
From Chaos to Clarity: Log-based Kernel Panic Root Cause Analysis
for Large-Scale Cloud Services

Tianyu Cui1, Yang Zhang2, Shenglin Zhang1,∗, Xin Wu2, Yicheng Sui1, Liangyan Peng2, Yuhe Ji1, Feng Wang2,
Changchang Liu1, Zeyu Che1, Xiaozhou Liu2, Yongqian Sun1, Yu Zhang2

1Nankai University, Tianjin 300071, China
2ByteDance, Beijing 100191, China

*Corresponding author: zhangsl@nankai.edu.cn

Abstract Operating system (OS) kernel panics, which are
triggered by unrecoverable fatal errors, pose serious threats to
the stability and reliability of ByteDance’s large-scale cloud
services. Diagnosing such failures through log analysis is
essential for identifying root causes and preventing recurrence.
However, root cause analysis (RCA) for kernel panics faces
two key challenges. First, only a small portion of logs
explicitly indicate the kernel panic, making relevant signals
difficult to extract. Second, there exist complex and long-
range dependencies across log entries, making it difficult to
pinpoint root causes effectively. To address these challenges, we
propose LogSage, a novel log-based framework for kernel panic
RCA in large-scale cloud environments. LogSage combines
unsupervised clustering techniques with large language models
(LLMs) to extract fault-indicating log snippets, and further
employs a graph-based RCA module that integrates Graph
Neural Networks (GNNs) for structured log representation
and active learning for efficient label utilization. We evaluate
LogSage on three real-world datasets, including 20,000 failure
cases from ByteDance’s production environment and two
publicly available industrial datasets. Experimental results
show that LogSage achieves high performance in root cause
identification, with F1-scores of 92.2%, 95.3%, and 96.3%,
respectively. These results outperform the strongest baseline
methods by 15.5%, 20.3%, and 20.1%. In addition, LogSage
has been deployed in ByteDance’s cloud infrastructure for
over six months. It has successfully assisted engineers in
real-world RCA tasks, as demonstrated through multiple case
studies. These results confirm both the technical effectiveness
and practical applicability of LogSage in handling kernel panic
analysis in complex production settings.
Keywords Kernel panic, root cause analysis, log analysis,
large language model

1 Introduction
Large-scale cloud services are increasingly prevalent, with

providers managing vast infrastructures to support critical Web
applications and billions of users worldwide [1]. Ensuring
the reliability and scalability of these services is paramount
to meeting user demands. For example, ByteDance operates
extensive cloud infrastructures, where operating systems (OS)
manage and process massive volumes of user data across
hundreds of thousands of machines. As shown in Figure 1,
These systems underpin tens of Web services, including TikTok,
CapCut, Lemon8, and FaceU. However, approximately 18%
of these machines experience software or hardware failures
annually [2–4], with OS kernel panics being a significant
contributor.

A kernel panic occurs when the OS encounters a critical

E-mail: zhangsl@nankai.edu.cn

Fig. 1: System architecture of ByteDance’s cloud infrastructure.

error from which it cannot recover [5, 6]. During such
events, the system generates detailed logs that capture low-level
system activities, including hardware interactions, memory
management, process scheduling, and error messages specific
to the panic [7, 8]. As shown in Table 1, a kernel panic log
contains diverse types of information, such as error messages,
memory addresses, register values, and system states. These
logs serve as a valuable resource for analyzing the root causes
of kernel panics, as they provide insights into the internal state
of the system at the time of the error. For instance, the log entry
"BUG: unable to handle page fault at [REDACTED]" signals
a fatal memory access violation, which is further clarified by
the subsequent message "PF: supervisor write access in kernel
mode", indicating an illegal write attempt in privileged mode.
These messages help developers trace the root cause, such as
invalid memory dereferencing or access to unmapped regions,
which ultimately lead to a kernel panic when the system is
unable to safely recover. Identifying recurring patterns in
these kernel panic logs is essential for RCA (Root Cause
Analysis) and implementing effective resolutions. RCA is
the process of analyzing and identifying the root cause of
system failures, which facilitates accurate localization, effective
repair, and system recovery [8–10]. In the context of kernel
panics, RCA enables engineers to pinpoint the exact cause of
a crash, facilitating targeted remediation and preventing future
recurrences. Effective RCA is essential for maintaining service
availability, reducing downtime, and accelerating recovery in
large-scale cloud environments.

Despite their importance, performing RCA on kernel panic
logs for large-scale cloud services faces two key challenges:
Challenge 1: Only a small subset of logs directly indicate
kernel panics. A kernel panic often generates massive amounts
of log data, yet only a small subset of these logs directly indicate
the root cause of the panic. As shown in Table 1, a kernel
panic case from ByteDance’s production environment produced
4,445 log entries, the majority of which recorded routine
system activities, such as network updates, hardware events,
and process accounting. Only a small portion (lines 4,379 to
4,445, highlighted in red) contained critical panic indicators.
This sparsity of relevant logs makes it challenging to identify
panic-indicating entries without losing essential panic signals.

Table 1: Kernel panic logs from ByteDance’s production
environment

Line Timestamp Content

.
524 [12.430891] random: dbus-daemon: uninitialized urandom read
525 [13.314049] microcode: updated to revision [REDACTED]
526 [13.315273] NIC Link is Up, [REDACTED] Gbps Full Duplex
527 [13.638674] Process accounting resumed
528 [13.724860] random: crng init done
.

4379 [28.472077] BUG: unable to handle page fault at [REDACTED]
4380 [28.472121] PF: supervisor write access in kernel mode
4381 [28.472211] Oops: [REDACTED] SMP NOPTI
4382 [28.472277] Hardware: [REDACTED], BIOS [REDACTED]
.

4445 [28.612784] CR2: [REDACTED]

Traditional methods, such as manual rules, keyword-based
heuristics, or static filtering techniques, struggle to process
such noisy and large-scale logs effectively. Creating manual
rules is not only labor-intensive but also prone to missing key
panic indicators or generating false positives when encountering
new system behaviors. Furthermore, these approaches lack
generalizability, as they rely heavily on predefined panic
signatures, which are unable to adapt to unknown or evolving
panic patterns.
Challenge 2: Long-range interdependencies in kernel panic
logs. Even after extracting kernel panic-indicating logs,
performing RCA remains highly challenging. Kernel panic logs
often exhibit long-range interdependencies, making it difficult
to identify and model dependencies between log entries. For
example, as shown in Table 2, the log entry in line 38, i.e.,
"memblock allocation failed", and the entry in line 323, i.e.,
"Kernel panic not syncing: Out of memory", both refer to the
same root cause: a fault in memory allocation that eventually
leads to an out-of-memory condition, culminating in a kernel
panic, although they are very distant in the extracted kernel
panic-indicating logs. However, models relying solely on
sequential or local semantic patterns often fail to capture these
long-range interdependencies, making it difficult to pinpoint
the root cause of the kernel panic. Existing log analysis
methods, such as RNN-based approaches (e.g., DeepLog [11]
and LogAnomaly [12]) and Transformer-based approaches
(e.g., LogBERT [13] and NeuralLog [14]), have shown strong
performance on common system logs. These logs, such as
HDFS logs [15] from Amazon EC2 nodes, OpenStack logs from
CloudLab [16], supercomputer logs from IBM Blue Gene [17],
and application logs from Thunderbird [18], typically follow
semi-structured formats with relatively simple semantic or
sequential relationships. However, their reliance on sequential
or semantic patterns makes them ill-suited for capturing the
long-range interdependencies inherent in kernel panic logs,
thereby limiting their effectiveness for RCA in this context.

Table 2: Examples of kernel panic-indicating logs.

Line Timestamp Content
.
38 [102.564738] memblock allocation failed
.
62 [345.678901] eth0: transmit queue 0 timed out
63 [346.123456] CPU0: soft lockup - CPU#0 stuck for [REDACTED]
.
323 [5678.234987] Kernel panic not syncing: Out of memory
324 [5679.987654] page fault at [REDACTED] caused by NULL pointer dereference

To address these challenges, we present LogSage, a novel
kernel panic RCA framework for large-scale cloud services.

LogSage addresses the challenges through a two-stage process:
(1) LLM-Enhanced Fault-indicating Log Extraction (FILE):
This stage combines clustering algorithms with LLM-based
prompting techniques to extract fault-indicating logs and
generate clear, interpretable fault descriptions.
(2) GraphSage-based Fault RCA (GARCA): This stage
combines GraphSAGE-based framework with active learning to
improve fault feature discovery and models long-range inter-log
dependencies. Our contributions are summarized as follows:
• We design an LLM-enhanced fault-indicating log extrac-

tion mechanism to address Challenge 1 signals (FILE).
By combining clustering-based log segmentation, LLM-
based summarization, and prompt-guided highlighting,
we extract critical fault-indicating logs and generate inter-
pretable panic descriptions, effectively reducing noise and
enhancing human interpretability.
• We propose an Active Learning-augmented graph-

based RCA mechanism to address Challenge 2 signals
(GARCA). By combining log-structured graph model-
ing, pretrained similarity estimation, GraphSAGE-based
encoding, and uncertainty-driven active learning, we
model long-range inter-log dependencies and enhance
fault feature discovery, effectively improving RCA.
• We conduct comprehensive experiments on three real-

world datasets. LogSage achieves F1-scores of 92.2%,
95.3%, and 96.3% on these datasets, respectively, outper-
forming the strongest baseline methods by 15.5%, 20.3%,
and 20.1%. In addition, LogSage has been deployed
in ByteDance’s cloud infrastructure for over six months,
where it has successfully assisted engineers in real-world
RCA tasks.

2 Related Work
In our scenario, we frame kernel panic RCA as a classifi-

cation task, where each fault type directly corresponds to a
root cause category. This differs from traditional RCA settings
that aim to rank multiple potential causes or extract root-cause-
indicative log spans. Accordingly, we focus on methods that
support categorical fault classification, we divide existing work
into two categories: Fault-Indicating Log Extraction and
Log-based RCA. Table 3 provides a comparative summary of
representative methods.

Fault-Indicating Log Extraction. Early techniques for
extracting fault-relevant log lines are predominantly heuristic.
TF-IDF [19] and TextRank [20] rank logs based on frequency or
centrality, but lack semantic understanding and do not support
root cause classification, making them unsuitable as baselines.
Onion [21] improves log extraction by combining multi-level
clustering and context-aware features, but it requires normal
logs for contrastive analysis, which are unavailable in our
setting. SwissLog [22] localizes anomalies in interleaved
logs by combining ID correlation, BERT [34]-based semantic
embeddings, temporal modeling, and attention-based Bi-LSTM
architectures. While effective at highlighting anomalous
regions, it neither classifies fault types nor performs full RCA,
and is therefore excluded. LogConfigLocalizer [23] uses
an LLM-based two-stage strategy to identify misconfigured
parameters through log pattern abstraction and reasoning.
However, it focuses on configuration error localization rather
than categorical fault diagnosis, and thus does not match
our task. LoFI [24] adopts a two-stage pipeline that filters
semantically relevant logs and applies prompt-based span
prediction to extract failure descriptions and parameters. While

2

Table 3: Representative Works on Log Analysis and RCA

Method Objective Baseline Reason for (Not) Being a Baseline

Fault-Indicating Log Extraction

TF-IDF [19]/Tex-
tRank [20]

Rank log lines based on frequency or centrality ✗ Lack semantic understanding; not designed for
classification or RCA

Onion [21] Extract fault-indicating logs via clustering and
contrastive analysis

✗ Requires normal logs; unavailable in our setting

SwissLog [22] Anomaly localization using BERT-based tempo-
ral modeling

✗ Effective at region localization, but lacks classi-
fication capability

LogConfigLocalizer
[23]

Identify misconfigured parameters via LLM
reasoning

✗ Targets configuration issues; not fault-type clas-
sification

LoFI [24] Extract fault descriptions via span prediction ✗ Assists diagnosis; does not predict root cause

Log-based RCA

LogCluster [25] Cluster log sequences and match historical cases ✓ Objective aligns with fault-type classification;
adopted as a traditional baseline

Log3C [26] RCA via KPI-correlated clustering and regres-
sion

✗ Depends on telemetry data; unavailable in our
context

LADRA [27] RCA for Spark using fixed root causes and
statistical thresholds

✗ Limited to four categories; lacks generalization

LogRule [28] Interpretable RCA via association rule mining ✓ Performs fault classification with rule-level ex-
plainability; aligned with our goals

LogKG [29] Knowledge-graph-based symbolic RCA over
structured logs

✓ Supports categorical classification via multi-
field reasoning; objective aligns with ours

LogRCA [30] PU-learning to score fault-relevant logs ✗ Produces ranked logs; does not classify root
cause

LOGAN [31] Distributed online log parsing via template
extraction

✗ Acts as a preprocessor; requires normal logs; not
applicable to classification

LogPrompt [32] Zero/few-shot RCA via prompt engineering ✓ Adaptable to classification by designing RCA-
specific prompts

LogGPT [33] Prompt-based inference with GPT-3.5 ✗ Covered by LogPrompt; lacks diverse strategies

helpful in surfacing fault-indicating content, it does not conduct
root cause classification, and is thus not adopted as a baseline.

Log-based RCA. Supervised and unsupervised RCA meth-
ods have been extensively studied. LogCluster [25] clusters
log sequences using TF-IDF-weighted vector representations,
selects representative sequences, and compares them with his-
torical cases to identify fault categories. Since LogCluster aims
to classify faults into predefined types, its objective is directly
aligned with ours, making it a representative traditional baseline.
Log3C [26] addresses performance-impacting failures by apply-
ing cascaded clustering and correlating log clusters with system
KPIs using multivariate regression. However, it relies on exter-
nal telemetry data (e.g., KPI metrics), which are unavailable in
our kernel-panic scenario, making it inapplicable. LADRA [27]
detects and classifies anomalous Spark tasks by extracting task-
level, GC-level, and CPU-related features, and assigning fault
probabilities over four predefined categories (CPU, memory,
disk, network) using statistical thresholds. Despite its inter-
pretability, LADRA’s narrow scope and fixed label space limit
its generalization to broader RCA contexts. LogKG [29] con-
structs a multi-field knowledge graph (KG) by aligning seman-
tically similar entities extracted from both structured and un-
structured logs. It further introduces FOLR, a fault-oriented log
representation that incorporates KG embeddings and TF-IFF
patterns. As LogKG supports symbolic reasoning and categor-
ical classification of root causes, it aligns well with our task
and is adopted as a strong baseline. LogRule [28] performs
interpretable RCA by mining association rules from structured
logs, using item-based aggregation, disjunctive support, and
semantic expansion. Its ability to produce explainable rule-
based predictions aligns with our emphasis on interpretability,
qualifying it as a baseline. LogRCA [30] formulates RCA as
identifying a minimal subset of fault-indicating logs using PU-

learning and Transformer-based scoring. Although it achieves
high recall in retrieving relevant log spans, it does not generate
fault type predictions and is thus excluded. LOGAN [31] is
a high-throughput log parser that extracts templates from dis-
tributed log streams via dynamic LCS-based matching. While
effective in parsing and anomaly localization, it assumes ac-
cess to both normal and abnormal logs, and does not support
root cause categorization. LogPrompt [32] leverages prompt
engineering for zero/few-shot RCA, incorporating strategies
such as Self-Prompt, Chain-of-Thought (CoT) [35], and In-
Context Learning (ICL) [36]. Although originally not intended
for RCA, we adapt LogPrompt by designing fault-type-specific
prompts that enable LLMs to reason over log contexts. Its
flexible prompting strategies and reasoning capabilities make
it suitable as a baseline. LogGPT [33], while also based on
prompt-guided inference using GPT-3.5, lacks diverse prompt-
ing strategies and RCA-oriented adaptations. As LogPrompt
subsumes its capabilities and has been selected, we exclude
LogGPT to avoid redundancy.

n this analysis, we select LogCluster [25], LogRule [28],
LogKG [29], and LogPrompt [32] as representative baselines
for evaluation.

3 Design Of LogSage

In this section, we detail the methodology of LogSage. As
shown in Figure 2, the framework consists of three steps: (1)
Fault-indicating Log Extraction (FILE) using unsupervised
clustering and LLM summarization, (2) GraphSage-based
Fault RCA (GARCA) via GraphSAGE and active learning,
and (3) Fault RCA with Trained Model.

3

Fig. 2: The framework of LogSage.

3.1 Step 1: FILE

LogSage employs the FILE module to extract fault-
indicative logs through two core procedures: unsupervised log
clustering and LLM-based explanation.

3.1.1 Log Clustering and Ranking

To isolate semantically coherent fault-related segments
from large-scale kernel logs, we first apply unsupervised
clustering. Specifically, we adopt two density-based methods:
DBSCAN [37] and OPTICS [38], which are well-suited for
noisy and irregularly distributed logs.

DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) [37] groups logs by local density, defined by
two parameters: the neighborhood radius ε and the minimum
number of points MinPts to form a cluster. It is effective in
identifying compact and localized fault regions. OPTICS
(Ordering Points To Identify the Clustering Structure) [38]
generalizes DBSCAN by avoiding a fixed ε, instead producing
a reachability plot that reveals hierarchical clusters under
varying density thresholds. This allows detection of broader or
temporally inconsistent fault patterns.

Both clustering algorithms are evaluated in our pipeline to
determine which yields better RCA accuracy. After clustering,
we identify the cluster with the latest timestamp—i.e., the one
whose logs occur closest to the kernel panic event—based on
the observation that system-critical faults are typically logged
immediately before a crash. We then chronologically sort
the logs within this selected cluster and retain them as fault-
indicating segments. These logs are subsequently passed to
the LLM-based explanation module and used for downstream
RCA. Details on parameter tuning and clustering performance
are reported in Section 4.

3.1.2 Log Explanation with LLM and Prompt Design

Kernel logs—particularly those triggered by panic or crash
events—are typically verbose, unstructured, and filled with low-
value diagnostic noise, posing challenges for both automated
parsing and human analysis. To extract semantically meaningful
information, LogSage leverages LLMs to summarize fault-
relevant log content in a structured and concise manner.

We experiment with three open-source LLMs: DeepSeek-
V3 [39], LLaMA 3-8B [40], and Mistral-7B [41], which are
accessed via different deployment modes. All three models
are fully open-source and accessible for offline deployment,

with strong support for structured summarization tasks. To
guide the models toward consistent and interpretable outputs,
we adopt a CoT [35] prompting strategy that decomposes the
summarization task into three explicit reasoning steps. As
shown in Table 4, these include (1) identifying fault clues,
(2) reasoning about root causes, and (3) composing a final
summary.

Table 4: CoT-style Prompt for Kernel Panic Log Explanation

Chain-of-Thought Prompt Template for Kernel Panic Ex-
planation

Task: Given raw kernel logs involving a kernel panic event,
explain the cause in a human-readable format using step-wise
reasoning.

Step 1: Identify Fault Clues
Scan the log to locate lines that indicate kernel panic triggers,
error codes, or faulting modules. Highlight only the most
relevant lines.

Step 2: Reason About the Cause
Interpret the extracted fault clues. Describe what might have
caused the panic, referencing relevant context if available.
Avoid speculation.

Step 3: Generate Final Summary
Produce a concise and coherent summary of the kernel panic,
its origin, and potential impact. Maintain fidelity to the log
without introducing unverifiable assumptions.

3.2 Step 2: GARCA
After extracting and structuring the fault-indicative logs,

LogSage performs GARCA by integrating GraphSAGE for
structure-aware representation learning and active learning
for efficient label acquisition. GARCA consists of two main
stages: (1) construction of a case similarity graph based on
log embeddings, and (2) RCA through GraphSAGE and label-
efficient model training. We describe each component in detail
below.

3.2.1 Graph Construction
To capture the semantic structure among historical fault

cases, we construct a case similarity graph G = (V, E), where
each node vi ∈ V corresponds to a fault-indicating log case

4

ci, and edges ei j ∈ E encode the pairwise semantic similarity
between cases ci and c j. This graph serves as the foundational
input to the GraphSAGE model in the next stage.

Instead of using general-purpose embeddings, we adopt
BigLog [42], a domain-specific language model pretrained
on large-scale industrial log corpora. BigLog is designed to
encode both syntactic patterns and semantic relationships that
are common in system logs. Given a preprocessed log case ci,
we compute its embedding hi ∈ R

d via:

hi = BigLog(ci) (1)

These embeddings are used as node features in the graph
and are expected to reflect both the contextual meaning and
log-structural regularities required for RCA tasks.

To construct graph edges, we calculate semantic similarity
between each pair of log cases using cosine similarity:

sim(hi, h j) =
h⊤i h j

∥hi∥ · ∥h j∥
(2)

An undirected edge is added between nodes vi and v j if their
similarity exceeds a predefined threshold τ. The edge weight
wi j is proportional to their similarity, defined as:

wi j =

α · sim(hi, h j), if sim(hi, h j) ⩾ τ
0, otherwise

(3)

Here, sim(hi, h j) denotes the cosine similarity between node
embeddings hi and h j. The scaling factor α ∈ (0, 1] modulates
the edge strength. In our implementation, we set α = 1.0,
which retains the original cosine similarity and performs well
in practice.

The threshold τ ∈ [0, 1] controls the sparsity of the graph and
plays a crucial role in filtering out low-confidence connections.
We empirically determine its value via a sensitivity analysis
(see Section 4). As shown in experiments, setting τ =
0.6 achieves the best trade-off between noise reduction and
semantic coverage.

The resulting graph G thus captures the latent structure of
historical fault cases and provides the basis for learning node-
level embeddings that facilitate downstream classification and
active learning.
3.2.2 GraphSAGE-Based RCA with Active Learning

To learn context-aware representations of log cases in the
similarity graph G = (V, E), we employ the GraphSAGE
framework [43]. GraphSAGE generates node embeddings
inductively by recursively aggregating features from each
node’s neighborhood. The representation of each node is
updated layer by layer as follows.

Let h(k)
v ∈ R

d denote the embedding of node v at layer k,
initialized with input features h(0)

v from BigLog [42]. The update
process at layer (k + 1) includes:

1. Neighbor aggregation:

m(k+1)
v = AGGREGATE(k)

(
{h(k)

u : u ∈ N(v)}
)

(4)

where N(v) denotes the first-order neighbors of v, and
AGGREGATE(k) is a permutation-invariant function (e.g.,
mean or LSTM).

2. Feature transformation:

h̃(k+1)
v = W (k) · CONCAT(h(k)

v ,m
(k+1)
v) (5)

where W (k) ∈ Rd′×2d is a trainable weight matrix, and
CONCAT denotes the concatenation of the current node
and its aggregated neighbor features.

3. Non-linear activation:

h(k+1)
v = σ

(
h̃(k+1)

v

)
(6)

with σ as a non-linear activation function such as ReLU.
Optional normalization may be applied to stabilize train-
ing.

After K = 2 layers of aggregation, we obtain the final node
embedding hv = h(K)

v , which captures both semantic content
and structural context.

To minimize annotation cost, we adopt an active learning
strategy based on prediction uncertainty, a widely used and
effective approach in graph-based semi-supervised learning.
Specifically, we train a lightweight classifier (e.g., logistic
regression) over the current node embeddings and compute
the entropy of prediction for each unlabeled node:

H(v) = −
C∑

c=1

p(c)
v log p(c)

v (7)

where p(c)
v is the predicted probability of class c. We then

select the top-M nodes with the highest entropy values as the
query set Q:

Q = Top-M (H(v)) (8)

Following our experiment design (Section 4), we initialize
the training with 1% randomly labeled data, and perform 5
rounds of active learning. In each round, we query 1% of the
most uncertain nodes, resulting in a final labeled set of 6%
of the training graph. We find that RCA performance plateaus
after 4–5 rounds, indicating the high label efficiency of our
method.

The expert-labeled pairs L = {(hv, yv)}v∈Q are then used to
retrain the classifier, which is finally applied to predict the root
cause labels of all remaining unlabeled cases. This entropy-
driven sampling method ensures that labeling effort is focused
where it is most impactful.

3.3 Step 3: Online RCA with Graph-Augmented Inference
In the final step, LogSage performs online root cause

classification for newly observed kernel panic cases using the
models trained offline—specifically, the GraphSAGE encoder
and the lightweight classifier trained on expert-labeled historical
data.

Given a new kernel panic log, we first apply the same
preprocessing and summarization pipeline as in the offline
phase, resulting in a structured and semantically condensed
log case. This new case is then encoded into a semantic vector
using the pretrained BigLog encoder. To enable structure-aware
inference, we temporarily insert the new case into the historical
case graph. Specifically, we compute cosine similarity between
h(0)

vnew and all historical case embeddings {h(0)
u }u∈V , and connect

the new node vnew to its top-k most similar neighbors:

N(vnew) = Top-k
(
sim(h(0)

vnew
, h(0)

u)
)

(9)

We set k = 10 in our implementation. This choice is based on
practical experience and prior work [43], and provides a good
balance between structural coverage and computational cost.
As the new cases are unlabeled in production environments, k
cannot be tuned through supervised validation. We treat it as a
non-critical hyperparameter and observe that LogSage remains
robust to small variations in its value.

5

Using the augmented graph Gnew = (V ′, E′), where V ′ =
V ∪ {vnew} and E′ = E ∪ Enew, we apply the pretrained
GraphSAGE model to compute the updated embedding of the
new node by aggregating information from its neighbors:

h(K)
vnew
= GraphSAGE(vnew,N(vnew), {h(0)

u }) (10)

Finally, this embedding is fed into the trained classifier to
predict the root cause label:

yvnew = softmax(Wclf · h(K)
vnew
+ b) (11)

This graph-augmented inference process enables efficient
and accurate RCA in deployment. By leveraging both semantic
similarity and structural context from historical faults, LogSage
delivers consistent and explainable predictions for previously
unseen kernel panic cases.

4 Experiments
In this section, we evaluate LogSage by addressing the

following research questions (RQs):
• RQ1: How does LogSage perform in kernel panic RCA

compared to the state-of-the-art methods?
• RQ2: How Do Different LLMs Affect LogSage ’s

Performance on the RCA Task?
• RQ3: How does each component of LogSage contribute

to the overall RCA results?
• RQ4: How do key hyperparameters affect LogSage ’s

performance in RCA tasks?

4.1 Experimental Design
4.1.1 Datasets

We evaluate LogSage using three real-world datasets:
• Dataset 1: Sourced from the ByteDance production

environment. It contains 20,000 kernel panic incidents
across 32 fault cases, accompanied by over 43.26 million
raw logs.
• Dataset 21): Collected from the Alibaba Cloud Tianchi

platform, which records data from production-deployed
servers. This dataset includes 2,671 fault cases accumu-
lated over several weeks.
• Dataset 32): Sourced from an OpenStack-based system

deployed by China Mobile, which operates on a large-scale
4G/5G core network infrastructure. The dataset contains
93 fault cases collected over a 24-day observation period.

4.1.2 Implementation Details and Environment
LogSage is implemented in Python 3.8. The graph-based

reasoning module is built using PyTorch and DGL, employing
a multi-layer GraphSAGE [43] architecture for fault-type
classification. For log summarization, we leverage a variety
of LLMs. Specifically, we deploy LLaMA 3 [40] and Mistral
7B [41] locally, and access DeepSeek-V3 [39] via its API. The
local models are loaded from open-source weights on Hugging
Face.3)4)

All experiments are conducted on a high-performance server
equipped with 10 NVIDIA A6000 GPUs, each with 64 GB

1)https://tianchi.aliyun.com/competition/
entrance/531947/information

2)https://github.com/SycIsDD/LogKG
3)https://huggingface.co/meta-llama/Llama-

3.1-8B-Instruct
4)https://huggingface.co/mistralai/Mistral-

7B-Instruct-v0.1

of RAM. The full training and evaluation pipeline—including
LLM-based summarization, graph construction, GraphSAGE
encoding, and RCA classification—is implemented and opti-
mized for efficient end-to-end execution.

4.1.3 Baselines

We compare LogSage against four representative baseline
methods selected based on their compatibility with our RCA
classification formulation. To ensure fair and consistent
evaluation, all baselines are adapted to use the same training/test
splits and actively labeled samples as LogSage. Below, we
describe how each baseline is integrated into our evaluation
pipeline.

• LogCluster [25]: This method performs unsupervised
clustering over TF-IDF-weighted representations of log
cases. To adapt it for root cause classification, we first
apply clustering to all training samples and then annotate
each cluster centroid using the actively labeled samples.
We ensure that each cluster contains at least one labeled
case, and assign the cluster’s fault type based on the most
representative labeled sample. During inference, each test
case is assigned to its nearest cluster, and the label of that
cluster is used as the prediction. This approach enables
LogCluster to participate in classification-based evaluation
while remaining label-efficient.
• LogRule [28]: LogRule discovers interpretable associa-

tion rules from structured log patterns. We use the actively
labeled training samples as ground truth during rule min-
ing, filtering, and evaluation. These labels are used to se-
lect and validate high-confidence, class-specific rules. For
inference, each test sample is evaluated against the mined
rule set, and the most strongly matched rule determines
the predicted fault category. This adaptation preserves
LogRule’s interpretability while aligning its supervision
level with that of LogSage.
• LogKG [29]: LogKG builds a heterogeneous knowledge

graph from structured and unstructured logs, using seman-
tic alignment and symbolic reasoning for RCA. In our
adaptation, we follow the original design by clustering
the FOLR, and then annotate the resulting cluster centers
using the actively labeled training samples. Each test case
is assigned to its nearest cluster based on vector similarity
and inherits the associated fault label. This allows LogKG
to operate under the same supervision setting as LogSage
and supports categorical fault classification.
• LogPrompt [32]: This method reformulates RCA as a

prompt-based classification task using LLMs. We adapt it
by designing RCA-specific prompts that incorporate few-
shot examples drawn from the actively labeled training
set. Each test case is inserted into the prompt context
and processed using the same LLMs as in LogSage.
LogPrompt receives supervision solely via these prompt
examples, enabling few-shot reasoning. We ensure
consistency in prompt format, model usage, and inference
settings to support fair comparison.

All baseline methods are re-implemented or faithfully
adapted based on their original papers or official codebases.
Hyperparameters are tuned exclusively on the training split, and
test labels are never accessed during training, adaptation, or
prompt design. This ensures all methods are evaluated under
identical data splits and supervision budgets.

6

https://tianchi.aliyun.com/competition/entrance/531947/information
https://tianchi.aliyun.com/competition/entrance/531947/information
https://github.com/SycIsDD/LogKG
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

Table 5: RCA performance comparison across three datasets

Method
Dataset 1 Dataset 2 Dataset 3

P F R T P F R T P F R T

LogCluster 42.6 38.3 36.9 0.03 40.1 35.9 34.5 0.01 58.7 54.4 53.1 0.01
LogRule 65.9 61.5 60.3 0.02 63.2 59.8 58.1 0.02 64.0 59.2 58.6 0.02
LogKG 81.3 76.7 75.4 2.40 79.9 75.0 74.3 2.45 80.2 76.2 75.0 2.42

LogPrompt 74.7 70.1 68.9 4.26 73.5 69.3 67.6 4.24 75.6 71.0 69.2 4.25
LogSage 92.4 92.2 91.8 3.21 94.1 95.3 95.9 3.08 96.7 96.3 95.9 3.10

4.1.4 Evaluation Metrics
We formulate RCA as a multi-class classification task, where

each kernel panic case is assigned to one of the predefined root
causes. To comprehensively evaluate model performance, we
adopt the following widely-used metrics:

• Precision: Measures the proportion of correctly predicted
cases among all cases assigned to a given root cause:

Precisioni =
T Pi

T Pi + FPi
(12)

A higher precision indicates fewer false positives for class
i.
• Recall: Measures the proportion of correctly predicted

cases among all actual cases of a given root cause:

Recalli =
T Pi

T Pi + FNi
(13)

A higher recall indicates better coverage of the true
instances for class i.
• Macro F1-Score: Balances precision and recall for each

root cause and computes their unweighted average:

F1i = 2 ×
Precisioni × Recalli
Precisioni + Recalli

(14)

Macro F1 =
1
N

N∑
i=1

F1i (15)

where N is the total number of root cause classes. Macro
F1 treats each class equally and is particularly suitable for
imbalanced classification.
• Runtime: Measures the average time to complete RCA

for a single case, including all preprocessing, embedding,
and classification steps. This reflects the efficiency and
deployability of each method.

To assess both classification performance and label efficiency,
all metrics are reported after each round of active learning,
enabling us to track how model performance evolves with
incremental supervision.

4.2 RQ1: How does LogSage perform compared to baseline
methods on different datasets?

To evaluate the effectiveness and robustness of LogSage,
we conduct a comprehensive comparison with four represen-
tative methods—LogCluster, LogRule, LogKG, and Log-
Prompt—across three real-world datasets. We adopt Preci-
sion (P), Macro F1-score (F), Recall (R), and Runtime (T) as
evaluation metrics. Table 5 summarizes the detailed results.

LogCluster exhibits the lowest performance across all
datasets. On Dataset 1, it yields 42.6% precision, 38.3 F1-
score, and 36.9% recall. On Dataset 2 and Dataset 3, it

performs similarly poorly, with F1-scores of 35.9 and 54.4,
respectively. Its advantage lies in the fastest inference time of
0.01–0.03 seconds due to its simple heuristic-based clustering.
However, it fails to capture semantic patterns. LogRule
improves upon LogCluster with higher precision and recall,
leveraging historical pattern-matching rules. On Dataset 1, it
achieves 65.9% precision, 61.5 F1-score, and 60.3% recall. It
maintains similar performance on the other datasets, with a
stable inference time of 0.02 seconds. Despite its efficiency,
LogRule suffers from poor generalization to unseen failure
patterns. LogKG enhances log understanding through domain-
specific knowledge graphs. It achieves 81.3% precision, 76.7
F1-score, and 75.4% recall on Dataset 1, with comparable
improvements on Dataset 2 and 3. However, its runtime
increases to 2.4–2.45 seconds, which may limit scalability in
low-latency environments. LogPrompt uses LLMs for few-
shot classification. On Dataset 1, it achieves 74.7% precision,
70.1 F1-score, and 68.9% recall. On Dataset 2 and 3, F1-
scores reach 69.3 and 71.0, respectively. Despite its strong
semantic capacity, LogPrompt suffers from the highest latency
(4.24–4.26 seconds), as it lacks structural guidance and requires
repeated LLM inference. LogSage achieves the best overall
performance across all datasets. On Dataset 1, it reaches 92.4%
precision, 92.2 F1-score, and 91.8% recall. On Dataset 2, it
achieves 94.1% precision, 95.3% F1-score, and 95.9% recall.
On Dataset 3, it obtains 96.7% precision, 96.3% F1-score, and
95.9% recall. With an inference time of around 3.1 seconds,
LogSage remains suitable for post-mortem RCA tasks where
latency is not mission-critical.

In conclusion, LogSage consistently outperforms existing
baselines across all evaluation metrics. Although LogSage
introduces moderate inference latency, this is acceptable in
typical RCA settings. Unlike real-time anomaly detection tasks
that demand instant response, RCA is inherently retrospective
and tolerates slightly delayed outputs. Therefore, the runtime
overhead of LogSage is justified by its substantial gain in
precision, recall, and interpretability, making it well-suited
for practical deployment in complex and dynamic system
environments.

4.3 RQ2: How Do Different LLMs Affect LogSage ’s
Performance on the RCA Task?

To assess the impact of different LLMs on the performance of
LogSage, we compare three representative models—DeepSeek
V3 [39], LLaMA 3 [40], and Mistral 7B [41]—across three
real-world datasets. We evaluate each model using four metrics:
Precision, Recall, F1 Score, and Inference Time. The results
are visualized in Figure 3.

Overall Performance. DeepSeek V3 achieves the best
performance across all datasets and metrics. On Dataset 1,
it yields 92.4% precision, 91.8% recall, and 92.2 F1-score; on

7

DeepSeek V3 LLaMA 3 Mistral 7B
0

20

40

60

80

100
Pr

ec
isi

on
 (%

)
92.40

88.10 85.20
94.10

89.20 86.50
96.70

90.30 87.40

Precision

DeepSeek V3 LLaMA 3 Mistral 7B
0

20

40

60

80

100

Re
ca

ll
(%

)

91.80
87.40 84.00

95.90
90.20

85.90
95.90

91.00
84.50

Recall

DeepSeek V3 LLaMA 3 Mistral 7B
0

20

40

60

80

100

F1
-S

co
re

 (%
)

92.20
87.70 84.60

95.30
89.90 86.30

96.30
90.20

85.10

Macro F1-Score

DeepSeek V3 LLaMA 3 Mistral 7B
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
(s

)

3.21
2.94

2.50

3.08
2.85

2.45

3.10
2.88

2.48

Runtime

Dataset 1 Dataset 2 Dataset 3

Fig. 3: Performance comparison of different LLMs.

Dataset 2, it reaches 94.1%, 95.9%, and 95.3 respectively; and
on Dataset 3, it achieves the highest values—96.7% precision,
95.9% recall, and 96.3 F1. This consistent superiority reflects
its strong generalization and robustness for diverse kernel panic
logs. Model Comparison. LLaMA 3 shows stable but slightly
lower results compared to DeepSeek V3. Its F1-score varies
between 87.7–90.2 across datasets, and recall peaks at 91.0
on Dataset 3. In contrast, Mistral 7B achieves the lowest F1
and precision across all datasets. These results suggest that
Mistral 7B is more sensitive to dataset-specific characteristics,
while LLaMA 3 provides a more balanced baseline. Inference
Efficiency. As shown in the last subplot of Figure 3, Mistral
7B achieves the fastest inference time (2.45–2.50s per case),
followed by LLaMA 3 (2.85–2.94s), while DeepSeek V3
requires slightly more time (3.08–3.21s). Nonetheless, the
performance improvements offered by DeepSeek V3 justify
its modest overhead. Since RCA typically occurs post-failure
and does not require real-time response, this level of latency
remains acceptable in practical deployments.

In conclusion, DeepSeek V3 consistently achieves the
best performance across all evaluation metrics and datasets,
demonstrating its superior capability. Despite incurring slightly
higher inference time compared to other models, its accuracy
and robustness significantly outweigh this cost. Therefore,
we adopt DeepSeek V3 as the default LLM backbone in
all subsequent experiments, including ablation studies and
component evaluations. This ensures a stable and high-

performing foundation for analyzing the effectiveness of
LogSage.

4.4 RQ3: How does each component of LogSage contribute
to the overall RCA results?

To evaluate the contribution of each module in LogSage, we
conduct ablation studies on its two core components: FILE and
GARCA.

4.4.1 Ablation on FILE

We compare three variants: (1) directly using raw logs as
input (w/o FILE), (2) using FILE without LLM summarization
(FILE (No LLM)), and (3) the complete FILE module (FILE
(Full)). Results across three datasets are shown in Table 6.

Among the three variants, w/o FILE consistently yields
the lowest performance. Precision ranges from 40.1% to
58.7%, and recall is generally below 63.1%. This poor
performance highlights the challenges of using raw kernel logs
directly: the presence of noisy, redundant, or irrelevant lines
significantly weakens the discriminative power of downstream
classifiers. FILE (No LLM) shows moderate improvement
by isolating more relevant log fragments via clustering. It
improves F1-score by 10 points over the raw log, reaching
up to 71.5% on Dataset 2. This demonstrates that density-
based clustering helps extract fault-relevant regions, but the
lack of abstraction still limits its semantic clarity. FILE (Full)
achieves the best performance across all metrics and datasets. It
reaches 92.4%/94.1%/96.7% precision and 92.3%/95.3%/96.3%
f1 on Dataset 1/2/3 respectively. These results confirm the
effectiveness of combining clustering with LLM summarization
for extracting semantically rich and compact log representations.
In terms of efficiency, FILE (No LLM) is fastest (0.03–0.05s per
case), while FILE (Full) takes approximately 3.1s due to LLM
inference. Despite this overhead, the substantial performance
gains justify the latency in post-mortem RCA scenarios where
accuracy is typically prioritized.

Table 6: Ablation Study on FILE Module

Dataset Variant Precision F1 Recall Time

Dataset 1
w/o FILE 42.6 60.1 59.4 0.06
FILE (No LLM) 69.3 70.8 72.1 0.05
FILE (Full) 92.4 92.2 91.8 3.21

Dataset 2
w/o FILE 40.1 62.9 63.1 0.04
FILE (No LLM) 70.1 71.5 73.0 0.03
FILE (Full) 94.1 95.3 95.9 3.08

Dataset 3
w/o FILE 58.7 56.6 54.8 0.04
FILE (No LLM) 66.8 67.4 68.2 0.03
FILE (Full) 96.7 96.3 95.9 3.10

4.4.2 Ablation on GARCA

To investigate the contribution of the GARCA module, we
compare three configurations: (1) removing graph reasoning
and using average-pooled BigLog embeddings directly for
classification (w/o GARCA), (2) retaining graph reasoning
but replacing BigLog with a general-purpose BERT encoder
(GARCA (BERT)), and (3) using the full GARCA design
with structure-aware modeling and domain-specific embeddings
(GARCA (Full)). The results are reported in Table 7.

Among the three variants, w/o GARCA performs the worst
across all datasets, with F1-scores below 69%. For example, on
Dataset 1, it yields 65.1% precision, 66.7 F1, and 64.9% recall.

8

This confirms that simply averaging log embeddings fails to
capture inter-case dependencies or latent patterns. GARCA
(BERT) introduces graph reasoning but lacks domain-aware
encoding. It improves F1 by 7–9 points compared to w/o
GARCA, reaching 75.2 on Dataset 2. However, the generic
language representations still limit its ability to distinguish
fine-grained root causes. GARCA (Full) consistently achieves
the best performance. It reaches 92.4%, 94.1%, and 96.7%
precision on the three datasets, and achieves 92.2%, 95.3%,
and 96.3% F1-scores. This demonstrates the effectiveness of
combining structure-aware GNN reasoning with log-specific
semantic encoding from BigLog.In terms of efficiency, GARCA
(BERT) is slightly faster due to lighter encoding, but the runtime
difference is marginal (e.g., 3.21s vs 2.98s on Dataset 1).
Overall, the significant improvement in precision and F1-score
validates the design choice of GARCA (Full) for robust RCA
performance.

Table 7: Ablation Study on GARCA Module

Dataset Variant Precision F1 Recall Time

Dataset 1
w/o GARCA 65.1 66.7 64.9 3.14
GARCA (BERT) 73.2 74.4 72.8 2.98
GARCA (Full) 92.4 92.2 91.8 3.21

Dataset 2
w/o GARCA 67.4 68.2 66.5 2.83
GARCA (BERT) 74.5 75.2 73.6 2.95
GARCA (Full) 94.1 95.3 95.9 3.08

Dataset 3
w/o GARCA 62.9 63.5 61.8 2.72
GARCA (BERT) 71.1 72.0 70.2 3.06
GARCA (Full) 96.7 96.3 95.9 3.10

The results demonstrate the necessity of both modules. FILE
enhances the signal-to-noise ratio of logs through clustering
and abstraction, enabling effective summarization of fault-
related behavior. GARCA further models case relationships
and propagation patterns via graph-based reasoning. Their
joint design achieves state-of-the-art RCA performance with
acceptable runtime overhead.

4.5 RQ4: How do key hyperparameters affect LogSage ’s
performance in RCA tasks?

To assess the robustness and adaptability of LogSage, we
conduct sensitivity analysis on two critical components:The
impact of different clustering methods and the influence of key
hyperparameters in the GraphSAGE model.

4.5.1 Impact of Clustering Methods
To assess the impact of different clustering strategies, we

compare OPTICS and DBSCAN under identical downstream
settings. Figure 4 presents the RCA performance across three
datasets in terms of precision, recall, F1-score, and runtime.

Performance Comparison. DBSCAN consistently outper-
forms OPTICS in all datasets and evaluation metrics. For exam-
ple, on Dataset 1, DBSCAN achieves 92.4% precision, 91.8%
recall, and F1-score of 92.2, compared to 88.5%, 87.7%, and
88.0 with OPTICS. A similar trend is observed in Dataset 2 and
Dataset 3. These results indicate that DBSCAN is better suited
in capturing compact and semantically aligned clusters. Effi-
ciency. The runtime of both methods is nearly identical across
datasets. For instance, on Dataset 1, OPTICS and DBSCAN
take 3.23s and 3.21s respectively; in Dataset 3, the difference
is 3.11s vs. 3.10s. This indicates that DBSCAN’s performance
gain comes with no significant cost in efficiency.

In conclusion, DBSCAN emerges as the more effective
clustering algorithm in LogSage. It consistently yields higher
precision and F1-score, making it a better default for RCA
pipelines.

OPTICS DBSCAN
0

20

40

60

80

100

Pr
ec

isi
on

 (%
)

88.50
92.4090.30

94.1091.80
96.70

Precision

OPTICS DBSCAN
0

20

40

60

80

100

Re
ca

ll
(%

)

87.70
91.8092.10

95.9093.00 95.90

Recall

OPTICS DBSCAN
0

20

40

60

80

100

F1
-S

co
re

 (%
)

88.00
92.2091.20

95.30
92.10

96.30

F1-Score

OPTICS DBSCAN
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

3.23 3.21
3.05 3.083.11 3.10

Runtime

Dataset 1 Dataset 2 Dataset 3

Fig. 4: Performance of different clustering methods on RCA

4.5.2 Impact of Similarity Threshold τ on Graph Construction

We study the impact of the similarity threshold τ on the
construction of the case similarity graph. This threshold
determines which edges are retained between log cases: higher
values retain only highly similar neighbors, while lower values
admit weaker (and potentially noisy) connections.

As shown in Figure 5, RCA performance improves steadily
as τ increases from 0.3 to 0.6 across all three datasets. For
example, in Dataset 1, the F1-score rises from 83.0% at τ = 0.3
to 92.2% at τ = 0.6. A similar trend is observed in Dataset 2
(from 83.5% to 95.3%) and Dataset 3 (from 81.5% to 96.3%).
However, further increasing τ beyond 0.6 leads to performance
degradation. This is because overly strict thresholds prune out
helpful neighbors, reducing the effectiveness of graph-based
reasoning.

In conclusion, τ = 0.6 offers the best trade-off between noise
filtering and semantic coverage, and is thus selected as the
default threshold in LogSage.

4.5.3 Impact of Active Learning Rounds

We analyze how the number of active learning rounds affects
RCA performance. Starting with an initial labeled set of 1%,
we conduct 5 rounds of uncertainty-based sampling, where each
round adds 1% of informative samples. The test set remains
fixed across all rounds.

As shown in Table 8, RCA performance improves substan-
tially during the first four rounds. On all datasets, the F1-score
and recall grow steadily, while precision also rises before sta-
bilizing. Notably, round 4 yields the best overall results, with
F1-scores exceeding 95% on Dataset 2 and Dataset 3. The
marginal gains in round 5 (less than 0.3%) indicate that the ma-
jority of informative cases are already captured, and additional
annotation has diminishing returns.

These results suggest that LogSage achieves strong RCA
performance after only 4 rounds of active learning, using just
5% of labeled data. This confirms the label efficiency of the
framework, and supports our choice of 5 rounds as a good

9

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Threshold ()

82.5

85.0

87.5

90.0

92.5

95.0

Pr
ec

isi
on

 (%
)

Precision
Dataset 1
Dataset 2
Dataset 3

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Threshold ()

82.5

85.0

87.5

90.0

92.5

95.0

Re
ca

ll
(%

)

Recall
Dataset 1
Dataset 2
Dataset 3

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Threshold ()

82.5

85.0

87.5

90.0

92.5

95.0

F1
-S

co
re

 (%
)

F1-Score
Dataset 1
Dataset 2
Dataset 3

Fig. 5: Impact of similarity threshold (τ).

balance between cost and performance.

Table 8: RCA performance across different active learning
rounds

Dataset Metric Round

0 1 2 3 4 5

Dataset 1
P 75.4 83.7 88.5 91.1 92.4 92.3
F 72.0 81.6 87.2 89.8 92.2 91.1
R 70.6 80.5 86.4 89.3 91.8 91.0

Dataset 2
P 76.8 85.4 89.8 92.7 94.1 93.9
F 74.1 84.2 88.9 91.5 95.3 94.9
R 73.2 83.5 88.2 91.0 95.9 95.6

Dataset 3
P 74.5 84.1 89.2 92.1 96.7 94.5
F 71.5 82.0 88.0 91.0 96.3 95.6
R 70.3 81.3 87.3 90.6 95.9 95.2

4.5.4 GraphSAGE Hyperparameter Sensitivity

To evaluate the robustness of LogSage’s graph-based reason-
ing module, we investigate the impact of four key hyperparame-
ters in GraphSAGE: the number of neighbors, number of layers,
learning rate, and dropout rate, each visualized in Figure 6.

Number of Neighbors. As shown in Figure 6(a), increasing
the number of neighbors (k) from 5 to 15 leads to consistent
improvements across all metrics. Performance peaks at k = 15,
where F1-score reaches 92.2%. Beyond this point, a decline
is observed due to noisy neighbor aggregation. Number of
Layers. In Figure 6(b), the model performs best with 3
GraphSAGE layers, achieving a maximum F1-score of 92.2%.
Adding a fourth layer results in performance degradation,

likely due to over-smoothing effects that dilute discriminative
information in deeper GNNs. Learning Rate. According to
Figure 6(c), a learning rate of 10−3 provides the best stability
and performance, achieving 92.4% precision and 92.2% F1-
score. Both a smaller rate (10−4) and a larger one (10−2) result
in suboptimal learning behavior. Dropout Rate. As illustrated
in Figure 6(d), the best performance is achieved with a dropout
rate of 0.1, balancing regularization and representation capacity.
A high dropout of 0.5 leads to underfitting and significantly
reduces performance across all metrics.

5 10 15 20
Neighbors (k)

88

89

90

91

92

Pe
rfo

rm
an

ce
 (%

)

(a) Number of Neighbors
Precision
Recall
F1-score

1 2 3 4
GraphSAGE Layers

87

88

89

90

91

92

Pe
rfo

rm
an

ce
 (%

)

(b) Number of Layers
Precision
Recall
F1-score

1e-04 1e-03 1e-02
Learning Rate

88

89

90

91

92

Pe
rfo

rm
an

ce
 (%

)

(c) Learning Rate
Precision
Recall
F1-score

0.0 0.1 0.3 0.5
Dropout Rate

87

88

89

90

91

92

Pe
rfo

rm
an

ce
 (%

)

(d) Dropout Rate
Precision
Recall
F1-score

Fig. 6: Sensitivity of GraphSAGE’s hyperparameters

In conclusion, LogSage shows robust performance across a
reasonable hyperparameter range. The optimal configuration
used in our experiments is: k = 15, 3 layers, learning rate
= 10−3, and dropout rate = 0.1.

5 Deployment and Case Study
In ByteDance, the System Technologies and Engineering

(STE) team is responsible for ensuring the reliability and
stability of large-scale cloud services. To assist operations
engineers in diagnosing kernel panics, we developed LogSage,
which has been successfully integrated into the STE team’s
production RCA workflow, significantly improving diagnostic
accuracy and operational efficiency.

5.1 Deployment Workflow

LogSage has been deployed in ByteDance’s production
environment to support the analysis of kernel panic incidents
over the past six months. As illustrated in Figure 7, the
deployment process consists of three key stages:
(1) Kernel Panic Log Collection: Logs are continuously
ingested from production nodes via Kafka, RESTful APIs, and
internal monitoring agents, covering a broad spectrum of kernel
failure events.
(2) RCA Processing: The incoming logs are processed through
the LogSage pipeline. The FILE module first condenses raw
logs through filtering and summarization, followed by the
GARCA module, which performs semantic reasoning and root
cause classification.
(3) Report Generation: LogSage produces structured reports
detailing the nature of the kernel panic, likely root causes,
and potential mitigation strategies, which are consumed by
operators through internal tools.

10

Fig. 7: Deployment workflow of LogSage in ByteDance

5.1.1 Production RCA Results

To evaluate LogSage ’s real-world effectiveness, we analyzed
a large batch of annotated kernel panic cases collected in the
deployment period. These cases span five common failure
categories identified by STE engineers: memory leak, CPU
overload, driver failure, hardware fault, and null pointer
exception.

As shown in Figure 8, LogSage achieves strong classification
performance across all categories. Precision ranges from 90.2%
to 94.5%, recall from 90.3% to 94.0%, and F1-score from
90.0% to 93.8%. Notably, the model performs best on CPU
overload (F1 = 93.8%) and driver failure (Precision = 94.5%),
suggesting its strength in identifying both resource-related and
device-level anomalies.

In terms of efficiency, the end-to-end runtime remains under
3.2 seconds for all root causes, confirming LogSage ’s feasibility
for operational use. This balance of accuracy and latency
ensures that RCA results can be delivered in a timely manner
for most failure recovery scenarios.

Memory Leak CPU Overload Driver Failure HW Fault Null Ptr
0

20

40

60

80

100

Sc
or

e
(%

)

91.40 93.60 94.20 92.10 91.8090.90 94.00 92.50 91.40 91.7091.10 93.80 93.40 91.60 91.50

Classification Performance

Precision Recall F1-Score

Memory Leak CPU Overload Driver Failure HW Fault Null Ptr
0

2

4

Ti
m

e
(s

) 3.11 3.07 3.08 3.12 3.09

Runtime

Fig. 8: RCA results on production kernel panics.

5.2 Case Study

To further demonstrate the utility of LogSage in complex
scenarios, we present a representative kernel panic case
collected from a production server. The failure was ultimately
traced to a hardware fault, and the original log file consisted of
3162 lines.

As shown in Figure 9, we compare LogSage against the
strongest baseline (Cloud19) in this setting. While Cloud19
processes the full raw log, it struggles to distinguish signal from
noise due to the large volume of irrelevant entries. As a result,
it misidentifies the cause as a driver failure.

In contrast, LogSage first applies log clustering and relevance

ranking to extract the top 48 lines most temporally and
semantically aligned with the panic trigger. Then, a large
language model summarizes these condensed logs to highlight
critical kernel error patterns. This process enables LogSage to
correctly identify the hardware failure and provide a human-
readable RCA summary.

This case highlights how LogSage ’s two-stage pipeline—log
filtering and LLM-guided reasoning—not only reduces noise
but also enhances interpretability, helping engineers quickly
understand complex failure contexts and take corrective actions.

Raw Logs

Fault-Indicating Logs

Summary

Line Timestamp Content
1 [0.000000] Linux version [REDACTED]
······
524 [12.430891] ata16: SATA link down
525 [13.314049] fuse: init (API version [REDACTED])
526 [13.315273] Process accounting resumed
······
3130 [613.022091] Kernel panic - not syncing: Fatal hardware error!
3131 [613.022091] CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded
3132 [613.022091] Hardware: [REDACTED], BIOS [REDACTED]
······

Line Timestamp Content
1 [613.022088] [Hardware Error]: Hardware error from[REDACTED]
······
18 [613.022091] Kernel panic - not syncing: Fatal hardware error!
19 [613.022091] CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded
20 [613.022091] Hardware: [REDACTED], BIOS [REDACTED]
······
46 [613.022094] cpu_startup_entry [REDACTED]
47 [613.022094] start_kernel [REDACTED]
48 [613.022094] secondary_startup_64[REDACTED]

Clustering and Ranking

The log sequence indicates a hardware error, specifically a PCIe error,
which is fatal. The error occurred on [REDACTED]. The device in
question is a PCIe device with [REDACTED].
The error is accompanied by an AER (Advanced Error Reporting)
status and severity, and the TLP (Traffic Layer Protocol) header of the
transaction that caused the error is also logged.
The error has caused a kernel panic, leading to a system crash.
This suggests a hardware issue with the PCIe device in question,
which may require replacement or further investigation.

Explanation with LLM

Chaos
3162 Lines

Complexity
48 Lines

Clarity

Fig. 9: Case study: RCA comparison on a hardware fault.

6 Conclusion and Future Work
In this paper, we introduced LogSage, a novel and practical

framework for RCA of kernel panics in large-scale cloud
services. LogSage seamlessly integrates log clustering, LLMs,
and a GraphSAGE-based RCA network to enable effective
fault log extraction and long-range dependency modeling. This
combination allows LogSage to handle the inherent noise,
heterogeneity, and complexity of kernel panic logs in real-world
systems. Deployed in ByteDance’s production environment,
LogSage significantly reduces manual effort in RCA tasks and
achieves high performance, with an accuracy of 0.91 and a
macro F1-score of 0.86. Moreover, the system consistently
delivers strong results across multiple fault types, including
both frequent and rare kernel panic scenarios. These outcomes
underscore its robustness, scalability, and practical value in
industrial cloud infrastructure.

In future work, we plan to extend LogSage in several
directions. First, we aim to evaluate its effectiveness in
additional production environments across diverse hardware
and software stacks to further validate its generalizability.
Second, we will explore integrating online learning techniques
to adapt to evolving system behaviors and newly emerging fault

11

patterns. Lastly, we envision combining LogSage with real-
time alerting systems and feedback loops to support continuous
RCA improvement and autonomous incident management.
Overall, LogSage represents a promising step toward intelligent,
automated RCA for critical system failures in modern cloud
platforms.

References
1. Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang,

Pankaj Singh, Xinsheng Yang, Qingwei Lin, Youjiang Wu,
Sebastien Levy, and Murali Chintalapati. Gandalf: An intelligent,
End-To-End analytics service for safe deployment in Large-Scale
cloud infrastructure. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 389–402,
Santa Clara, CA, February 2020. USENIX Association.

2. Yulun Ma and Yue Hu. Business model innovation and
experimentation in transforming economies: Bytedance and
tiktok. Management and Organization Review, 17(2):382–388,
2021.

3. Xin He, Keyu Hua, Chen Ji, Haichuan Lin, Zhengqi Ren, and
Wenyu Zhang. Overview on the growth and development of
tiktok’s globalization. In 2021 3rd International Conference on
Economic Management and Cultural Industry (ICEMCI 2021),
pages 666–673. Atlantis Press, 2021.

4. Ya Su, Youjian Zhao, Ming Sun, Shenglin Zhang, Xidao Wen,
Yongsu Zhang, Xian Liu, Xiaozhou Liu, Junliang Tang, Wenfei
Wu, et al. Detecting outlier machine instances through gaussian
mixture variational autoencoder with one dimensional cnn. IEEE
Transactions on Computers, 71(4):892–905, 2021.

5. Sanan Hasanov, Stefan Nagy, and Paul Gazzillo. A little goes a
long way: Tuning configuration selection for continuous kernel
fuzzing. In 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE), pages 521–533. IEEE Computer
Society, 2024.

6. Zhaofeng Li, Vikram Narayanan, Xiangdong Chen, Jerry Zhang,
and Anton Burtsev. Rust for linux: Understanding the security
impact of rust in the linux kernel. In 2024 Annual Computer
Security Applications Conference (ACSAC), pages 548–562,
2024.

7. Peiluan Li, Changjin Xu, Muhammad Farman, Ali Akgul, and
Yicheng Pang. Qualitative and stability analysis with lyapunov
function of emotion panic spreading model insight of fractional
operator. Fractals, 32(02):2440011, 2024.

8. Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li,
and Dan Ding. Fault analysis and debugging of microservice
systems: Industrial survey, benchmark system, and empirical
study. IEEE Transactions on Software Engineering, 47(2):243–
260, 2021.

9. Hamzeh Zawawy, Kostas Kontogiannis, and John Mylopoulos.
Log filtering and interpretation for root cause analysis. In 2010
IEEE International Conference on Software Maintenance, pages
1–5. IEEE, 2010.

10. Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang,
Jiamu Wang, Selcuk Kopru, and Tao Xie. Groot: An event-graph-
based approach for root cause analysis in industrial settings. In
2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 419–429. IEEE, 2021.

11. Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through

deep learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’17, page 1285–1298, New York, NY, USA, 2017. Association
for Computing Machinery.

12. Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan
Pei, Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei
Sun, and Rong Zhou. Loganomaly: unsupervised detection
of sequential and quantitative anomalies in unstructured logs.
In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI’19, page 4739–4745. AAAI Press,
2019.

13. Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log
anomaly detection via bert. In 2021 international joint confer-
ence on neural networks (IJCNN), pages 1–8. IEEE, 2021.

14. Van-Hoang Le and Hongyu Zhang. Log-based anomaly detection
without log parsing. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages
492–504. IEEE, 2021.

15. Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael Jordan. Online system problem detection by mining
patterns of console logs. In 2009 ninth IEEE international
conference on data mining, pages 588–597. IEEE, 2009.

16. Robert Ricci, Eric Eide, and CloudLab Team. Introducing cloud-
lab: Scientific infrastructure for advancing cloud architectures
and applications. ; login:: the magazine of USENIX & SAGE,
39(6):36–38, 2014.

17. Adam Oliner and Jon Stearley. What supercomputers say: A
study of five system logs. In 37th annual IEEE/IFIP international
conference on dependable systems and networks (DSN’07), pages
575–584. IEEE, 2007.

18. Wei Xu, Ling Huang, Armando Fox, David Patterson, and
Michael Jordan. Largescale system problem detection by mining
console logs. In Proceedings of SOSP, volume 9, pages 1–17.
Citeseer, 2009.

19. Juan Ramos et al. Using tf-idf to determine word relevance
in document queries. In Proceedings of the first instructional
conference on machine learning, volume 242, pages 29–48.
Citeseer, 2003.

20. Rada Mihalcea and Paul Tarau. Textrank: Bringing order into
text. In Proceedings of the 2004 conference on empirical methods
in natural language processing, pages 404–411, 2004.

21. Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li,
Hongyu Zhang, Xukun Li, Yingnong Dang, Qingwei Lin,
Murali Chintalapati, Saravanakumar Rajmohan, and Dongmei
Zhang. Onion: identifying incident-indicating logs for cloud
systems. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2021,
page 1253–1263, New York, NY, USA, 2021. Association for
Computing Machinery.

22. Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba
Yu. Swisslog: Robust and unified deep learning based log
anomaly detection for diverse faults. In 2020 IEEE 31st
International Symposium on Software Reliability Engineering
(ISSRE), pages 92–103, 2020.

23. Shiwen Shan, Yintong Huo, Yuxin Su, Yichen Li, Dan Li, and
Zibin Zheng. Face it yourselves: An llm-based two-stage strategy
to localize configuration errors via logs. In Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software

12

Testing and Analysis, ISSTA 2024, page 13–25, New York, NY,
USA, 2024. Association for Computing Machinery.

24. Junjie Huang, Zhihan Jiang, Jinyang Liu, Yintong Huo, Jiazhen
Gu, Zhuangbin Chen, Cong Feng, Hui Dong, Zengyin Yang, and
Michael R. Lyu. Demystifying and extracting fault-indicating
information from logs for failure diagnosis. In 2024 IEEE 35th
International Symposium on Software Reliability Engineering
(ISSRE), pages 511–522, 2024.

25. Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and
Xuewei Chen. Log clustering based problem identification for
online service systems. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C),
pages 102–111, 2016.

26. Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang,
Michael R Lyu, and Dongmei Zhang. Identifying impactful
service system problems via log analysis. In Proceedings
of the 2018 26th ACM joint meeting on European software
engineering conference and symposium on the foundations of
software engineering, pages 60–70, 2018.

27. Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long
Wang, and Liqiang Wang. Log-based abnormal task detection
and root cause analysis for spark. In 2017 IEEE International
Conference on Web Services (ICWS), pages 389–396, 2017.

28. Paolo Notaro, Soroush Haeri, Jorge Cardoso, and Michael
Gerndt. Logrule: Efficient structured log mining for root
cause analysis. IEEE Transactions on Network and Service
Management, 20(4):4231–4243, 2023.

29. Yicheng Sui, Yuzhe Zhang, Jianjun Sun, Ting Xu, Shenglin
Zhang, Zhengdan Li, Yongqian Sun, Fangrui Guo, Junyu Shen,
Yuzhi Zhang, Dan Pei, Xiao Yang, and Li Yu. Logkg: Log
failure diagnosis through knowledge graph. IEEE Transactions
on Services Computing, 16(5):3493–3507, 2023.

30. Thorsten Wittkopp, Philipp Wiesner, and Odej Kao. Logrca: Log-
based root cause analysis for distributed services. In European
Conference on Parallel Processing, pages 362–376. Springer,
2024.

31. Byung Chul Tak, Shu Tao, Lin Yang, Chao Zhu, and Yaoping
Ruan. Logan: Problem diagnosis in the cloud using log-based
reference models. In 2016 IEEE International Conference on
Cloud Engineering (IC2E), pages 62–67, 2016.

32. Yilun Liu, Shimin Tao, Weibin Meng, Feiyu Yao, Xiaofeng
Zhao, and Hao Yang. Logprompt: Prompt engineering towards
zero-shot and interpretable log analysis. In Proceedings of the
2024 IEEE/ACM 46th International Conference on Software
Engineering: Companion Proceedings, ICSE-Companion ’24,
page 364–365, New York, NY, USA, 2024. Association for
Computing Machinery.

33. Wenxiang Jiao, Wenxuan Wang, Jen-Tse Huang, Xing Wang,
and Zhaopeng Tu. Is chatgpt a good translator? a preliminary

study. ArXiv, abs/2301.08745, 2023.
34. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional transform-
ers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio, editors, Proceedings of the 2019 Conference
of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics.

35. Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma,
Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–
24837, 2022.

36. Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui
Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. A
survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

37. Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd, volume 96, pages 226–231, 1996.

38. Mihael Ankerst, M Breunig, Hans-Peter Kriegel, R Ng, and
J Sander. Ordering points to identify the clustering structure. In
Proc. Acm Sigmod, volume 99, 2008.

39. Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

40. Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

41. Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian
Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. Mistral 7b, 2023.

42. Shimin Tao, Yilun Liu, Weibin Meng, Zuomin Ren, Hao Yang,
Xun Chen, Liang Zhang, Yuming Xie, Chang Su, Xiaosong
Oiao, et al. Biglog: Unsupervised large-scale pre-training for a
unified log representation. In 2023 IEEE/ACM 31st International
Symposium on Quality of Service (IWQoS), pages 1–11. IEEE,
2023.

43. William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In Proceedings of the
31st International Conference on Neural Information Processing
Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017.
Curran Associates Inc.

13

	Introduction
	Related Work
	Design Of LogSage
	Step 1: FILE
	Log Clustering and Ranking
	Log Explanation with LLM and Prompt Design

	Step 2: GARCA
	Graph Construction
	GraphSAGE-Based RCA with Active Learning

	Step 3: Online RCA with Graph-Augmented Inference

	Experiments
	Experimental Design
	Datasets
	Implementation Details and Environment
	Baselines
	Evaluation Metrics

	RQ1: How does LogSage perform compared to baseline methods on different datasets?
	RQ2: How Do Different LLMs Affect LogSage ’s Performance on the RCA Task?
	RQ3: How does each component of LogSage contribute to the overall RCA results?
	Ablation on FILE
	Ablation on GARCA

	RQ4: How do key hyperparameters affect LogSage ’s performance in RCA tasks?
	Impact of Clustering Methods
	Impact of Similarity Threshold on Graph Construction
	Impact of Active Learning Rounds
	GraphSAGE Hyperparameter Sensitivity

	Deployment and Case Study
	Deployment Workflow
	Production RCA Results

	Case Study

	Conclusion and Future Work

