large amounts of labeled data; (3) adapt to the dynamic increase and decrease of instances; and
(4) providing interpretability for results.

8 Conclusion
In this work, we conduct an extensive study aiming to enhance the effectiveness of failure root cause
instance localization while reducing reliance on heavily labeled data. Leveraging the principles
of SSL, particularly GAE, we propose DeepHunt. By integrating reconstruction errors and failure
propagation patterns (upstream–downstream relationships), DeepHunt introduces the root cause
score to measure root causes interpretably. Furthermore, DeepHunt achieves zero-label cold start
and continuous ongoing refinement through a feedback mechanism we designed. Experimental
results on two datasets demonstrate that DeepHunt is more effective, stable, and less reliant on
labeled failure cases than prevailing deep learning-based methods.
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