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Widely adopted for their scalability and flexibility, modern microservice systems present unique failure
diagnosis challenges due to their independent deployment and dynamic interactions. This complexity can lead
to cascading failures that negatively impact operational efficiency and user experience. Recognizing the critical
role of fault diagnosis in improving the stability and reliability of microservice systems, researchers have
conducted extensive studies and achieved a number of significant results. This survey provides an exhaustive
review of 98 scientific papers from 2003 to the present, including a thorough examination and elucidation of
the fundamental concepts, system architecture, and problem statement. It also includes a qualitative analysis
of the dimensions, providing an in-depth discussion of current best practices and future directions, aiming to
further its development and application. In addition, this survey compiles publicly available datasets, toolkits,
and evaluation metrics to facilitate the selection and validation of techniques for practitioners.
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Dependable and fault-tolerant systems and networks;
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multimodal data

This work is supported by the Advanced Research Project of China (No. 31511010501), and the National Natural Science
Foundation of China (Nos. 62272249, 62302244).
Authors’ Contact Information: Shenglin Zhang, College of Software, Nankai University, Tianjin, China and Haihe Labo-
ratory of Information Technology Application Innovation (HL-IT), Tianjin, China; e-mail: zhangsl@nankai.edu.cn; Sibo
Xia, College of Software, Nankai University, Tianjin, China; e-mail: xiath@mail.nankai.edu.cn; Wenzhao Fan, College
of Software, Nankai University, Tianjin, China; e-mail: fanwenzhao0172@mail.nankai.edu.cn; Binpeng Shi, College of
Software, Nankai University, Tianjin, China; e-mail: shibinpeng23@mail.nankai.edu.cn; Xiao Xiong, College of Software,
Nankai University, Tianjin, China; e-mail: xiongxiao@mail.nankai.edu.cn; Zhenyu Zhong, College of Software, Nankai
University, Tianjin, China; e-mail: zyzhong@mail.nankai.edu.cn; Minghua Ma, Microsoft, Redmond, Washington, USA;
e-mail: minghuama@microsoft.com; Yongqian Sun (corresponding author), Department of Computer Science, Nankai
University, Tianjin, China; e-mail: sunyongqian@nankai.edu.cn; Dan Pei, Department of Computer Science, Tsinghua
University, Beijing, China; e-mail: peidan@tsinghua.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2025 Copyright held by the owner/author(s).
ACM 1557-7392/2025/12-ART2
https://doi.org/10.1145/3715005

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 1, Article 2. Publication date: December 2025.

https://orcid.org/0000-0003-0330-0028
https://orcid.org/0009-0008-2853-9549
https://orcid.org/0009-0004-5937-6077
https://orcid.org/0009-0005-2513-5635
https://orcid.org/0000-0002-5456-873X
https://orcid.org/0000-0003-2114-5308
https://orcid.org/0000-0002-6303-1731
https://orcid.org/0000-0003-0266-7899
https://orcid.org/0000-0002-5113-838X
https://doi.org/10.1145/3715005


2:2 S. Zhang et al.

ACM Reference format:
Shenglin Zhang, Sibo Xia, Wenzhao Fan, Binpeng Shi, Xiao Xiong, Zhenyu Zhong, Minghua Ma, Yongqian
Sun, and Dan Pei. 2025. Failure Diagnosis in Microservice Systems: A Comprehensive Survey and Analysis.
ACM Trans. Softw. Eng. Methodol. 35, 1, Article 2 (December 2025), 55 pages.
https://doi.org/10.1145/3715005

1 Introduction
In the era of the Internet, a multitude of Web applications are emerging, accompanied by a rapid
proliferation of diverse device terminals. However, due to the evolving business requirements and
the expansion of business scale, the task of maintaining and updating monolithic architecture
applications has become increasingly arduous. Microservice systems have emerged as the latest
paradigm in constructing modern applications [1]. As a pivotal industry in the digital economy,
they are playing a significant role in infusing new vitality into innovation and development across
various domains. In the event of failures and deviations from their intended behavior, microservices
can experience performance degradation or even system crashes, thereby adversely impacting
user experience and resulting in substantial financial losses for enterprises. According to a report,1
an outage lasting 24 hours of mission-critical services from AWS us-east-1 can lead to a direct
revenue loss of $3.4 billion, while an outage lasting 48 hours can exacerbate the financial impact
to reaching $7.8 billion. In 2023 alone, notable service providers such as Microsoft,2 Google,3 and
Alibaba Cloud4 encountered noteworthy failures and downtime incidents. Therefore, to ensure
the performance and reliability of microservice systems and minimize losses for businesses, it is
imperative to monitor and effectively diagnose performance issues in these systems.

However, the highly heterogeneous topology and diverse interactions of microservice systems
pose challenges for operations personnel in formulating general rules or writing manual scripts to
promptly localize and classify failures. When addressing the task of failure diagnosis in microservice
systems, numerous researchers have explored the optimization and transformation of existing
techniques, as well as delving into novel intelligent failure diagnosis solutions. Consequently, there
has been a burgeoning demand for artificial intelligence for IT operations (AIOps) [2–4].
AIOps leverages artificial intelligence techniques, including machine learning and deep learning,
to autonomously analyze failures, construct models, pinpoint the root cause, and classify the type
of failure based on extensive multimodal data (i.e., logs, metrics, traces, events, and topology). In
contrast to traditional rule-based and script-based solutions, intelligent failure diagnosis provides
enhanced adaptability and generalizability. It represents a novel approach to transcending bottle-
necks in traditional solutions and has emerged as one of the mainstream research directions in the
field of failure diagnosis in microservice systems.

The failure diagnosis task in microservice systems is inherently intricate and critically significant,
leading to a plethora of proposed solutions. However, these solutions are widely dispersed across
diverse literature and predominantly focus on either root cause localization or failure classification.
Additionally, they often employ varying terminologies for identical concepts or utilize identical
terms for distinct concepts. Consequently, this situation poses challenges for practitioners aiming
to comprehend failure diagnosis and propose further advancements, as well as complicates the
retrieval and aggregation of relevant studies. Due to the interdisciplinary and pervasive nature

1https://www.parametrixinsurance.com/cloud-outage-and-the-fortune-500-analysis
2https://www.theregister.com/2023/04/24/microsoft_365_search_outage/
3https://thenewstack.io/google-cloud-services-hit-by-outage-in-paris/
4https://status.aliyun.com/#/historyEvent
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Table 1. State-of-Art Survey Conducted in Fields Covered by This Work, Based on Their
Objective (e.g., RCL for Root Cause Localization, and FC for Failure Classification), the Data

They Use (e.g., Single for Single-Modal Data, and Multi for Multimodal Data), the Analysis (e.g.,
Gra. for Granularity, Exp. for Explainability, Cha. for Characteristic, Por. for Portability, and Acc.
for Accuracy), the Publicly Available Resource (e.g., DS for Datasets, TK for Toolkits, and EM for

Evaluation Metrics)

Reference Year Objective Data Analysis Resource
RCL FC Single Multi Gra. Exp. Cha. Por. Acc. Costs DS TK EM

Oliner et al. [10] 2012 Ø Ø Ø Ø Ø Ø
Wong et al. [5] 2016 Ø Ø Ø Ø Ø Ø Ø Ø
Gao et al. [6, 7] 2015 Ø Ø Ø
Sole et al. [8] 2017 Ø Ø Ø Ø Ø Ø Ø
He et al. [11] 2021 Ø Ø Ø Ø Ø Ø Ø Ø
Li et al. [13] 2022 Ø Ø Ø Ø Ø

Notaro et al. [12] 2021 Ø Ø Ø Ø Ø Ø Ø Ø Ø
Soldani et al. [9] 2022 Ø Ø Ø Ø Ø Ø Ø

Our work - Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø

of this field, coupled with the aforementioned issues, prior studies and surveys have been incom-
plete, as summarized in Table 1, with the following gaps: (1) Inadequate analysis and distinction of
failure diagnosis objectives: Previous works [5–9] have lacked a comprehensive analysis of failure
diagnosis objectives, particularly in differentiating between the tasks of root cause localization and
failure classification. Furthermore, explicit problem statement has been insufficient, resulting in
misconceptions and confusion among practitioners. (2) Limited exploration of multimodal data:
Prior studies [5–12] have primarily focused on techniques that handle single-modal or homo-
geneous data, leading to a lack of thorough exploration and analysis of techniques that utilize
multimodal data, including logs, metrics, traces, and topologies. (3) Insufficient qualitative anal-
yses from a practical application perspective: Previous studies [8, 10, 11, 13] have not adequately
conducted qualitative analyses from a practical application standpoint, hindering practitioners’
understanding of real-world requirements, challenges, and the availability of valuable experiential
guidance. (4) Lack of systematic research and consolidation of publicly available resources [6–10, 12,
13]: There is a significant absence of systematic research and consolidation concerning publicly
available datasets, toolkits, and evaluation metrics, impeding researchers’ access to relevant data,
suitable tools, and the establishment of standardized criteria for practical implementation and
performance assessment.

Therefore, it is imperative to undertake a comprehensive survey and analysis that effectively
compiles, categorizes, and summarizes prior contributions to bridge these gaps and offer a more
comprehensive understanding of the field.

Leveraging practical insights gleaned from real-world production environments and the afore-
mentioned pertinent studies, as illustrated in Figure 1, we present a primary analysis of 98 papers
spanning the past two decades, culminating in the proposition of a comprehensive system architec-
ture for failure diagnosis in microservice systems. Our primary objective is to elucidate the stages of
failure diagnosis in microservice systems, furnishing comprehensive introductions, taxonomies, and
synopses of prevalent failure diagnosis solutions. Furthermore, we conduct a qualitative analysis
of the present progress and prospective future directions and trends, considering aspects such as
granularity, explainability, characteristics, portability, accuracy, and costs. To achieve this objective,
our contributions can be summarized as follows:

—We undertake a systematic survey of 98 primary papers that specifically focus on failure
diagnosis in microservice systems. Subsequently, we meticulously address inconsistencies and

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 1, Article 2. Publication date: December 2025.
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Fig. 1. An overall architecture for failure diagnosis.

ambiguities in terminology and concepts identified across different studies. Building upon
this foundation, we propose a comprehensive architecture for failure diagnosis and state the
problem, encompassing root cause localization and failure classification.

—We introduce a comprehensive taxonomy that thoroughly considers the utilized data, prop-
erties, core methods, and diagnostic targets of the techniques. Our findings are succinctly
summarized in four tables, followed by a qualitative discussion and analysis of the pertinent
studies on failure diagnosis. This analysis effectively elucidates key perspectives and require-
ments, shedding light on the pain points that necessitate attention and improvement. To the
best of our knowledge, we are among the pioneering efforts in focusing on failure diagnosis
through multimodal data.

—We offer publicly accessible datasets and toolkits that encompass diverse data modalities.
Furthermore, we introduce open source platforms that facilitate practitioners in conducting
related research. Additionally, we comprehensively summarize the evaluation metrics for
the surveyed techniques. It is noteworthy that none of the existing studies have offered such
extensive evaluation support. These contributions hold significant value as they not only aid
practitioners in solution selection and validation but also enable quantitative comparisons of
failure diagnosis techniques.

We introduce a system architecture and state the failure diagnosis problem to offer a thorough
grasp for readers. We conduct an in-depth qualitative analysis of prior research and real-world
demands, highlighting best current practices and future directions. Additionally, we provide datasets,
toolkits, and metrics for practical use and assessment. We believe that our survey has the potential
to catalyze further research endeavors, thereby propelling the field beyond its current boundaries.

The organization of the remainder of this article is illustrated in Figure 2. Section 2 delineates the
survey’s methodology, providing a concise summary of the architecture. Section 3 introduces the
terminology and states the problem of failure diagnosis. Section 4 presents a structured overview of
the existing failure diagnosis techniques in microservice systems. Section 6 offers publicly available
datasets, toolkits, and evaluation metrics to facilitate failure diagnosis studies. Section 7 elucidates
previous related review studies. Section 8 concludes the survey by summarizing the discussion and
outlining future directions.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 1, Article 2. Publication date: December 2025.
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Fig. 2. Overview of topics covered in this article.

2 Methodology
This survey has been oriented and organized with the intention to answer the following research
questions (RQs):

RQ1: What is the granularity of failure diagnosis in modern microservice systems? How to state
the problem of failure diagnosis?

RQ2 : What are the most important characteristics and methods that define each failure diagnosis
technique? Based on this, how to taxonomize each technique and qualitatively analyze
each class?

RQ3: Are there publicly available datasets and toolkits for failure diagnosis in the AIOps domain
of microservice systems? What are their evaluation metrics?

2.1 Study Identification and Selection
To systematically collect papers for conducting this survey, we follow the methodology [14] that
provides answers to the proposed RQs.

Search Strategy. We first identify the top peer-reviewed and influential conferences and journals in
the domains of software engineering, artificial intelligence, security, and data mining. They include
12 conferences (e.g., ASE, ICSE, ISSTA, FSE/ESEC, AAAI, ICML, IJCAI, CCS, NDSS, SIGKDD, ICDE,
and VLDB) and 5 journals (e.g., TOSEM, TSE, TDSC, TIFS, and TKDE). We then manually retrieve
73 papers relevant to our objectives published in the past decade. The concept of microservice
systems was introduced in 2014 and gradually gained popularity.

In addition, we select five scientific and well-known digital repositories, including IEEE Xplore,
ACM Digital Library, ScienceDirect, Web of Science, and Scopus. These repositories cover a large
number of papers in the domain of computer science, providing convenient search capabilities
and rich open information. To search the relevant papers from the above repositories, we mainly
use the set of search keywords (see our online appendix5) from the relevant papers identified in
the conference and journal search. After conducting the keyword search, we collect 2,548 relevant
papers spanning from 2003 to the present.
Selection Criteria. Post-acquisition of papers, we conduct a relevance assessment based on our

pre-defined inclusion and exclusion criteria (see our online appendix5). By eliminating papers that
are neither in English (exclusion criteria 1) nor innovative in their research (exclusion criteria 2),
the total number of papers is reduced to 2,270. Then, we examine the titles, authors, and abstracts
of these papers (exclusion criteria 3–4). In total, we collect 400 papers in the domain of failure
diagnosis. Figure 3 shows the histogram of annual papers. We can find that the number of papers
has steadily increased during this period. The focus on achieving accurate and efficient failure
diagnosis in microservice systems has gradually emerged as a key issue of common concern in
both academia and industry.
5https://docs.google.com/document/d/1O1Mrb-XdVQQXiPX4PSi0l08a0e_KbLPY88_IdpqUo3I/
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Fig. 3. Publication distribution on each research topic and the associated evolution trend from 2003 to the
present.

Quality Assessment. To highlight representative studies in this domain, we formulate six quality
assessment criteria (see our online appendix5) to evaluate the effectiveness and significance of the
collected papers. We adopt a scoring system ranging from 0 to 3 (poor, fair, good, and excellent)
for each criterion. After conducting the quality assessment, we obtain 91 papers with total scores
exceeding 14 (80% of the maximum possible score).
Forward and Backward Snowballing. To ensure comprehensive coverage and avoid missing any

relevant studies, we analyze not only the references within these papers but also the publications
that have cited these papers. In addition, we repeat the iterative process, which includes applying
selection criteria and conducting quality assessment. Finally, we obtain a final set of 98 papers for
survey and analysis.

2.2 System Architecture
Drawing upon practical experience in real-world production environments and leveraging relevant
research on failure diagnosis techniques, we put forth a comprehensive system architecture for
diagnosing failures in microservice systems.

Modern microservice systems are commonly constructed on network devices, including switches,
routers, firewalls, intrusion detection and prevention systems, and virtual private networks, to
establish stable network connections, facilitate data transmission, and ensure robust system op-
eration and data security. As depicted on the left-hand side of Figure 1, to cater to the needs of a
substantial user base and process vast quantities of data and requests, contemporary large-scale
microservice systems frequently employ tens of thousands of routers and switches to establish
connections among hundreds of thousands or even millions of nodes [15]. Each node is equipped
with one or more containers, within which the workloads are executed. These containers are
grouped as pods, constituting the smallest deployable unit to facilitate creation, scheduling, and
management. Given the frequent generation and termination of pods, services provide a level of
abstraction and serve as the endpoint for these pods [16]. Industrial microservice applications
encompass dozens to thousands of microservices, enabling efficient deployment and orchestration
[17]. Owing to the intricate and dynamic nature of the operating environment in microservice

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 1, Article 2. Publication date: December 2025.
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systems, when one or more instances of the system experience failure, the failure can propagate
gradually to different components or even the entire system, resulting in performance degradation
or even service interruption. This poses a substantial risk to the system’s stability, necessitating
more sophisticated failure diagnosis techniques.

Based on the existing studies on monitoring techniques and tools for microservice systems, we
perform an extensive survey and analysis. Failure diagnosis is a crucial task that assists operators
in accurately identifying system failures and facilitating swift recovery, ultimately ensuring the
reliability and stability of microservice systems. As illustrated on the right-hand side of Figure 1,
this architecture primarily outlines and delineates the processes and task scope involved in failure
diagnosis. To enable real-time monitoring of the operational status of microservice systems, opera-
tors typically engage in continuous collection of five types of observable data: logs, metrics, traces,
events, and topology. Among these, logs and metrics represent the primary focus of traditional
service monitoring, while traces serve as a dedicated monitoring component that addresses the
interaction challenges among microservices, playing a crucial role in microservice system moni-
toring. They serve as the primary source of information for failure diagnosis, forming the three
foundational pillars of observability in contemporary microservice systems [18]. Furthermore,
events and topology offer supplementary information, and it is generally insufficient to rely solely
on either of them for conducting subsequent failure diagnosis tasks. When a failure occurs, the
process of mining correlation relationships and extracting failure features from factors that influ-
ence failures is performed. Subsequently, failure diagnosis techniques and models are employed to
pinpoint the root cause or classify the failure type as the outcome, facilitating timely resolution
and ensuring the smooth operation of the microservice system.

3 Terminologies
To comprehensively comprehend the constraints of tools and workflows, as well as aid operators
in pinpointing the root cause or categorizing the failure type, we extensively survey contemporary
literature in modern microservice systems that document and analyze failures occurring in produc-
tion environments. Initially, this section present the concept of multimodal data for failure diagnosis
in microservice systems (Section 3.1). Leveraging the insights gained from the investigated failure
diagnosis techniques, this section ultimately provide a comprehensive and detailed statement of
the failure diagnosis problem in microservice systems (Section 3.2). Subsequently, we provide a
summary of the foundational aspects of failure diagnosis problems, expound upon the level of root
cause localization, and meticulously outline the significant failures (Section 3.3).

3.1 Multimodal Data
Modern microservice systems exhibit enhanced scalability and accelerated development, fostering
innovation and expediting the delivery of novel features, all the while bolstering development
agility, operability, scalability, reliability, and the simplicity of monitoring. For instance, when users
engage in online chat, they encounter diverse functions, including friend search, interface display,
message sending, and message receiving, all of which are facilitated by a dedicated service-oriented
application. Owing to the efficient deployment and flexible orchestration of microservices, the
interactions among them become intricately complex and dynamically adaptable, thereby posing
substantial challenges. To attain precise and efficient failure diagnosis, operational personnel engage
in the ongoing collection and monitoring of three discernible data patterns: logs, metrics, and traces.
These three data patterns serve as the paramount information sources, comprising the fundamental
pillars of observability in microservice systems [18].

Log. Logs capture comprehensive events occurring during the runtime of microservice systems,
encompassing system information, user behavior information, and business information about

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 1, Article 2. Publication date: December 2025.



2:8 S. Zhang et al.

network connections. The detailed information within logs exhibits a semi-structured nature and
typically comprises fixed template components as well as variable parameter parts. The former
encompasses fixed fields that describe system events, such as timestamp, node, service, container,
and level. Conversely, the latter records intricate details about system events. Operators generate
logs by employing commands like printf, logging.debug, and logging.error [19]. The abundant
semantic information conveyed by logs offers an internal depiction of the system, thereby facilitating
diverse tasks related to system management and diagnostics.

Metric. Numerous service providers engage in continuous monitoring and recording of metrics
for the entire system, aiming to detect anomalous behavior and ensure the elevated quality and
dependability of microservices. Metrics enable the measurement of the operational state of services,
containers, applications, and other entities. They are stored in the form of a chronologically ordered
sequence based on their occurrence, aggregated within predetermined time intervals (e.g., 30
seconds or 1 minute), thereby constituting a data stream. Depending on the entities reflected or
indicated by the metrics, they can be categorized into user-perceived metrics (e.g., availability and
average response time) and system-level metrics (e.g., CPU utilization and memory utilization). In
the event of system failures, metrics swiftly and accurately reflect alterations in system performance
and the patterns of diverse failures, thereby assisting operators in diagnosing these failures.

Trace. Upon receiving a user request, a microservices system initiates a sequence of invocations
among microservices to jointly satisfy the business requirements. Within the OpenTracing stan-
dard,6 these invocation processes are denoted as spans, commonly distinguished by SpanId and
ParentId. These identifiers aid in pinpointing the current request’s position within the complete busi-
ness invocation hierarchy and ascertaining its upstream and downstream service nodes. Each span
symbolizes a named and timed segment of uninterrupted execution, sharing a distinctive identifier
known as TraceID. These spans collectively constitute a directed acyclic graph [20, 21]. Programmers
commonly integrate the invocation linking interface into the code of each microservice, enabling
the recording of invocation relationships among microservices, along with the incorporation of
diverse annotations. These annotations typically cover invocation time, request status, latency, and
specific information pertinent to various business aspects [22]. These pieces of information depict
the execution state of the user request. Unlike logs and metrics, traces can portray the intricate
relationships between microservices nodes through the lens of a service dependency graph, thereby
yielding more interpretable and granular diagnostic results.
Event and Topology. To gain a more comprehensive understanding of the system’s operational

status and improve the accuracy of failure diagnosis, many works use events [23–28] and topology
[1, 16, 19, 24, 29–44] to assist in failure diagnosis. Events refer to records or notifications of
significant, meaningful, and impactful situations or conditions within the system. They are usually
associatedwith abnormal behavior, state changes, or important operational operations of the system,
which may be triggered by the system, applications, devices, or users, and may include failures,
errors, warnings, performance changes, security events, and so forth. Events are usually represented
in structured text form, including basic information such as the event’s unique identifier, event
type, timestamp, event source, event description, and other related modality information. Topology
describes the relationships and connections between various components in the system or network,
which can be used to represent system architecture, network structure, application dependencies,
andmore. Topology is usually represented in the form of a graph, where nodes represent components
in the system or network, and edges represent connections between components. Topology can
be generated and updated through automatic discovery, monitoring, and analysis to maintain
consistency with the system. By analyzing topology, the system can achieve fault troubleshooting,

6https://opentracing.io/
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performance optimization, capacity planning, and other functions, helping operators better manage
and maintain the system. When using logs, metrics, and traces, integrating events and topology
information can help capture system features and states, and achievemore accurate failure diagnosis.

3.2 Problem Statement
Consider a large-scale microservice system with services and instances of each service, where
monitoring of all system services and instances is achieved by collecting logs, metrics, traces,
events, and topology associated with each service and instance. The number of instances for each
service can be different. When a failure occurs, operators need to localize the root cause service or
instance based on the multimodal data information mentioned above, or further localize the root
cause component of the service or instance, determine the failure type, and take timely measures
for failure mitigation and repair.

Assuming a failure occurs at a certain timestamp, the first task of failure diagnosis is a ranking
problem, where the root cause service or instance ranks higher than other system services or
instances, or further localizing the root cause component ranks higher than other components. This
task is commonly referred to as root cause localization, which the goal is to estimate the probability
of each system service, instance or component being the culprit. The second task is a classification
problem, which involves identifying and determining the occurrence of a specific failure type from
a predefined set of failure types. This task is typically referred to as failure classification.

3.3 Granularity of Failure Diagnosis
We systematically analyzes the collected papers for failure diagnosis in microservice systems.
The ultimate target of root cause localization is to provide the most probable root cause when a
system failure occurs. Figure 1 shows the possible targets for root cause localization in microservice
systems. We conclude that the localization level in the collected papers can be divided into service-
level [17, 22, 30, 34, 36, 45–58], instance-level [19–21, 24, 28, 29, 31–33, 35, 37–41, 50, 53, 59–77],
and component-level [1, 22, 23, 25–28, 34, 38, 40–44, 50, 53, 54, 65, 73, 78–96]. Modern microservice
systems split monolithic applications into multiple independently deployable and runnable services
based on specific granularity standards around the business domain. Each node deploys one or
more containers. They are bundled together as pods. Each service can be supported with multiple
instances, and services can communicate with each other through the network for asynchronous
calls. Service-level and instance-level localization can reflect which service or which instance within
a service is the root cause of the failure from the perspective of failure diagnosis in microservice
systems. Component-level localization provides more granular diagnostic results compared to
service-level and instance-level, specifically by not only identifying the system service or instance
where the root cause lies but also pinpointing the root cause component within it. This mainly
depends on whether the service or instance is treated as a whole.

For failure classification, our survey includes major failures in large-scale microservice systems
(e.g., cloud computing platform [39], production microservice system [56], database services [97,
98], OpenStack cloud platform [59], and J2EE PetStore demonstration application [99]), experiences
with publicly available microservice systems (e.g., TrainTicket [100]), related studies and industrial
situation. Based on the failure manifestation and type description, we collected and organized the
following failure types that may occur in the microservice system. Table 2 summarizes these failure
types and proposes corresponding mitigation measures.

(1) Hardware Failures
—Resource Scheduler Failures [16, 17, 20, 39, 52, 57, 74, 101, 102]. System resource limitations,
incorrect scheduling strategies, or improper priority settings can lead to the scheduler’s
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Table 2. Typical Failure Types and Mitigation Measures in Microservice Systems

Type Details Examples Mitigation Measures

H
ar
dw

ar
e
Fa

ilu
re Resource Scheduler Failures

System misconfigurations
System scheduling exception
System resource underprovisioning
System component damage

Reconfigure the resource scheduler and scale
up the system resource.

Intensive Workload
I/O saturation
CPU saturation
I/O and CPU saturation

Horizontal scaling adjusts resources and utilizes
load-balancing techniques.

Resource Exhaustion
CPU consumption
Disk error
Memory leak

Implement resource deallocation and capacity
planning, along with setting up request throt-
tling and circuit-breaking mechanisms.

So
ftw

ar
e
Er

ro
r

System Bottleneck
Lock contention
Process crash
Handle leak

Adopt the reasonable resource allocation strat-
egy and resource request sequence.

Poorly Written Query
Incorrect index or join type
Execute redundant subqueries
Incorrect prepared statements

Avoid redundant data access and optimize query
statements.

Poor Physical Design
Incorrect index design
Inadequate disk partitioning
Incorrect data type design

Optimize and improve the physical design of
the database.

Code Bugs Logic bugs
Incorrect data exchange

Use software testing techniques to localize and
fix bugs, or perform version rollbacks.

External Operations System update, migration or upgrade Flush, backup, and restore the system.

N
et
w
or

k
Pr

ob
le
m

Network Exception Network device breakdown
Incorrect network configuration

Check the configuration of the network proto-
cols and the state of the network device.

Transmission Stress
Network congestion
Network transmission delay
Network transmission abortion

Check the network transmission configuration
and reconnect the network transmission.

inability to allocate resources correctly. Additionally, due to factors such as heavy system
loads, improper resource configurations, or uneven resource allocations, running system
components such as hosts, containers, or virtual machines may experience insufficient
CPU, memory, disk, or network bandwidth allocations. Moreover, system component
failures can also occur as a result of internal damage.

— Intensive Workload [60, 80, 81, 87, 98, 101, 103]. When the system receives a large number
of requests simultaneously or when complex tasks are present, the hardware resources of
the database may not be able to meet the I/O or CPU demands in the system, leading to
I/O or CPU saturation.

—Resource Exhaustion [21, 52, 55–57, 75, 80, 84, 104, 105]. CPU consumption and disk
errors can be caused by abnormal programs, resulting in busy waiting or deadlock due to
competing actions, leading to an infinite loop in data writing. Memory leaks occur when
allocated memory blocks are not released after use. Accumulation of unreleased memory
can lead to memory shortages and system failures.

(2) Software Errors
—System Bottleneck [17, 19, 25, 53, 87, 97, 98, 106]. When lock contention occurs, it can
result in wasted system resources and decreased efficiency. If not promptly resolving
lock contention, it can lead to abnormal termination of the application or system crashes.
Additionally, handle leaks are also a major cause of performance degradation or crashes in
microservice systems.
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—Poorly Written Query [58, 97, 102, 105]. Repeated execution of the same subquery, failure
to use a WHERE clause for filtering, incorrect use of indexes or appropriate join types,
and failure to use parameterized queries or prepared statements correctly can result in
decreased query performance or incorrect results, while also increasing the risk of SQL
injection attacks.

—Poor Physical Design [58, 97]. Improper index design, disk partitioning, and data type
design are among the software errors that can lead to system failures. For example, creating
too many indexes on a frequently updated database can significantly increase the overhead
of write operations. Using data types that are too large or too small can result in wasted
storage space or data truncation.

—Code Bugs [74, 98, 102]. Bugs are prevalent in practice. For example, errors in logic
or handling in application code can cause it to not run as expected. This includes mis-
takes in conditional statements, loops, algorithms, and so on. In modern microservice
systems, the formats and values of data exchanged between the sender and receiver
are often different. This category also includes incorrect data exchange and access per-
mission denied exceptions caused by distributing only partial updates to certificates
or credentials.

—External Operations [59, 84, 98, 106]. In the development of microservice systems, updating
or upgrading is a common operation. For example, during database migration or upgrade,
writing or executing incorrect scripts can lead to issues such as data corruption, interrupted
connections, and incompatible engines.

(3) Network Problems
—Network Exception [16, 39, 76, 87, 88, 98, 103, 104]. Network devices (e.g., routers, switches,
and firewalls) can experience failures. Additionally, incorrect network configurations such
as IP address conflicts, subnet mask misconfigurations, and routing configuration errors
can lead to network communication failures or abnormal data transmission.

—Transmission Stress [21, 59, 60, 75, 80, 97, 101, 105, 107]. When a system operates in a high-
load environment with simultaneous large-scale data transmission and high-concurrency
request processing, issues such as network congestion, network transmission delay, and
network transmission abortion can occur due to packet processing delays on gateways,
incorrect routing policies, or an inadequate network topology.

4 Failure Diagnosis
We survey and distinguish failure diagnosis techniques into four classes based on the data they use:
logs (Section 4.1), metrics (Section 4.2), traces (Section 4.3), and multimodal data (Section 4.4). Sub-
sequently, we summarize the findings in four summary tables (Tables 3–6) to offer a comprehensive
overview of the existing research and practical advancements.

4.1 Failure Diagnosis through Logs
Logs record event information during the runtime of a microservice system, including system data,
user behavior, and network-related business information. These logs support various management
and diagnostic tasks. However, most failure diagnosis techniques need structured inputs [59, 60,
78, 79, 81–83, 85, 86, 88, 104, 107, 108]. This involves transforming raw logs into parameters and log
templates. Parameters include fixed fields like timestamp, node, service, container, and level, while
log templates capture detailed system events.

Early designs [109] introduced tools like POD-Discovery and POD-Viz for process model extrac-
tion and real-time visualization, aiding operators in understanding process context. However, these
manual methods are time-consuming and impractical for massive multi-source logs in microservice
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Fig. 4. Categories of failure diagnosis techniques through logs.

Table 3. Summary of Surveyed Failure Diagnosis Techniques through Logs, Based on Their Category, the
Publication Year, the Data (e.g., L for Logs, and M for Metrics) They Use, the Principle (e.g., R for Techniques
Based on Rule, ML for Techniques Based on Machine Learning, and DL for Techniques Based on Deep

Learning) and Supervision (e.g., Sup for Supervised Techniques, and Unsup for Unsupervised Techniques)
Type, the CoreMethod, and the Diagnostic Target (e.g., I for Instance-Level Localization, C for

Component-Level Localization, and FT for Failure Types)

Category Technique Year Data Principle Supervision Core Method Target

Statistics
or Rules

LOGAN [78] 2016 L R - Log Correlation + Log Parsing and Clustering + Log Alignment C

LogDC [79] 2017 L R -
Natural Language Toolkit + Naive Bayesian Network + Template
mining + :-means Clustering + Logistic Regression + Likelihood
Estimation

C

GLOBECOM’18 [81] 2018 L R - Log Template Extraction + Sample-based and Probability Model
+ Greedy Entropy Minimization + Reinforce Learning C

LADRA [80] 2017 L R - 3-sigma + Weighted Factor + Classical Liner Regression C
SBLD [82] 2020 L R - Log Parsing + SBFL + HAC C

Machine
Learning

LogCluster [104] 2016 L ML Sup Log Parsing [111] + IDF + HAC + Sigmoid Function + Cosine Similarity FT

Log3C [83] 2018 L, M ML Unsup Log Parsing [111] + IDF + Multivariate Linear Regression Model
+ Cascading Clustering + HAC + T-statistic C

Onion [84] 2021 L ML Unsup Term-Frequency + Term-Importance + Progressive Clustering +
Contrast Score

C
LogFaultFlagger [85] 2019 L ML Sup Static Vocabulary + Weighted-IDF + Cosine Similarity + Exclusive KNN C
DISTALYZER [86] 2012 L, M ML Unsup T-tests + Dependency Networks + Regression Trees C
FDiagV3 [87] 2015 L ML Unsup PCA + ICA + Pearson Correlation + Time-group Heuristics C
ICWS’17 [88] 2017 L ML Unsup PC [110] + Probabilistic Model C

HALO [89] 2021 L ML Unsup
Pairwise Conditional Entropy + Uncertainty Reduction + Hi-
erarchy Intensity + Skeleton-based Clustering + Failure-aware
Random Walk + Self-adaptive Top-down Search

C

Deep
Learning

Cloud’19 [59] 2019 L ML, DL Sup Word2vec + KNN + Naive Bayes + Neural Networks + Random Forest I, FT

SwissLog [60] 2022 L DL Unsup Log Parsing + BERT + Linear Transformation + Attention-based
Bi-LSTM + Heuristic Algorithm I

LogKG [107] 2023 L DL Unsup Rule Extraction + Common Event Expression + Knowledge
Graph + TF-IDF + OPTICS Clustering FT

LogM [108] 2021 L DL Sup, Unsup CNN + Attention-based Bi-LSTM + :-means Clustering + Bag-
of-words Model + TF-IDF + Siamese LSTM Network +Word2vec

C

systems. As shown in Figure 4, more automated log analysis methods have since emerged [59, 60,
78–89, 104, 107, 108], categorized into techniques based on statistics/rules, machine learning, and
deep learning.

4.1.1 Techniques Based on Statistics or Rules. Early log analysis techniques used traditional
methods based on statistics or rules, which were simple yet effective. These methods are categorized
into retrieval [78, 79, 81], correlation analysis [80], and spectrum [82].

Retrieval. LOGAN [78] creates a reference model for each request type, representing normal log
patterns. For failure diagnosis, current logs are compared with this model to identify root causes.
LogDC [79] uses a naive Bayesian network to label deployment logs and compares them with
normal logs for failure diagnosis. Unlike LOGAN and LogDC, GLOBECOM’18 [81] actively collects
action logs in faulty environments for diagnosis. All these techniques [78, 79, 81] build databases
associating logs with failures and diagnose issues by retrieving from these databases.

Correlation Analysis. LADRA [80] extracts features from logs, including execution, memory, and
CPU-related aspects. It defines seven failure-related factors (e.g., abnormal ratio, memory change
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Table 4. Summary of Surveyed Failure Diagnosis Techniques through Metrics, Based on Their Category,
the Publication Year, the Data (e.g., M for Metrics, E for Events, and TP for Topology) They Use, the

Principle (e.g., R for Techniques Based on Rule, ML for Techniques Based on Machine Learning, and DL for
Techniques Based on Deep Learning) and Supervision (e.g., Sup for Supervised Techniques, and Unsup for
Unsupervised Techniques) Type, the Core Method, and the Diagnostic Target (e.g., S for Service-Level

Localization, I for Instance-Level Localization, C for Component-Level Localization, and FT
for Failure Types)

Category Technique Year Data Principle Supervision Core Method Target

Direct
Analy-
sis

PAL [61] 2011 M R Unsup CUSUM + Bootstrap [113] +Propagation Pattern I
FChain [62] 2013 M R, ML Unsup CUSUM + Bootstrap [113] +Propagation Pattern I
DBR [66] 2016 M ML Unsup :-means Clustering + APGs Pattern I
FluxRank [63] 2019 M ML Unsup DBSCAN + Learning-to-rank[112] I
CloudPin [64] 2021 M ML Unsup Moving Average + EVT + Set-based Similarity I
CETS [23] 2014 M, E ML Sup Nearest Neighbors Method C
n-diagnosis [65] 2019 M R Unsup Two-sample Test Algorithm + n-statistics Test I, C
CloudPD [106] 2013 M R, ML Unsup KNN FT
DBSherlock [97] 2016 M ML Unsup Optimization Methods based on User Feedback FT

Walk-
based

MonitorRank [30] 2013 M, TP ML Unsup Personalized PageRank + Pseudo-anomaly Clustering Algorithm S
ToN’18 [31] 2018 M, TP R, ML Unsup APG + Random Walk I
MicroRCA [29] 2020 M, TP R, ML Unsup Anomalous Subgraph + Personalized PageRank I
ICSOC’20 [34] 2020 M, TP ML Unsup Personalized PageRank + Auto encoder S, C
CloudRanger [45] 2018 M R, ML Unsup PC [110] + Heuristic Investigation Algorithm based on Second-order Random Walk S
MS-Rank [46] 2019 M R, ML Unsup PC [110] + Random Walk S
AutoMAP [47] 2020 M R, ML Unsup PC [110] + Heuristic Random Walk S
MicroCause [90] 2020 M ML Unsup PCTS + TCORW C
ServiceRank [48] 2021 M R, ML Unsup PC [110] + Heuristic Investigation Algorithm based on Second-order Random Walk S
FRL-MFPG [67] 2023 M R, ML Unsup MFPG-FC + Random Walk I
REASON [32] 2023 M, TP DL Unsup Hierarchical GNN + RWR I
CORAL [33] 2023 M, TP DL Unsup VGAE + RWR I
LOUD [68] 2018 M ML Unsup Propagation Graph + PageRank C
MicroDiag [35] 2021 M, TP ML Unsup SCM [118] + PageRank C
CauseRank [91] 2022 M ML Unsup G-GES + COPP C
HRLHF [36] 2023 M, TP ML, DL Sup PC [110] + Human Feedback + Learned Reward Function S

Search-
based

CauseInfer [37] 2014 M, TP ML Unsup PC [110] + DFS C
IPCCC’16 [28] 2016 M, E ML Sup Greedy DFS Algorithm + Random Forest I, C
Microscope [69] 2018 M ML Unsup Parallelized PC + DFS I
AS’20 [38] 2020 M, TP R Unsup Optimized PC based on Knowledge Graph + BFS I, C
DyCause [70] 2021 M R Unsup Crowdsourcing Graph Fusing + BFS I

Feature-
based

ISSRE’16 [101] 2016 M ML Sup Random Forest FT
PatternMatcher [43] 2021 M, TP DL Sup Two-sample Hypothesis Test + 1-D CNN + Multi-layer Perception C
Arvalus [120] 2021 M DL Sup BIRCH [122] + Graph CNNs FT
DéjàVu[92] 2022 M, TP DL Sup FDG + GNN C, FT
Fingerprint [103] 2010 M ML Unsup Recognition + Hot and Cold Metric Quantiles + Crisis Fingerprint Comparsion FT
iSQUAD [98] 2020 M ML, DL Unsup TOPIC + BCM FT
TS-InvarNet [93] 2022 M ML Unsup HDBSCAN + Granger Causality Test C
RootCLAM [44] 2023 M, TP DL Unsup SCM [118] + Deep SVDD Anomaly Detection Algorithm + VACA C

Other

FacGraph [49] 2018 M R Sup PC [110] + D-separation + BFOS + FSM S
NetMedic [71] 2009 M ML Unsup Dependency Graph I
CRD [72] 2017 M ML Unsup Doubly Stochastic Matrix Decomposition I
Grano [24] 2019 M, E, TP R, ML Sup Unified Anomaly Graph + Propagation Algorithm I
JSS’20 [77] 2020 M, TP ML Unsup Anomalous Subgraph + Graph Comparison I
Sieve [40] 2017 M, TP R Unsup K-shape Clustering + Predictive-causality Model I, C
DLA [41] 2019 M, TP DL Unsup Baum-Welch Algorithm + HHMM I, C
ExplainIt [94] 2019 M ML Unsup CBN + Hypothesis Ranking C
CIRCA [42] 2022 M, TP DL Unsup SCM [118] + CBN C

rate, and loading delay) and uses linear regression to weigh these factors, calculating the probability
of root causes based on feature correlation.

Spectrum. Spectrum-based failure localization (SBFL) techniques, used in software debugging,
identify potential code errors based on test case coverage and results. SBLD [82] applies SBFL to logs,
using differences in event occurrences to pinpoint issues. It employs hierarchical agglomerative
clustering (HAC) to rank and cluster events, aiding in selecting relevant events for troubleshooting.

4.1.2 Techniques Based on Machine Learning. Compared to Section 4.1.1, techniques based on
machine learning replace statistical or rule-based methods with more advanced machine learning
methods, offering stronger modeling capabilities. Firstly, clustering [83, 84, 104] and classification
techniques [85] categorize historical logs into different groups, then perform failure diagnosis
through retrieval or matching. Secondly, to identify relationships between features and failures,
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Table 5. Summary of Surveyed Failure Diagnosis Techniques through Traces, Based on Their Category, the
Publication Year, the Data (e.g., T for Traces, E for Events, and TP for Topology) They Use, the Principle (e.g.,
R for Techniques Based on Rule, ML for Techniques based on Machine Learning, and DL for Techniques
Based on Deep Learning) and Supervision (e.g., Sup for Supervised Techniques, and Unsup for Unsupervised
Techniques) Type, the Core Method, and the Diagnostic Target (e.g., S for Service-Level Localization, I for

Instance-Level Localization, C for Component-Level Localization, and FT for Failure Types)

Category Technique Year Data Principle Supervision Core Method Target

Fe
at
ur

e
Ex

tr
ac

tio
n

Failures MEPFL [17] 2019 T, TP ML, DL Sup Random Forest + KNN + MLP S, FT
Upstream and
Downstream De-
pendencies

RanCorr [53] 2009 T, TP R Unsup Weighted Power Mean S, I, C
ModelCoder [74] 2021 T, TP ML Sup 3-sigma + Particle Swarm + Optimization I, FT
MicroHECL [52] 2021 T ML Sup One Class SVM + Random Forest + 3-sigma S, FT

Anomalous
Deviation

CloudDiag [129] 2013 T ML Unsup Coefficient of Variation + RPCA I, C
WinG [58] 2022 T ML Unsup DTW S
TraceNet [57] 2023 T R Unsup 3-sigma S

A
no

m
al
y

D
et
ec

tio
n Visualization GMTA [1] 2020 T R - Visualization C

Machine Learning MicroSketch [20] 2022 T ML Unsup Distributed Distribution Sketch + RRCF I

Deep Learning TraceAnomaly [22] 2020 T DL Unsup Deep Bayesian Networks with Posterior Flow S C
TraceModel [76] 2021 T, TP DL Sup VAE + 3-sigma + Particle Swarm Optimization I, FT

Ro
ot

Ca
us

e
A
na

ly
si
s

Similarity Matching FPDB [25] 2016 T, E R - Edit Distance + Gaussian influence C

Spectrum

T-Rank [75] 2021 T R Unsup 3-sigma + SBFL I
TraceRCA [56] 2021 T ML Unsup 3-sigma + FP-Growth + JI Score S
TraceContrast [105] 2024 T R Unsup Critical Path Extraction + 3-sigma + eCSP [134] + SBFL C
Minesweeper [27] 2021 T, E R Unsup PrefixSpan C

Walk
TraceRank [55] 2023 T ML Unsup 3-sigma + HAC + :-means + SBFL + Personalized PageRank S
MicroRank [21] 2021 T ML Unsup 3-sigma + SBFL + Personalized PageRank I

Causal Analysis Sage [54] 2021 T DL - CBN + VGAE + Counterfactual Queries S, C
Sleuth [130] 2023 T DL Unsup BERT + JI Score + HDBSCAN + CBN + Counterfactual Queries I

Table 6. Summary of Surveyed Failure Diagnosis Techniques through Multimodal Data, Based on Their
Category, the Publication Year, the Data (e.g., L for Logs, M for Metrics, T for Traces, E for Events, and TP
for Topology) They Use, the Principle (e.g., R for Techniques Based on Rule, ML for Techniques Based on

Machine Learning, and DL for Techniques Based on Deep Learning) and Supervision (e.g., Sup for
Supervised Techniques, and Unsup for Unsupervised Techniques) Type, the Core Method, and the
Diagnostic Target (e.g., S for Service-Level Localization, I for Instance-Level Localization, C for

Component-Level Localization, and FT for Failure Types)

Category Technique Year Data Principle Supervision Core Method Target

Result Fusion ICWS’20 [95] 2020 L, M ML Unsup Oversampling Anomalies + Adding Gaussian Noise + MI C
PDiagnose [73] 2021 L, M, T ML Unsup Anomaly Queue + Voting Mechanism I, C

Model Fusion

Groot [26] 2021 L, M, T, E R, ML Unsup Event Causal Graph + PageRank C
TrinityRCL [50] 2023 L, M, T R Unsup Causality Graph + RWR S, I, C
MicroCBR [16] 2022 L, M, T, TP R Unsup Knowledge Graph + Hierarchical Case-based Reasoning FT
UniDiag [138] 2024 L, M, T, TP ML, DL Unsup TKG + MOGE + HAC FT

Feature Fusion

CloudRCA [39] 2021 L, M, TP ML, DL Sup Unified Feature Matrix + KHBN I, FT
Eadro [51] 2023 L, M, T ML, DL Sup Multi-modal Fused Representation + GAT S
Medicine [145] 2024 L, M, T ML, DL Sup Modality-specific Feature Encoders + Multimodal Adaptive Optimization FT
MULAN [136] 2024 L, M DL UnSup Contrastive Learning + GraphSage [146] + KPI-Aware Attention + RWR I
DiagFusion [19] 2023 L, M, T, TP DL Sup Unified Event + GNN I, FT
Nezha [96] 2023 L, M, T ML Unsup Unified Event + Event Pattern Mining and Comparison C
DeepHunt [147] 2024 L, M, T, TP DL Unsup Self-supervised Learning + GAE + MLP I
ART [148] 2024 L, M, T, TP DL Unsup Self-supervised Learning + Transformer Encoder + GRU + GraphSAGE I, FT

correlation analysis techniques [86, 87] employ machine learning algorithms like regression trees,
dependency networks, Pearson correlation, and time-group heuristics. Lastly, some methods focus
on using logs for graph construction [88, 89].

Clustering. LogCluster [104] improves upon retrieval-based techniques [78, 79, 81] (Section 4.1.1)
by parsing log messages into weighted events using IDF and contrast-based methods. It then
applies HAC to group similar sequences and select representatives. During production, LogCluster
compares failure sequences to these representatives using cosine similarity, suggesting mitigation
actions based on historical data. However, it requires manual labeling of representative sequences,
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which is time-consuming. To address this, Log3C [83] combines sequence clustering with user-
perceived metrics to automatically identify log sequences associated with system performance
degradation. It employs cascading clustering to group sequences at various time intervals and uses
t-statistics to analyze the relationship between cluster sizes and metrics. This approach accelerates
the clustering process for massive sequences through sampling, clustering, pattern extraction,
and matching. While Log3C incorporates both logs and metrics, its core still revolves around log
clustering, with metrics primarily determining whether a cluster reflects a failure rather than
pinpointing specific failure locations.

Onion [83] introduced the concept of diagnostic targets as incident-indicating logs, characterized
by consistency, impact, and bilateral difference. These characteristics are incorporated into a
progressive clustering process for vectorized logs, resulting in a clustering tree where each node
represents a combination of log vectors. To maintain cluster consistency, log vectors are divided
into subgroups based on similarity at each tree depth. To mitigate the time-consuming nature of
splitting to leaf nodes, Onion implements a downward-closure-based pruning strategy using a
popularity ratio to evaluate log vector impact scope, with a threshold to halt node splitting. This
ensures each node or cluster in the tree indicates widespread anomalies across servers. Finally,
Onion defines a contrast score to rank root causes, considering differences between normal and
incident-indicating logs.
Classification. LogFaultFlagger [85] aims to maximize failure detection while minimizing root

cause log lines to streamline investigations. After parsing and one-hot encoding templates, it uses
set-difference with passed logs to isolate failure-specific logs and assigns importance based on
IDF. LogFaultFlagger then employs exclusive K nearest neighbors (KNN) to predict if a log line
will cause a failure. In essence, if any of a log vector’s K neighbors has triggered a bug report,
it’s deemed likely to cause a failure. This approach aligns with the goal of comprehensive failure
identification.
Correlation Analysis. DISTALYZER [86] extracts event and state features from logs, describing

the system’s runtime state qualitatively and quantitatively. It uses t-tests to identify the most
discriminative features between normal and abnormal groups. However, significantly different
features aren’t necessarily root causes, as divergences often increase along interrelated feature
chains. DISTALYZER employs dependency networks to establish a graph between features and
user-perceived metrics, introducing attention focusing to find a small set of highly divergent
features strongly dependent on these metrics. While most existing work only identifies errors
leading to failures, FDiagV3 [87] provides more comprehensive failure-related information. It first
identifies associated jobs, nodes, correlated events, and event sequences by extracting relevant data
from logs to form a matrix. Principal component analysis (PCA) and independent component
analysis (ICA) extract outliers, while the Pearson correlation algorithm identifies related log
events. FDiagV3 also introduces a time-group heuristics method to construct failure-related event
sequences, supplementing event localization results.

Graph Analysis. Several techniques utilize logs to construct graphs for analysis. The Peter and
Clark (PC) algorithm [110], a popular causal analysis method based on probabilistic graphical
models (PGMs), determines causal relationships by examining conditional independence. It begins
with a complete undirected graph and iteratively removes edges that fail to meet conditional
independence criteria, resulting in a directed acyclic causality graph. ICWS’17 [88] employs a two-
level graph construction approach to model execution states between and within services during
normal periods. It first builds a service topology graph using log frequency and the PC algorithm,
then creates time-weighted control flow graphs (TCFGs) to describe internal microservice
states. TCFGs use log templates as nodes, connecting them with edges based on frequent sequential
appearance and short time intervals. Edge weights represent transition times between templates.

ACM Transactions on Software Engineering and Methodology, Vol. 35, No. 1, Article 2. Publication date: December 2025.



2:16 S. Zhang et al.

By comparing these graphs during normal periods, ICWS’17 can diagnose sequence, redundancy,
and latency anomalies.

ICWS’17 [88] constructs graphs at both service and event levels. HALO [89] further refines this
approach to the attribute field level, utilizing telemetry monitoring data (structured log components
resembling attribute fields) for failure diagnosis. Considering the cloud’s hierarchical nature, HALO
builds an attribute hierarchy graph through pairwise relationship identification, skeleton extraction,
and skeleton-based clustering. It then applies a self-adaptive top-down search on failure-aware
random walk paths to identify failure-related attribute value combinations. Reverse truncation
ensures appropriate granularity in the localization process.

4.1.3 Techniques Based on Deep Learning. Deep learning techniques for log analysis can be
categorized as supervised [59, 108] or unsupervised [60, 107, 108] based on their supervision
methods.
Supervised. Cloud’19 [59] focuses on logs from single system tasks for diagnostic analysis. It

aggregates tracing information and error messages with the same request ID, using the first log
entry’s event as the task representative. For log vectorization, Cloud’19 trains a word2vec model
on task-specific logs. It then aggregates log vectors by request ID, using the centroid to represent
each request. Finally, Cloud’19 trains a supervised classifier for each task to map request vectors to
diagnosis reports, including failure types, server nodes, and additional information.

Unsupervised. Log IDs represent abstract concepts or specific instances, enabling systemworkflow
reconstruction from logs for detailed failure diagnosis. SwissLog [60] builds an ID relation graph and
uses a heuristic algorithm for instance-level localization, scanning nodes to eliminate unlikely root
causes. In contrast, LogKG [107] employs knowledge graphs to analyze multiple log fields, including
templates, components, and request IDs. Through entity extraction and graph construction, LogKG
obtains encodings for each log template, then uses TF-IDF weighting for failure-oriented log
representations. For downstream tasks, LogKG applies the OPTICS clustering algorithm to label
root causes for each cluster.
Both. LogM [108] offers unsupervised and supervised failure diagnosis techniques. The unsu-

pervised approach is efficient but may be less accurate, while the supervised method performs
better but requires annotated data. LogM first builds a knowledge base of root causes and abnormal
events for the Hadoop platform. The unsupervised technique calculates cosine similarity between
current and historical logs to identify probable root causes, while the supervised version uses a
Siamese LSTM network for similarity computation. Both methods aim to establish log-to-root cause
mappings through pairwise similarity measurements. Additionally, LogM employs a convolutional
neural network (CNN) with attention-based bidirectional LSTM to capture temporal dynamics in
log sequences for failure prediction tasks.

4.1.4 Summary. Analyzing the above, most diagnostic techniques fall into three main ap-
proaches. First, category-based methods [59, 78, 79, 81, 83–85, 104, 107, 108] classify logs into
different groups. Some of these techniques further diagnose categories, adding labels for common
root causes and mitigation steps for online retrieval [59, 78, 79, 81, 104, 107, 108]. Others focus
on distinguishing normal from abnormal log categories [84, 85] or use user-perceived metrics to
assess category impact on performance degradation [83]. Second, correlation analysis techniques
[80, 86, 87] employ weighted combinations or machine learning to evaluate feature correlations
with system failures. Lastly, graph analysis methods [60, 88, 89] extract graph information from
logs. ICWS’17 [88] builds a TCFG to mine execution flows and include interval information. HALO
[89] creates an attribute hierarchy graph for root cause searches, while Swisslog [60] constructs an
ID relation graph across distributed components.
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Fig. 5. Categories of failure diagnosis techniques through metrics.

Table 3 summarizes the surveyed failure diagnosis techniques through logs, providing information
on the data required, the principles, the supervision techniques used, the core methods, and the
diagnostic targets. It can be observed that the current root cause localization mainly focuses on
the component-level, including log lines [78, 79, 84, 85, 88], events [82, 86, 87], impactful service
system problems [83], with only a few techniques targeting the instance-level [59]. Regarding
failure classification techniques [59, 104, 107], they cover the failure types compiled in Section 3.3.

In summary, logs are crucial for understanding system behavior at runtime, offering insights
through natural language text, sequence information, and numerical values. They provide rich
semantic information for analyzing performance issues and can be transformed into templates or
events representing specific system behaviors through parsing [59, 60, 78, 79, 81–83, 85, 86, 88, 104,
107, 108]. Log sequences reflect system workflows, with changes often indicating potential failures
[78, 79, 85, 88, 104]. Key variables in logs can also point to specific failure types. For instance, ICWS’17
[88] uses timestamps to extract time intervals between log prints for diagnosing latency anomalies.
Notably, logs can be combined with user-perceived metrics for enhanced failure diagnosis [83,
86]. Log3C [83] clusters log sequences and analyzes their correlation with failure rates to identify
problematic system behaviors. This approach replaces manual annotation with unsupervised
correlation analysis, suggesting ways to reduce human involvement in failure diagnosis. Similarly,
DISTALYZER [86] constructs graphs connecting log-extracted features with user-perceived metrics
to identify strong dependencies, further advancing automated diagnostic techniques.

4.2 Failure Diagnosis through Metrics
Metrics offer valuable insights into system resource usage and performance, providing fine-grained
information to effectively characterize the operational state, particularly related to system resources.
Failure diagnosis through metrics contributes to the observability and reliability of microservice
systems, offering multi-dimensional, multi-granular, and multi-perspective techniques. Specifically,
failure diagnosis utilizes collected metrics during operation, processing and analyzing them to
establish diagnostic evidence by modeling correlations. As shown in Figure 5, the techniques for
failure diagnosis through metrics can be categorized into direct analysis, graph-based, search-based,
feature-based, and other techniques.

4.2.1 Techniques Based on Direct Analysis. When a failure is detected by the front-end application
of the system, these techniques primarily utilize traditional statistical methods to analyze the
abnormal states of application monitoring metrics running in the back end to diagnose the root
cause instances [61–66, 112], components [23, 65], or failure types [97, 106].
Instance-Level. PAL [61] and FChain [62] propose two similar techniques to determine the

root cause instances causing application-level performance anomalies. The core idea behind both
approaches is to identify the root causes in distributed applications by extracting abnormal propa-
gation patterns. They posit that performance anomalies manifest as significant changes in one or
more system-level metrics, and these changes propagate from one instance to others, ultimately
affecting the front-end application’s service level objective (SLO). To find the root causes, PAL
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[61] initially applies a change-point detection algorithm [113] that combines cumulative sum
(CUSUM) and Bootstrap to each collected system-level metrics after an exception occurs in the
front-end application. This algorithm determines the start time of abnormal behavior. Then, PAL
[61] orders the change points of different instances in chronological order to infer the abnormal
propagation pattern. Typically, the first group of instances in the propagation pattern represents
the root causes as they exhibit abnormal behavior earliest. In contrast to PAL [61], after obtaining
the abnormal propagation pattern, FChain [62] filters out false positives and updates the pattern
based on known instance dependencies, resulting in a more accurate diagnosis.

DBR [66] deploys an anomaly detector for each system instance and constructs a configuration
profile for it based on historical data. During runtime, the instance anomaly detector checks
if the current measurement deviates from the predicted value to identify and raise alerts for
anomalies. When an anomaly is detected, information about the anomaly is sent to the anomaly
correlation engine, which relies on domain knowledge captured from the current network and
system configuration to analyze and identify the root causes. FluxRank [63] employs a root cause
localization process comprising three steps, including change quantification, digest distillation, and
digest ranking. The inputs for FluxRank [63] include the time of instance failure and all metrics.
FluxRank [63] quantifies the degree of change for a large number of metrics using lightweight
kernel density estimation (KDE). It then organizes all metrics into digests using density-based
spatial clustering of applications with noise to represent abnormal patterns in different modules.
Subsequently, FluxRank [63] employs a learning-to-rank algorithm [112] based on feature extraction
and logistic regression to automatically rank all digests based on their potential as root causes.
Finally, operators mitigate the loss by triggering actions based on the digest ranking results.
CloudPin [64] adopts a multidimensional algorithm with three sub-models to comprehensively
analyze the diversity of anomalies in public cloud networks. In the prediction deviation dimension,
CloudPin [64] designs a model based on the moving average algorithm. In the anomaly amplitude
dimension, CloudPin [64] utilizes an improved model based on extreme value theory (EVT).
In the shape similarity dimension, CloudPin [64] employs a set-based similarity model. It then
designs a comprehensive sorting algorithm to generate the final ranking list of root cause instances,
ensuring effective characterization of relative deviation based on the absolute deviation.
Component-Level. CETS [23] introduces an event-time model that considers the duration of

events, the relationships between events, and the correlations between events and various metrics.
It transforms the problem into a dual-sample problem and uses the nearest neighbors method to
explore the association between abnormal events and metrics, aiding in failure diagnosis.

Both. n-diagnosis [65] is a method that applies the two-sample hypothesis test to localize the root
causes at the instance-level and component-level. It assumes that metrics with significant changes
before and after a failure are more likely to be the root causes. n-diagnosis [65] first collects metrics
on each container running the application and then extracts two equally sized time windows from
it. One time window corresponds to the period when the front-end experiences anomalies, while
the other corresponds to the period when the front-end operates normally. n-diagnosis [65] then
calculates the similarity between the metrics within the two-time windows. If the similarity falls
below a threshold, it indicates that the metric undergoes significant changes during the occurrence
of anomalies, making it a candidate for the root cause. Finally, n-diagnosis [65] returns the abnormal
components and their associated system instances as the set of potential root causes.
Failure Type. CloudPD [106] first collects various system-level metrics to generate data points,

which are defined as sequences of moving average values over a fixed time interval. These data
points serve as the basic input unit for various anomaly detection algorithms. Then, CloudPD [106]
uses the KNN algorithm to learn the normal behavior in an online manner and compares the data
points with the model to measure the deviation. During the failure classification stage, CloudPD
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[106] categorizes different failure types based on expert knowledge and generates failure signatures.
It then compares the failure signatures with the existing ones in the database to determine the
failure or generate new types. DBSherlock [97] is a heuristic algorithm that relies on scatter plots
of visualized performance statistics. Users specify instances they consider abnormal, and the model
automatically analyzes a large amount of historical statistical data to provide the most likely
failure types and their corresponding confidence. DBSherlock [97] improves the accuracy of failure
diagnosis by incorporating domain knowledge and employing optimization methods based on user
feedback.

4.2.2 Techniques Based on Walk. Random Walk [114] is a mathematical statistical model where
the process involves a sequence of trajectories, and each step of thewalk is random.These techniques
simulate the failure propagation among services using random walks and related variations. Each
walk has the choice to stay at the current node or transition to a more abnormal node. After a
certain number of iterations, a potential list of root causes is obtained based on the ranking of
the walks. Nodes that are visited more frequently during the walks are more likely to be the root
causes. Depending on the construction of the relationship graph that random walks rely on, there
are two types based on topology graph [29–31, 34] and causality graph [32, 33, 35, 36, 45–48, 67, 68,
90, 91].
Topology Graph. MonitorRank [30] uses Hadoop to generate a call graph between system

instances, and it utilizes random walks for root cause localization based on the call graph when
instances experience anomalies. The core idea of this method is that metrics more correlated with
the abnormal frontend nodes are more likely to be the root causes. To consider the interdependence
between instances, three walk strategies are designed for simulating failure propagation. The
transition probabilities between nodes are determined based on the metrics of the target nodes, the
correlation with the frontend node, and the direction of the walk. Once an anomaly is detected in
the frontend instance, MonitorRank [30] performs random walks based on the transition proba-
bilities, and instances that are visited more frequently have a higher probability of being the root
causes. ToN’18 [31] follows a similar approach to MonitorRank [30], suggesting that the correlation
between virtual machine metrics and frontend instance response time can be used to measure the
probability of virtual machines being the root causes. Specifically, ToN’18 [31] uses the tracing tool
PreciseTracer [115] and the nova interface [116] to obtain the topology between virtual machines
and constructs an anomaly propagation graph (APG) for each anomaly. Subsequently, random
walk based on the APG is used to localize the root cause within the virtual machines.

The PageRank algorithm [117] initially developed as a method to calculate the importance of
web pages on the internet, has also been widely applied in the domain of failure diagnosis in
microservice systems. The basic idea is to define a random walk model, specifically a first-order
Markov chain, on a directed graph that describes the behavior of visited nodes randomly. Under
certain conditions, the probability of visiting each node converges to a steady distribution, and
the steady probability values of each node represent their values, indicating their importance.
MicroRCA [29] presents a failure diagnosis technique based on fine-grained feature engineering
and personalized PageRank algorithm. Firstly, MicroRCA [29] detects anomalies in the system
through an anomaly detection module. Once a performance anomaly is detected, the root cause
analysis engine constructs an attribute graph with instances and nodes to represent the propagation
path of the anomaly. Then, the root cause analysis engine extracts an anomaly subgraph from the
attribute graph based on the detected anomaly. Finally, by calculating the anomaly scores of nodes
and the correlations between nodes, MicroRCA assigns node weights and edge weights on the
anomaly subgraph and uses the personalized PageRank algorithm to infer the instances that are
most likely to cause the anomaly. Building upon the work of MicroRCA [29], ICSOC’20 [34] further
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considers the root cause components that lead to frontend instance failures. Firstly, it constructs
an instance dependency graph to discover candidate root cause instances. Then, it takes into
account the abnormality levels of the instance metrics before and after the failure. To achieve this,
ICSOC’20 [34] trains an autoencoder to learn the patterns of these instance metrics under normal
circumstances. After obtaining the candidate root cause instances, the corresponding autoencoder
is used to reconstruct the metrics after the occurrence of anomalies. If the reconstruction results
are poor, it indicates that these components and their corresponding instances are more likely to
be the underlying causes.

Causality Graph. It is a directed acyclic graph that captures the dependency relationships between
instances in the failure propagation. CloudRanger [45], MS-Rank [46], and AutoMAP [47] utilize the
PC algorithm [110] to analyze performance metrics and build dynamic causality graphs between
instances. They then employ the random walk algorithm similar to MonitorRank [30] to determine
the root cause instances leading to failures. MS-Rank [46] improves upon CloudRanger [45] by
considering multiple metrics from different instances when constructing the causality graph. It
also introduces a feedback mechanism that allows the model to update the importance levels of
different instance metrics based on feedback from operators, improving the accuracy of future
diagnostic results. AutoMAP [47] introduces the concept of addition and subtraction operations on
graphs, where the relationship graphs constructed under normal conditions are summed to display
the instance linkage. This helps reduce noise interference. Additionally, AutoMAP [47] subtracts
the abnormal behavior graph obtained through causal analysis from the normal graph to retain a
few instances that are highly relevant to the anomaly, making the abnormal information in the
graph more prominent and improving the accuracy of subsequent failure diagnosis.

Other techniques [32, 33, 48, 67, 90] utilize different methods to construct causality graphs.
MicroCause [90] designs a simple yet effective path condition time series (PCTS) algorithm
to capture the time lag characteristics in the failure propagation between metrics. It then uses
a novel temporal cause-oriented random walk (TCORW) algorithm that considers causal
relationships, temporal order, and priority information of the metrics to rank the root cause
components. ServiceRank [48] treats the cloud-native system as a “black box” and constructs an
influence graph by extracting causal relationships between instances using the PC algorithm [110]
without any predefined topology. To enhance the reliability and availability of services, operators
have developed various design patterns to provide failure tolerance capabilities. However, these
patterns change the way failures propagate, rendering traditional diagnostic methods ineffective.
To address this issue, ServiceRank [48] proposes a correlation calibration mechanism to eliminate
the impact of design patterns on failure diagnosis. Finally, ServiceRank [48] designs a heuristic
investigation algorithm based on the second-order random walk to localize the root causes. Similar
techniques include FRL-MFPG [67], which proposes a microservice failure propagation graph
(MFPG) construction method based on failure correlation (FC) to study the failure propagation
patterns of instances in a system. In response to the limitations of inferring root causes based
on correlation calculation and to avoid being trapped in a low abnormality area, FRL-MFPG [67]
designs a random walk algorithm with forward, backward, and stay access, which can accurately
localize. REASON [32] addresses the problem of localizing root cause instances in complex systems
with interdependent network structures. It proposes a method based on hierarchical graph neural
networks (GNNs) to construct causality graphs that consider both intra-level and inter-level non-
linear causal relations. Then, REASON [32] uses random walk with restarts (RWRs) to model
the network propagation of system failures to identify potential instances. CORAL [33] designs an
online technique that can automatically trigger the failure diagnosis process and incrementally
update the model, addressing the inefficiency of offline techniques. CORAL [33] first detects the
trigger point for failure diagnosis using metrics. If triggered, it initiates the incremental causality
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graph learning process using the variational graph autoencoder (VGAE). In the incremental
causality graph learning phase, each data batch is used to decouple the state-invariant and state-
dependent information to incrementally update the previous causality graph. Finally, similar to the
other techniques, CORAL [33] uses RWR based on the learned causality graph to simulate failure
propagation. When the learned causality graph and the list of root cause instances converge, the
final diagnostic result is obtained.

The core idea of LOUD [68], MicroDiag [35], and CauseRank [91] is based on constructing
a causality graph and using standard or personalized PageRank algorithms to localize the root
causes. LOUD [68] is based on the assumption that failure resources will generate increasingly
strong correlations with time during failure execution. It first trains a model that captures the
normal behavior of the system and only retains the anomalous indicators during the online phase.
It then deduces the propagation graph based on the causality graph generated during training.
Finally, graph centrality algorithms such as PageRank are used. MicroDiag [35] collects the call
relationships and metrics of different components and uses an unsupervised algorithm named
distance-based clustering BIRCH for anomaly detection. It analyzes the collected user-perceived
and system-level metrics, obtains service dependency relationships and deployment information,
and constructs a component dependency graph. Further, it uses a structural causal model (SCM)
[118] to infer causal relationships and construct a metrics causality graph. Finally, the PageRank
algorithm is used to localize the root cause components. CauseRank [91] is a failure diagnosis
technique at the metric group level. Firstly, CauseRank [91] groups the metrics in the system based
on their respective modules to reduce the complexity caused by high-dimensional metrics. Secondly,
CauseRank [91] calculates the volatility of each metric to filter out candidate metric groups that are
related to failures. Then, a group-based greedy equivalent search (G-GES) algorithm is used to
construct a temporary causality graph between the candidate metric groups. Finally, CauseRank
[91] designs a causal-oriented personalized PageRank (COPP) algorithm to score and rank the
candidate component groups, thereby determining the most likely root causes.

In large language models (LLMs) like ChatGPT, human-in-the-loop training has been proven
to be effective in improving model performance. Inspired by this, HRLHF [36] combines human
feedback from experts familiar with system architecture and diagnostic experience to improve the
accuracy of constructing the service dependency graph during the process of identifying system
causal relationships. Additionally, HRLHF [36] enhances CausalRCA [119] by transforming static
causality graphs into window causality graphs, which incorporate the characteristics of Markov
and Granger causality. This ultimately leads to more accurate and robust results.

4.2.3 Techniques Based on Search. Techniques based on search typically rely on information such
as metrics, network traffic, and invocation relationships between system services or instances to
construct a directed acyclic graph with metrics or system instances as nodes and causal relationships
as edges. The entire causality graph is then traversed using strategies like deep-first search (DFS)
[25, 37, 69] or breadth-first search (BFS) [38, 70] to find potential root causes.
DFS. CauseInfer [37], IPCCC’16 [25], and Microscope [69], all based on constructed causality

graphs, use the DFS strategy to identify the root causes of performance anomalies in application
front-ends. CauseInfer [37] proposes a two-layered hierarchical causality graph construction
method. Coarse-grained graphs are constructed based on the lag correlation of the sending traffic
between two instances, while fine-grained graphs between internal components are built using the
PC algorithm [110]. Then, CauseInfer [37] employs the DFS strategy to traverse the entire causality
graph and prioritize and infer potential components according to anomaly scores. Specifically,
CauseInfer [37] starts with the SLO metrics of the application front-end and recursively visits nodes
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in the causality graph. For each visited node, it checks if the dependent nodes exhibit abnormal
behavior. If not, the currently visited node is considered the root cause.

IPCCC’16 [25] improves the accuracy by incorporating operational personnel’s feedback knowl-
edge into the process of using DFS to search on the causality graph. IPCCC’16 [25] first extracts the
causality graph using data mining techniques. Then, when a failure occurs, a greedy DFS algorithm
is applied to generate candidate root causes. Operational personnel validate the candidate’s root
causes and provide feedback indicating correctness or incorrectness. Finally, a supervised learning
algorithm is used to update the causality graph based on the feedback, enhancing the accuracy of
DFS in outputting candidate root causes.

Microscope [69] takes into account both communicating and non-communicating dependency
relations between two service instances to construct the causality graph. In some cases, instances
may not have communication dependencies but may share computational resources on the same
physical machine, leading to potential failure propagation. Microscope [69] uses a parallelized PC
algorithm [110] to learn causal relationships arising from such shared resources. After constructing
the causality graph, Microscope [69] starts from anomalous front-end instance nodes and uses
the DFS strategy to traverse the graph, adding anomalous instances with all neighboring nodes
in a normal state to the candidate list. Finally, Microscope [69] calculates the Pearson correlation
coefficient between the front-end instance and each candidate instance’s SLO metric as the basis
for ranking the root causes.
BFS. AS’20 [38] and DyCause [70] both based on constructed causality graphs, use the BFS

strategy to identify the root causes of performance anomalies in application front-ends. AS’20 [38]
efficiently constructs causality graphs between metrics by utilizing an operation and maintenance
knowledge graph. It assigns weights to each edge based on the Pearson correlation coefficient
between two sequences, where the sequence represents the value changes for the node. When an
abnormal metric is detected, AS’20 [38] applies the BFS strategy starting from the abnormal metric
to find all possible paths. Finally, AS’20 [38] ranks the paths based on the sum of edge weights. If
the same, it prioritizes the shorter path as the root cause.

DyCause [70] introduces a technique using sliding windows and crowdsourcing graph fusing.
Firstly, DyCause [70] examines Granger causal intervals with sliding windows to construct local
dependency graphs. These graphs represent the extent of influence an instance has on the front-end
application and other instances. To leverage collective wisdom, DyCause [70] designs a crowd-
sourcing graph fusing scheme that merges the local dependency graphs from different instances
into an optimized dependency graph. Finally, based on the optimized dependency graph, DyCause
[70] performs BFS in reverse, constructing abnormal propagation paths and generating a ranked
list of root cause instances.

4.2.4 Techniques Based on Feature Extraction. Techniques based on feature extraction refer to
the use of machine learning techniques to automatically learn performance feature models from
metrics. These models can describe the performance behavior of the instances or components
under normal operating conditions and different failure states. When new metrics are collected,
the trained feature models are used to analyze the data and complete the failure diagnosis task.
The feature model maps the original data states to a new feature space, which may better meet the
requirements of specified tasks compared to the original space. Typically, the mapped data is fed
into commonly used machine learning algorithms such as clustering or classification algorithms to
obtain corresponding models. Based on the different supervision methods, feature-based techniques
can be divided into supervised [43, 92, 101, 120] and unsupervised techniques [44, 93, 98, 103].

Supervised. ISSRE’16 [101] utilizes monitoring metrics from runtime system instances that reflect
the system-level resource status to detect abnormal system behavior. It then trains a random forest
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model for anomaly behavior classification. PatternMatcher [43] takes into account the varying
levels of attention that operators have for different abnormal patterns of metrics. PatternMatcher
[43] first leverages two-sample hypothesis tests for coarse-grained anomaly detection on all metrics
to quickly and accurately filter out metrics that do not show any abnormal changes during the
occurrence of failure, narrowing down the search space. Then, PatternMatcher [43] uses a one-
dimensional CNN (1-D CNN) to extract features from labeled time series data and trains an
anomaly pattern classification model [121] to further analyze the abnormal patterns of the metrics.
The aim is to filter out the abnormal patterns that engineers are not concerned about, thereby
improving localization accuracy and providing engineers with more comprehensive information.
Finally, PatternMatcher [43] employs a ranking strategy that considers both the degree of metric
anomaly and the importance of abnormal patterns to automatically rank the abnormal metrics,
allowing operators to inspect suspicious components based on the ranking list.

Due to the natural graph structure that facilitates modeling the topology of the system, Arvalus
[120] and DéjàVu [92] use GNN to learn features and patterns from graph structure data, showing
good performance in failure diagnosis. Arvalus [120] considers the dependencies and failure
propagation relationships among cloud-native system instances. It first transforms the metric
subseries of system instances into feature vectors of graph nodes and then uses graph convolution
operations to learn the features and weights of system instance nodes and edges. Finally, it combines
the node features of system instances with dependency relationship features and performs failure
classification through feature transformations using linear and softmax layers. DéjàVu [92] first
captures the temporal information of metrics and the correlations between metrics. DéjàVu [92]
trains a feature extractor for each failure type to map the instances of the same type to vectors of
the same dimension. To model failure propagation, the feature aggregator utilizes the attention
mechanism to aggregate the structural information of the failure dependency graph (FDG)
into one aggregated feature. The faulty instances of the same type share a feature extractor, and
all faulty instances share a feature aggregator. Finally, in conjunction with FDG, GNN is used to
diagnose the root cause instances and specific failure types.
Unsupervised. Fingerprint [103] aims to automatically diagnose failure types by identifying

recurring behaviors that may occur due to misconceptions of the root cause, delayed deployment
fixes, or sudden actions caused by high utilization. Fingerprint [103] first captures the state of each
metric and calculates percentiles to identify abnormal behavior. It then succinctly summarizes
the collected subset of metrics that can best differentiate between different failures. Based on the
historical percentiles of each metric, the current value is described as hot, cold, or normal, indicating
an up, down, or normal value, respectively. Finally, feature encoding is obtained, and the failure
type is matched using Euclidean distance. iSQUAD [98] consists of offline analysis and training
phase, and online diagnosis and update phase. In the offline phase, the collected metrics are first
extracted for abnormal features, including peak rising or falling and level shifting. Then, iSQUAD
[98] applies dependency cleansing based on association rule learning between pairs of metrics.
Afterward, iSQUAD [98] utilizes type-oriented pattern integration clustering (TOPIC) to
obtain clustering clusters. To quickly find the nearest neighbors, TOPIC uses the KD-tree method.
Finally, iSQUAD [98] selects important metrics and representative failure features through the
Bayesian case model (BCM) to represent the entire cluster, and this extracted key information
is handed over to operations personnel to label the failure types. BCM explains clustering or
classification results using representative samples and provides model interpretability. In the online
diagnosis phase, the same steps are followed to extract features, match them with pre-trained
typical features, and diagnose the failure type based on the feature with the highest similarity.
TS-InvarNet [93] is based on the assumption of stable relationships between metrics and aims to
mine and interpret state changes of invariants for root cause localization. TS-InvarNet [93] first uses
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the hierarchical density-based spatial clustering of applications with noise algorithm to eliminate
duplicate and redundant invariants to accelerate the construction of the invariant network. TS-
InvarNet [93] learns global and local dependency relationships through the tempo-spatial model.
Then, TS-InvarNet [93] detects anomalies based on the evolution of the global invariant network
and performs root cause localization based on the interpretation of changes in local invariants.

RootCLAM [44] not only achieves root cause localization from a causal perspective but also
focuses on anomaly mitigation. RootCLAM [44] manages data generation using SCM [118] and
considers root causes as external interventions on specific features. Specifically, RootCLAM [44] first
uses a deep support vector data description (Deep SVDD)-based anomaly detection algorithm to
obtain abnormal features and trains a variational causal graph autoencoder (VACA) on normal
data to capture the normal data distribution. When obtaining abnormal features, RootCLAM [44]
deduces the hidden variables for each abnormal feature and calculates the cumulative probability
of each exogenous variable based on its fit to the normal data distribution. Finally, a comparison
between each cumulative probability and a predefined threshold determines the variable sets that
serve as the root causes for that abnormal feature.

4.2.5 Other Techniques. The remaining techniques can be categorized into service-level [49],
instance-level [24, 71, 72, 77], and component-level [40–42, 94] based on their finest granularity of
failure diagnosis.
Service-Level. FacGraph [49] proposes a frequent pattern mining algorithm on an anomaly

correlation graph to discover root cause instances. FacGraph [49] consists of three steps. First,
it constructs a causal relationship graph based on delay and throughput metrics using the PC
algorithm [110] and d-separation [65]. Then, FacGraph [49] applies the breadth-first ordered
string (BFOS) for frequent graphmining (FSM) on the causality graph and scores the subgraphs.
Finally, FacGraph [49] filters out high-scoring subgraphs and returns the corresponding instance
sets of leaf nodes in the subgraphs as the set of root cause instances. FacGraph [49] also develops a
distributed version that utilizes parallel computing to accelerate the FSM process.
Instance-Level. NetMedic [71] periodically captures the state of each system instance as multi-

variable vectors and stores the states. However, the number and meaning of state variables for
each instance may vary. NetMedic [71] captures instance status through dependency templates to
generate dependency graphs. Then, NetMedic [71] calculates the anomaly scores for each instance
based on historical data and the weights of edges in the dependency graph to rank the root cause
instances. It is worth mentioning that NetMedic [71] exhibits good scalability and can be improved
to achieve finer-grained root cause localization.

CRD [72] discovers multiple failure propagations occurring simultaneously in different node
clusters, collectively defining the system’s state. Conventional root cause localization methods
typically assume a single failure propagating in the network, and to address this, a multi-root cause
technique is proposed. This method consists of two stages. In the first stage, CRD [72] proposes a
joint clustering model that utilizes complementary information from the invariant network and the
broken network to identify and rank clusters in the invariant network. In the second stage, CRD [72]
designs a low-rank network diffusion model to backtrack causal anomalies in the impaired node
clusters identified in the first stage. CRD [72] can handle parallel and localized failure propagations
in different clusters, making it suitable for scenarios with multiple causal anomalies.

Grano [24] presents a graph-based interactive root cause analysis method composed of the
anomaly detection layer, the anomaly graph layer, and the application layer. Initially, users extract
metric time series data from the indicator database to obtain detection events in the anomaly
detection layer using the corresponding detection models. The anomaly graph layer serves as the
fusion point, where the detection events, application events, and topology structure are fused to
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construct the anomaly graph, which is then stored in the database. Finally, in the application layer,
the anomaly graph algorithm is used to obtain root cause relevance scores for system components.

JSS’20 [77] proposes a graph comparison-based failure diagnosis framework. JSS’20 [77] first uses
existing anomaly detection techniques to detect anomalous instances and constructs anomalous
subgraphs, which are graph structures containing nodes adjacent to the anomalous instances.
The anomalous subgraphs are then compared with previously excluded anomalous graph patterns
by the operations personnel. If the similarity exceeds a threshold, the anomalous subgraphs are
considered to contain potential root cause instances. If multiple root cause instances are detected,
they are ranked based on the similarity between the corresponding anomalous graph patterns and
anomalous subgraphs.
Component-Level. Sieve [40] addresses challenges faced by large-scale distributed systems, in-

cluding a high volume of monitoring metrics and the complexity of combining system instance
dependencies and metrics. Firstly, Sieve [40] reduces the dimensionality of metrics by filtering
out unimportant indicators using a clustering-based centroid preservation method. Then, Sieve
[40] performs Granger causality tests on system instances with existing call relations, employing a
predictive-causality model to infer the dependency relationships between system instances. Finally,
Sieve [40] compares the differences between the dependency graphs during normal and abnormal
states.

DLA [41] models the topological structure of system instances using a hierarchical hidden
Markov model (HHMM) and calculates the most likely paths in the HHMM that lead to ob-
served anomalies on instances. These paths are then used to deduce the most probable root cause
components that could cause the observed anomalies.

ExplainIt [94] presents a declarative, unsupervised root cause analysis engine. ExplainIt [94]
utilizes PGMs for causal inference, enabling precise localization in large-scale metric databases.

CIRCA [42] formulates the task of online instance-level root cause localization as a new causal
inference task called intervention recognition. CIRCA [42] first proposes a method to construct a
causal Bayesian network (CBN) based on the system architecture. Then, CIRCA [42] employs
regression-based hypothesis testing and descendant adjustment methods to infer the root cause
components in the network.

4.2.6 Summary. Researchers have combined metrics with advanced algorithms for failure diag-
nosis, yielding promising results due to metrics’ ability to directly reflect system resource issues and
represent system characteristics. Some techniques enhance diagnostic performance by leveraging
system topology [29–38, 40–44, 77] or event information [23, 25]. Table 4 categorizes the surveyed
failure diagnosis techniques using metrics, indicating the required data, underlying principles,
supervision techniques, and core algorithms employed.

Regarding root cause localization techniques [23–25, 29–38, 40–49, 61–72, 77, 90, 91, 93, 94],
various approaches target different systems and localize root causes at varying granularities.
These include service-level (front-end, back-end, and APIs), instance-level (pods, containers, hosts,
processes, VMs, and servers), and component-level (metrics [35, 42–44, 65, 68, 90–92, 94], code
[94], and events [23, 25, 94]). Except for Arvalus [120], failure classification techniques [92, 97, 98,
101, 103, 106] address hardware, software, and network failures as outlined in Section 3.3.

Direct analysis techniques fall into two main categories: pattern mining and correlation analysis.
Early research focused on mining anomaly propagation patterns [61, 62, 66], identifying the initial
instances in these patterns as root causes. Later work explored more comprehensive anomalous
state information, such as metric change degrees [63]. Correlation analysis identifies components
most closely linked to anomalous events or metrics, examining correlations between events and
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metrics [23] or among anomalous metrics [65]. Recent methods like CloudPin [64] combine both
approaches in their design through three sub-models.

Graph theory algorithms have proven highly effective in failure diagnosis. Researchers have
constructed system topology [25, 29, 30, 31, 34] or causality graphs [32, 33, 35–38, 40–42, 44–49,
67–72, 77, 90–94, 101, 120] by exploring invocation relationships between system services, instances,
or components. From CloudRanger [45] to HRHLF [36], most techniques use the PC algorithm
[110] to construct causality graphs. Microscope [69] and AS’20 [38] have improved this algorithm
for better system adaptation. In these graphs, nodes represent system elements, and edges depict
invocation or causal relationships. Various graph theory algorithms are employed in different
system environments. Random walk is the most common technique [29–36, 45–48, 67, 68, 90,
91], where each step involves staying at the current node or moving to a more anomalous one.
MonitorRank [30] proposed three random walk strategies, influencing subsequent studies [31,
45–47]. Personalized PageRank algorithms [29, 34] are also widely used. Some techniques use DFS
[25, 37, 69] or BFS [38, 70] to traverse the graph from an anomalous node.

With advancements in AI, feature-based techniques [43, 92, 93, 98, 101, 120] extract metrics and
input them into various models to describe performance under different states. CNN [101] and
GNN [44, 92, 120] are used for feature extraction and pattern mining, with GNN and relationship
graphs yielding particularly good results. Other techniques [24, 40–42, 49, 71, 72, 77, 94] employ
various inference analysis methods, such as calculating scores [49], comparing similarities [77], or
building causal analysis models [40–42, 94] for failure diagnosis.

4.3 Failure Diagnosis through Traces
Before the popularization of traces and the development of end-to-end trace generation and
collection systems, software systems have used runtime path [123] and client request traces [99,
124] to record interaction information during the operation of distributed systems. Some failure
diagnosis techniques through them has gradually validated their value. For example, Pinpoint [99]
clusters instances based on the observation that instances involving root causes are likely to result
in failed user requests. It forms vectors based on the occurrence of each instance in various user
requests and vectors representing the failure situations of all user requests in the system, allowing
the identification of sets of root cause instances. PBAA [123] designs a software system based on
the runtime path to manage failure detection and diagnosis, failure impact analysis, and system
evolution understanding. Chen et al. [124] train decision trees on the request traces. By examining
the paths leading to failure-predicting leaf nodes, operators can gain insights into potential root
causes.

With further study, an increasing number of end-to-end trace generation and collection systems
have been designed. These systems typically include clients for collecting and sending spans, collec-
tors for gathering spans, backend storage for persistent data storage, and APIs and UI dashboards
for users to query traces. Google’s Dapper [125] defines tracepoints as marked timestamps and
four key activities on each span, including server send, client receive, client send, and server receive,
representing server sending a request, client receiving a request, client sending a response, and
server receiving a response. The implementation and adoption of these systems, such as Magpie
[126], X-Trace [127], Dapper [125], and Startdust [128], have demonstrated their value in production
systems.

The process of failure diagnosis through traces generally consists of three steps: (1) Feature
Extraction [17, 52, 53, 57, 58, 74, 129]. Extracting features from the collected traces. (2) Anomaly
Detection [1, 20, 22, 74, 76]. Some methods perform anomaly detection on traces before failure
diagnosis, specifically distinguishing normal and abnormal traces. (3) Root Cause Analysis [21, 25,
27, 54–56, 74, 75, 105, 130]. Combining the extracted features, the normality of traces, and other
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Fig. 6. Categories of failure diagnosis techniques through traces.

information to complete failure diagnosis. As shown in Figure 6, different studies in this domain
also focuses on improving and innovating in a specific step of the process.

4.3.1 Techniques Based on Feature Extraction. Feature extraction refers to obtaining information
related to failure diagnosis from the traces. Based on them, statistical, machine learning, deep
learning, and other methods can be used to complete failure diagnosis tasks. We summarize three
common types: features related to failures [17], upstream and downstream dependencies [52, 53,
74], and anomalous deviation [57, 58, 129].
Failures. MEPEL [17] summarizes a set of features that reflect the dynamic environment and

interactions of microservices, describing the state of the microservice system from the perspec-
tives of configuration, resources, instances, and interactions. Configuration features reflect the
environmental configuration of microservice instances. Resource features reflect the consump-
tion of resources by microservice instances and their deployment nodes (e.g., memory and CPU
consumption). Instance features reflect the deployment status of microservice instances and their
participation in the current trace instance. Interaction features reflect the interaction status with
other microservices, especially asynchronous interactions. Based on the extracted features, MEPEL
[17] trains a series of models, including random forest, KNN, multilayer perceptron (MLP), for
latent error prediction, faulty microservice prediction, failure type prediction, and microservice
status prediction.

Upstream and Downstream Dependencies. RanCorr [53] defines an aggregation method for anom-
aly scores. The core idea is that if the anomaly score of the caller is greater than the anomaly
score of the operation under consideration in a calling dependency graph, then the operation
is likely to be the root cause because the dependent operations exhibit significant anomalies. If
the maximum anomaly score of the directly connected callee is greater than the anomaly score
of the current operation, it means that the anomaly of this operation likely originates from the
propagation of another operation it depends on. RanCorr [53] considers the correlation between
root cause nodes and failure propagation by aggregating the anomaly scores of upstream and
downstream nodes. ModelCoder [74] uses traces to construct the deployment graph and the service
dependency graph and divides anomalous service nodes into explicit and implicit nodes. The ex-
plicit nodes are the initial nodes of anomalous calls, and the implicit nodes are the response nodes
of anomalous calls. Based on the explicit and implicit nodes, including the target node itself, its
child nodes, its parent nodes, and its bidirectional nodes, ModelCoder [74] proposes node feature
encoding, which calculates the similarity between service nodes with unknown root cause and
service nodes with known root cause in a standard code storage, matching the failure type and
localizing the root cause. However, ModelCoder [74] requires a standard storage that covers as
many failure types as possible, and for new failures that have never been encountered before, it
may produce incorrect diagnostic results. MicroHECL [52] predefines three types of anomalies:
performance, reliability, and traffic. Based on the quality metric and propagation direction of
each type of anomaly, MicroHECL [52] extracts specific statistical features and applies specific
machine learning methods for detection. If the upstream and downstream relationships of the
initial anomalous service are consistent with the failure propagation direction detected, it will
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iteratively extend to establish a propagation chain by backtracking along the anomaly propa-
gation direction from the starting point. When no new chains can be established, the candidate
root cause is selected from the end of the failure propagation chain. In addition, MicroHECL [52]
combines the upstream and downstream dependency relationships in the graph with the Pearson
correlation coefficient. For example, during the construction of the failure propagation chain,
pruning is performed based on the correlation coefficient of the quality metrics of two successive
service calls. The correlation between the change trend of the initial anomalous service and the
Pearson correlation coefficient of the candidate root cause node is measured to provide the ranking
of the root cause.
Anomalous Deviation. It is a common failure feature that quantifies the difference between

abnormal and normal states. CloudDiag [129] utilizes matrix decomposition to extract this feature.
The method first calculates the coefficient of variation [131] for the same class of requests with the
same call tree. If it exceeds a given threshold, it indicates that there is a significant deviation within
this class of requests, suggesting the presence of anomalies. Then, each method’s execution time in
each abnormal request is combined to form a matrix. Each column of the matrix represents the
time vector of the corresponding method, and each row represents a specific request. Intuitively,
requests with similar call trees have similar execution times, meaning that the rows of the matrix
are correlated.The robust PCA (RPCA) [132] algorithm can decompose this matrix into a low-rank
matrix with non-corrupted columns and a sparse matrix with a few nonzero corrupted columns.
The former represents the normal state of the system, while the latter represents the degree of
anomalous deviation. If the angle between the original columns and the corrupted columns exceeds
a given threshold, the column corresponding to the method is determined to be anomalous. By
counting the number of anomalies for each method across different types of requests, the final
ranking of root cause methods can be obtained. WinG [58] utilizes the distance obtained from the
dynamic time warping (DTW) algorithm to characterize the anomalous deviation. First, WinG
[58] collects and computes the average latency of each invocation pair over a one-minute period
to generate a feature vector. Then, using the DTW algorithm, WinG [58] calculates the distance
between the feature vectors of the current period and the normal period, serving as a quantified
score for the degree of anomaly. Grouping by microservice type, the maximum degree of anomaly
relative to other degrees of anomaly within each group is computed. This ratio is used as the basis
for ranking the root causes of microservices. Finally, considering the frequency of microservice
anomalies occurring over a period of time, WinG [58] filters out potential false positives and
recommends microservices with longer durations of anomalies as the root causes. In contrast to
WinG [58], TraceNet [57] uses an abnormal score based on the 3-sigma principle to characterize
the anomalous deviation. TraceNet [57] aggregates the average latency and standard deviation at
the operation level of the trace. The ratio of the latency of the target trace relative to the standard
deviation away from the mean is considered an anomaly feature. Then, the operations involved
in each microservice instance are divided into upstream and downstream impacts. The weighted
sum of these impacts yields an anomaly score for the microservice instance. By combining the
proportion of abnormal nodes in the upstream and downstream of the microservice instance, the
final ranking of root causes is determined.

4.3.2 Techniques Based on Anomaly Detection. Accurately determining the abnormality of traces
is fundamental to some failure diagnosis techniques. Abnormal and rare traces often provide strong
indications of the root cause. In this section, we categorize common trace anomaly detection
techniques based on visualization [1], machine learning [20], and deep learning [22, 76].
Visualization. These techniques determine possible root causes by comparing traces with trace

visualization tools. GMTA [1] implements a graph-based trace analysis system that supports various
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functionalities, such as visualizing the dependency graph between microservices, analyzing changes
in microservice behavior, detecting performance issues, and pinpointing root causes. Operators
can use this system to compare business flows before and after failures occur, obtain EP chains,
narrow down the scope of root causes to specific paths or operations, and further localize the root
cause. GMTA [1] focuses on system design and requires more human effort compared to automated
anomaly detection.
Machine Learning. MicroSketch [20] groups the collected trace spans based on the types of

upstream and downstream instances. It then constructs an indefinite-length vector for each group
by taking the handling time quantiles. During the anomaly detection phase, MicroSketch [20]
maintains a robust random cut forest (RRCF). The specific technique is as follows: for each
system state vector to be added, RRCF randomly selects a dimension and cuts the vector space
at a randomly chosen value in that dimension, dividing the space into two parts. This process is
repeated recursively, resulting in each node in the tree dividing the state vectors in its subtree
based on a dimension’s size. After the graph is constructed, the difference in sizes between the left
and right subtrees of each node is calculated. If it exceeds a certain threshold, it often indicates a
significant difference in the timing data of the invocations corresponding to the dimension used for
classification, indicating the presence of an anomaly with high probability. The root cause locator
triggered by anomalies ranks the root causes based on the frequency of occurrence of instances in
the anomalous invocations.
Deep Learning. TraceAnomaly [22] encodes response time and invocation paths into a service

trace vector and applies posterior flow to a variational autoencoder (VAE), enabling the model
to capture the normal state of traces in a more accurate and robust manner. TraceAnomaly [22]
performs anomaly detection tasks based on the reconstruction probability of VAE.With the detected
anomalous trace paths, this method can narrow down the failure troubleshooting scope in an
interpretable manner and determine the root cause. Similar to TraceAnomaly [22], TraceModel [76]
also incorporates deep learning methods using VAE on top of ModelCoder [74]. Instead of using
the traditional standard deviation band method for detecting anomalous traces like ModelCoder
[74], TraceModel [76] trains a VAE for each request category using the response time of normal
instances and calculates the average value and standard deviation of the reconstruction probabilities
of these normal data. For the trace to be detected, when inputted into the corresponding VAE of
its request category, if the reconstruction probability is below a threshold, it is determined as an
anomalous trace. TraceModel [76] improves the accuracy of trace anomaly detection by mapping
response time to reconstruction probabilities using VAE, and its root cause localization technique
is consistent with ModelCoder [74].

4.3.3 Techniques Based on Root Cause Analysis. Root cause analysis is significant for completing
failure diagnosis task that utilizes techniques from graph theory, probability statistics, causal anal-
ysis, and other related fields, building upon the foundation of anomaly detection. The effectiveness
and accuracy of failure diagnosis heavily depend on the choice of root cause analysis techniques.
There are simple yet effective methods such as techniques based on similarity matching [25, 74].
Researchers have also explored techniques based on spectrum used in the software testing domain
to localize root causes [27, 56, 75, 105]. However, techniques based on spectrum only consider
the normal and abnormal states of traces, overlooking the latency characteristics of microservices
[55] or the differences in indicating root causes across different traces [21]. These limitations can
be addressed by combining personalized PageRank methods [21, 55]. Some researchers have also
attempted to address root cause localization from the perspective of causal analysis [54, 130].

Similarity Matching. FPDB [25] transforms system traces during failure periods into processing
flow, which is a sequence composed of system events and records the sequence of component
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invocations during request processing. The transformed processing flow and corresponding failure
information are stored in a failure profile database. To diagnose a failure, the similarity between
the target failure and the stored processing flows is computed, and the KNN failure information
is returned. This identified failure information is provided to operators as clues for manually
inspecting the root cause. These similarity-based matching methods [25, 74] require a pre-built
failure database. To cover a broader range of failures, FPDB [25] also designs a failure injection tool.

Spectrum. When given end-to-end traces, where a user request passes through multiple service
instances in a microservices system, it is reasonable to apply spectrum-based techniques to localize
the root cause. For example, T-Rank [75] detects trace anomalies based on the 3-sigma principle of
latency data. It treats the normality of traces as the success or failure of test cases and calculates
the suspicious scores of the microservice instances involved in those traces to provide a ranking
of root causes. Another similar method TraceRCA [56] filters out effective metrics based on the
anomaly severity of indicators before and after failures occur, discarding indicators with insignificant
changes. Then, TraceRCA [56] calculates the average value and standard deviation of the effective
metrics at the invocation level during the normal period. If the anomaly severity of an effective
metric exceeds a threshold, the trace containing the invocation is considered abnormal. Following
anomaly detection, TraceRCA [56] first identifies a set of suspicious microservices. This is because
in practice, sometimes only traces involving specific sets of microservices are affected by failures,
rather than individual microservices. TraceRCA [56] uses the Jaccard index (JI) score [133],
which considers the proportion of abnormal traces passing through a particular microservice set
and the proportion of abnormal traces among all traces passing through that microservice set.
Microservice sets with higher JI score are considered more suspicious. TraceRCA [56] also observes
that if a microservice has both incoming and outgoing abnormal invocations, it is likely influenced
by failure propagation. Therefore, to narrow down the scope of microservices for investigation,
TraceRCA [56] also considers the in-set suspicious score of abnormal traces passing through each
microservice set as one of the criteria for ranking root causes. TraceContrast [105] first extracts the
critical path from the invocation chain, and then detects normal and abnormal paths based on the
3-sigma principle. The introduction of the eCSP algorithm [134] aims to mine contrast sequential
patterns, which occur frequently in anomaly paths but not in normal paths. Finally, these patterns
are ranked using SBFL. Minesweeper [27] does not explicitly use SBFL techniques, but the basic
idea is similar, i.e., root cause appears less frequently during normal periods and more frequently
during abnormal periods. Minesweeper [27] deals with a contiguous sequence of events. It uses
the PrefixSpan algorithm [135] to mine patterns from traces and then calculates the ?A428B8>= and
A420;; of these patterns in the control group and test group. The root cause ranking of sequential
patterns is based on the computed �1 − B2>A4 .
Walk. TraceRank [55] observes that when facing multiple microservice instances that appear

in the same abnormal request and have similar service dependency relationships, using spectrum
analysis alone may not accurately pinpoint the root cause, as they may have the same coverage
information. Additionally, spectrum analysis only focuses on the normal and abnormal states of
trace chains and overlooks the characteristics of the microservices themselves (e.g., latency and
status code). Therefore, TraceRank [55] introduces a personalized random walk method. First, HAC
is used to aggregate traces with similar structures together. Then, k-means clustering is applied to
divide each cluster of traces with similar structures into two classes based on their latencies. If the
latency difference between the two clusters exceeds a certain threshold, it is considered as detecting
an abnormal trace, triggering the root cause localization process. The root cause localization module
then calculates a suspicious score of spectrum analysis for each service instance based on the
normality, abnormality, and service dependency of the traces. By leveraging the similar patterns in
latency between the frontend microservice and the root cause microservice, the forward, backward,
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and selfward transitions of the transition probability matrix are defined based on the similarity of
latency between the frontend microservice and each microservice instance. This process derives
the PageRank ranking for each service instance. Combining the rankings from both approaches,
the final root cause ranking is determined. Unlike TraceRank [55], MicroRank [21] proposes a
naive spectrum analysis method that treats each request at an equal level, ignoring the differences
between different requests. MicroRank [21] divides traces into normal and abnormal categories
by calculating an expected threshold for latency. MicroRank [21] believes that if an abnormal
trace involves fewer service instances, the potential root cause should be narrowed down to a
smaller scope and receive more attention. Due to the imbalance in the number of trace types, if an
abnormal trace occurs less frequently, it should also receive more attention to prevent diversion
from the trace types that occur frequently. Therefore, MicroRank [21] designs a trace coverage tree
to represent the dependency relationship between requests and service instances and defines a
transition matrix. A preference vector is defined based on the occurrence count of traces and the
number of covered service instances. The PageRank results obtained from the trace coverage tree
corresponding to normal and abnormal traces are used as the weights for the spectrum analysis,
resulting in the root cause localization.
Causal Analysis. In typical cloud environments, operators often revert the versions or resource

configurations of microservices to a known safe state while keeping other factors unchanged. If the
system quality is restored, the changed microservice or resource configuration is considered a likely
root cause. This causal analysis method is known as counterfactual queries. However, applying this
method in a production environment can potentially incur performance or resource usage overhead.
Therefore, Sage [54] utilizes the call relationship and latency data from historical traces to train a
VGAE for generating the necessary counterfactuals for causal reasoning. Concurrently, it uses CBN
to model the dependency relationships among metric nodes, latency nodes, and latent variables in
the inter-service invocation process. In the root cause analysis phase, Sage [54] employs a two-
level approach: it first uses service-level counterfactuals to localize the root cause. This involves
sequentially restoring the metrics of each microservice to their normal states and using the VGAE
based on the CBN structure to generate hypothetical end-to-end latency for two counterfactual
scenarios. The microservice that, when restored to normal, leads to a significant improvement
in the hypothetical end-to-end latency is identified as the root cause. Once a microservice node
is identified, Sage [54] can continue with resource-level root cause localization by repeating the
aforementioned counterfactual query process. However, Sage [54] relies on different graph topology
to update the model. Therefore, Sleuth [130] chooses GNN to learn causal relationships in spans
for root cause analysis, which aggregates messages from neighbors using permutation invariant
functions. The follow up is consistent with Sage [54], where deep neural networks are used to
model latency and other data, followed by executing counterfactual queries. Additionally, due to
the model being independent of graph topology, a pre-trained Sleuth [130] model can be transferred
to different microservice applications without any retraining or with few-shot fine-tuning.

4.3.4 Summary. Early researchers have demonstrated the value of analyzing runtime paths
[123] and client request traces [99] in failure diagnosis tasks. With the widespread adoption of
the concept of traces and the development of more systems for generating and collecting traces,
some techniques [17, 74, 76] combine the instance deployment relationships in the topology with
the service dependency graph extracted from traces to model the complex relationships between
microservice nodes. Additionally, some techniques use business flow [1], processing flow [25], or
events [27]. These are extracted or constructed from end-to-end traces, and essentially, a trace is
a business flow, a processing flow, or a sequence of events. We summarize the failure diagnosis
techniques through traces in Table 5 and classify them based on the emphasis on trace analysis
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processes in the papers. The table also provides information on the core methods and diagnostic
targets.

Current studies on root cause localization [20, 21, 52, 55–58, 74–76, 105, 130] mainly focuses
on service-level and instance-level. For the finer-grained component-level, some techniques dif-
ferent from logs and metrics focus on the operations or methods of a specific API request or
invocation [1, 53, 129]. Other techniques focus on the path information reflected in traces [22, 25,
27]. TraceAnomaly finds the longest common path and considers the next called microservice of
the longest common path as the possible root cause. FPDB [25] locates specific processing flows
and code regions. A buggy code region can be a statement, a basic block, or an entire function,
depending on the historical failure information stored in the failure profile database. Minesweeper
identifies a trace as a sequence of events and diagnoses patterns of events that differ from the
control group in the test group. Studies on failure classification [17, 52, 74, 76] mostly cover the
failure types summarized in Section 3.3. It is worth noting that the latency recorded in traces can
intuitively reflect latency-related failures, and a significant portion of other types also eventually
manifest in the response time of microservices. Furthermore, the extracted call relationships from
traces can intuitively reflect path-related failures and assist failure diagnosis in providing more
interpretable results.

Analyzing the above techniques, we can glimpse the general steps of trace analysis, which include
feature extraction, anomaly detection, and root cause analysis. In addition to the explicit response
time, request status, request latency and specific information of different businesses recorded in
traces, researchers can extract features related to upstream and downstream dependencies from the
recorded call relationships [52, 53, 74]. Moreover, the degree of deviation from normality is also a
common feature [57, 58, 129]. The known techniques for anomaly detection on traces can generally
be divided into structural anomalies [1] and latency anomalies [20, 22, 76]. These techniques cover
visual observation, machine learning, and deep learning aspects. However, there is still a long way
to go from anomaly detection to failure recovery, and root cause analysis is an indispensable part of
this process. Comparatively simple but effective techniques include similarity-based matching [25,
74] and spectrum analysis techniques [27, 56, 75, 105]. Additionally, some techniques, such as the
personalized PageRank algorithm [21, 55], comprehensively consider the latency of microservices
and the indicative capabilities for root causes. Apart from introducing spectrum analysis techniques
from the software testing field, Sage [54] and Sleuth [130] attempts to address root cause localization
from the perspective of counterfactual queries [54] and causal analysis.

In summary, traces can be regarded as a combination of graph and time series data. On the one
hand, the call relationships recorded in traces naturally possess a graph structure. Therefore, many
techniques focus on graphs and detect structurally anomalous call paths through visualization [1]
or deep learning [22], which are failure types that are difficult to explicitly address with logs or
metrics. Techniques based on spectrum [27, 56, 75] consider the coverage of edges on nodes in the
graph. However, in traditional spectrum analysis techniques, traces have equal status, ignoring the
differences in the indicative capabilities for root causes. To address this limitation, techniques based
on walks [21, 55] use the call dependency graph to define a transfer matrix while incorporating
spectrum analysis. Most of the above techniques focus on the situation of the node to be diagnosed,
while some techniques [52, 53, 74] also consider the relevant features of upstream and downstream
nodes in the call relationship. On the other hand, the various information recorded in traces, such
as latency, can provide a perspective of time series analysis for failure diagnosis [17, 57, 58, 129].
MEPFL [17] defines a series of features directly related to failures, such as resource features (e.g.,
memory and CPU consumption) that reflect the resource consumption of microservice instances
and their nodes.
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Fig. 7. Categories of failure diagnosis techniques through multimodal data.

4.4 Failure Diagnosis through Multimodal Data
Currently, solutions for failure diagnosis mostly rely on single-modal data. However, the limitations
of techniques through single-modal data have been identified [19, 96]. They may result in ineffective
diagnosis due to the inability to capture or entirely miss abnormal information caused by certain
failures. To overcome the limitations of single-modal data, researchers have proposed numerous
techniques through multimodal data to achieve more effective failure diagnosis, including logs,
metrics, traces, events, and topology [16, 19, 26, 39, 50, 51, 73, 95, 96, 136]. Multimodal data combines
information from various sources and provides a more comprehensive reflection of the system’s
operational state. It can identify issues across different aspects, adapt to and diagnose a wider range
of failure types, and uncover more granular root causes. The integration of multimodal operational
data for automated failure diagnosis has become a significant study focus in both academia and
industry.

Our definition of multimodal data in the survey of failure diagnosis is as follows: Current failure
diagnosis techniques primarily focus on the observability of microservice systems, with logs,
metrics, and traces being the three pillars of observability [18]. Therefore, failure diagnosis through
multimodal data should include at least two of these three types of data. As shown in Figure 7, we
categorize them into result fusion, model fusion, and feature fusion.

4.4.1 Result Fusion. Result fusion techniques generally involve processing specific stage tasks,
such as anomaly detection, based on single-modal data.Then, specific fusion analyses are performed
between stage results of single-modal data [73] or between stage results and other modal data [95],
considering various factors, to obtain the final diagnostic results. Result fusion techniques [73, 95]
are commonly used in early stage.

ICWS’20 [95] considers the correlation between logs and metrics. Specifically, ICWS’20 [95] first
uses the Deeplog [137] algorithm for log anomaly detection to obtain log anomaly scores. This stage
result, which focuses on logs, reflects the system’s level of anomalies. ICWS’20 [95] then utilizes
mutual information to calculate the correlation between the log anomaly scores and metrics, aiming
to locate the root cause components. PDiagnose [73] is the first work that utilizes logs, metrics, and
traces for failure diagnosis. PDiagnose [73] starts by analyzing the metrics and detecting abnormal
metrics using KDE and weighted moving average. And then, PDiagnose [73] creates an anomaly
queue and extracts partial features from it. The comparison results between these features and
thresholds serve as the primary basis for determining if the system has anomalies. For the traces,
PDiagnose [73] uses the messages structured as <Req, Caller, Callee, Duration> to represent the
calling relationships between microservices and the execution time of requests. PDiagnose [73]
reports suspicious microservices by comparing the duration with specific thresholds, considering it
as one of the criteria for determining if the system has anomalies. After obtaining the root cause
service through a voting mechanism, PDiagnose [73] categorizes the problem into subsystems
using the anomaly queue and determines the anomalous subsystem based on the proportion of
abnormal metrics. Finally, PDiagnose [73] performs a double-check by examining the metrics and
analyzing log entries within the subsystem that contain keywords such as error and problem to
identify the root cause components and report suspicious logs. These findings are added to the root
cause indicators as the final diagnostic result.
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4.4.2 Model Fusion. Model fusion techniques extract different feature information from multi-
modal data, which serves as input for specific models. This requires models to possess the ability to
handle and learn from diverse features [16, 26, 50].

Graph theory models exhibit the capability to effectively integrate multimodal data. Both Groot
[26] and TrinityRCL [50] adopt similar approaches. Groot [26] constructs the service dependency
graph using traces and logs. It then fuses performance metrics, status logs, and developer activities
to generate events. Events and causal rules are integrated into the service dependency graph to
establish a causality graph. When an alert is triggered, the causality graph is utilized as input to the
GrootRank algorithm, which is a personalized PageRank algorithm, to obtain a ranked list of root
causes for the events. TrinityRCL [50] is a root cause localization method utilizing multimodal data
for multi-granularity localization. It defines four levels of root cause localization granularity, namely
application-level, service-level, host-level, and metric and code-level. TrinityRCL [50] collects data
via the APM system Raptor, performs anomaly detection, and transforms log entry counts into
temporal data. It recursively searches for affected services from abnormal ones to get dynamic call
relationships and calculate call failure rates. Based on these relationships, it incorporates various
nodes to construct a dynamic causality graph with temporal data. Finally, TrinityRCL [50] localizes
root causes at different levels from this graph using RWR.

MicroCBR [16] proposes a failure diagnosis framework that combines offline updates with online
diagnosis based on case-based reasoning, which integrates multimodal data into a knowledge
graph. In the offline phase, MicroCBR [16] constructs a spatio-temporal fault knowledge graph by
embedding the existing knowledge base into a topology graph of system instances. During the online
diagnosis phase, anomalies detected from multimodal data are converted into fault fingerprints and
embedded into the graph. Subsequently, by allocating anomaly weights and hierarchical case-based
reasoning with historical data, failure reports are generated to help operators identify failure
types and update the knowledge base. UniDiag [138] introduces a failure diagnosis framework for
microservice systems that leverages temporal knowledge graphs (TKGs) to integrate multimodal
data. It constructs TKGs to capture system dynamics and uses microservice-oriented graph
embedding (MOGE) to model structural and temporal relationships. In the offline phase, UniDiag
[138] clusters graph embeddings to identify failure patterns, reducing annotation effort by labeling
only cluster centers. During online diagnosis, anomalies are matched to clusters or used to create
new ones.

4.4.3 Feature Fusion. Feature fusion techniques first process multimodal data to extract a unified
feature matrix [39, 51, 136] or unified event representation [19, 96] as input for the models. The
feature fusion methods only need to handle a specific unified representation, and the model’s
output results serve as the final diagnostic outcome.

CloudRCA [39] utilizes time series anomaly detection and log clustering modules to process
metric and log data. Specifically, CloudRCA [39] designs a simplified RobustPeriod [139] algorithm
to determine the periodicity of time series. Then, the RobustSTL [139] algorithm is applied to
decompose the time series, and anomaly detection is carried out on the decomposed series using a
divide-and-conquer approach to obtain anomaly sequences. For log processing, CloudRCA [39]
designs an adaptive frequent template tree based on FT-tree [140] to extract log templates, and
Word2vec is employed for vectorization. Based on cosine similarity between vectors, CloudRCA
[39] applies HAC to obtain log patterns. The anomaly metric sequences and log pattern sequences
are then integrated to form a unified feature matrix. Finally, CloudRCA [39] combines the feature
matrix with module dependency relationships to construct a knowledge-informed hierarchical
Bayesian network (KHBN) for online root cause analysis.
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Eadro [51] integrates temporal processing and feature extraction of logs, metrics, and traces.
Logs are parsed into template events using Drain [141], and their temporal intensity is modeled via
Tick [142] with a Hawkes model. Metrics and trace-derived latencies are processed through a ID
dilated causal convolution [143] to capture temporal and cross-series dependencies. These features
are fused nonlinearly with gated linear units [144] and combined with a trace-derived dependency
graph as input to graph attention networks for state representation learning. Eadro [51] highlights
the link between anomaly detection and root cause localization, enabling the model to assess
system normalcy or rank potential root causes. Similarly, in the modality fusion stage, Medicine
[145] utilizes a multimodal fusion module with channel attention to combine the raw statistical
features of different modalities and the failure classification features extracted by feature encoders.
What sets Medicine [145] apart is its design of modality-specific feature encoders tailored to the
unique characteristics of metrics, logs, and traces, to capture complementary information between
modalities. Medicine [145] employs a modality evaluation component to distinguish between
high and low-yield modalities. High-yield modalities are optimized and suppressed through a
gradient suppression component, while low-yield modalities are enhanced through a feature
enhancement component. These components work together to dynamically adjust the training
process, ensuring that each modality contributes effectively to the overall model performance.
MULAN [136] performs unified temporal processing on logs and metrics. To prevent the potential
loss of valuable insights caused by extracting invariant information separately, MULAN [136]
employs GraphSage [146] to extract both individual specific representation and a joint invariant
representation.These representations are then fused using a contrastive learning approach to obtain
a fused log and metric representation. Additionally, MULAN [136] constructs learnable causal
graphs for each representation. Subsequently, MULAN [136] introduces a KPI-aware attention
module to incorporate the decoder results for causal graph fusion. Finally, MULAN [136] utilizes
RWR to localize the root cause.

DiagFusion [19] and Nezha [96] both transform multimodal data into unified event representa-
tions, but they adopt distinct approaches in event design and extraction. DiagFusion [19] uses histor-
ical failures to train an event extraction model, performing anomaly detection on metrics and traces,
and log parsing on logs to generate tuple-formatted events. These events are sequenced chronologi-
cally to achieve data fusion. GNN is then trained using the event sequence and a dependency graph
derived from traces and topology. During real-time diagnosis, the trained event embedding model
and GNN are employed to identify root cause instances and failure types. Nezha [96] differs from
DiagFusion [19] in the temporal processing approach for event extraction, better preserving the
execution context and enhancing the interpretability of root cause analysis. For logs, it integrates
internal and inter-service information by inserting a traceID and parsing log messages to extract log
events. For metrics, it detects anomalous alarms to generate alarm events. For traces, it represents
event messages by concatenating span names with start, end, and asyn strings, considering both
synchronous and asynchronous call relationships. After unifying multimodal data into event repre-
sentations, Nezha [96] employs an expected pattern ranker and an actual pattern ranker to explore
event patterns. The expected pattern ranker identifies patterns during fault-free phases to deter-
mine failure root causes, while the actual pattern ranker identifies deviations during fault-suffering
phases. Finally, a pattern aggregator filters redundant patterns to finalize the root cause ranking.

DeepHunt [147] and ART [148] both unify multimodal data into time-series formats and leverage
self-supervised learning to train models that compute reconstruction errors for downstream failure
diagnosis tasks. Specifically, DeepHunt [147] employs a GAE for reconstruction tasks and combines
temporal and call dependencies to establish a root cause score, with a feedback mechanism enabling
continuous model optimization. ART [148], on the other hand, utilizes Transformer encoder, gated
recurrent unit (GRU), and GraphSAGE [146] to model channel, temporal, and call dependencies,
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predicting system snapshots at the next time step. The resulting unified and semantically rich
failure representations enable multiple downstream tasks.

4.4.4 Summary. To adapt failure diagnosis techniques to a wider range of failures and achieve
more granular root causes, the integration of multimodal data for automated failure diagnosis
has become an important direction focus in both academia and industry. Using multimodal data
allows for a comprehensive representation of system states and captures failure patterns, leading
to improved diagnostic effectiveness and interpretability [19, 96]. Table 6 summarizes the fault
diagnosis methods based on multimodal data that we survey and categorize them based on the
proposed fusion strategy. In addition, Table 6 provides the required modalities, core methods, and
targets of the surveyed techniques.

Regarding the techniques on root cause localization [19, 26, 39, 50, 51, 73, 95, 96, 136, 147,
148], different techniques focus on different target systems at various levels of granularity. Some
techniques can even localize root causes at different levels of granularity [50, 73, 136], where the
component-level includes metrics, log messages, and unified event representation [19, 96]. As for
failure classification [16, 19, 39, 138, 145, 148], it essentially covers the failure types compiled in
Section 3.3.

Compared to techniques based on single-modal data, failure diagnosis based on multimodal data
starts relatively late, and its main challenge lies in effectively integrating heterogeneous multimodal
data. Result fusion techniques have not made significant improvements compared to single-modal
approaches and are generally used in earlier studies. Result fusion techniques typically start by per-
forming anomaly detection or similar operations on individual modal data. Then they localize root
causes based on the correlation between anomaly scores and metrics [95] or through a voting mech-
anism that balances the results of multimodal processing [73]. PDiagnose [73] is the earliest pub-
lication to use three modalities of logs, metrics, and traces for failure diagnosis. Subsequent papers
[19, 51, 96, 136] on extracting unified representations of multimodal data was inspired by this work.
Given the need for models to handle various features, model fusion techniques often require more
complex designs. Graph-based models, which excel at combining multimodal data, are widely used.
They typically construct a causality graph [26, 50] or knowledge graph [16, 138] based on the topol-
ogy or call information in traces. The graph’s nodes generally store feature information from mul-
timodal data and diagnostic results are obtained through graph traversal [26, 50] or inference [16].

Recent studies often convert multimodal data into a unified feature representation. Initially,
specific preprocessing operations are applied to heterogeneous multimodal data to extract essential
information and obtain feature matrix [39, 51, 136, 145, 147, 148] or unified fusion events [19, 96].
Methods for feature fusion often aim to achieve a more reasonable representation of unified features,
obtaining more important multimodal feature information while maintaining better interpretability.
These unified feature representations are then used as inputs to deep learning or other machine
learning methods for failure diagnosis.

5 Discussion
The surveyed failure diagnosis techniques can localize root causes at different levels or determine
failure types on microservice systems. Based on the data used by these techniques, we provide
detailed classification and summary. Next, we analyze the trends of failure diagnosis (Section 5.1).
Then, we summarize from the literature and qualitatively discuss these technologies from various
perspectives, specifically addressing practical requirements and outstanding challenges related
to the granularity and explainability of failure diagnosis (Section 5.2), their characteristics and
portability (Section 5.3), and the evaluation of accuracy and costs (Section 5.4). Lastly, we discuss
the best current practices and future directions (Section 5.5).
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5.1 Trends and Advancements
Early failure diagnosis techniques [1, 53, 80, 99, 109, 123] extract or focus on relatively simple
features for correlation or visualization analysis. However, as the complexity of modernmicroservice
systems continues to increase, these techniques have shown a significant decline in diagnostic
effectiveness due to the overwhelming amount of data. Moreover, they often rely heavily on
extensive expert experience and manual efforts, making them susceptible to subjective factors
and resulting in inconsistent diagnostic outcomes. The development of AI technology has brought
new opportunities for failure diagnosis. Recent techniques [21, 22, 55, 59, 60, 76, 107, 108] aim
to achieve automated and intelligent failure diagnosis by leveraging machine learning and deep
learning methods, minimizing or eliminating the reliance on human factors.

Traditional failure diagnosis techniques typically focus on single-modal data. However, mul-
timodal data, including logs, metrics, traces, events, and topology, provides a comprehensive
understanding of the system’s state, enabling failure diagnosis techniques to yield more precise
results. The limitations of single-modal failure diagnosis techniques have become increasingly
evident, leading to a growing body of research on how to correlate and integrate multimodal
data and extract key information for failure diagnosis. In Section 4.4, we categorize multimodal
failure diagnosis techniques into result fusion, model fusion, and feature fusion. Result fusion
techniques [73, 95], proposed earlier, have relatively lower requirements for accuracy and univer-
sality. While these techniques are simple to implement, they may yield different diagnostic results
when modeling individual data, making it challenging to make decisions for the final diagnosis.
Additionally, maintaining separate models for each data incurs significant costs in terms of storage
and maintenance. Therefore, these techniques do not possess clear advantages over single-modal
failure diagnosis techniques and do not address the limitations of single-modal data. Model fusion
techniques [16, 26, 50], on the other hand, strive for higher accuracy and better universality by
incorporating more observable data to achieve a comprehensive representation. However, they are
constrained by the heterogeneity of multimodal data. Advanced research has proposed methods to
unify the representation of heterogeneous data, laying the foundation for feature fusion. Feature
fusion techniques [19, 39, 51, 96] enhance failure diagnosis by integrating features from multi-
ple modalities, aiming for a more unified representation of heterogeneous data and demanding
improved interpretability in failure diagnosis.

5.2 Granularity and Explainability
In Section 3.3, we summarized the granularity of failure diagnosis information provided by the
investigated diagnostic techniques. Coarse-grained diagnostics may only indicate overall issues
with a service, which is suitable for simple systems or initial rapid assessments. However, they fail
to pinpoint the specific instances or components where the failures occur, making troubleshooting
challenging. On the other hand, finer-grained diagnostics typically involve more complex data
processing and analysis but can help engineers resolve and repair failures more accurately and
quickly.

Generally, the diagnostic granularity of a technique is determined during its model design phase.
However, there are also techniques with relatively flexible diagnostic granularity [50, 71]. They
share a common approach of constructing a causal relationship graph and then searching for
root cause nodes in the graph. The granularity of root cause localization depends on the types of
nodes set during graph construction, which can be services, instances, metrics, codes, or other
components. At the component-level, metrics indirectly reflect the state through variable values,
while logs and traces explicitly and directly record the information. For one thing, developers often
embed log statements within programs to print system runtime states, errors, information, and
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more. Therefore, logs often serve as a reflection of the system’s behavior, especially the identified
log lines [78, 79, 84, 85, 88] and events [82, 86, 87]. For another thing, traces not only record the
interaction between services or instances but also include the operations or methods specific to an
API or request [1, 53, 129], providing data support for finer-grained failure diagnosis.

The explainability in failure diagnosis refers to the extent to which humans can understand the
causal relationship between the input features of themodel and the diagnostic outputs.This is crucial
for understanding the root causes, formulating repair strategies, and taking appropriate actions.
An interpretable model enables stakeholders, including experts and non-experts, to understand the
logic behind the model’s decisions. It requires the model to explain why certain information or
features are more relevant to root causes and why they are diagnosed as the most probable root
causes.

Comparison is a common solution to ensure model interpretability by providing historical states
as references for diagnostic results. Specifically, some techniques rely on a core component of
interpretability, which is the historical failure repository [25, 59, 74, 76, 78, 79, 81, 92, 104, 107,
108]. By comparing the similarity between system failures, relevant historical failures along with
their corresponding root causes and mitigation steps can be obtained. Referencing historical root
cases often leads to more trustworthy diagnostic results. It is worth noting that comparing the
differences between the system and the expected normal state can also provide intuitive and
interpretable results. Additionally, causality analysis can naturally introduce interpretability into
failure diagnosis, including causal reasoning [94] and counterfactual queries [54, 130]. Compared
to black-box models, step-by-step inference from phenomena to source can better demonstrate the
logical reasoning process and interpretability of diagnostic results.

5.3 Characteristic and Portability
Logs record various events and operations that occur during system runtime, providing detailed
contextual information. Metrics offer quantifiable measurements of key performance aspects of the
system. By monitoring metrics, operators can assess the system’s health and identify performance
bottlenecks in real time. Traces capture the propagation process of requests within the system
and the dependencies between different instances, which can be used to pinpoint the failures and
their impact, enabling quick tracing of failure propagation paths. Based on these characteristics,
logs and traces can help understand the operations, and propagation paths, providing relatively
interpretable results. However, they lack a high-level overview of the system and require further
investigation and analysis to address and repair failures. Moreover, the volume of logs and traces is
often much larger than metrics, requiring significant time and computational resources for effective
data management and processing. The diversity in formats and content of logs and traces also
presents challenges. On the other hand, metrics offer real-time detection of potential failures due
to their intuitiveness and quantifiability. However, they lack contextual information, resulting
in poorer interpretability regarding the impact of failure propagation. Therefore, improving the
comprehensiveness, accuracy, and interpretability of failure diagnosis is achieved by integrating
information from different data, and comprehensively analyzing the system’s state and behavior.
Failure diagnosis through multimodal data requires more complex data integration and analysis
techniques, as well as increased computational resource support.

Failure diagnosis solutions with good portability possess multiple advantages. Firstly, such
solutions should have system and platform compatibility, enabling them to run on different operating
systems and hardware architectures, simplifying the deployment and maintenance processes.
Secondly, they can be configured and customized according to specific requirements to achieve
optimal performance and effectiveness. This means operators can tailor the solutions to better
adapt to their specific environments and requirements. Furthermore, the scalability and modular
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design of these solutions are also crucial for achieving portability. Lastly, due to the uniqueness of
fault diagnosis tasks, microservice systems monitor various data in real time, and each data has
diverse formats and content. The solutions should have general data processing capabilities and
analytical mechanisms to ensure adaptation to different data formats and structures. One of the
most typical designs for portability is the logical graph module. Techniques [16, 39, 50, 71, 130]
build graphs based on logical consensus rather than specific calling dependency or deployment
relationships. Therefore, analysis processes or techniques based on logical graphs can often switch
between different scenarios at a lower cost.

5.4 Accuracy and Costs
Higher accuracy is crucial for reducing failure recovery time and improving system availability.
Additionally, it can prevent the erroneous replacement or repair of components that are not faulty.
However, false positives and false negatives are common issues in practical scenarios. A high
false-positive rate leads to the operations team wasting time and resources dealing with false alerts,
reducing attention to real failures. On the other hand, a high false-negative rate results in missed
opportunities for diagnosing and resolving real failures, prolonging failure recovery time and
increasing system downtime. Reducing the false-positive rate may increase the false-negative rate,
and vice versa. Therefore, researchers are attempting to optimize them. Failure diagnosis through
multimodal data combines complementary information from different data sources, effectively
improving accuracy and reliability. Furthermore, some techniques [36, 37, 42, 92, 94, 98] attempt to
actively involve human experts in the training and improvement process of models. Particularly,
failure diagnosis often faces complex scenarios and boundary conditions, and human-in-the-loop
training establishes a feedback loop that allows human experts to continuously review and correct
the model’s output. These techniques have significant significance and potential to drive the
development of future failure diagnosis.

Unknown failure diagnosis is another important issue. For unknown failures, existing models
may not be able to make accurate judgments or provide reliable results because they are trained
and learned based on known failure cases. Some techniques have explored different solutions. For
example, Log3C [83] expands the diagnostic target from specific known failure types to impactful
service system problems. By analyzing the correlation between different clusters of log sequences
and user-perceived metrics, it recommends the most likely clusters of log sequences that lead to
system performance degradation. MicroCBR [16] focuses on generating detailed failure reports,
combining results from multimodal data with historical failure information. failure diagnosis
essentially maps the results to root causes and failure types. When designing, researchers keep a
continuous focus on this mapping layer while also attempting to obtain finer-grained results in
the pre-mapping stage. This provides more details in the face of unknown failures or when the
mapping layer based on known failures becomes ineffective.

When selecting or deploying appropriate techniques, it is necessary to consider both time and
space costs and make tradeoffs based on the requirements of the practical scenario. In terms of time
cost, the efficiency should meet the requirements of real-time or near real-time diagnosis. These
techniques should use a shorter history data to quickly obtain usable models. In terms of space cost,
the storage cost generated by the size and number of model parameters should be compatible with
the available resources, and the scheduling cost during deployment and maintenance should be
feasible. To address this requirement, some techniques [52, 65] tend to choose simple data analysis
or methods over complex deep learning models when they achieve similar results. Other techniques
[70, 83] attempt to consider the costs in the algorithm design process.

Although these techniques can automate and intelligently assist the failure diagnosis process,
human involvement is still necessary. The automation level has been continuously improving
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in terms of result interpretation [25, 54, 59, 74, 76, 78, 79, 81, 92, 94, 96, 104, 107, 108, 130] and
model update maintenance [16, 39, 50, 71, 130]. However, in terms of failure labeling and model
training optimization, the cost of human labor is an unavoidable and important consideration.
Supervised techniques require a sufficient number of labeled data to train the model, and the quality
of labeling is crucial to the performance. Labeling operators need to carefully inspect each data
sample and assign appropriate failure labels to them. This is a time-consuming and tedious process.
Additionally, incorporating human feedback during model iteration and optimization also incurs
some costs. To balance model performance and human costs, on the one hand, we need to achieve
the highest quality of feedback with minimal human effort, and on the other hand, using LLMs to
obtain feedback is also a good option.

5.5 Best Current Practices and Future Directions
Based on the above discussion, we offer insights into probable best practices for different scenario
requirements to assist on-call engineers in selecting the most suitable technique. (1) In terms
of diagnostic granularity and explainability, DéjàVu [92] and Nezha [96] use decision trees or
simple pattern comparisons to interpret the outputs of deep learning models, making the diagnostic
results more transparent. These techniques are particularly suitable for environments that require
traceable decision support. (2) To improve the adaptability and portability of failure diagnosis, a
series of logic graph-based techniques [16, 39, 50, 71, 130] build graphs from widely accepted logical
consensus, allowing failure diagnosis solutions to seamlessly switch across different platforms and
environments. These techniques are all excellent options. (3) To balance high accuracy with cost
control, n-diagnosis [65] uses a two-sample testing algorithm to simplify metric analysis, success-
fully finding a balance between accuracy and computational overhead. It avoids the complexity of
training models. However, if data analysis is ineffective, machine learning or deep learning models
should still be employed for more effective modeling.

Future research directions need to make breakthroughs and innovations in several key areas.
(1) Currently, the results of failure diagnosis often require professional engineers to interpret,
which may make it difficult for non-experts to effectively participate in fault handling and analysis.
Therefore, improving the interpretability and user-friendliness of models, so that non-professional
personnel can understand diagnostic results and make informed decisions, will be a crucial task.
(2) The challenges related to data acquisition quality and granularity of data collection remain
significant in the deployment of current diagnostic systems. Future research should focus on how
to maintain efficient fault diagnosis capabilities despite unstable data quality, noise, or missing
data, especially in systems with coarser data granularity. (3) Although current failure diagnosis
techniques have become more automated, the feedback mechanism of “human in the loop” remains
a key approach to improving model performance. Future research should further explore how to
optimize human feedback to enhance model accuracy and reliability, reducing human intervention
while ensuring that the system can continuously learn and improve. In-depth research in these
directions will help advance intelligent fault diagnosis technologies toward greater efficiency and
reliability, meeting the needs of increasingly complex microservice systems.

Recent years have seen significant progress in LLMs in academia and industry, with models like
ChatGPT gaining widespread attention. State-of-the-art LLMs have proven effective in addressing
failure diagnosis problems [149–151]. A key focus is leveraging technologies such as knowledge
graphs and LLMs for failure diagnosis. Knowledge graphs can establish structured relationships
between system architecture and network topology, revealing underlying connections. LLMs excel
in natural language processing tasks like relational reasoning, knowledge extraction, and similarity-
based corpus queries [152]. However, LLMs alone struggle to provide topological explanations
for real-time monitoring data. Integrating statistical analysis findings into knowledge graphs and
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Table 7. Summary of Publicly Available Datasets

Name Data Details

AIOps Challenge 2020 M, T The dataset collected by ChinaMobile Zhejiang from a real-world productionmicroservice
system.

AIOps Challenge 2021 L, M, T, TP The dataset collected by Tsinghua University from two large commercial banking systems.
AIOps Challenge 2022 L, M, T, TP The dataset collected by Tsinghua University from Hipster Shop.
GAIA L, M, T, E, TP Network performance, system metrics, application logs, and user activity of the MicroSS

microservice simulation system developed by Cloud Wisdom.
TrainTicket-DéjàVu M, TP Metrics, failures, and topology collected on the TrainTicket testbed.
TrainTicket-Eadro L, M, T Application logs, metrics, and traces collected on the TrainTicket testbed.
TrainTicket-Nezha L, M, T Application logs, metrics, and traces collected on the TrainTicket testbed.

Loghub L A large collection of log datasets from various systems.
SWaT, WADI M A series of sensor feature metrics collected by Singapore University of Technology and

Design from a water treatment and distribution testbed.
SMAP, MSL M Feature metrics of different entities from spacecraft telemetry data.

GAIA, Generic AIOps Atlas; MSL, Mars Science Laboratory; SMAP, soil moisture active passive; SWat, secure water
treatment; WADI, water distribution.

using this accumulated knowledge to enhance LLM learning efficiency creates a cycle of mutual
development. This synergy enables both step-by-step and end-to-end failure diagnosis approaches.

6 Datasets and Metrics
6.1 Datasets and Toolkits
High-quality large-scale datasets provide important experimental scenarios and evaluation stan-
dards for algorithm innovation and technological advancement, promoting the integration and
innovation of knowledge across disciplines. Similar to other data-driven domains, datasets play
a crucial role in the domain of failure diagnosis in microservice systems. Industrial microservice
systems are characterized by complex service relationships and massive underlying resources. In
contrast, the academic community often lacks access to real-world data and market-driven factors,
resulting in incomplete or unobtainable content and a lack of practical applications in industry. This
poses challenges for empirical studies in microservice system failure diagnosis, as they often lack
high-quality datasets and appropriate toolkits to support automated or semi-automated validation
and evaluation. To strengthen research in failure diagnosis, it is necessary for the industry to
provide production-level multimodal data (i.e., logs, metrics, traces, events, and topology), for the
academic community to participate in annotating rich datasets, and for advanced failure diagnosis
solutions to be publicly available. Collaborative efforts are needed to advance the construction of
high-quality standard datasets and provide unified evaluation criteria. After carefully searching,
we have organized a list of publicly available failure diagnosis datasets and toolkits, as shown in
Tables 7 and 8.

Currently, several publicly available datasets have been used by researchers to validate the effec-
tiveness of their failure diagnosis techniques. These datasets not only facilitate the reproducibility
of experimental results in papers but also provide valuable data resources for future studies. The
AIOps Challenge datasets [21, 55, 57, 58, 73, 74, 76, 147, 148] are collected by a research team
from Tsinghua University from production environments such as large wireless service providers,
commercial banks, and e-commerce systems. The international AIOps challenge competitions,
which have been held since 2018, also encourage researchers in related fields to conduct more
in-depth research, promoting the development of the relevant domains. The Generic AIOps Atlas
(GAIA) dataset [19, 138, 145] mainly comes from the MicroSS microservice simulation system
developed by Cloud Wisdom. It contains authorized and rigorously anonymized user data from
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Table 8. Summary of Publicly Available Failure Diagnosis Toolkits

Name Year Data Details

DISTALYZER [86] 2012 L An automated tool to investigate the performance issues in distributed systems.
FDiagV3 [87] 2015 L An extended version of the FDiagV3 diagnostics toolkit for log files.
Log3C [83] 2018 L A clustering-based technique to promptly and precisely identify impactful system problems.
SwissLog [60] 2022 L A robust anomaly detection and localization tool for interleaved unstructured logs.
LogKG [107] 2023 L A novel framework based on knowledge graphs.

DBSherlock [97] 2016 M A heuristic failure classification technique optimized by historical metrics and user feedback.
Sieve [40] 2017 M, TP A platform to derive actionable insights from monitored metrics in distributed systems.
DyCause [70] 2021 M A causal failure diagnosis technique via sliding windows and crowdsourced graph fusion.
DéjàVu [92] 2022 M, TP An interpretable, actionable technique for localizing recurring failures in online service systems.
CIRCA [42] 2022 M, TP A novel unsupervised causal inference-based failure localization technique.
RootCLAM [44] 2023 M, TP A technique for causal-based root cause localization and anomaly mitigation.

TraceAnomaly [22] 2020 T Unsupervised anomaly detection via novel trace representation and deep Bayesian networks.
TraceRCA [56] 2021 T A practical root-cause microservice localization technique via trace analysis.

MicroCBR [16] 2022 L, M, T, TP A framework with offline spatio-temporal graph construction for online troubleshooting.
UniDiag [138] 2024 L, M, T, TP A failure diagnosis technique, leveraging TKGs to fuse multimodal data.
Eadro [51] 2023 L, M, T A framework for troubleshooting via anomaly detection and root cause localization.
Medicine [145] 2024 L, M, T A modal-independent framework based on multimodal adaptive optimization.
DiagFusion [19] 2023 L, M, T, TP An automatic failure diagnosis technique extracting and unifying events from multimodal data.
Nezha [96] 2023 L, M, T An interpretable and fine-grained RCA technique based on multimodal data.
DeepHunt [147] 2024 L, M, T, TP An interpretable method with reconstruction errors, dependency modeling, and user feedback.
ART [148] 2024 L, M, T, TP A unified framework using multimodal dependency modeling and failure representations.

Cloud Wisdom. Additionally, it simulates failures that may occur in real systems and provides
records of all failure injections. It consists of over 6,500 metrics spanning two weeks, 7 million
log entries, and detailed traces. Some papers [51, 92, 96] use multimodal data collected from the
publicly available platform TrainTicket for experimentation and mimic application failures using
failure injection tools.

There are also some datasets in non-microservice systems that are worth mentioning.The Loghub
dataset is compiled by a research team from the Chinese University of Hong Kong, aggregating
log datasets from various types of systems in both real production environments and laboratory
simulation environments. The maintained log dataset has a total size of over 77 GB and includes
distributed system logs, supercomputer cluster logs, operating system logs, mobile application
logs, server application logs, and standalone software logs. For metrics, the Singapore University
of Technology and Design collected the secure water treatment (SWaT) dataset and water
distribution (WADI) dataset from a water treatment testbed and a WADI testbed, respectively.
Similarly, NASA collected the soil moisture active passive (SMAP) satellite dataset and Mars
Science Laboratory (MSL) rover dataset from spacecraft telemetry data, which have annotated
records of anomaly sequences and types. These papers we surveyed also used the aforementioned
non-microservice system log and metric datasets [32, 33], which can be utilized to validate the
effectiveness and impact of failure diagnosis solutions.

In addition to the datasets, some publicly available testing platforms have made significant
contributions to the development of related research. OpenStack [59, 78, 81] is a cloud computing
platform project aimed at providing IaaS solutions. Hadoop [60, 88, 104, 108, 153] is a distributed
computing framework for storing and processing large-scale data. Hadoop-based Spark [80, 84]
refers to Spark applications running on a Hadoop cluster and represents an improvement over
traditional MapReduce. RUBBoS [88] is a bulletin board benchmark that models an online news
forum. Researchers can deploy HTTP servers, application servers, and a database server on this
benchmark. They can then simulate several thousands of concurrent requests to different services
and obtain logs frommultiple services to form a dataset. The IBM Cloud Testbed [46, 47, 61, 78, 88] is
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an open cloud environment for experimentation and testing.This testing environment is based on the
IBM Cloud platform and provides a variety of cloud resources and services such as virtual machines,
containers, storage, databases, and artificial intelligence. It allows developers to easily create and
manage their testing environments. Hipster-shop [20, 21, 93] is a cloud-native microservice e-
commerce platform developed using technologies such as Kubernetes, Istio, Prometheus, and
Grafana, showcasing microservice architecture patterns. It encompasses microservices for product
catalog, shopping cart, payment, order processing, and front-end/back-end interfaces. Sock Shop
[17, 35, 69], a simulated online sock shopping microservice application, demonstrates cloud-native
development and deployment. It includes microservices like product catalogs, shopping carts,
inventory, and payment services, each focusing on specific business functions and communicating
via REST APIs. TrainTicket [22, 51, 92, 96, 100, 105, 136] is a benchmark system for train ticketing
developed by a research team from Fudan University. Users can check, book, and pay for train
tickets using TrainTicket [51, 92, 96, 100, 105, 136]. It consists of 24 microservices that actively
interact with each other, similar to real-world industrial microservice systems.

Failure diagnosis toolkits can save users the time and cost of reproducing experiments, thereby
promoting the development of related research. Additionally, when dealing with highly complex
microservice systems, publicly available toolkits make it easier and more widespread to conduct
experiments in real-world application scenarios.The feedback obtained from experiments conducted
on different systems helps researchers better determine the next steps for improvement and research
directions.

Up until now, there was a scarcity of research on publicly available toolkits, accounting for only
21.43% of the total. This hindered the reproducibility and improvement of subsequent research
work. However, in recent years, the number of studies on publicly available toolkits has increased
significantly. In particular, Eadro [51] and Nezha [96] have open sourced both their toolkits and the
datasets used, which undoubtedly contributes to the advancement of failure diagnosis studies. In
conclusion, Table 9 provides a compilation of the related research and open source links associated
with the datasets and toolkits discussed in this section.

6.2 Evaluation Metrics
As stated in Section 3.2, the objective of failure diagnosis in current microservice systems is to local-
ize the root cause and classify the type of failure. Root cause localization [16, 17, 19–22, 26, 28–32,
32, 33–36, 38, 43, 45–48, 50, 52, 55–58, 64, 67, 69, 70, 74–76, 90–92, 95, 96, 105, 108, 120] is typically
evaluated with�22DA02~@: (�@:), 0E4A064 �22DA02~@ (�E6@ ), %A428B8>=@ (%'@ ), and
<40= 0E4A064 %'@ ("�%@ ), which are using the following commonly used ranking evaluation
metrics in recommendation systems. Given � as the set of system failures, 0 as one failure in �,
+0 as the real root cause of 0, and '0 [:] as the predicted top-k set of 0. These metrics are defined

as �@: = 1
|� |

∑
0∈�

{
1, if +0 ∈ '0 [:]
0, otherwise , %'@: = 1

|� |
∑
0∈�

∑
8<: '0 [8 ]∈+0
<8= (:, |+0 | ) , �E6@ =

∑
1≤:≤ �@:

 
,

and "�%@ = 1
 |� |

∑
0∈�

∑
1≤:≤ %'@: . They indicate the probability of the real root cause

being present in the predicted top-k set. In practice, operators usually examine the top-5 re-
sults. In addition, mean reciprocal rank (MRR) and ranking percentile (RP) are defined as
"'' = 1

�

∑
0∈�

1
A0=: (+0,'0 ) and '% = (1 − A0=: (+0,'0 )

=D< ('0 ) ) × 100%, where A0=: (+0, '0) is the ranking
position of +0 in '0 , =D<('0)is the number of suspicious root causes in '0 . They are used to mea-
sure the ranking capability of the models. Larger values of these metrics indicate higher-ranking
predictions and better diagnostic performance of the models.
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Table 9. A List of Publicly Available Datasets and Toolkits

Name Related Research Link

D
at
as
et
s

AIOps Challenge 2020 [21, 55, 58, 73, 74, 76] https://github.com/NetManAIOps/AIOps-Challenge-2020-Data
AIOps Challenge 2021 [73, 147, 148] https://www.aiops.cn/gitlab/aiops-nankai/data/trace/aiops2021
AIOps Challenge 2022 [57, 147, 148] https://competition.aiops-challenge.com/home/competition
GAIA [19, 138, 145] https://github.com/CloudWise-OpenSource/GAIA-DataSet
TrainTicket-DéjàVu [92] https://zenodo.org/records/6955909
TrainTicket-Eadro [51] https://github.com/BEbillionaireUSD/Eadro
TrainTicket-Nezha [96] https://github.com/IntelligentDDS/Nezha/tree/main/rca_data

Loghub - https://github.com/logpai/loghub
SWaT, WADI [32, 33] https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
SMAP, MSL - https://github.com/khundman/telemanom

To
ol
ki
ts

DISTALYZER [86, 154] http://www.macesystems.org/distalyzer,Lu2017LogbasedAT
FDiagV3 [87, 155, 156, 156–158] http://diag-toolkits.github.io/FDiag
Log3C [60, 83, 159] https://github.com/logpai/Log3C
SwissLog [60, 160] https://github.com/IntelligentDDS/SwissLog
LogKG [107, 161] https://anonymous.4open.science/r/LogKG-A6BD

DBSherlock [94, 97, 98, 162] http://dbseer.org
Sieve [21, 29, 34, 40, 45–48, 52, 54–56, 69, 70, 90] https://sieve-microservices.github.io/
DyCause [48, 50, 51, 67, 70, 163] https://github.com/PanYicheng/dycause_rca
DéjàVu [19, 51, 92, 138, 145, 147, 148, 164] https://github.com/NetManAIOps/DejaVu
CIRCA [32, 42, 51, 96] https://github.com/NetManAIOps/CIRCA
RootCLAM [44] https://github.com/hanxiao0607/RootCLAM

TraceAnomaly [21, 22, 26, 52, 55, 56] https://github.com/NetManAIOps/TraceAnomaly.git
TraceRCA [48, 56, 57, 67, 96, 147] https://github.com/NetManAIOps/TraceRCA.git

MicroCBR [16, 138, 145, 148] https://github.com/Fengrui-Liu/MicroCBR
UniDiag [138] https://github.com/AIOps-Lab-NKU/UniDiag
Eadro [19, 51, 148, 161, 165, 166] https://github.com/BEbillionaireUSD/Eadro
Medicine [145] https://github.com/AIOps-Lab-NKU/Medicine
DiagFusion [19, 96, 138, 145, 147, 148, 161, 164, 165] https://github.com/AIOps-Lab-NKU/DiagFusion
Nezha [96, 164, 167] https://github.com/IntelligentDDS/Nezha
DeepHunt [147] https://github.com/bbyldebb/DeepHunt
ART [148] https://github.com/bbyldebb/ART

Apart from the aforementioned commonly used metrics, 4G0< B2>A4 (�() refers to the average
number of incorrect candidate options that operators must manually exclude before diagnosing the
real root cause of each failure.

Failure classification mostly utilizes evaluation metrics of multi-class tasks in machine learning
to demonstrate diagnostic effectiveness. Multi-class tasks can independently evaluate each class
using binary classification methods to obtain multiple binary evaluation metrics. These metrics,
including ?A428B8>= (%), A420;; ('), and �1 − B2>A4 (�1), can accurately reflect the results of each
class. With CAD4 ?>B8C8E4B ()%), 5 0;B4 ?>B8C8E4B (�%), and 5 0;B4 =460C8E4B (�# ), the calculation
for binary classification tasks is given by % = )%

)%+�% , ' = )%
)%+�# , �1 = 2×%×'

(%+') . Based on the
above, the metrics for failure classification can be obtained [17, 19, 39, 44, 59, 68, 83, 84, 98, 98,
106, 168, 169]."82A> 0E4A064 is calculated by summing up the )% , �% , and �# across all classes,
where "82A> %A428B8>= = "82A> '420;; = "82A> �1 − B2>A4 =

∑=
8=1)%8∑=

8=1 ()%8+�%8 )
=

∑=
8=1)%8∑=

8=1 ()%8+�#8 )
. As

"82A> 0E4A064 cannot differentiate between different classes, it is more suitable for scenarios with
uneven sample distribution.
"02A> 0E4A064 is calculated by computing % , ', and �1 for each class, and taking the average,

where"02A> %A428B8>= = 1
=

∑=
8=1 %8 ,"02A> '420;; =

1
=

∑=
8=1 '8 , and"02A> �1 − B2>A4 = 1

=

∑=
8=1 �18 .

As"02A> 0E4A064 assigns the same weight to each class, it can treat each class equally and thus
can be influenced by rare classes.

When the samples are imbalanced, it is not appropriate to assign the same weight to each
class.,486ℎC43 0E4A064 is calculated by computing % , ', and �1 for each class, and then assigning
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different weights based on the sample size of each class, where,486ℎC43 %A428B8>= =
∑=
8=1 %8 ×,8 ,

,486ℎC43 '420;; =
∑=
8=1 '8 ×,8 and,486ℎC43 �1 − B2>A4 =

∑=
8=1 �18 ×,8 .

Some failure diagnosis solutions [98] that employ clustering methods also utilize 2;DBC4A8=6
022DA02~ (��) and=>A<0;8I43 <DCD0; 8=5 >A<0C8>= (#"� ), which are goodmeasures of clustering
quality.

7 Related Work
Failure diagnosis is crucial in microservice systems, and thanks to the continuous attention of
researchers, significant progress has been made in this domain. Relevant surveys on this topic have
been published successively. However, previous studies mainly focus on a single task and don’t
comprehensively update and review existing techniques.

Oliner et al. [10] survey focus on log analysis in computer-system logs. Log analysis can help
optimize or debug system performance. Wong et al. [5] outline techniques for localizing the root
causes of failures in the source code of an individual software program. These techniques are
classified into eight categories, including slice-based, spectrum-based, statistics-based, program
state-based, machine learning-based, data mining-based, model-based, and miscellaneous. Before
2016, microservices architecture had not received widespread attention, and most applications
could not escape the constraints of traditional monolithic software, only being able to refactor
application code based on the original traditional software. Therefore, the studies surveyed by
Oliner et al. [10] and Wong et al. [5] are still based on the failure diagnosis techniques of the
traditional software architecture, with limitations in improving and applying them. Gao et al. [6,
7] classify failure diagnosis techniques into core methods, including model-based, signal-based,
knowledge-based, and hybrid/active diagnosis techniques. Sole et al. [8] survey available root
cause analysis models and the corresponding generation and inference algorithms in distributed
systems from multiple performance evaluation perspectives (i.e., scalability and real-time reaction).
However, the studies surveyed by Gao et al. [6, 7] and Sole et al. [8] overlook specific modalities and
granularity. Additionally, the studies [5–7, 10] are dated up to 2016 and do not reflect the current
advances in failure diagnosis techniques.

He et al. [11] provide a detailed overview of automated log analysis in large-scale software
systems, including how to employ logs to detect anomalies, predict failures, and facilitate diagnosis.
He et al. [11] also survey open source datasets and toolkits. Li et al. [13] present an industrial survey
of microservice tracing and analysis, which surveyed different root cause analysis techniques
including visualization, statistics (i.e., statistical calculation of related metrics), and rule-based
decision. However, Li et al. [13] instead survey more advanced root cause analysis techniques,
including machine learning and data mining. Furthermore, the studies surveyed by He et al. [11] and
Li et al. [13] only consider logs or traces and do not qualitatively compare the different techniques,
while we not only classify them based on the overall method in detail but also qualitatively analyze
and discuss them.

The above studies either overlook specific modalities [6–8] or only focus on one modality, such
as logs [5, 10, 11] or traces [13]. The studies surveyed by Notaro et al. [12] and Soldani et al. [9]
are closer to ours, considering single-modal data (i.e., using either metrics, logs, or traces). Notaro
et al. [12] focus on failure management of the applicability requirements and quantitative results,
including failure diagnosis. Notaro et al. [12] consider two tasks of failure diagnosis and provide
explanations and discussions for each. However, Notaro et al. [12] do not classify the core methods
in fine granularity, which could not help operators understand the processes and paradigms of
existing failure diagnosis techniques. Soldani et al. [9] provide a structured overview and qualitative
analysis of existing anomaly detection and root cause analysis in large-scale software systems.
Soldani et al. [9] mainly survey direct and graph-based root cause analysis techniques, while
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overlooking some feature-based techniques [16, 17, 19, 30, 39, 43, 44, 51–53, 57–59, 62, 63, 73,
74, 80, 83, 86–90, 92, 93, 96, 98, 101, 103, 104, 107, 120, 129]. In addition, we not only analyze
these techniques from the perspectives of granularity, explainability, accuracy, and costs but also
complement qualitative evaluations of characteristics and portability. We also focus on publicly
available datasets and toolkits, summarizing the evaluation metrics for failure diagnosis tasks,
aiming to support operators in deploying and validating these techniques.

There are also some noteworthy empirical studies and evaluations by Zhou et al. [102], Arya
et al. [170], and Garg et al. [171]. Zhou et al. [102] conduct an industrial survey focusing on
typical failure analysis in microservice systems. The experimental results demonstrate that using
proper tracing and visualization techniques can help in diagnosing various failures related to
microservice interactions. Arya et al. [170], using the aforementioned TrainTicket microservice
system, evaluate the performance of various state-of-the-art Granger causal inference techniques.
Garg et al. [171] comprehensively evaluated algorithms for anomaly detection and diagnosis
in modern cyber-physical systems through training 11 deep learning models on 7 multivari-
ate time series datasets. Therefore, the studies [102, 170, 171] complement our qualitative com-
parison, quantitatively comparing the performance and accuracy of existing techniques. How-
ever, these studies [102, 170, 171] also lack comparisons of failure diagnosis techniques based on
multimodal data.

8 Conclusions
As microservice systems grow in scale and complexity, and deployment techniques advance, failure
diagnosis has emerged as a critical frontier. Our survey is the first to comprehensively examine
failure diagnosis techniques using multimodal data (i.e., logs, metrics, traces, events, and topology)
in microservice systems, covering both single-modal and multimodal fusion approaches from 2003
to present. We summarize the characteristics, trends, and research progress of existing solutions
for researchers and practitioners. Our qualitative analysis examines various aspects including
granularity, explainability, characteristics, portability, accuracy, and costs, aiming to promote stable
microservice system development. While surveyed papers often measure diagnostic accuracy and
compare solutions, we recognize that other factors like training data scale, efficiency, storage,
and invocation overhead are also crucial. We recommend combining qualitative and quantita-
tive analyses to guide practitioners in selecting appropriate solutions for real-world applications.
Additionally, we offer the first survey to address problem statement, evaluation metrics, publicly
available datasets, and toolkits specific to failure diagnosis. We aim to contribute to the develop-
ment of modern microservice systems, provide researchers with comprehensive background and
references, and inspire future studies in failure diagnosis techniques.
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