
Effective Node-Level Anomaly Detection in HPC Systems via
Coarse-Grained Clustering and Fine-Grained Model Sharing

Sibo Xia
Nankai University
Tianjin, China

xiath@mail.nankai.edu.cn

Yongqian Sun∗
Nankai University
Tianjin, China

Tianjin Key Laboratory of Software
Experience and Human Computer

Interaction
Tianjin, China

sunyongqian@nankai.edu.cn

Xijie Pan
Nankai University
Tianjin, China

panxijie@mail.nankai.edu.cn

Yuan Yuan∗
National University of Defense

Technology
Changsha, China

yuanyuan@nudt.edu.cn

Shenglin Zhang
Nankai University
Tianjin, China

Haihe Laboratory of Information
Technology Application Innovation

Tianjin, China
zhangsl@nankai.edu.cn

Shaoyu Hu
Nankai University
Tianjin, China

shaoyu.hu@mail.nankai.edu.cn

Lei Tao
Nankai University
Tianjin, China

leitao@mail.nankai.edu.cn

Yuqi Li
National University of Defense

Technology
Changsha, China

National Supercomputer Center in
Tianjin

Tianjin, China
liyq@nscc-tj.cn

Jinghua Feng
National Supercomputer Center in

Tianjin
Tianjin, China

fengjh@nscc-tj.cn

Abstract
High-performance computing (HPC) systems are crucial for sci-
entific advancement and engineering breakthroughs. Unexpected
performance degradation or system failures can severely impact
these endeavors. This paper introduces NodeSentry, a novel unsu-
pervised anomaly detection framework tailored for compute nodes
of large-scale HPC systems. NodeSentry leverages a combined ap-
proach of coarse-grained clustering and fine-grained model sharing
to effectively address the challenges posed by the massive node
scales, frequent job transitions, and complex patterns characteristic
of modern HPC deployments. Evaluation on two real-world HPC
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datasets demonstrates NodeSentry’s superior performance, achiev-
ing an F1-score exceeding 0.876. This represents a 0.560 average
improvement over existing best baseline methods, while simulta-
neously reducing training overhead by an average of 45.69%. Fur-
thermore, to promote reproducibility and contribute to the broader
research community, we open-source NodeSentry’s codebase and
introduce a novel clustering adjustment and anomaly labeling tool
specifically designed for HPC systems.

CCS Concepts
• General and reference→ Performance.

Keywords
High Performance Computing, Anomaly Detection, Clustering,
Model Sharing

ACM Reference Format:
Sibo Xia, Yongqian Sun, Xijie Pan, Yuan Yuan, Shenglin Zhang, Shaoyu
Hu, Lei Tao, Yuqi Li, and Jinghua Feng. 2025. Effective Node-Level Anom-
aly Detection in HPC Systems via Coarse-Grained Clustering and Fine-
Grained Model Sharing. In The International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’25), November
16–21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3712285.3759794

https://orcid.org/0009-0008-2853-9549
https://orcid.org/0000-0003-0266-7899
https://orcid.org/0009-0000-7357-5313
https://orcid.org/0009-0004-5072-6093
https://orcid.org/0000-0003-0330-0028
https://orcid.org/0009-0009-1166-2126
https://orcid.org/0009-0007-1282-3089
https://orcid.org/0009-0003-0576-2127
https://orcid.org/0009-0006-9657-3584
https://doi.org/10.1145/3712285.3759794
https://doi.org/10.1145/3712285.3759794
https://doi.org/10.1145/3712285.3759794


SC ’25, November 16–21, 2025, St Louis, MO, USA Sibo Xia et al.

Table 1: A list of common anomalies in HPC systems.

Level Type

CPU CPU Overload, Cache Failure, etc.
Memory Memory Exhaustion, Memory Leak, etc.
Disk Silent Data Corruption, Disk Full, etc.

Network Network Partition Bugs, Network Congestion, etc.
Kernel/OS Resource Contention, Page Allocation Error, etc.

1 Introduction
High-performance computing (HPC) systems play a crucial role in
various data-intensive applications in social and scientific domains,
such asweather forecasting, special effects rendering, and aerospace
[4]. These systems typically comprise a substantial number of com-
pute nodes interconnected by high-bandwidth, low-latency net-
works, forming a cluster or supercomputer [8]. Each node (we use
“node” as a shorthand for “compute node” in this paper) is equipped
with multiple processor cores and significant memory capacity [24],
and numerous nodes often pool their resources to tackle a single,
large-scale computational job. The intricate and expansive archi-
tecture and highly dynamic job scheduling, significantly amplify
the likelihood of system malfunctions [4, 14, 50], e.g., the world’s
top-ranked supercomputer, Frontier, initially experienced a mean
time between failures of just a few hours [44]. Consequently, the
real-time identification of performance anomalies, particularly be-
fore they escalate into system failures, is of paramount importance.
The details of anomalies for nodes in HPC systems are provided in
Tab. 1 [11, 28, 33]. Common remediation steps following detection
include node isolation, task restarts, and detailed analysis by op-
erators. A prevalent way to achieve this is to monitor nodes and
detect anomalies in a real-time manner [34].

To detect the anomalies of nodes, operators closely monitor and
collect large-scale performance metrics from these nodes, e.g., core
utilization rates and memory usage percentages [20]. These metrics
are aggregated in the form of multivariate time series (MTS) at
predefined time intervals. Fig. 1 illustrates a subset of these metrics
from three nodes. We observed fundamental differences between
the MTS of HPC systems and those observed in other application
scenarios. Specifically, when compared with cloud data centers
[18, 38], microservice systems [39, 49], and cellular base stations
[27, 39], HPC systems exhibit three distinctive MTS characteristics:
1) High node scale and metric dimension: HPC systems typi-

cally consist of tens of thousands of nodes. Each node generates a
vast number of metrics, i.e., 3,014 metrics in our scenario (only a
few are shown in Fig. 1), due to a large number of cores, memory,
network interfaces, and other components per node. In contrast,
the MTS for a node comprises only dozens of metrics in a typical
data center [18, 38].

2) Dynamic job transition and job pattern correlation: As
is well known, jobs in HPC are typically complex and require
distributed collaborative execution across multiple nodes, e.g., (a)
in Node-1 and (f) in Node-3. While from the perspective of a
single node, jobs are constantly being switched, e.g., (f), (g), (h),
and (i) in Node-3 are all different jobs, where (h) represents an
idle waiting state, which can be regarded as a special type of job.
It can be observed that nodes executing the same job usually

have similar patterns, i.e., (a) and (f). However, different jobs
may also exhibit similar patterns, such as (e) and (i). Moreover,
this correlation implies that the patterns of jobs on other nodes
can provide valuable insights for understanding the behavior
of jobs on the target node, even in the absence of repeated job
information.

3) Variation between sub-patterns within the same job: Al-
though different MTS segments may exhibit similar patterns, the
fine-grained patterns within a single segment (corresponding to
a single job) are not static. For example, the last part and the pre-
ceding parts of segments (e) and (i) show significant differences,
which we refer to as sub-pattern 1 and sub-pattern 2, respec-
tively. This is because the specific tasks within a continuous job
segment can vary over time.

Automatic anomaly detection in HPC systems has garnered sig-
nificant interest over the years [3–5, 10, 30, 32, 37, 42]. However, ex-
isting methods, which assume MTS with stable patterns and strong
periodicity, fall short of effectively addressing anomaly detection
for nodes exhibiting these characteristics. Regarding Characteristic
1, some methods [10, 22, 30] train a model for each node, with
the training cost increasing exponentially as the node scale and
metric dimension grows. Concerning Characteristic 2, the inability
to accumulate stable, long-term continuous pattern data leads to
significantly poor training and detection performance for some
methods [5, 10, 30, 32, 42]. Although some methods [3, 4, 37] have
considered these characteristics, they have not accounted for the
impact of Characteristic 3, failing to effectively model the variations
between sub-patterns.

Fortunately, in our scenario, we can easily obtain every job’s
start times, end times, and execution nodes from the management
system using Slurm’s (a job scheduling tool widely adopted by HPC
systems) sacct command [1]. By using the start and end times
of jobs, we can segment the continuous time series collected on
the node into multiple segments, each representing the time series
pattern of a specific job (will be elaborated in § 3.2). As a result,
we can abandon the approach of training a model for each node
or each job individually. Instead, we adopt the following strategy:
First, we segment all nodes into MTS segments based on jobs. Then,
we cluster these segments. After that, we train a model for each
cluster, which is capable of simultaneously focusing on various
sub-patterns. When a new job is to be detected, only a limited
amount of data is required to match the most appropriate patterns,
enabling effective anomaly detection through the corresponding
model. However, implementing this targeted strategy for anomaly
detection presents two major challenges (will be elaborated in § 2.1).

1) Clustering the segments of different lengths for coarse-
grained patterns: Clustering thousands of dimensions of MTS
is impractical due to the immense computational complexity,
necessitating dimensionality reduction. On the other hand, job-
based segmentation yields segments of different lengths, the
clustering of which poses a primary challenge. Furthermore,
adaptive clustering methods that account for different lengths
typically incur high computational complexity [26, 49]. These
limitations hinder the effective execution of pattern clustering
by existing methods.
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Figure 1: The MTS of three nodes shows 6-metric examples with the duration of 1.5 days for two nodes and 3 days for one node.
similar pattern pairs: (a)–(f), (c)–(h), and (e)–(i); different pattern pairs: (b)–(g) and (d)–(h).

2) Identification and model sharing for fine-grained sub-
patterns: While clustering methods can successfully group seg-
ments that exhibit similar global trends, the segments within the
same cluster might still contain intricate sub-patterns that re-
main insufficiently identified. Another significant challenge lies
in effectively recognizing and accommodating these fine-grained
sub-patterns to train a shared model that ensures accurate anom-
aly detection and model generalization.

To tackle the aforementioned challenges, we propose NodeSen-
try, an unsupervised anomaly detection framework for nodes in
HPC systems. NodeSentry first extracts comprehensive features
and utilizes Hierarchical Agglomerative Clustering (HAC) [31, 49]
to perform coarse-grained pattern clustering, aiming to quickly
classify and identify major trends. NodeSentry then employs a com-
bination of Transformer and Mixture of Experts (MoE) [17, 36] to
achieve model sharing and optimization at a more fine-grained
level, which allows for handling sub-patterns within clusters and
enhances the model’s generalization and detection capabilities. The
main contributions of this paper are summarized as follows:

1) For the first time, we summarize the unique characteristics of
compute nodes in HPC systems. Inspired by them, we propose a
novel anomaly detection framework via coarse-grained cluster-
ing and fine-grained model sharing, NodeSentry, which signifi-
cantly enhances the reliability and stability of HPC systems.

2) We extract comprehensive statistical, temporal, and spectral fea-
tures and utilize HAC to represent the segments of different
lengths as fixed-width vectors for pattern clustering, addressing
Challenge 1. Subsequently, we integrate both the self-attention
mechanism of the Transformer and the model-sharing advan-
tages of MoE to enhance the detection performance and gener-
alization capabilities, addressing Challenge 2.

3) We conduct extensive experiments on two distinct datasets col-
lected from production systems. The results show that NodeSen-
try achieves the average F1-score of 0.876 and 0.891, respectively,
outperforming the best baseline methods by 0.562 and 0.558,
while reducing training overhead by 77.93% and 13.45% com-
pared to the fastest deep learning baseline methods, respectively.

4) To ensure better reproducibility, we have made our sample
dataset, source code, clustering adjustment tool and anomaly
labeling tool for MTS in HPC systems publicly available 1.

2 Challenges and Techniques
In this section, we discuss the challenges in detail and introduce
some techniques that will be utilized to tackle these challenges.
Additionally, we define the specific problem of anomaly detection.

2.1 Challenges
Challenge 1: Clustering the segments of different lengths for
coarse-grained patterns.

As shown in Fig. 1, there are different jobs, which are recorded in
the job management system. However, directly training individual
models for each job is impractical due to insufficient training data
and high computational costs. Therefore, we need to cluster similar
jobs together to train shared models, which requires segmenting the
data according to the different jobs within each node and effectively
clustering these MTS segments, making it a difficult problem.

The high metric dimensionality makes it infeasible to directly
perform clustering on the raw MTS. Firstly, the sheer volume of
dimensions leads to a curse of dimensionality. As the number of di-
mensions increases, the contrast between the distances of different
data points diminishes, making it difficult to distinguish between
clusters. Additionally, the computational complexity of clustering
algorithms escalates exponentially with the number of dimensions,
which may not be practical for large-scale nodes.

The varying job durations in HPC systems result in MTS segments
of unequal lengths, which poses significant difficulties for clustering.
Existing clustering methods for segments of different lengths can
be broadly categorized into two types: shape-based methods and
deep learning-based methods. Dynamic Time Warping (DTW) [26]
is the most typical shape-based clustering method, which is compu-
tationally intensive and inefficient. Using this method to cluster a
week’s worth of data would take 3.8 months, which is unacceptable
for practical applications. On the other hand, deep learning-based

1 https://github.com/AIOps-Lab-NKU/NodeSentry/
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methods require extensive amounts of data to learn effective repre-
sentations [38, 46–49]. In HPC systems, however, jobs can be very
short-lived, and the limited length of MTS segments may not pro-
vide sufficient information to support the training of deep learning
models.

Over above, reducing the dimensionality and extracting sta-
tistical, temporal, and spectral features of metrics for clustering
becomes an appropriate approach [9, 15, 25, 37]. Dimensionality
reduction methods, help mitigate the curse of dimensionality by
transforming the data into a lower-dimensional space while pre-
serving important information. On the other hand, the feature
extraction method aims to identify the most relevant and discrimi-
native features by analyzing the statistical, temporal, and spectral
characteristics of the data. By extracting meaningful features and
compressing the time dimension, we can improve clustering effi-
ciency and achieve better performance.
Challenge 2: Identification andmodel sharing for fine-grained
sub-patterns.

From Characteristic 3, it is evident that in HPC systems, MTS can
exhibit distinct sub-patterns evenwithin the same job. Following the
clustering of similar patterns into distinct clusters, the subsequent
challenge lies in training a shared model for each cluster while
effectively addressing the inherent diversity of sub-patterns.

The traditional sharing strategies, which include using cluster cen-
troids for model training [49] and basing data sharing on metrics
dimensionality [18], each have limitations. Specifically, using cluster
centroids for model training [49] involves grouping similar patterns
into clusters and training a model based on the centroid of each clus-
ter. This approach assumes homogeneity within clusters, which can
undermine the model’s ability to generalize effectively to complex
sub-patterns. Meanwhile, data sharing based on metric dimension-
ality [18] captures cross-metric correlations in MTS, treating each
metric as a position to handle diverse data across patterns, which
disregards temporal dependencies and compromises the model’s
capacity to adapt to the nuanced variations of sub-patterns. These
strategies often struggle with insufficient representativeness of data,
leading to a curtailment in the model’s generalization capacity.

In contrast, integrating ensemble learning into the sharing strat-
egy offers a novel perspective [12, 54]. By leveraging the strengths
of multiple individual learners, ensemble learning can effectively
address the inherent diversity of sub-patterns within clusters. This
approach not only enhances the model’s ability to generalize across
similar patterns but also improves its adaptability to diverse sub-
patterns. Specifically, ensemble methods can aggregate results from
individual learners trained on different subsets of data within the
same cluster, thereby providing a more comprehensive and robust
representation of the underlying patterns. This strategy thus pro-
vides a more effective solution for training shared models in HPC
systems. MoE is an excellent method for implementing this strategy
[23], and Transformer is well-suited for integrating experts who
focus on different subtle sub-patterns [16, 21].

2.2 Techniques
Through rigorous analysis, we identify a set of targeted techniques
that address the core issues effectively. This section delves into the
techniques we’ve selected, outlining theoretical foundations.

Hierarchical Agglomerative Clustering. HAC is a bottom-
up dendrogram-based clustering technique that offers flexibility
in selection strategies and provides a clear interpretation of the
clustering structure. HAC allows for multi-level clustering results,
which is beneficial for discovering patterns. HAC can handle clus-
ters of varying sizes and shapes, unlike centroid-based clustering
algorithms (e.g., k-means) that assume circular or spherical clusters.

Transformer Neural Networks. Transformer utilizes the self-
attention mechanism to achieve global context modeling, enabling
better capturing of long-range dependencies in MTS [40, 53]. Its
parallel computing capability provides higher speed and scalability
during both training and inference processes. Additionally, the in-
clusion of a feed-forward network (FFN) contributes to improved
training stability and expressive power of the model. These char-
acteristics have made the Transformer the mainstream model in
current natural language processing and MTS modeling tasks.

Mixture of Experts.MoE combines the strengths of multiple
experts and diverse knowledge representations, offering rich data
features and strong pattern-capturing abilities [45, 51]. Compared
to dense models, MoE can enjoy its benefits while maintaining
relatively lower computational costs [21]. Furthermore, these char-
acteristics can also facilitate model sharing, reducing the training
data requirements for each expert model and allowing the model
to learn more knowledge from a limited time range of MTS. The
combination of MoE within the Transformer has gained extensive
attention and application in model training tasks.

2.3 Problem Definition
Operators need to analyze the real-time collected MTS. Consider
a large-scale HPC system with N nodes, where collecting MTS
M is associated with each node. In a T -length timestamped se-
quence of observations,X ∈ RN×M×T represents MTS of all nodes
at consecutive timestamps. For each node 𝑛 ∈ {1, ...,N}, the in-
formation recorded in the job scheduling list can be processed as
S𝑛 =

{
(𝑠𝑡𝑎𝑟𝑡𝑛,𝑗 , 𝑒𝑛𝑑𝑛,𝑗 )

}J𝑛
𝑗=1, where J𝑛 is the total number of jobs,

𝑠𝑡𝑎𝑟𝑡𝑛,𝑗 and 𝑒𝑛𝑑𝑛,𝑗 are the start and end timestamp of the 𝑗-th job.
Based on the above definition, the problem of anomaly detection

is formulated as follows: Given a training input X, for T̂ -length
X̂ to be tested, we need to determine Y ∈ {0, 1}N×T , where Y
to present whether each node at the timestamps of the testing is
anomalous (1 denotes an anomaly).

3 Methodology
3.1 Design Overview
The overarching structure of the framework is depicted in Fig. 2,
which encompasses two main phases: the offline model training
phase and the online anomaly detection phase.

During the offline model training phase, NodeSentry first prepro-
cesses the raw MTS to eliminate differences in format, range, and
patterns across various nodes. Subsequently, to identify the pat-
terns of the jobs and reduce model training overhead, NodeSentry
performs coarse-grained clustering on the processed MTS segments.
This approach enables the model to train on the clusters rather than
on individual MTS segments. To effectively recognize and adapt to
the sub-patterns within the same cluster, NodeSentry assigns expert
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Figure 2: The overall framework of NodeSentry.

networks to different segments within the cluster for model sharing.
Each expert network can focus on processing specific sub-patterns,
thereby enhancing performance and generalization capabilities. In
the online anomaly detection phase, NodeSentry extracts features
from preprocessed MTS to match patterns in the cluster library.
Subsequently, the appropriate model is dynamically assigned to
identify anomalies in the target nodes.

3.2 MTS Preprocessing
For the following three reasons, we need to conduct preprocessing
operations: 1) To ensure clean and representative data, we apply
linear interpolation tomissing values. 2) To reduce complexitywhile
preserving critical information, we perform node-level aggregation
of core metrics, yielding stable node-status insights. 3) To capture
meaningful patterns and mitigate continuous-metric ambiguity, we
implement job-based segmentation at transition points, isolating
node behaviors for specific job analysis. These constitute the core
components of our standardized four-step preprocessing pipeline:

Cleaning: In real-world production environments, data missing
may occur during the data collection and transmission process [43].
When values are missing, we fill in these positions linearly using
the nearby observed values.

Reduction: As highlighted in Challenge 1, dimensionality reduc-
tion is essential due to the high dimensionality of MTS. We employ
a combined approach utilizing two techniques to achieve signifi-
cant reduction while minimizing information loss: dimensionality
reduction based on metric semantics and similarity analysis.

(1) Dimensionality Reduction Based on Metric Semantics: To
reduce data complexity and preserve essential node-state infor-
mation, we aggregate similar metrics at the node level, combin-
ing only semantically identical metrics to maintain data integrity.
This approach involves aggregating metrics with the same physical
meaning (e.g., CPU usage, memory consumption) [4, 37].

(2) Dimensionality Reduction Based on Similarity Analysis: In
this step, we calculate the Pearson correlation coefficient between

each pair of node-level metrics using the following formula:

𝑟 =

∑(X𝑖 − X̄)(X′
𝑖
− X̄′)√︃∑(X𝑖 − X̄)2 ∑(X′
𝑖
− X̄′)2

(1)

X and X′ are two metrics for which the correlation coefficient
needs to be calculated. For pairs of metrics with 𝑟 ≥ 0.99, these
pairs typically exhibit nearly identical metric curves and tend to ex-
perience similar anomalies. We eliminate extremely similar metrics
and retain only one, thereby without sacrificing the key patterns
necessary for accurate anomaly detection.

After aggregating the per-core metrics and filtering out highly
similar redundant indicators, we end up with several dimensions
that are about a tenth of the original.

Standardization: Differentmetrics have varying units and ranges,
which can result in varying contributions during anomaly detec-
tion. To deal with dimensionality differences between metrics with
different units and ranges, we apply data standardization. When
computing the mean 𝜇𝑖, 𝑗 and standard deviation 𝜎𝑖, 𝑗 of the training
data for each node-metric pair, we exclude the top and bottom
5% of extreme outliers for each metric to avoid skewing the data
distribution [35]. These extreme outliers are defined as data points
that deviate significantly from the normal data distribution, often
due to measurement errors, data entry errors, or natural variation.

X′
𝑖, 𝑗,𝑡 =

X𝑖, 𝑗,𝑡 − 𝜇𝑖, 𝑗
𝜎𝑖, 𝑗

(2)

When standardizing the data, any remaining values that fall
outside the range of -5 to +5 are clipped to these bounds. This
ensures that the standardized data remains within a reasonable
range, preventing undue influence from residual outliers.

Segmentation: Due to the different patterns exhibited by nodes
during jobs, directly analyzing continuous MTS can introduce ob-
scure key information. We employ a job-based segmentation ap-
proach to divide the MTS. Specifically, we first identify the job
transition points (start and end times of jobs obtained from Slurm
[1]). Then, we treat MTS between each job transition point as an
independent segment, representing the node’s continuous pattern
in a specific job.

3.3 Coarse-grained Clustering
In HPC systems, the computational demands and durations of dif-
ferent jobs exhibit a high degree of uncertainty, leading to dynamic
and frequent job transitions in the nodes. To simplify the problem
space for anomaly detection in HPC systems and reduce the com-
plexity of model training, we perform coarse-grained clustering
of the processed MTS segments at a macro level. This approach
helps capture representative patterns by grouping similar segments
together, allowing the model to focus on these key clusters during
training. The coarse-grained clustering process involves feature
extraction and segment clustering to effectively reduce data com-
plexity and enhance training efficiency.

Feature Extraction: Feature extraction is a crucial step in ob-
taining key information during data analysis. The process typically
involves transforming MTS into a set of descriptive parameters
that characterize the essence of the signal. Specifically, we use the
Time Series Feature Extraction Library (TSFEL) [6] to extract 134
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Figure 3: The overall architecture of model sharing.

interpretable feature indices for each metric. These features cover
statistical, temporal, and spectral domains, including but not limited
to median, absolute energy, and maximum power spectrum.

Segment Clustering: NodeSentry employs HAC and Euclidean
distance for segment clustering. It is worth noting that operators
do not require iterative attempts to determine the optimal number
of clusters. We use the silhouette coefficient to measure clustering
performance, which combines cohesion and separation [2]. A higher
silhouette coefficient indicates greater distances between clusters
and smaller distances within clusters, achieving high intra-cluster
cohesion and low inter-cluster coupling.

3.4 Fine-grained Model Sharing
After grouping segments that exhibit similar patterns through
coarse-grained clustering, segments within the same cluster may
still contain complex sub-patterns that have not been fully iden-
tified. To capture fine-grained complex sub-patterns, NodeSentry
utilizes the Transformer to enhance temporal context information
without the need for fixed-size window inputs, thus improving
detection performance [29, 41]. Furthermore, NodeSentry combines
MoE to achieve model sharing by assigning expert networks to
different segments within the clusters. Each expert network can
focus on processing specific sub-patterns, thereby enhancing the
performance and generalization capabilities [52].

The overall architecture for modeling the sub-patterns is illus-
trated in Fig. 3. The input MTS is tokenized, with each token being
a vector composed of the metric values at each time point. These
tokens are then processed through positional encoding. NodeSentry
replaces the dense FFN layer in the Transformer with a sparse MoE
layer. This layer consists of 𝑁 FFNs denoted as experts and oper-
ates independently on the tokens. The MoE layer receives token
𝑥 as input and routes it through the gated network to a set of 𝑁
experts {𝐸𝑖 (𝑥)}𝑁𝑖=1, and the routing variable𝑊𝑟 computes the result
ℎ(𝑥) =𝑊𝑟 · 𝑥 . The gate value 𝑝𝑖 of the expert 𝑖 is calculated from
ℎ(𝑥)𝑖 normalized by the softmax of the 𝑁 experts of the layer and
represents the relevance of each expert for this input. The top-k
experts with the highest gate values, which are considered to be
the most suitable for processing this data, will form the expert set 𝑛
and the weighted results of these experts will determine the output
of the MoE layer [16]:

𝑝𝑖 (𝑥) =
𝑒ℎ (𝑥 )𝑖∑𝑁
𝑗 𝑒

ℎ (𝑥 ) 𝑗
(3)

𝑦 =
∑︁
𝑖∈𝑛

𝑝𝑖 (𝑥)𝐸𝑖 (𝑥) (4)

Each token is allocated to a corresponding expert, whose results
𝑦 will be fed into the decoder for reconstructing the data. During
training, the routing variable𝑊𝑟 in the MoE layer is updated ac-
cording to the experts’ losses. The gated network learns how to
select experts more efficiently for different data sub-patterns while
the experts focus on learning for specific sub-patterns. The model
is trained by minimizing the difference between the input data and
the reconstructed data, which is calculated by the Weighted Mean
Squared Error (WMSE):

𝑊𝑀𝑆𝐸 =
1
M

M∑︁
𝑖=1

W𝑖

(
X𝑖 − X′

𝑖

)2 (5)

whereM is the number of metrics,W𝑖 is the weight, and X𝑖 and
X′
𝑖
represent the original and reconstructed data of the 𝑖-th metric

of the node to be detected, respectively. To measure data stability,
we employ the Mean Absolute Change (MAC):

𝑀𝐴𝐶 =
1

T − 1

T−1∑︁
𝑡=1

|𝑥𝑡+1 − 𝑥𝑡 | (6)

where T is the number of data points, and 𝑥𝑡 is the 𝑡-th observed
values. We calculate the MAC for each metric based on the training
data of each cluster to obtainW.

Notably, utilizing 𝐾 segments closest to the cluster centroid for
training the shared model constitutes a form of data augmentation.
As a result, we enhance the positional encoding in the Transformer
to incorporate positional information within and between different
segments. With this design, NodeSentry can naturally train a shared
model for each cluster without requiring extensive training data
and high training overhead.

3.5 Online Anomaly Detection
After completing the offline model training stage, we save the
sharedmodel for each cluster. During runtime,NodeSentry performs
the same preprocessing steps in the offline phase. Then, NodeSen-
try utilizes the MTS for a short period (e.g., 1 hour) following the
node’s job transition to extract features. NodeSentry calculates the
distances between these features and the existing cluster centroids
to match the most similar pattern. Finally, NodeSentry employs the
corresponding shared model for detection.

The MTS from each node is fed into the shared model, which
generates reconstructed data. The reconstruction error between the
input and reconstructed data indicates the probability of the input
MTS approaching normal behavior, also known as the anomaly
score. In threshold selection, we dynamically set the threshold for
the anomaly score. Specifically, we define a sliding window along
the time axis. When the anomaly score exceeds the upper bounds
of 𝑘-sigma, the data point is considered an anomaly [7]. In practice,
operators often set a 3-sigma threshold.

Given the dynamic nature of data and the impossibility of cap-
turing all possible patterns in advance, NodeSentry is driven by the
need to leverage existing data to detect unseen patterns through
the identification of the most similar ones. Specifically, when new
patterns can be matched to any existing cluster within the cluster
library, we conduct incremental fine-tuning of the existing model
to adapt it to the changes in the new patterns. For patterns that
cannot be matched, we perform clustering on these new patterns
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Table 2: Detailed information of datasets.

Dataset #Node #Job #Metric Total Points Anomaly Ratio

D1 1,294 13,379 3,014 106,850,650 0.16%

D2 30 1,430 773 1,555,200 0.04%

Table 3: An overview of monitoring metrics.

Category Example Number

CPU cpu_seconds_total, perf_cpu_migrations_total, etc. 1378
Memory numa_foreign_total, memory_kernel_stack_bytes, etc. 945
Filesystem filefd_allocated, filesystem_files_free, etc. 254
Network network_receive_bytes_total, sockstat_sockets_used, etc. 381
Process processes_state, procs_running, procs_blocked, etc. 12
System system_uptime, timex_status, ksmd_run, etc. 44

and train a new model accordingly. This strategy not only signifi-
cantly enhances the efficiency of incremental and transfer learning
compared to retraining models with large amounts of data but also
effectively addresses the issue of frequent job transitions in nodes.

4 Evaluation
In this section, we evaluate the performance of NodeSentry, aiming
to answer the following research questions:
• RQ1: Can NodeSentry achieve excellent anomaly detection per-
formance through the two-stage strategy?

• RQ2: Does each module of NodeSentry contribute significantly
to its performance?

• RQ3:What is the impact ofNodeSentry after incremental training
with a limited dataset?

• RQ4: How do the different hyperparameters affect NodeSentry?

4.1 Experimental Setup
4.1.1 Dataset. To address RQ1-4, we conduct extensive experi-
ments on two datasets, D1 and D2, collected from the production
environment of NG-Tianhe. We believe that the evaluation of a
large-scale supercomputer system is sufficiently representative.
They originate from arrays characterized by diverse node hardware
designs.

To prevent data leakage, we partition the data into distinct train-
ing and test sets by considering their respective start times. Specifi-
cally, we employ data from the initial 60% of the time as the training
set, while data from the later time as the test set. Tab. 2 lists the
detailed information of these datasets. Furthermore, we organize
experts to label the test sets using our tool (See § 4.2), combining
job scheduling lists and manual verification. The anomaly ratio
is derived by dividing the number of labeled anomalous samples
by the total samples in the test set. Notably, these performance
anomalies are not necessarily failures but may indicate potential
inefficiencies or transient issues.
• D1: We collect data from one array in the cluster, comprising
1,294 nodes and 13,379 assigned jobs over one week, sampled
at 15-second intervals. As shown in Fig. 4, we conduct a real-
world statistical experiment that approximately 94.9% of these job
segments have a duration of less than one day. The data collection
period of one week is deemed sufficient for model training and
validation. Each compute node is monitored for 3,014 metrics,
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Figure 4: The distribution of jobs for nodes.

covering multiple dimensions of node performance. Detailed
information is listed in Tab. 3. As described in § 3.2, we perform
cleaning and reduction on the per-core metrics, ultimately ending
up with 82 metrics in total.

• D2: We collect 30 nodes and 1,430 assigned jobs over 8 days
sampled at an interval of 15 seconds. A total of 773 corresponding
monitoring metrics are initially collected, and 116 metrics are
finalized.
We chose not to use publicly available datasets because they

lack the integration of job scheduling lists and monitoring met-
rics for nodes, which is essential for our objectives. The Antarex2
dataset only provides system-level performance metrics. While the
Prodigy3 dataset covers nodes, it only provides intermediate files
that have been processed by models, rather than raw data.

4.1.2 Baseline Methods. To evaluate the effectiveness of Node-
Sentry, we compare it with the four advanced baseline methods:
Prodigy [4], RUAD [30], ExaMon [10], and ISC’20 [32]. We do not
experiment with supervised learning methods. TPDS’18 [42] and
ALBADross [3] employ machine learning classifiers, which intro-
duce disparities in model complexity and supervision type. Im-
portantly, DeepHYDRA [37], Proctor [5], and ExaMon [10] utilize
semi-supervised methods. DeepHYDRA [37] and Proctor [5] heav-
ily rely on their supervised component, whereas ExaMon [10] is
derived from a comprehensive analysis that integrates both the
supervised and unsupervised components. To ensure a fair compar-
ison, we exclusively select the unsupervised methods employed in
ExaMon [10] for evaluation. Furthermore, we do not select anom-
aly detection methods designed explicitly for non-HPC systems
(e.g., microservice systems or web systems), as instances in these
systems have fixed tasks during runtime, and exhibit regular and
periodic data patterns.

We configure the parameters of all these methods. Specifically,
for parameter settings that are not specific to a particular dataset,
we use the same configurations mentioned in the respective papers.
For parameter settings that are dataset-specific, we adjust them
according to the ranges provided in the respective papers or to our
datasets.

2 https://zenodo.org/records/2553224
3 https://zenodo.org/records/8079388
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Figure 5: The interface of the labeling tool.

4.1.3 Implementation. All experiments are conducted on an offline
validation platformwith the following configuration:We implement
NodeSentry and baselinemethods using Python 3.8.10, PyTorch 2.0.1,
and scikit-learn 1.1.1, running on a dedicated server equipped with
64 × Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, two NVIDIA(R)
Tesla(R) V100S, and 187 GB RAM.

4.1.4 Evaluation Metrics. We use the standard point-wise anomaly
detection metrics Precision, Recall, Area Under the Curve (AUC),
and F1-score to evaluate the performance of all methods. Further-
more, in light of the multiple compute nodes present within our
dataset, we average the Precision, Recall, and AUC across each node,
with the F1-score being derived from the average Precision and
Recall. Considering two practical considerations from operational
experience, we employ an adjustment strategy widely utilized in
previous studies [3–5, 10, 30, 32]: 1) Assuming the presence of actual
continuous anomaly timestamps, we consider them as accurately
detected if the method identifies any anomaly within those times-
tamps. 2) We deliberately exclude anomalies from the initial and
terminal 1-minute intervals of each pattern transition, in which
some metrics may significantly deviate from expected values.

4.2 A Labeling Tool for Experiment
Despite being a fully unsupervised anomaly detection method that
operates without the need for labeling data, the verification of its
accuracy still necessitates ground truth. Considering the high cost,
difficulty, absence of distinct labeling standards, and challenges
associated with handling high-dimensional metrics using existing
labeling tools, we develop a graphical user interface-based tool
allowing operators to adjust clusters and label anomalies in MTS.
This tool is implemented in Python with Tkinter and Matplotlib,
with the codebase spanning around 1,600 lines. Fig. 5 depicts the
primary interface, encompassing the following functionalities:

1) It facilitates the selection of displaying or concealing specific
metric dimensions, supports visualization, dragging, and hori-
zontal/vertical zooming of MTS, and distinguishes diverse node
states, thereby affording operators an enhanced perspective.

2) It enables operators to label or cancel anomalous intervals by
specifying the start and end time intervals, saving them as anom-
alies. To alleviate the workload, we integrate multiple anomaly
detection methods (e.g., statistical methods and deep learning
methods) to aid in labeling.

3) It incorporates built-in clustering methods and provides visual-
izations of the data distribution. Moreover, it facilitates dynamic
adjustment of clusters and updates the centroids of each cluster.
We adopt a comprehensive approach based on job scheduling

lists and manual verification by operators to avoid mislabeling and
omissions. In particular, the eventual failure of a job cannot be
solely attributed to performance anomalies in compute nodes [10].
It might be caused by code errors or insufficient storage resources.
Additionally, performance anomalies in nodes may manifest before
the job failure [13]. This principle also applies to the idle wait-
ing state. Thus, real-time anomaly detection for compute nodes
becomes imperative to ensure precise labeling. By detecting anom-
alies during job execution, we can proactively terminate the job
to prevent any further abnormal propagation. When anomalies
arise during idle waiting, operators can implement measures for
isolation and mitigation.

4.3 Overall Performance (RQ1)
The performance of different methods is shown in Tab. 4. Com-
pared to all baseline methods, NodeSentry achieves an impressive
0.876 and 0.891 F1-score, a relative improvement of 179.04% and
167.57% compared to the second place, respectively. The strategy
of capturing and learning the pattern characteristics of nodes in
different jobs through coarse-grained clustering and fine-grained
model sharing has contributed to the success of NodeSentry. Other
methods [4, 10, 30, 32] ignore the differences in patterns and sub-
patterns. The specific reasons for each baseline’s poor performance
are discussed in detail in § 6. In contrast, NodeSentry’s tailored
approach is sensitive to the nuances of node behavior and enhances
anomaly detection performance by dynamically and adaptively
selecting models in real time.

We analyze the complexity by comparing the time required for
offline training with the average time to detect each node. NodeSen-
try’s anomaly detection efficiency is satisfactory, with the average
time to detect whether each time point is anomalous not exceeding
2 milliseconds. This latency is well within the acceptable range
for anomaly detection. Notably, ISC 20 [32] has the lowest train-
ing overhead, due to its use of Bayesian Gaussian Mixture Models
(BGMM) clustering rather than deep learning models, resulting in
its poorest performance. Compared with the other deep learning
baseline methods, NodeSentry demonstrates the best training effi-
ciency, with a relative improvement of 77.93% and 13.45% over the
second-place method.

4.4 Ablation Study (RQ2)
To demonstrate the effectiveness of the key components in Node-
Sentry (i.e., segment clustering and model sharing), we perform
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Table 4: Effectiveness of anomaly detection on different methods.

Method
D1 D2

Precision Recall AUC F1-score Offline Online Precision Recall AUC F1-score Offline Online

NodeSentry 0.840 0.915 0.964 0.876 1.06 day 2.47 s 0.884 0.897 0.923 0.891 27.21 min 2.31 s
Prodigy [4] 0.227 0.132 0.571 0.167 4.79 day 9.52 s 0.157 0.271 0.622 0.199 31.44 min 6.28 s
RUAD [30] 0.323 0.306 0.629 0.314 18.94 day 7.54 s 0.403 0.284 0.659 0.333 6.69 h 8.46 s
ExaMon [10] 0.203 0.217 0.586 0.210 7.95 day 0.67 s 0.407 0.216 0.612 0.282 3.35 h 1.09 s
ISC 20 [32] 0.026 0.154 0.557 0.045 1.64 h 7.35 s 0.006 0.103 0.50 0.012 2.01 min 8.81 s
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Figure 6: Effectiveness of NodeSentry under different hyperparameter settings.

Table 5: Performance comparison of different components.

Dataset Method Precision Recall AUC F1-score

D1

NodeSentry 0.840 0.915 0.964 0.876
C1 0.313 0.290 0.635 0.301
C2 0.370 0.504 0.727 0.427
C3 0.814 0.696 0.815 0.751
C4 0.451 0.491 0.730 0.470
C5 0.381 0.376 0.676 0.378

D2

NodeSentry 0.884 0.897 0.923 0.891
C1 0.396 0.328 0.675 0.359
C2 0.610 0.613 0.798 0.611
C3 0.762 0.798 0.862 0.780
C4 0.617 0.583 0.778 0.599
C5 0.571 0.451 0.725 0.504

ablation experiments on two datasets, creating five variants C1-C5.
1) C1 removes coarse-grained clustering and uses only a single
model. 2) C2 randomly selects segments to train the same number
of models to replace the representative segments resulting from
the clustering process. 3) C3 cuts the segments of different lengths
into equal lengths. 4) C4 eliminates the practice of differentiating
between segments within the positional encoding. 5) C5 replaces
the sparse MoE layer with the dense FFN layer.

Tab. 5 illustrates the enhanced performance of NodeSentry across
various application scenarios, surpassing the performance of all

previously mentioned alternatives. This highlights the crucial con-
tribution of each component in attaining peak performance. Train-
ing a solitary model (C1) or employing an ensemble of models
selected haphazardly (C2) forfeits the capacity to segment data into
coherent subsets, thereby impeding the ability to hone in on the
unique attributes of disparate data segments. The failure to leverage
the structural information within the data precipitates a degrada-
tion in performance. Furthermore, both coarse-grained clustering
and fine-grained model sharing constitute efficacious strategies
for anomaly detection. The segments of different lengths contain
disparate quantities of information, and treating these uniformly
can precipitate an imbalance in the representation of job informa-
tion (C3). Employing this variant can adversely affect both the
effectiveness of anomaly detection and the operational efficiency
of the model. With the model-sharing module, positional encoding
enhances the ability to discern positional information across hetero-
geneous segments (C4). In contrast, the substitution of the sparse
MoE layer with the dense FFN layer (C5) erodes the adaptability
and versatility. This is attributable to the fact that the MoE layer is
inherently more adept at managing the diversity and intricacy of
data, a proficiency that the FFN layer is typically deficient in.

4.5 Incremental Training (RQ3)
To evaluate the influence of training set sizes and the effectiveness
of incremental training, we discern a robust positive correlation
between training set size and model performance. We conduct the
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experiments starting from the minimal training set and incremen-
tally increasing the size until reaching the full training set. Each
size is derived via stratified random sampling from the full dataset,
ensuring the randomness and impartiality essential for experimen-
tal validity. Model training adheres to uniform parameter settings
to preclude confounding influences from extraneous variables.

As shown in Fig. 6 (a), the experimental findings reveal that the
performance is significantly diminished with smaller training set
sizes. This phenomenon may arise from the inability of a smaller
training set to furnish sufficient data to cultivate a robust model,
consequently resulting in NodeSentry’s subpar detection of new
patterns. NodeSentry’s performance exhibits a marked enhance-
ment with an escalation in training set size, a testament to its so-
phisticated structural design and judicious methodological choices.
In practical scenarios where only limited data are available, the
performance of anomaly detection can be optimized through an
incremental training pipeline, as introduced in § 3.5.

4.6 Hyperparameters Sensitivity (RQ4)
We discuss the influence of six hyperparameters of NodeSentry.
Details of the training set sizes can be found in § 4.5. Fig. 6 illustrates
the impact of different hyperparameter settings on the F1-score.
1) The number of clusters in coarse-grained clustering. NodeSen-

try’s performance is significantly impaired when it falls below an
optimal number, yet it stabilizes once this threshold is surpassed.
As described in § 3.3, NodeSentry exhibits an innate capacity
to autonomously identify the most productive cluster count,
thereby maintaining peak performance without compromise.

2) The number of experts for MoE. An insufficient number of ex-
perts could lead to an incomplete representation of the data’s
salient features, while an excess might precipitate overfitting,
thereby diminishing the generalizability. NodeSentry performs
optimally when the number of experts is set to 3.

3) The number of experts assigned to each token. The specializa-
tion of each expert in identifying sub-pattern variations suggests
that consolidating their outputs could lead to unwarranted com-
plexity and potential inaccuracies. Consequently, NodeSentry
performs best when each token is assigned to a single expert.

4) The period for pattern matching. A shorter period does not
capture enough contextual information, thus reducing detection
accuracy. Our experiments show that 1 hour is recommended
for general use, with longer periods reserved for high-accuracy
applications.

5) The time window for threshold selection. NodeSentry exhibits
robustness in threshold selection, adapting well to varying win-
dow lengths. However, to ensure computational efficiency and
model stability, shorter time windows (e.g., 15 or 20 minutes)
are recommended, as they reduce computational complexity
without compromising performance.

5 Discussion
5.1 Deployment
NodeSentry was deployed on a dedicated node equipped with an
8-core, 64-threaded processor and 128 GB of RAM, designed to
monitor and analyze a production environment cluster compara-
ble in size and configuration to D2. During the deployment phase,
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Figure 7: The workflow of NodeSentry.
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Time 2023-04-21 14:04:39~18:15:56
Reason Out of Memory

Timestamp Score Anomalous
2023-04-21 14:05:00 4.7065 0
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Figure 8: Case study of an out-of-memory case.

molecular dynamics simulations were executed using a Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [19] on
this cluster. At the same time, failure injection scenarios (e.g., disk
full, memory exhaustion, and CPU overload) were systematically
introduced via the ChaosBlade4 toolkit to validate system robust-
ness. Over a continuous one-month evaluation period, NodeSentry
demonstrated efficient operational performance, completing pat-
tern matching for each hourly monitoring cycle in an average of
5.11 seconds and achieving real-time detection latency of 36 mil-
liseconds per sampling point. NodeSentry exhibited strong anomaly
detection capabilities, with precision and recall rates of 0.857 and
0.923, respectively, in identifying performance anomalies and in-
jected failures.

As shown in Fig. 7, the deployment workflow integrates both
offline and online operational modes. When a user submits a compu-
tational job, the Slurm job scheduler dynamically allocates resources
across the HPC cluster based on user-defined parameters such as
node count and runtime requirements. Concurrently, Prometheus5
collects granular performance metrics from all nodes, storing this
telemetry data in a time-series database to support offline model
training. During the online phase, the collected data is passed to
NodeSentry in real time for anomaly detection. Upon detecting
anomalies, NodeSentry triggers prioritized alerts to operators.
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5.2 Case Study
In this section, we conduct a case study on D1 to further demon-
strate the working process of NodeSentry. As shown in Fig. 8, the
memory-level failure in Node-45 led to anomalies in the metrics.
NodeSentry matches the job pattern under detection with the most
similar historical patterns and applies the learned model to de-
tect anomalies. The difference between the raw and reconstructed
MTS is calculated at each time point. NodeSentry detected the node
anomaly 54 minutes before the job failure, allowing the operators to
intervene early to prevent the job failure. Because memory-related
metrics showed significant declines, insufficient memory was iden-
tified as the cause of the job failure. Compared with traditional
methods, NodeSentry performs exceptionally well by effectively
handling complex job patterns and sub-patterns, making it more
suitable for the dynamic and large-scale nature of HPC systems.

5.3 Limitations and Threats
During online detection, the limitations of NodeSentry mainly con-
cern the frequent job transitions of nodes. Timely and precise pat-
tern matching is necessary to uphold model accuracy, while a cer-
tain duration of time is utilized. Nonetheless, experiments indicate
that this temporal investment is considered acceptable.

Regarding the internal validity threats, we conduct rigorous re-
peated experimental tests and iteratively optimize the configuration
of each module. The experimental results represent the average of
multiple trials. NodeSentry also faces external validity threats. This
field lacks publicly available and fair datasets. We validate Node-
Sentry using a large-scale supercomputer system. However, this
may not fully represent all HPC systems. Our validation centered
on CPU, but GPU compute units demonstrate comparable data
characteristics and are equally subject to frequent task transitions.
Nonetheless, we have confidence in the generality of NodeSentry.

6 Related Work
Various anomaly detection methods for nodes in HPC systems can
be roughly divided into three groups: supervised methods, semi-
supervised methods, and unsupervised methods.

Supervised methods. TPDS 18 [42] and ALBADross [3] utilize
feature extraction and feature selection techniques, respectively.
They then train a machine learning classifier to detect different
performance anomalies. These methods require the use of labeled
data for training that contains both normal and abnormal samples.
However, they demand extensive domain knowledge and labeling
efforts from experts, which is often labor-intensive. Therefore, these
methods are almost impractical for large-scale HPC systems.

Semi-supervisedmethods.DeepHYDRA [37] combines Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) and
learning-based anomaly detection, introducing a supervised MSE-
based loss function for semi-supervised training. Proctor [5] and
ExaMon [10] employ Auto-Encoder (AE) for anomaly detection.
Proctor [5] learns hidden layer features to detect anomalies through
a supervised classifier. On the other hand, ExaMon [10] combines
the results of reconstruction error and classification probability.
Compared to supervised methods, they only require a relatively
4 https://chaosblade.io/
5 https://prometheus.io/

small amount of labeled data and a large amount of unlabeled data
for training. However, this limitation restricts the modeling capa-
bility for abnormal samples.

Unsupervised methods. RUAD [30] utilizes Long Short-Term
Memory (LSTM) cells, explicitly capturing temporal dependencies.
RUAD [30] requires training specific deep models for each node,
resulting in additional storage and scheduling requirements. ISC
20 [32], which employs BGMM and Mahalanobis distance to fit
Gaussian distributions, is limited in its capability to effectively
model the complex dynamics of MTS data using machine learning
alone. Prodigy [4] is an anomaly detection framework based on
Variational AE (VAE). ISC 20 [32] focuses on clustering the entire
segments, while Prodigy [4] extracts features for subsequent de-
tection processes. Most importantly, neither of them takes into
consideration the intricate sub-patterns that can vary significantly
across the same segment.

7 Conclusion
Given the inherent complexity of maintaining operational stability
in HPC systems, we propose NodeSentry, an unsupervised MTS
anomaly detection framework specifically designed for nodes in
HPC systems. NodeSentry integrates coarse-grained segment clus-
tering with fine-grained model sharing, enhancing its scalability
and efficiency while significantly improving anomaly detection
accuracy and generalization capabilities. Through extensive evalua-
tion using data collected from production HPC systems, we demon-
strate NodeSentry’s effectiveness in achieving high precision and
recall for anomaly detection. Furthermore, to promote reproducibil-
ity, we have open-sourced NodeSentry’s codebase and introduced a
novel clustering adjustment and anomaly labeling tool specifically
designed for HPC systems.
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Appendix: Artifact Description
A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions
This paper aims to address unsupervised anomaly detection for
compute nodes in high-performance computing (HPC) systems by
proposing a novel framework that combines coarse-grained pattern
clustering with fine-grained model optimization, while providing
tools to improve interpretability and reproducibility.

C1 A hybrid anomaly detection framework integrating Hierar-
chical Agglomerative Clustering (HAC) for coarse-grained
pattern grouping, followed by a Mixture of Expert (MoE)
architecture for fine-grained model sharing and sub-pattern
adaptation. This design reduces training overhead while
achieving state-of-the-art F1-scores.

C2 An open-source toolkit containing 1) a clustering adjustment
interface for validating HAC results, and 2) an interactive
anomaly labeling tool for multivariate time series in HPC
contexts. This toolkit enables transparent pattern analysis
and ground-truth refinement.

A.2 Computational Artifacts
To support the reproducibility, we provide two computational ar-
tifacts that encapsulate the core implementation and analytical
tools. These artifacts enable validation of the proposed method and
facilitate further exploration of HPC anomaly detection scenarios.

A1 https://zenodo.org/records/16737328
A2 https://zenodo.org/records/16737389

The following table explicitly maps the paper’s artifacts to their
corresponding contributions and reproducible elements. Each ar-
tifact directly generates or validates specific experimental results
and visualizations.

Artifact ID Contributions Related
Supported Paper Elements

𝐴1 𝐶1 Tables 4-5
Figures 6

𝐴2 𝐶2 Figure 5

B Artifact Identification
B.1 Computational Artifact 𝐴1

Relation To Contributions
This artifact provides the full implementation of the hybrid frame-
work described in 𝐶1, which unifies coarse-grained clustering and
fine-grained model adaptation.

Expected Results
The experimental results conclusively demonstrate the effectiveness
of our proposed framework in addressing the core challenges of
HPC anomaly detection. The superior performance validates Con-
tribution 𝐶1, showing that our hierarchical approach combining
coarse clustering and fine-grained adaptation successfully captures
macro-level patterns and micro-level variations in node behaviors.

Ablation studies reveal critical dependencies, proving the necessity
of each component.

Expected Reproduction Time (in Minutes)
The complete experimental workflow can be reproduced within
approximately 24 minutes using open-source data and standard
computing resources.

Artifact Setup (incl. Inputs)
Hardware. The experimental environment is deployed on servers
running Linux kernel version 5.4.0 and Ubuntu 18.04 operating
system. Detailed hardware specifications, including computational
resources and network configurations, are comprehensively docu-
mented in Section 4.1. The system architecture supports distributed
monitoring across seven physical nodes, with metric collection
mechanisms optimized for this server configuration.

Software. The implementation leverages Python 3.8 as the primary
programming language, with critical dependencies including Chaos-
Blade for fault injection and Prometheus for metric collection.
LAMMPS serves as the benchmark workload for system valida-
tion. All required software packages and version-specific libraries
are enumerated in the requirements.txt file within the project repos-
itory. The software stack has been verified for compatibility with
the specified kernel version and Ubuntu distribution.

Datasets / Inputs. A representative subset of experimental data
from NG-Tianhe, comprising 138-dimensional monitoring metrics
collected from 17 distinct benchmark jobs across seven compute
nodes, has been made publicly accessible through the repository.
The dataset captures system behaviors under both normal opera-
tion and 21 artificially induced fault scenarios, generated through
controlled ChaosBlade injections during LAMMPS executions.

Installation and Deployment. For environment reproducibility, users
should first establish a Python 3.8 virtual environment on a Linux
5.4.0/Ubuntu 18.04 system. Execute sequential commands after
environment activation:

T1: pip install –upgrade pip
T2: pip install -r requirements.txt
The repository provides architecture-specific compilation guide-

lines and dependency resolution details in its README. To ensure
metric collection integrity, special attention is required when con-
figuring Prometheus exporters and ChaosBlade controllers.

Artifact Execution
The artifact’s execution pipeline comprises three sequential phases:
coarse-grained clustering, fine-grained shared model training, and
anomaly detection. During the initial clustering phase, feature vec-
tors extracted from input data undergo unsupervised grouping,
producing cluster centroids and metric weight distributions for
each identified class. Subsequent model training employs cluster-
specific configurations, where shared architectural components are
optimized through distributed parameter updates while preserving
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cluster-wise specialization. The detection phase computes anom-
aly scores at each temporal sampling point through multivariate
pattern analysis across all data replicas.

Experimental configurations utilize a dataset spanning 7 com-
pute nodes executing 17 distinct workloads, with each observation
capturing 138-dimensional vectors. Implementation specifications
include batch processing of 50 samples per iteration, input win-
dowing of 20 temporal steps, and model optimization across 30
training epochs using a learning rate of 0.00015. The architecture
integrates a 3-layer Transformer encoder with 3 parallel attention
heads, and a MoE layer that selectively combines outputs from 3
domain-specific experts through top-1 gating activation.

Artifact Analysis (incl. Outputs)
The execution pipeline’s output structure is governed by param-
eters defined in the config.yml. During coarse-grained clustering
operations, extracted feature vectors are stored in the normalized,
while resultant cluster assignments persist in cluster. Cluster cen-
troids and associated metric weight distributions for each category
are systematically archived within date-stamped subdirectories of
the center_feature_date, following automatic per-class directory
generation. In the model specialization phase, class-specific trained
models are serialized to the model_dir repository, with correspond-
ing anomaly detection outputs (containing temporal anomaly scores
and diagnostic metadata) being written to the result_dir destination.

B.2 Computational Artifact 𝐴2

Relation To Contributions
This artifact provides the functional implementation of the open-
source toolkit described in 𝐶2, directly realizing its dual objectives
of cluster validation and interactive labeling.

Expected Results
The toolkit demonstrates how its interactive capabilities translate
theoretical contributions into operational improvements. The visu-
alization interface enables efficient pattern discovery by allowing
operators to explore multivariate time series characteristics in-
tuitively. At the same time, the semi-automated labeling system
combines algorithmic preprocessing with human expertise to gener-
ate reliable annotations. Most importantly, the dynamic clustering
adjustment feature creates a feedback loop between unsupervised
detection and expert knowledge, allowing continuous refinement
of anomaly labels and model performance. These outcomes col-
lectively validate the tool’s role in making unsupervised methods
practical for production environments by bridging the gap between
automated detection and human oversight.

Expected Reproduction Time (in Minutes)
The complete experimental reproduction requires 25-30 minutes
under baseline benchmark measurements, partitioned as follows:
Dependency resolution through automated package management
consumes approximately 10 minutes (manual CUDA toolkit con-
figuration and PyTorch compilation may require additional 5-15
minutes based on hardware specifics); Execution phases typically
complete within 10-15 minutes, with anomaly detection and label

generation for 20-node clusters (10 metrics × 500 temporal samples)
requiring approximately 8 minutes, while clustering operations
generally conclude within 3 minutes. Actual duration scales pro-
portionally with input dimensionality and selected algorithmic
implementations.

Artifact Setup (incl. Inputs)
Hardware. The tool is compatible with standard Windows/macOS
workstations. While CPU-only execution is supported, GPU accel-
eration significantly reduces runtime for large datasets.

Software. The implementation uses Python 3.8+ with dependencies.
Key libraries are pinned in requirements.txt.

Datasets / Inputs. The public repository includes synthetic time-
series data in node_data/ mimicking HPC node behaviors. Each
CSV file represents a node’s metrics over 500 timestamps, formatted
as timestamp, metric1, ..., metric10. Real-world users should replace
these with their data, ensuring column consistency across files.
Configuration files (metric_used.txt, time_scope.txt) define target
metrics (e.g., CPU usage, memory pressure) and time windows,
enabling flexible adaptation to diverse monitoring frameworks.

Installation and Deployment. The process comprises four key steps:
T1: git clone 𝐴2
T2: Create a Python 3.8+ virtual environment
T3: pip install -r requirements.txt
T4: Place custom node CSV files in node_data/ and update met-

ric_used.txt and time_scope.txt.
Full deployment guidelines are documented in the README.

Artifact Execution
The analytical tool is initialized through execution of pythonmain.py
on Windows or macOS. The graphical interface supports workflow
orchestration via three core modules:

T1: Algorithm selection from the reference_cluster, with hyper-
parameter tuning through interactive sliders.

T2: Model specification including statistical criterion or deep
neural architectures via the reference_models.

T3: Plot manipulation through mouse wheel zoom controls, click-
and-drag panning operations, and anomaly annotation through
rectangular region selection via primary mouse button activation.
Cluster membership adjustments following manual node reassign-
ment are persistently archived in designated configuration files to
facilitate iterative analytical workflows.

Artifact Analysis (incl. Outputs)
Clustering results are stored in two files: config_files/cluster_result.txt
(raw algorithmic outputs) and cluster_adjust.txt (user-modified
groupings). Anomaly labels are saved as per-node CSV files in
the labels/ directory, while annotation_history.txt caches global
annotation metadata.

For visualization, the PlotCanvas2 tool enables metric-specific
time-series plotting with anomaly highlights, andMultiCanvas sup-
ports side-by-side cluster comparisons. Users can validate results
by cross-referencing raw data, cluster assignments, and annotated
anomalies, ensuring transparency and reproducibility.
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