2602

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 5, SEPTEMBER/OCTOBER 2025

Accurate and Interpretable Log-Based Fault
Diagnosis Using Large Language Models

Yonggian Sun
Yao Zhao, Shenglin Zhang

Abstract—Log-based fault diagnosis is essential for ensuring
system reliability and resilience. However, current methods only
provide fault diagnosis results without explanations, which un-
dermines their credibility. Large language models (LLMs) have
extensive pre-trained knowledge and show potential in log analysis,
yet they cannot be directly applied to log-based fault diagnosis
due to limited specialized capabilities and domain-specific insights.
Furthermore, LLMs have limitations in context length and are
too diverse to select a suitable one. To address these issues, this
paper presents Loglnsight, a framework that enables accurate and
interpretable log-based fault diagnosis using LLMs. We fine-tune a
medium-sized, open-source LLM to incorporate domain expertise
and leverage its interpretive capability. Additionally, we design a
Fault-Oriented Log Summary (FOLS) module to extract essen-
tial information from log sequences, mitigating LLMs’ context
length limitation. Extensive evaluations on two public datasets
and a real-world production dataset demonstrate LogInsight’s su-
periority over state-of-the-art methods in both performance and
interpretability.

Index Terms—ILog-based fault diagnosis, log analysis, large
language models, interpretability.
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I. INTRODUCTION

N MODERN large-scale and complex online service sys-
I tems, faults can disrupt interdependent services, significantly
degrade system performance, and impact millions of users [1].
If these faults are not promptly mitigated, they can result in
severe consequences and substantial financial losses [2]. When
a fault occurs, the system generates extensive logs containing
vital information about the underlying issue [3]. Operations and
Maintenance (O&M) engineers analyze these logs to diagnose
the fault, a process that involves fault triage, which is indispens-
able for prioritizing remediation efforts and assigning the fault to
the appropriate team for resolution [4]. Effective fault diagnosis
not only accelerates recovery times but also minimizes the risk of
cascading failures [5]. Consequently, log-based fault diagnosis
plays a critical role in ensuring the reliability and stability of
online services [6].

Manual log analysis is inherently time-consuming and labor-
intensive, posing significant challenges for O&M engineers
tasked with managing the massive and complex log data gen-
erated by large-scale systems [6]. To address these challenges,
automated log-based fault diagnosis leveraging machine learn-
ing and deep learning algorithms has emerged as a promising
solution [7]. Despite significant advancements in this field [8],
[9], [10], existing approaches often suffer from a critical limita-
tion: poor interpretability. Most approaches focus on producing
diagnostic results without providing clear explanations for these
outcomes, which can hinder O&M engineers’ ability to trust and
act on the recommendations effectively [11].

Interpretable fault diagnosis goes beyond merely triaging
faults; it provides the rationale behind the triage results, enabling
O&M engineers to quickly and accurately assign faults to the
appropriate teams while fostering a better understanding of the
results and facilitating targeted mitigation measures. As illus-
trated in Fig. 1, the transition from traditional fault diagnosis to
interpretable methods fosters a more transparent and informed
approach, bolstering confidence in decision-making and enhanc-
ing the overall reliability of fault management systems.

Recently, large language models (LLMs) have demonstrated
promising capabilities across various natural language process-
ing (NLP) tasks [12], [13]. Trained on vast datasets encompass-
ing code [14] and log data [15], LLMs have the potential to
provide a more comprehensive and context-aware understanding
of logs. Several studies have explored the application of
LLMs in log analysis [11], [16], [17]. However, leveraging
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Raw Log

2020-09-21 05:45:39 Processor CPU1 Status | Configuration Error | Asserted
2020-09-21 05:45:40 Processor CPU2 Status | Configuration Error | Asserted
2020-09-21 05:46:30 System ACPI Power State ACPI State | S4/S5: soft-off | Asserted
2020-09-21 05:46:31 Memory DIMM100 | Presence Detected | Deasserted
2020-09-21 05:46:31 Memory DIMM130 | Presence Detected | Deasserted

Traditional
Fault Diagnosis

Which type
of fault?

Hardware Fault

Interpretable Fault Diagnosis

Which type
of fault?

Hardware Fault

Explanation
The log indicates a critical hardware fault. Both CPUs encountered configuration

errors, leading the system to enter a soft-off state (S4/S5)...

Fig. 1.

LLMs for interpretable fault diagnosis faces the following
challenges:

1) LLMs’ lack of domain expertise: LLMs are not specifically
trained for fault diagnosis and often lack the domain-
specific skills and contextual understanding required to
perform fault diagnosis effectively. Consequently, directly
applying LLMs to log-based fault diagnosis may result in
poor performance.

2) LLMs’ limitations in context length: Fault diagnosis typ-
ically requires analyzing extensive logs, yet LLMs have
limited context length, making it impractical to input all
logs at once. Although recent researche has focused on ex-
tending the context length of LLMs [18], [19], challenges
persist due to the exponential increase in computational
demands and accuracy degradation [20].

To address the above challenges, we propose Loglnsight, a
framework for accurate and interpretable log-based fault diag-
nosis using LLMs. Specifically, we fine-tune a medium-sized,
open-source LLM to incorporate domain-specific knowledge
and design a Fault-Oriented Log Summary (FOLS) module to
extract critical information from each log sequence, thereby
mitigating LLMSs’ inherent context-length limitations. We con-
duct comprehensive evaluations on two public datasets and
one production dataset. The results demonstrate that Logln-
sight achieves the highest average F1 score in fault diagno-
sis, outperforming state-of-the-art baseline methods by 36.9%,
12.8%, and 7.3%, respectively. Additionally, Loglnsight en-
hances interpretability by providing justifications for its diag-
nostic outcomes, supporting more informed decision-making
for O&M engineers. In summary, the main contributions of this
paper are as follows:

® We propose a practical framework for log-based fault di-

agnosis using LLMs that provides explanations for fault
triage results.

® We design a Fault-Oriented Log Summary (FOLS) module

to address LLMs’ context-length limitations, enabling the
processing of large log volumes essential for fault diagno-
sis.

® We conduct extensive evaluations on three real-world

log datasets to validate the effectiveness of Loglnsight,

Comparison between traditional fault diagnosis and interpretable fault diagnosis.

particularly its ability to provide interpretable results while
achieving superior performance compared to existing state-
of-the-art methods.

1I. BACKGROUND
A. Log-Based Fault Diagnosis

When a fault occurs in a system, O&M engineers are re-
sponsible for performing triage, diagnosing the root cause, and
promptly implementing mitigation measures. Fault diagnosis,
which encompasses fault triage, generally involves analyzing
log data generated during the fault period—referred to as fault-
related log data—serving as the primary source of diagnostic
information [3]. However, the sheer volume of this data can
be overwhelming, making manual review both labor-intensive
and time-consuming and often delaying responses to critical
faults [6].

To reduce manual workload, O&M engineers often create
heuristic rules based on their experience to aid in log retrieval and
fault identification. While useful, these heuristics have notable
limitations. First, manually creating and updating rules is labor-
intensive, especially as system requirements and configurations
evolve. Second, heuristic-based diagnosis is prone to errors,
leading to misdiagnoses and ineffective mitigation strategies [8].
As aresult, automated log-based fault diagnosis using machine
learning and deep learning techniques has gained significant
attention [3], [7], [8], [21].

B. Large Language Models

In recent years, large language models (LLMs) have trans-
formed the field of natural language processing (NLP), drawing
significant interest from researchers and practitioners. OpenAl’s
introduction of GPT [22] demonstrated the potential of models
pre-trained on large datasets and fine-tuned for specific tasks,
paving the way for models like BERT [23], TS [24], and
GPT-3 [25]. More recently, advancements such as ChatGPT
have broadened the application of LLMs, providing highly
conversational interfaces with remarkable dialogue capabilities.
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This trend has continued with OpenAl’s GPT-4 [26], Meta AI’s
LLaMA [27], and Google’s PaLM [28].

LLMs are predominantly built on the Transformer ar-
chitecture [29] and are trained on extensive datasets us-
ing self-supervised learning objectives. They generate text
autoregressively—predicting one token at a time—until a
sequence is complete [30]. At the core of the Transformer is
the self-attention mechanism, which allows models to capture
dependencies across sequences; however, its computational cost
is high, with memory and processing requirements growing
quadratically with input length. This constraint makes handling
long text inputs challenging, as information relevance can dimin-
ish over extended contexts, leading to issues such as attention
dispersion.

Despite these challenges, LLMs’ extensive pre-training on
datasets that include code and log data makes them promis-
ing candidates for log-based fault diagnosis. Effectively ap-
plying LLMs to these tasks has become a research priority,
with fine-tuning task-specific datasets emerging as the dominant
approach.

C. Pre-Training & Fine-Tuning

The introduction of BERT [23] marked a pivotal shift in
NLP, establishing the pre-training and fine-tuning paradigm.
This paradigm involves first pre-training language models on
large, diverse datasets to capture general linguistic and semantic
patterns, then fine-tuning them on domain-specific data to meet
the specific needs of downstream tasks. While general-purpose
LLMs exhibit robust language understanding, they may under-
perform in specialized domains, where fine-tuning is essential
for achieving optimal performance.

Fine-tuning entails additional training of a pre-trained model
on domain-specific data, aligning the model more closely with
the nuances of a specific application. There are two primary
approaches to fine-tuning large models:

® Full Parameter Fine-Tuning: This approach involves up-

dating all parameters of the pre-trained model with task-
specific data, allowing comprehensive adaptation to the
new domain. While full parameter fine-tuning demands
substantial computational resources, it fully leverages the
model’s pre-trained features, enabling deep task-specific
customization.

® Parameter-Efficient Fine-Tuning (PEFT): PEFT selec-

tively updates a small subset of the model’s parameters
or adds a small number of parameters, thereby reducing
computational costs and training time. This is particu-
larly useful when resources are constrained, and includes
methods such as Prefix Tuning [31], Prompt Tuning [32],
Adapter Tuning [33], [34], [35], and LoRA [36], [37].
By concentrating on updating specific components, PEFT
provides a resource-efficient method for model adaptation
without sacrificing effectiveness.

In summary, fine-tuning provides a critical mechanism for
adapting powerful language models to specialized domains, sig-
nificantly enhancing their applicability and efficacy in practical,
domain-specific applications.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 5, SEPTEMBER/OCTOBER 2025

III. RELATED WORK
A. Log-Based Fault Diagnosis

With advances in machine learning and deep learning, numer-
ous approaches have been developed for automating log-based
fault diagnosis. These approaches can be categorized into three
main types:

Machine Learning-Based Methods: This type of method typ-
ically converts log events into vector representations for clus-
tering and classification. For example, LogCluster [7] employs
TF-IDF to represent log sequences as weighted vectors and
utilizes hierarchical clustering, while Cloud19 [3] leverages
word2vec embeddings to capture semantic features and classify
faults. However, both approaches are challenged by the presence
of noise and redundant log data, which can impact diagnostic
accuracy.

Deep Learning-Based Methods: More recent deep learning-
based methods have enhanced fault diagnosis capabilities, par-
ticularly for complex log patterns. MoniLog [38], for instance,
is a distributed, real-time anomaly detection framework for
large-scale systems that monitors structured log streams to detect
sequential and quantitative anomalies. It identifies faults within
log sequences and categorizes anomalies based on severity.
Another example, SwissLog [39], combines semantic and tem-
poral embeddings to diagnose faults that involve changes in log
sequence order or timing intervals. Nevertheless, both methods
may produce false positives or fail to detect critical issues when
log data is ambiguous or complex.

Data Mining-Based Methods: Data mining-based methods
enhance diagnostic detail by extracting richer information from
logs. LogBASA [40] incorporates a pre-trained BERT model
to capture semantic relationships within log event sequences,
using system behavior analysis to improve diagnostic efficiency
in response to anomalies. LogKG [8] takes a different approach
by constructing a knowledge graph of entities and relationships
extracted from logs. This graph, combined with a fault-oriented
log representation module, leverages OPTICS clustering [41]
to analyze fault patterns and perform online fault diagnosis.
While these methods perform well with specific log formats,
their applicability across varied log structures remains limited.

In summary, these methods have some unique advantages,
but they all share a common shortcoming: lacking the ability to
provide interpretable explanations for fault diagnosis results.

B. LLM-Based Log Analysis

The prevalence of LLLMs has attracted considerable interest in
applying them in log analysis tasks, particularly in log parsing
and log anomaly detection.

LLM-Based Log Parsing: Log parsing, the process of trans-
forming raw logs into structured data, serves as the foundation of
the typical log analysis workflow. Recent research has explored
using LLMs to improve log parsing. For instance, DivLog [42]
leverages the in-context learning (ICL) capability of LLMs,
using diverse log samples as guiding examples to achieve ac-
curate parsing across varied log formats. LILAC [43] enhances
parsing precision and efficiency by combining LLMs with an
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Fig. 2. The overall framework of Loglnsight.

Adaptive Parsing Cache, which stores refined templates for rapid
retrieval and incorporates hierarchical candidate sampling to
further optimize ICL performance.

LLM-Based Log Anomaly Detection: Detecting anomalies
within logs is essential for fault identification and early warning.
Recently, LLMs have emerged as valuable tools for enhancing
anomaly detection. For example, LogPrompt [11] employs a
prompting strategy tailored for log analysis, enabling zero-shot
parsing and anomaly detection without extensive model fine-
tuning. LogGPT [16], based on the ChatGPT framework, uses
the interpretive capabilities of LLMs for anomaly detection,
although it does not explicitly classify fault types. SealLog [44]
utilizes a Trie-based Detection Agent for real-time anomaly
detection, incorporating expert insights, including those in-
formed by LL.Ms, to enhance detection accuracy. RAGLog [45]
combines a Retrieval-Augmented Generation (RAG) LLM with
a vector database, enabling effective handling of log volume,
variety, and velocity in anomaly detection scenarios.

Additionally, there is research exploring the use of LLMs
for log generation. UniLog [46] serves as an automatic logging
framework that exploits LLMs’ ICL abilities to autonomously
generate logging statements, offering a versatile and minimally
tuned solution that caters to diverse organizational and developer
logging needs.

While these studies highlight the capabilities of LLMs in log
analysis tasks such as log parsing and log anomaly detection, the
application of LLMs specifically for log-based fault diagnosis
remains underexplored. This gap highlights the need for ap-
proaches that address the distinct requirements of interpretable
fault diagnosis in log analysis.

IV. APPROACH

In this section, we introduce the details of Loglnsight. Fig. 2
shows the overall framework of Loglnsight, which consists of
four main components: Log Preprocessing, which organizes

Online stage

raw log entries into structured log sequences; Fault-Oriented
Log Summary (FOLS), which extracts key information from
log sequences; Knowledge Injection, which generates an
explanation for each fault summary using GPT-4, followed by
manual verification of the explanation; and Supervised Fine-
tuning, which fine-tunes an LLM using an instruction dataset.
Next, we explain each component in detail.

A. Log Preprocessing

This component preprocesses log data for subsequent analy-
sis. Suppose a fault occurs at time ¢, we first collect raw logs
generated within the time frame [t — w : ¢] for this fault, where
w is determined according to the requirement of the application
scenario. We then transform these raw logs into a log content
sequence to facilitate analysis. Unlike traditional log analysis
methods, LogInsight does not require log parsing, as it utilizes
LLMs to understand the content of the raw logs.

Fig. 3 illustrates the log preprocessing process, where reg-
ular expressions are used to structure the raw logs and extract
the Content field from each log entry, forming a sequence of
log contents. This resulting sequence removes redundant and
irrelevant fields from the original logs, providing more detailed
information than the log template sequences typically generated
through log parsing.

B. Fault-Oriented Log Summary

To address Challenge 2: LLMs’ limitations in context length,
we design the Fault-Oriented Log Summary (FOLS) module.
Through an extensive analysis of fault cases, we observed that
logs generated during failure periods often contain a large
amount of redundant and noisy information while the truly
valuable diagnostic clues are sparse and rarely repeated. More-
over, different types of faults are characterized by distinct log
patterns, making it challenging to identify key information using
simple heuristics. These insights motivated the development of
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Raw Logs

2024-01-01 10:05:14 INFO: Reading data from /home/user/file.txt
2024-01-01 10:05:14 DEBUG: Setting block size to 2020180
2024-01-01 10:05:14 ERROR: /home/user/file.txt does not exist

Structured Logs l
Date Time Level Content
2024-01-01 | 10:05:14 | INFO Reading data from /home/user/file.txt
2024-01-01 | 10:05:14 | DEBUG Setting block size to 2020180
2024-01-01 | 10:05:14 [ ERROR /home/user/file.txt does not exist
Log Content Sequence
Reading data from /home/user/file.txt
Setting block size to 2020180
/home/user/file.txt does not exist
Fig. 3. The workflow of log preprocessing.

the FOLS module, which is specifically tailored to identify and
highlight meaningful and unique content within large, repetitive
datasets.

Given the substantial size of raw logs required for fault diag-
nosis and the context-length constraints of LLMs, FOLS aims to
extract essential information while significantly reducing input
length. As illustrated in Fig. 4, this approach makes the time
and memory overhead of feeding logs into LLMs manageable.
Specifically, FOLS employs two operations: Clustering-Based
Content Aggregation to group similar log entries and reduce
redundancy, and TF-IDF-Based Content Ranking to prioritize
log messages that are most informative for fault diagnosis.

1) Clustering-Based Content Aggregation: Thelogdatafora
fault case can exhibit complex correlations. To ensure the diver-
sity of summarized sequences and capture faults from different
perspectives, we group related logs together by clustering. This
allows subsequent analysis to focus on a small subset of logs
from each cluster rather than all logs. This operation consists of
three steps:

i) Distance Measurement: Given N log contents to be clus-
tered, we create an N x N distance matrix to record the distance
between each pair of log contents. We choose the Jaccard dis-
tance, which can measure syntactic-level similarity between two
log contents [47]. The Jaccard distance is defined based on the
intersection and union of the token sets from two log contents,
effectively capturing their overlap and diversity.

Since each log content can be represented as a set of tokens,
the Jaccard distance between two log contents x and y is defined
as follows:

IXNY]

d -2
(z,y) XUV

ey
where X and Y are the token sets of log content z and y,
respectively. It can be seen that the Jaccard distance is between
Oto 1.

ii) Clustering: After obtaining the distance matrix, we ap-
ply the DBSCAN [48] algorithm to cluster all log contents.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 5, SEPTEMBER/OCTOBER 2025

DBSCAN is a density-based spatial clustering algorithm that
partitions regions with sufficient density into clusters, capable of
discovering clusters of arbitrary shapes in a spatial database with
noise. Compared to other popular clustering algorithms, such as
k-means [49], DBSCAN does not require the number of clusters
to be specified in advance and can effectively cluster dense
datasets of varying shapes. DBSCAN has two key parameters:
€, which describes the maximum neighborhood distance for a
point, and Min Pts, which indicates the minimum number of
points required for a cluster. We set these values as recommended
in [48].

iii) Representative Log Content Selection: After clustering,
the log contents within each cluster are similar, so analyzing
a single log content from each cluster can reveal the overall
pattern. Without loss of generality, we select the centroid of each
cluster as its representative log content and discard the rest. For
a cluster with n log contents, the centroid is the log content
that has the minimum average distance to all others within the
cluster, formulated as follows:

, . 1
centroid = arg min —
x;Ecluster N

Zd(l’i7$j), (2)
j=1

where d(xz;, ;) is the Jaccard distance between log contents x;
and x;.

2) TF-IDF-Based Content Ranking: Often, some logs un-
related to the fault may appear multiple times. To mitigate this
issue, we propose a TF-IDF-based ranking algorithm to evaluate
the importance of each log content and filter out the less signifi-
cant ones. TF-IDF [50] is a widely used weighting technique in
information retrieval and data mining [7], comprising two parts:
Term Frequency (TF) and Inverse Document Frequency (IDF).
TF measures how frequently a term appears, while IDF reduces
the weight of common terms, assigning them a smaller weight
inversely proportional to their frequency.

Specifically, for a given log content, we first tokenize it into
a token list T = [tq, to, ..., t,]. The TF of an arbitrary token
t is calculated as follows:

TF(t) = —, 3)

where n; is the number of appearances of token ¢ in T and n is
the total number of tokens in T. The IDF is calculated as:

N
IDF(t) = log —— 4
(t) = log L ©)
where N is the total number of faults and n; is the number of
faults whose logs contain token ¢. After obtaining the TF and
IDF for each token, the score of a log content is calculated as:

score =Y TF(t;) x IDF(t;). (5)

After ranking all log contents in descending order according to
their respective scores, those falling below a predefined thresh-
old are excluded. The remaining high-scoring log entries are
retained as the fault summary and are then reordered to follow
their original chronological order.
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Fig. 4.

Instruction: Your task is to determine what type of fault a given set of log
information belongs to. Here are the possible fault types in our data
scenario: {placeholder}. Please determine its fault type based on the log
sequence I input and provide your explanation.

Input: Log sequence: [placeholder]

Output: Answer:

Fig. 5. Example structure of a data item in LFDInstruction.

C. Knowledge Injection

To address Challenge 1: LLMs’ lack of domain expertise, we
introduce a knowledge injection step. General LLMs often lack
the specialized capabilities required for effective log-based fault
diagnosis. To address this gap, we inject domain knowledge into
LLMs through fine-tuning. The quality of the training data is a
crucial factor in determining the performance of LLMs [51]. To
this end, we curated a high-quality dataset called LFDInstruc-
tion, specifically designed for log-based fault diagnosis.

We first enlisted O&M experts to collect log data for a
wide range of faults and then employed the Fault-Oriented Log
Summary (FOLS) module to generate concise summaries for
each fault. These summaries serve as inputs, while the correct
fault diagnoses and detailed analyses act as outputs. These input-
output pairs, along with carefully crafted instructions, comprise
the LFDInstruction dataset. Fig. 5 illustrates the structure of a
data item in this dataset.

To streamline the dataset creation process and reduce manual
labor, we initially utilized GPT-4 [26] to generate preliminary
outputs. This generation process was carefully designed to en-
sure that the content was both contextually relevant and diverse.
However, recognizing the limitations of automated content gen-
eration, we implemented a validation approach: expert reviewers
meticulously evaluate each output sequence. This manual review
process involves a comprehensive assessment of the fault anal-
yses in relation to the corresponding logs, allowing experts to
correct any inaccuracies or inconsistencies in the diagnoses. This
combined strategy of automated generation followed by expert
validation not only reduces labor costs but also significantly
enhances the overall quality of the data.

D. Supervised Fine-Tuning

We employed LoRA [36] to conduct supervised fine-tuning.
As previously mentioned, for log-based fault diagnosis, we
developed the LFDInstruction dataset as our training corpus.
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TF-IDF-Based

.|§|. I:I Content Ranlsceing
3k A A
+,.F A

The workflow of the FOLS module, where different shapes represent log contents of different types.

This dataset comprises a series of triplets {z;, y;, I; }, where x;
represents the input sequence, y; denotes the output sequence,
and I; is the corresponding instruction.

The primary objective of this process is to optimize an LLM
(denoted as M), enabling it to generate the output sequence by
modeling the relationship y; = M (x;, I;). To facilitate this, we
concatenate the instruction /; and the input sequence x; before
feeding them into model M. The fine-tuning process aims to
minimize the error between the model’s output and the actual
diagnoses by minimizing a loss function £, defined as:

N
0 :afg%in%ZE(Ma(xi,fi),yi) (6)
i=1
where 6 represents the model parameters, N is the number of
training samples, and My (z;, I;) denotes the model’s predicted
output given input z; and instruction I;. Through iterative train-
ing, we aim to find the optimal parameters 6* that minimize
the average loss, thereby enhancing the model’s accuracy in
generating the correct diagnosis.

V. EVALUATION

In this section, we evaluate our approach, Loglnsight, by
addressing the following research questions:

® RQ1: How effective is Loglnsight in log-based fault diag-
nosis compared to state-of-the-art methods?

e RQ2: Can Loglnsight meet the efficiency requirement for
online deployment?

* RQ3: How does the FOLS module affect the performance
of Loglnsight?

® RQ4: Can Loglnsight provide useful and comprehensible
explanations for the results?

e RQS: Is Loglnsight compatible with different LLMs?

A. Datasets

We conduct experiments using two public log datasets and
a production log dataset from China Mobile Communications
Group Co., Ltd. (CMCC), a leading global Internet Service
Provider (ISP). Table I summarizes key details of these three
datasets, including the number of log templates identified by the
Drain [52] algorithm.

Dataset 1:'  This dataset consists of logs from servers
in real-world business environments, including server serial

' Available at https://tianchi.aliyun.com/competition/entrance/531947/

information
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TABLE I
DETAILS OF THE DATASETS FOR EVALUATION

Dataset | Log Entries Log Templates Fault Types Fault Cases
Dataset 1 282,537 157 3 2,671
Dataset 2 1,461,006 727 6 93
Dataset 3 178,773 99 9 2,267

numbers (SN), server models (SM), fault times, and associated
message information for each fault. There are a total of 2,671
fault cases, which are categorized into three types: Processor
CPU Caterr, Memory Constraint Error, and Hardware Error. To
retrieve fault-related logs, we organized logs chronologically
by timestamp and extracted logs in the 12 hours preceding each
fault occurrence.

Dataset 2: > Sourced from OpenStack, a widely adopted
open-source cloud computing platform [53], this dataset in-
cludes 1,461,006 log entries spanning 93 fault cases collected
over 24 days. The logs cover six fault types: AMQP Server Un-
reachable, MySQL Lost Connection, Computing Node Down,
Flavor Disk Too Small, Linuxbridge-agent Anomalies, and
Nova-conductor Lost Connection.

Dataset 3: This dataset contains network device logs from
CMCC’s production environment, which supports 4 G/5 G core
networks for a global user base. The dataset includes alarm logs
collected from 322 switches over one year, totaling 178,773 log
entries across nine fault types: Power Supply Fault, Fan Fault,
Optics Module Fault, Port Flapping Fault, CRC Error, STP Fault,
BFD Down, LACP Flapping, and OSPF Neighbor Flapping.

For each dataset, we randomly select 50 fault cases to con-
struct the LFDInstruction dataset for fine-tuning, with the re-
maining cases for testing. We manually verify that the LFDIn-
struction datasetincludes all fault types to ensure comprehensive
coverage during fine-tuning.

B. Baseline Methods

We select three state-of-the-art log-based fault diagnosis
methods as baselines: an unsupervised method, LogCluster [7],
and two supervised methods, Cloud19 [3] and LogKG [8].
To ensure fairness, we set the hyperparameters according to
the descriptions provided in the respective papers. Specifically,
LogCluster utilizes a hierarchical clustering algorithm with a
distance threshold of 0.5. For LogKG, we set the FOLR model
threshold to 0.5, and configure the OPTICS clustering algorithm
with a minimum of 10 samples per cluster.

To further demonstrate the importance and advantage of fine-
tuning, we compared Loglnsight with GPT-4 using the same
prompt, as illustrated in Fig. 6

C. Evaluation Metrics

Fault diagnosis can be framed as a multi-class classification
problem. To evaluate the effectiveness of Loglnsight, we employ
the following three metrics: Micro-Averaged F1-score (Micro

2 Avaialable at https://github.com/SycIsDD/LogKG
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Prompt: Your task is to determine what type of fault a given set of log
information belongs to. Here are the possible fault types in our data
scenario: {placeholder}. Please determine its fault type based on the log

sequence I input and provide your explanation.

Fig. 6. The prompt used for log-based fault diagnosis.

F1), Macro-Averaged Fl-score (Macro F1), and Weighted-
Averaged F1-score (Weighted F1) [54].

Macro F1 calculates the F1 score for each class and then
averages these scores across all classes. This metric assigns equal
weight to each class, regardless of class size, providing insight
into performance across all classes. The formula is as follows:

N
1
Macro Fl = — Z;Fl (7

where N is the total number of classes.

Micro F1 aggregates True Positives (TP), False Positives
(FP), and False Negatives (FN) across all classes to calculate
overall precision and recall. This metric is particularly suitable
for handling imbalanced class distributions, as it weights each
instance equally across classes. The formulas are as follows:

SITP

Precisionpico = SSTP+S.FP ®
TP

Recallyicro = X:TP;_FX:R]V ®

Flmicro — 2- PfeClSlonmicro ) Recallmicro (10)

Precisionpicro + Recallpicro

Weighted F1, meanwhile, computes a weighted average of
the F1 scores, factoring in the number of samples in each class.
This approach gives greater influence to larger classes, ensuring
that the metric reflects the overall distribution. The formula for
Weighted F1 is:

N
Flyeighea = »_ w; - F1, (11
=1

where w; is the proportion of samples in class <.

D. Implementation Details

All experiments are conducted on an Ubuntu 18.04 LTS server
with two Intel(R) Xeon(R) Gold 6430 CPUs, each offering 64
cores and 128 threads, and two NVIDIA A800-80 GB GPUs. In
selecting the base model, we evaluated several options. Given
the constraints of memory and time, we chose four open-
source LLMs, each with approximately 7 billion parameters, as
candidates: Mistral-7B, Qwen1.5-7B-Chat, LLaMA2-7B, and
Gemma-7B. As shown in Table II, Mistral-7B demonstrated
superior performance compared to the other models, leading
us to select Mistral-7B as our base model.

For supervised fine-tuning, we configure the learning rate
to 104, the weight decay to 0.1, the batch size to 16, and
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TABLE II
EVALUATION OF BASE MODEL

‘ Dataset 1 Dataset 2 Dataset 3
LLM
‘ Micro F1 Macro F1 =~ Weighted F1 ~ Micro F1 Macro F1 =~ Weighted F1 = Micro F1 Macro F1 = Weighted F1
Mistral-7B 0.451 0.218 0.508 0.302 0.212 0.292 0.489 0.483 0.591
Qwenl.5-7B 0.431 0.175 0.351 0.209 0.057 0.088 0.218 0.173 0.232
LLaMA2-7B 0.187 0.063 0.189 0.139 0.068 0.098 0.044 0.039 0.055
Gemma-7B 0.151 0.050 0.166 0.069 0.053 0.082 0.056 0.046 0.056
TABLE III
PERFORMANCE COMPARISON BETWEEN LOGINSIGHT AND THE BASELINES
| Dataset1 Dataset2 Dataset3
Method
| Micro F1  Macro F1 =~ Weighted F1 = Micro F1 Macro F1 = Weighted F1  Micro F1 Macro F1 = Weighted F1
LoglInsight 0.884 0.883 0.883 0.998 0.998 0.997 0.997 0.997 0.997
GPT-4 0.498 0.446 0.490 0.814 0.696 0.751 0.896 0.812 0.924
LogCluster 0.502 0.474 0.474 0.906 0.800 0.869 0.768 0.659 0.756
Cloud19 0.521 0.514 0.514 0.837 0.780 0.830 0.739 0.638 0.720
LogKG 0.446 0.377 0.377 0.739 0.664 0.677 0.676 0.478 0.557

the maximum token limit to 4096. We utilize LoRA [36] for
parameter-efficient fine-tuning, setting the rank to 8 and the
alpha parameter to 32, with a dropout rate of 0.05 to prevent
overfitting.

E. Results and Analysis

1) RQI: How Effective is Loglnsight in Log-Based Fault
Diagnosis Compared to State-of-the-Art Methods?

Table III presents the overall performance comparison on the
three datasets, showing that LogInsight consistently outperforms
all baseline methods across all evaluation metrics.

Specifically, Loglnsight achieves Weighted F1 scores of
0.883, 0.997, and 0.997 on the three datasets, representing im-
provements of 36.9%, 12.8%, and 7.3% over the best-performing
baseline method, respectively. The performance gains are es-
pecially pronounced on Dataset 1, likely due to the dataset’s
complex fault patterns, which challenge traditional methods.
In contrast, the simpler log patterns in Datasets 2 and 3 allow
all methods to triage faults accurately, albeit Loglnsight still
demonstrates superior performance.

Additionally, we observe that baseline methods consistently
produce lower Macro F1 scores compared to their Micro and
Weighted F1 scores, suggesting they struggle to handle imbal-
anced fault types effectively. Loglnsight, however, maintains
high stability across all metrics, demonstrating adaptability to
varying data distributions. This advantage stems from Logln-
sight’s utilization of an LLM, which effectively captures the
semantic content of log data, thereby facilitating more accurate
fault triage. In contrast, traditional methods cannot fully exploit
the rich semantic information inherent in log messages.

Furthermore, when compared to GPT-4, Loglnsight demon-
strates superior performance across all datasets. This improve-
ment is attributed to the model’s fine-tuning with domain-
specific data, which enhances its diagnostic performance and
enables it to outperform general-purpose LLMs in specialized
fault diagnosis tasks.

2) RQ2: Can Loglnsight Meet the Efficiency Requirement for
Online Deployment?

To evaluate the efficiency of Loglnsight, we measure the
time required to diagnose each fault case and calculate the
average diagnosis time on each dataset. The results are shown
in Table IV, from which we can see that LogInsight takes 2.7 s,
8.5s,and 2.8 s on average to diagnose a fault in the three datasets,
respectively.

Loglnsight is built upon LLMs, which inherently involve
substantial computational overhead during both training and
inference due to their massive parameter sizes and com-
plex architectures. As a result, the time cost for model in-
ference is generally higher than that of traditional baseline
methods. Despite this, our results demonstrate that Logln-
sight can still complete fault diagnosis within an average of
8.5 seconds per case, which is well within the acceptable
range for real-time online deployment scenarios. This effi-
ciency is sufficient to significantly reduce the manual diagnosis
workload while meeting the latency requirements of practical
applications.

3) RQ3: How Does the FOLS module Affect the Performance
of LogInsight?

We further investigate the effect of the Fault-Oriented Log
Summary (FOLS) module on Loglnsight’s performance. To this
end, we remove the FOLS module and feed the log content
sequences directly into the fine-tuned LLM, constrained by a
maximum token limit of 8192 to include as much log data as
possible.

Additionally, to evaluate the effectiveness of clustering in im-
proving log summarization, we create several variants by replac-
ing the DBSCAN algorithm in the Clustering-Based Content
Aggregation module with different clustering and log parsing
techniques. These include K-means [49], Hierarchical Agglom-
erative Clustering (HAC) [55], Drain [52], and two LLM-based
parsing methods, DivLog [42] and LILAC [43].

Table V reveals a marked decrease in Loglnsight’s diag-
nostic performance when the FOLS module is removed. This
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TABLE IV
EFFICIENCY COMPARISON BETWEEN LOGINSIGHT AND THE BASELINES

‘ Dataset 1 Dataset 2 Dataset 3
Method
‘ Offline Online Offline Online Offline Online
LoglInsight 1802.28s 2.707s 4052.58s 8.541s 1977.11s 2.819s
GPT-4 - 1.637s - 2.516s - 1.124s
LogCluster 29.20s <0.01s 9.41s <0.01s 8.42s <0.01s
Cloud19 52.79s <0.01s 228.52s <0.01s 15.721s <0.01s
LogKG 140.46s 0.56s 1662.78s 8.12s 137.64s 0.71s
TABLE V
ABLATION STUDY OF THE FOLS MODULE
‘ Dataset 1 Dataset 2 Dataset 3
Method
‘ Micro F1  Macro F1 =~ Weighted F1 ~ Micro F1  Macro F1 =~ Weighted F1 = Micro F1  Macro F1 = Weighted F1
LoglInsight 0.884 0.883 0.883 0.998 0.998 0.997 0.997 0.997 0.997
LoglInsight w/o FOLS 0.773 0.626 0.767 0.470 0.326 0.382 0.806 0.505 0.838
LoglInsight with K-means 0.821 0.814 0.819 0.837 0.833 0.833 0.918 0.879 0.934
LoglInsight with HAC 0.814 0.789 0.806 0.874 0.873 0.873 0.917 0.878 0.933
LoglInsight with Drain 0.811 0.813 0.813 0.814 0.551 0.784 0.908 0.718 0918
LoglInsight with DivLog 0.769 0.770 0.770 0.733 0.578 0.636 0.877 0.763 0.884
Loglnsight with LILAC 0.810 0.817 0.816 0.818 0.603 0.783 0.907 0.794 0917

LogInsight with LLaMA2-7B E=3 Loglnsight with Gemma-7B

Loglnsight with Mistral-7B B Loglnsight with Qwenl.5-7B
1 0.8 0.88 1
0.8 i 0.8
0.6 0.6
0.4 0.4
0.2 0.2
Macro F1 ~ Weighted F1
Dataset 1 Dataset 2
Fig. 7. The performance of Loglnsight with different LLMs as base models.

decline can be attributed to two primary factors: (i) the raw log
sequences contain redundancy and noise, leading to reduced
information entropy; and (ii) the LLM’s input token limits
necessitate truncating log data, which risks omitting critical
information.

Furthermore, the results show that clustering methods gen-
erally outperform log parsing methods in terms of accuracy.
This is primarily due to the inherent parsing errors in these
methods, which negatively impact downstream processing. The
use of placeholders (e.g., ”*”) in parsed content can mislead the
LLM during fault analysis, thereby compromising diagnostic
performance.

In general, the findings underscore the importance of the
FOLS module in improving the robustness and effectiveness
of LoglInsight, particularly in managing the complexities and
nuances of log data.

4) RQ4: Can Loglnsight Provide Useful and Comprehensi-
ble Explanations for the Results?

Dataset 3

To evaluate the interpretability of Loglnsight’s outputs, we
enlisted O&M experts from CMCC to assesses the quality of
explanations generated for 200 randomly selected fault cases
from Dataset 3. Fig. 8 shows the diagnostic results for two
representative fault cases.

Following the evaluation methodology employed by Log-
Prompt [11], we assess Loglnsight’s explanations along two
primary dimensions:

o Usefulness: Reviewers were asked to evaluate the extent
to which the explanations were detailed, specific, relevant,
logically sound, and practical for actual fault diagnosis.

® Readability: Reviewers were asked to assess how easily
a reader could understand the provided text. A text was
considered readable if it was grammatically correct, mean-
ingful, and professional.

For each evaluation dimension, we use a Likert scale ranging

from one to five, with Table VI providing the detailed criteria
for each level. The scoring system is as follows: 1 - Not Inter-
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Fault Summary

Interpretable Fault Diagnosis

Port down reason Interface XXX1 is down, due to Los
LACP protection status changed
Port down reason Interface XXX2 is down, due to Los

LACEP set the smartgroup protocol down

Power abnormal Shelfnum =... groupid =... powerid =2
Power malfunction alarm
Power input voltage error

Power output voltage error

""" Fault.

Fault Type: Port Flapping Fault

Explanation: Based on the provided log sequence, the issues primarily involve port
flapping faults caused by LOS alarms. The logs show multiple ports going down due
to these alarms. Additionally, there are state changes and down statuses related to
LACP and the Smartgroup protocol. Therefore, the primary fault type is identified as
the Port Flapping Fault.

Fault Type: Power Supply Fault

Explanation: The logs explicitly mention "power abnormal" and "Power malfunction
alarm," indicating an issue with the power system. Additionally, "Power input voltage
error” and "Power output voltage error" point to the input and output voltages being
out of the normal range. This information indicates that the fault is a Power Supply

Fig. 8. Two fault cases from Dataset 3.

TABLE VI
HUMAN SCORING CRITERIA FOR EVALUATING THE INTERPRETABILITY OF LOGINSIGHT

Scores | Usefulness Readability
| No justification for the fault, only a simple The text contains numerous unintelligible elements
prediction label. or grammatical errors.
5 The justification is irrelevant or logically Most of the text is readable, but it may contain
inconsistent with the facts. grammar errors or unclear phrases.
3 The justification supports the prediction well, The text has few grammar errors, though some
but lacks clarity or sufficient detail. terms may need refinement.
The justification is specific, accurate, and relevant, . . .
: . . The text is clear, grammatically correct, with only a
4 helping engineers to reduce false alarms and guide . .
. few technical terms that may require refinement.
further analysis.
The justification is il 1 1 . . .
. e.Justl catl(.)n. 1S deta.l ed, re evan.t » and clear, The text is clear, detailed, grammatically flawless,
5 significantly aiding engineers in ruling out false . . .
. o and professional for software engineering.
alarms and identifying the root cause.

pretable, 2 - Low Interpretability, 3 - Moderate Interpretability,
4 - High Interpretability, and 5 - Very High Interpretability.

Each reviewer independently evaluated all 200 model-
generated explanations, assigning scores for both usefulness
and readability by referencing the original log context from
the corresponding failure incident and adhering to predefined
criteria.

Two key metrics are reported: (1) Mean: the mean score as-
signed by reviewers across all samples; (2) High Interpretability
Percentage (HIP): the proportion of samples receiving a score
of four or higher.

The evaluation results are listed in Table VII. In terms of
usefulness, the average score is 3.80, with a HIP of 75.7% .
This indicates that a majority of the explanations provided by
LoglInsight are effective in justifying the diagnosis and aiding en-
gineers in their analysis. Regarding readability, the average score
1s4.04, with a HIP of 86.7%, demonstrating that the explanations
are grammatically correct and highly comprehensible. These re-
sults suggest that the explanations generated by Loglnsight hold

TABLE VII
INTERPRETABILITY OF LOGINSIGHT RATED BY EXPERTS

| Usefulness Readability
Raters
Mean HIP Mean HIP
R1 3.62 62.5% 4.02 87.5%
R2 3.90 85.5% 4.03 85.0%
R3 3.87 79.0% 4.08 87.5%
Avg. | 3.80 75.7% 4.04 86.7%

significant potential for assisting O&M engineers in validating
fault diagnosis results and guiding subsequent analyses.
5) RQ5: Is Loglnsight Compatible with Different LLMs?
To ensure the long-term effectiveness of Loglnsight, it is
essential to evaluate its compatibility with various LLM ar-
chitectures and versions. To this end, we test several open-
source models, including Qwen1.5-7B-Chat, LLaMA2-7B, and
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Gemma-7B, as replacements for the original base model used
in Loglnsight.

As illustrated in Fig. 7, Loglnsight achieves the highest
performance when utilizing its original base model. However,
it demonstrates comparable results with the alternative LLMs
tested, reflecting its adaptability across diverse architectures.
This compatibility highlights LogInsight’s flexibility and robust-
ness, ensuring it can maintain satisfactory performance regard-
less of the underlying LLM used.

VI. CASE STUDY

To ensure the case study is representative, we randomly select
two fault cases from the dataset and use them, as shown in Fig. 8,
to illustrate the workflow of Loglnsight.

Case 1. Port Flapping Fault: For this case, 796 log entries
were retrieved from the 10-minute period leading up to the fault
event. The log entries were then preprocessed into a log content
sequence, filtering out irrelevant data using regular expressions,
after which the FOLS module extracted critical fault-related
information. Using Clustering-Based Content Aggregation, the
entries were reduced to 29 distinct logs. TF-IDF-Based Content
Ranking further refined this set, eliminating 11 entries less im-
portant and resulting in a distilled summary of 18 key log entries,
with notable entries including “Port Down” and “LACP”.

This summarized information was then combined with crafted
instruction and input into the fine-tuned LLM. As shown in
the upper part of Fig. 8, Loglnsight accurately diagnosed the
fault, identifying the root cause as port-down events triggered
by Loss of Signal (LOS) alarms and state changes in LACP and
Smartgroup.

Case 2. Power Supply Fault: In this case, 365 log entries
related to the power supply issue were gathered. Following
preprocessing and summarization by the FOLS module, a fault
summary containing 23 significant log entries was created.

Based on this summary, Loglnsight accurately identified the
fault type, as depicted in the lower part of Fig. 8. The output
described power anomalies and voltage irregularities, offering
O&M engineers detailed and actionable information about the
fault.

Overall, these case studies demonstrate the fault summariza-
tion capabilities of the FOLS module and highlight LogInsight’s
effectiveness in providing interpretable fault diagnosis results,
which can significantly enhance operational decision-making.

VII. DISCUSSION
A. Lessons Learned

LLM Context Limitations: To assess the impact of LLM
context length constraints, we analyzed the log lengths in our
datasets. As shown in Table VIII, we report the average and max-
imum number of log entries, as well as the average log length per
fault case. While the average log length is moderate for Dataset
I and Dataset 3, the maximum log length in many cases far
exceeds the LLM’s context window of 4096 tokens. In fact, for
the majority of fault cases, the raw log data cannot fit within the
model’s input limit. This is a common challenge for LLM-based
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TABLE VIII
LOG LENGTH STATISTICS FOR EACH FAULT CASE

Dataset | Avg. Log Length Avg. Log Entries Max. Log Entries
Dataset 1 7.84 127.88 4996
Dataset 2 5.67 16882.10 58056
Dataset 3 12.41 98.10 37600

systems, as exceeding the token limit can lead to incomplete or
truncated analysis and loss of critical diagnostic information.
To address this, effective log summarization is essential. Our
FOLS module is specifically designed to extract and condense
the most informative log content, ensuring robust and efficient
fault diagnosis even when log sequences are exceptionally long.

Advantages of Fine-Tuning: To justify our choice of a fine-
tune based approach, we compared prompt-based, RAG-based,
and fine-tuned Loglnsight. For the prompt-based method, we
used the same prompts on the base LLM without fine-tuning. For
RAG, we retrieved the top 5 similar historical cases using Sen-
tenceTransformer [56] and cosine similarity, and provided them
as in-context examples to the LLM. As shown in Table IX, the
fine-tuned method significantly outperforms both alternatives.
Fine-tuning enables the LLM to internalize domain-specific
knowledge and follow task instructions more accurately, result-
ing in higher-quality and more structured outputs. In contrast, the
base LLM (with or without RAG) often fails to follow instruc-
tions, generates irrelevant or unstructured content, and struggles
to produce outputs in the required format. This demonstrates
that, for specialized tasks like log fault diagnosis, fine-tuning is
essential for reliable and actionable results.

B. Threats to Validity

Two potential threats may affect the validity of Loglnsight:

Requirement for Labeled Data: LogInsight requires labeled
fault cases for fine-tuning, which may raise concerns regarding
the cost and feasibility of data annotation. However, our empiri-
cal results demonstrate that effective fine-tuning can be achieved
with a relatively small number of labeled instances, provided
that all major fault types are represented. In our experiments,
only 50 labeled fault cases per dataset were used, with labels
provided by experienced operations engineers. For these experts,
categorizing faults is a routine task, and the labeling effort is
minimal. Thus, while the need for labeled data is a limitation,
the burden of data collection and annotation is relatively low,
making the approach practical for real-world deployment.

Manual Effort: To clarify the effort required for explanation
generation, LogInsight first uses GPT-4 to automatically gener-
ate candidate explanations, which are then reviewed by experts
for accuracy. This process significantly reduces the manual
workload, as experts are not required to craft explanations from
scratch but merely assess and confirm the generated outputs.
In our experience, two engineers were able to review 50 cases
in about one hour. Moreover, this review process is a one-time
effort associated with model training rather than an ongoing
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TABLE IX
PERFORMANCE COMPARISON OF FINE-TUNING, PROMPT-BASED, AND RAG METHODS

| Dataset 1 Dataset 2 Dataset 3
LLM
| Micro F1  Macro F1 = Weighted F1  Micro F1  Macro F1 =~ Weighted F1 = Micro F1 Macro F1 = Weighted F1
LoglInsight 0.884 0.883 0.883 0.998 0.998 0.997 0.997 0.997 0.997
Prompt-Based 0.451 0.218 0.508 0.302 0.212 0.292 0.489 0.483 0.591
RAG-Based 0.247 0.209 0.302 0.419 0.356 0.461 0.084 0.050 0.141

requirement. As a result, the overall annotation burden is limited
and practical for real-world deployment and future scaling.

C. Limitations

Based on the experimental results, we identify two key limi-
tations of Loglnsight and try to suggest possible solutions:

Challenges of Similar Log Patterns: Some misclassified cases
arise from unclear boundaries between certain fault types. For
example, in Dataset 3, which consists of network device log
data, “Port Failure” and “LACP Flapping” often exhibit highly
similar log patterns. This similarity occurs because a port failure
can also lead to LACP instability, resulting in overlapping log
features for both fault types. Consequently, the model struggles
to accurately differentiate between these types using log data
alone. To address this limitation, future work could explore
the integration of additional data modalities, such as system
performance metrics or call traces, to provide richer contextual
information.

Challenges with Unknown Fault Types: In the current imple-
mentation of Loglnsight, the large language model (LLM) is
guided by a prompt that explicitly enumerates all known fault
types for a given use case, enabling it to classify faults with
high accuracy.However, in real-world industrial environments,
previously unseen or unknown fault types frequently emerge.
To mitigate this issue, the prompt includes instructions for the
LLM to classify any unrecognized fault as an “unknown type.”
Despite these precautions, our experimental findings reveal that
the model often misclassifies unknown faults as one of the
predefined types, rather than correctly identifying them as un-
known. This limitation underscores the challenge of deploying
LoglInsightin dynamic environments where new fault types may
appear over time. To enhance the robustness of the system, future
research will investigate alternative fine-tuning strategies. For
instance, incorporating external knowledge bases or leveraging
self-supervised learning approaches, rather than relying solely
on prompt engineering, may help the model more effectively
recognize and handle unknown fault types. This could reduce
its dependence on predefined types and improve adaptability in
evolving industrial settings.

VIII. CONCLUSION

In this paper, we present Loglnsight, a novel framework
utilizing LLMs for effective and interpretable log-based fault
diagnosis. Through fine-tuning a medium-sized, open-source
LLM, we integrated domain-specific knowledge. Additionally,
we designed a Fault-Oriented Log Summary (FOLS) module

to extract essential information from log sequences, effectively
addressing LLMs’ limitations in handling long input contexts,
and thereby enhancing processing efficiency for long texts. Our
extensive experiments on two public datasets and one production
dataset validate Loglnsight’s accuracy and interpretability.
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