Empirical Software Engineering (2025) 30:173
https://doi.org/10.1007/s10664-025-10701-6

®

Check for
updates

LogEval: A comprehensive benchmark suite for LLMs in log
analysis

Tianyu Cui' - Shiyu Ma' - Ziang Chen' - Tong Xiao? - Chenyu Zhao' - Shimin Tao®-
Yilun Liu® - Shenglin Zhang™*{ . Duoming Lin' - Changchang Liu’ - Yuzhe Cai' -
Weibin Meng? - Yonggian Sun'® - Dan Pei?

Accepted: 7 July 2025
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

Log analysis is vital in Artificial Intelligence for IT Operations (AIOps) and plays a crucial
role in ensuring software reliability and system stability. However, challenges such as the
absence of comprehensive evaluation standards, inconsistencies in benchmarking practices,
and limited exploration of Large Language Models (LLMs) in log-related tasks persist.
To address these issues, we introduce LogEval, a comprehensive benchmark designed to
systematically evaluate LLMs’ performance across four key log analysis tasks: log parsing,
log anomaly detection, log fault diagnosis, and log summarization. LogEval systematically
tackles these challenges through the following aspects: (i) it incorporates 4,000 publicly
available log entries, spanning diverse tasks and providing a strong foundation for evaluating
LLM performance; (ii) it utilizes standardized prompts in both English and Chinese to ensure
consistent and objective evaluations, this benchmark covers two experimental paradigms:
Naive question-answering (Q&A) and self-consistency (SC) Q&A, under both zero-shot
and few-shot settings, while also considering inference efficiency and average token usage;
(iii) it features an open-source, continuously updated platform (https://nkcs.iops.ai/LogEval/)
that integrates new LLMs and user-uploaded production data, fostering reproducibility
and adaptability in performance comparisons. The experimental results provide valuable
insights into the varying strengths of LLMs across different tasks, highlighting opportunities
for further optimization and innovation for LLMs in log analysis. Our code repository is
available at https://github.com/LinDuoming/LogEval.

Keywords Log analysis - Benchmark suite - Large language models - Prompt
engineering

Communicated by: Markus Borg.

Extended author information available on the last page of the article

Published online: 10 October 2025 @ Springer

http://orcid.org/0000-0003-0330-0028
https://doi.org/10.1007/s10664-025-10701-6
https://nkcs.iops.ai/LogEval/
https://github.com/LinDuoming/LogEval
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10701-6&domain=pdf&date_stamp=2025-9-22

173 Page 2 of 32 Empirical Software Engineering (2025) 30:173

1 Introduction

With the rapid advancement of information technology, software systems have become
essential to the operations of businesses and organizations (Cito et al. 2015). These systems
generate vast amounts of log data that capture operational behavior, status changes, and
potential failures (Li et al. 2020). As software systems grow in both scale and complexity,
the manual log analysis performed by experts is becoming increasingly difficult and error-
prone (Zhang et al. 2021; Nedelkoski et al. 2020; Wang et al. 2024; Zhong et al. 2024). It is
not only time-consuming but also inefficient, often leading to delayed responses to critical
system failures (Locke et al. 2022; Ma et al. 2024; Lin et al. 2016). Consequently, there is an
urgent need for automated log analysis tools capable of quickly providing insights to ensure
the reliability and stability of modern large-scale systems (He et al. 2021).

To meet these needs, various automated log analysis tools have been developed, focusing
on four primary tasks: log parsing (Meng et al. 2020; Zhu et al. 2019; Liu et al. 2022; Coustié
etal. 2020; Le and Zhang 2023; Xiao et al. 2020; Zhu et al. 2019; Wang et al. 2022), log anom-
aly detection (Du et al. 2017; Meng et al. 2019; Guo et al. 2021; Le and Zhang 2022; Zhao
et al. 2021; Zhang et al. 2019; Du et al. 2021), log fault diagnosis (Jia et al. 2021; Zhou et al.
2019; Zhang et al. 2021; He et al. 2018; Liu et al. 2022; Ma et al. 2022; Luo et al. 2021; Zhou
et al. 2020), and log summarization (Meng et al. 2023; Locke et al. 2022). In recent years,
deep learning (DL) methods have been widely applied in log analysis to address the limita-
tions of traditional approaches (He et al. 2021; Sui et al. 2023). Unlike traditional machine
learning (ML) methods, deep learning is more effective at handling large-scale and complex
log data (Ma et al. 2024; Le and Zhang 2022; Zhang et al. 2019), and can automatically
extract features in an end-to-end manner, avoiding the constraints of manual feature engineer-
ing and fixed rule-based methods (Liu et al. 2019). While deep learning-based approaches
offer significant improvements over traditional ML methods, they also come with certain chal-
lenges (Le and Zhang 2024). One major limitation is that deep learning models, especially
PLMs, require substantial computational resources and large datasets for both pre-training and
fine-tuning (Ma et al. 2024). Additionally, these models may struggle with domain-specific
terminologies, such as the abbreviations commonly found in logs, log events of the same
type exhibit different semantics and different log events share many similar words but exhibit
opposite (He et al. 2024), which are not typically present in general language corpora. Further-
more, the variability of logs across different systems poses another challenge, as DL models
often need to be retrained or fine-tuned frequently to effectively handle new log types.

To address the generalization challenge, data requirements, and retraining issues of
DL-based methods, researchers have begun to explore the use of Large Language Models
(LLMs) in log analysis tasks (Liu et al. 2024; Zhong et al. 2024), as LLMs have demon-
strated outstanding performance in various natural language processing (NLP) tasks such
as text generation, language translation, and sentiment analysis. LLMs like GPT-4 (OpenAl
et al. 2024), LLaMA-2 2023, ChatGLM-4 (THUDM 2024), and Qwen-1.5 (Bai et al. 2023)
have shown promising performance in these tasks. Nevertheless, with the diversification
of LLMs, their performance varies across different tasks. As a result, selecting the most
appropriate LLM for a given log analysis task has become an important consideration in
both research and practice. However, in the field of log analysis, there is currently no com-
prehensive and systematic evaluation standard or toolkit to help researchers and developers
understand and compare the performance of different LLMs across various log analysis

@ Springer

Empirical Software Engineering (2025) 30:173 Page3of32 173

tasks. The diverse architectures, model sizes, and applicability of LLMs make selecting the
optimal model a complex task that lacks scientific guidance. Therefore, there is an urgent
need to construct a unified benchmark that can scientifically assess the performance of dif-
ferent LLMs and provide objective, comprehensive comparisons. To address this, we pro-
pose and develop a comprehensive benchmark suite called LogEval, designed to evaluate
LLMs’ performance across various log analysis tasks. The main contributions of this paper
are as follows:

e Diverse Log Dataset Collection: LogEval incorporates log datasets from multiple
sources, covering core tasks such as log parsing, log anomaly detection, log fault di-
agnosis, and log summarization. This curated dataset provides a robust foundation for
evaluating LLM performance comprehensively.

o Unified and Reliable Evaluation: LogEval utilizes standardized English and Chinese
prompts to ensure consistent and objective assessments of LLMs. A unified prompt de-
sign is introduced for all tasks, minimizing variations caused by differing prompt styles
and ensuring fair comparisons. The evaluation spans two paradigms: Naive Q&A and
Self-Consistency Q&A under zero-shot setting and few-shot setting, while also consid-
ering inference efficiency and token usage.

e Dynamic Benchmarking Platform: LogEval features an open-source, continuously up-
dated online platform (https://nkcs.iops.ai/LogEval/) that allows dynamic integration of
new LLMs and user-uploaded production log data. This platform promotes reproducibility,
fairness, and adaptability in performance comparisons, ensuring long-term relevance and
scalability. Our code repository is available at https:/github.com/LinDuoming/LogEval.

2 Background

Automated log analysis typically involves four core tasks—log parsing, log anomaly detection,
log fault diagnosis, and log summarization. Each task addresses specific challenges and plays
a crucial role in transforming raw log sequences into actionable insights. Figure 1 illustrates
the sequence of these tasks in the log analysis pipeline. Below, we describe each task, the
results depicted in the figure, and the evaluation metrics used to measure their performance.

Log Parsing Log parsing is the initial task in the log analysis pipeline. It involves transform-
ing raw log data into a structured format that can be processed by subsequent tasks. The goal
of log parsing is to extract relevant components (such as interface states, error messages, or
system events) from unstructured logs and represent them in a consistent format, often as
key-value pairs or predefined templates. In Fig. 1, the first section illustrates log entries such
as interface state changes or member port status updates, which are parsed and organized

Log Anomaly Detection
Input Logs Log Parsing g ly :

Input Logs: Output: Sequence is: anomalous
Interface ac3, changed state to down ?“'ff'“: T(e;-ple:e | Pi.,mmem<v> i Log Fault Diagnosis
Interface aed, changed state to up Dl Shecnanged SHlgito (et o) Output: Fault category: Configuration Error
Interface aed, changed state to down Interface <*>, changed state to <*>| (a4, up) Log S o

) Interface <*>, changed state to <*> | (ac4, down) og Summarization
y . Output: (interface, changed to, down), (Member port,
Member port pl of . 1b ol dto,
i,,:énuveer portpl ot aggregafion group g1 became Member port <*> of aggregation group <*> became inactive | (pl, g1) became, inactive)

(@) ®) ©

Fig. 1 A demonstration of the log analysis tasks

@ Springer

https://nkcs.iops.ai/LogEval/
https://github.com/LinDuoming/LogEval

173 Page 4 of 32 Empirical Software Engineering (2025) 30:173

into templates (e.g., "Interface <*>, changed state to <*>") in the following table. This
structured output enables the identification of recurring patterns or anomalies. Metrics and
Formula: The parsing performance is evaluated using two key metrics:

® Parsing Accuracy: The formula for parsing accuracy is given by

Correctly Parsed Entries

1 1
Total Entries x 100% M

Accuracy =

where Correctly Parsed Entries refers to log lines that exactly match predefined tem-
plates, and Total Entries refers to all log entries in the dataset.

e FEdit Distance: The formula for edit distance is given by

Edit Distance =1+ D + S ?2)

where Insertions (I) is the number of characters added to match the template, Deletions
(D) is the number of characters removed to match the template, and Substitutions (S) is the
number of character replacements needed.

Log Anomaly Detection Once logs are parsed, the next step is log anomaly detection. This
task aims to identify unusual log entries that may indicate potential issues or system faults.
Anomalies are detected based on patterns that deviate from normal system behavior, such
as unexpected state changes, errors, or performance issues. In Fig. 1, the second section
of the diagram shows the log anomaly detection task. After parsing, each log sequence is
examined for anomalous behavior. For example, an unexpected interface state change or an
error message could be flagged as anomalous. The detected anomalies are then passed on for
further investigation in the fault diagnosis stage. Metrics and Formula: The performance
of anomaly detection is commonly assessed using the following metrics: - Precision (the
proportion of detected anomalies that are true positives):

Precisi True Positives 3)
recision =
True Positives + False Positives

— Recall (the proportion of actual anomalies that are correctly detected):

Recall — True Positives 4
ceatl = True Positives + False Negatives @)

— Fl-score (the harmonic mean of precision and recall):

F1 9 % Precision X Recall)
-score =
Precision + Recall

@ Springer

Empirical Software Engineering (2025) 30:173 Page50f32 173

Where True Positives (TP) are correctly identified anomalies, False Positives (FP) are
incorrectly flagged as anomalies, and False Negatives (FN) are missed anomalies.

Log Fault Diagnosis The log fault diagnosis task aims to identify the root cause of the
detected anomalies by analyzing the correlations between log entries. This step often
involves mapping anomalies to known fault categories or failure modes. In Fig. 1, the third
section illustrates this task, where the system correlates parsed and anomalous log entries
to diagnose faults. For example, a change in interface state from "up" to "down" might cor-
relate with hardware failure or misconfiguration. Metrics: This task shares the same evalu-
ation metrics with anomaly detection.

Log Summarization Finally, log summarization condenses large volumes of log data into a
concise and interpretable format, highlighting key events that require attention. The goal is to
present a summary of the most critical log entries in a format that is easy for system adminis-
trators to understand and act upon. In Fig. 1, the log summarization task is shown in the final
section, where the relevant log entries identified during the previous stages are summarized.
For example, entries like "interface changed state to down" and "member port became inac-
tive" are distilled into a more concise format that provides key insights for further analysis.
Metrics and Formula: The performance of summarization is commonly assessed using the
following metrics:

o ROUGE-L FI: The formula for ROUGE-L is given by

|ILCS(S, R)|

ROUGE-L =
R

(Recall) 6)

and the formula for F1 is given by

ROUGE-L x Pi,cs

F1=2x
ROUGE-L + Pics

(N
where LCS refers to the Longest Common Subsequence between summary (S) and refer-
ence (R), and P_LCS refers to the Precision of LCS, which is %

® Threshold Accuracy: The formula for threshold accuracy is given by

> I(ROUGE-L; > 6)
n

x 100% (3

Accuracy =

where 6 is the similarity threshold (typically 0.7-0.9), and I is the indicator function (1 if
condition met, 0 otherwise).

In this study, we carefully selected evaluation metrics tailored to the nature of each log
analysis task to ensure a comprehensive, objective, and practically meaningful assessment.
For tasks such as log anomaly detection and log fault diagnosis, we adopt Accuracy and
Fl-score as the primary evaluation metrics. Accuracy reflects the overall correctness of
predictions, especially when class distributions are relatively balanced. In contrast, F1-score,

@ Springer

173 Page 6 of 32 Empirical Software Engineering (2025) 30:173

which harmonizes precision and recall, is more suitable for scenarios with class imbalance,
a common challenge in log analysis where normal logs significantly outnumber anomalies .
Although metrics like ROC-AUC (Fawcett 2006) and PR-AUC were considered, they were
ultimately excluded due to their reliance on probabilistic outputs and threshold variation,
which are not directly applicable to classification-style outputs generated by LLMs through
prompt engineering. For tasks such as log parsing and log summary, where multiple valid
outputs may exist, we use ROUGE-L (Lin 2004) and Edit Distance to measure semantic
and structural similarity between the generated and reference texts. ROUGE-L evaluates
the longest common subsequence between two texts, capturing the structural overlap,
which is ideal for assessing key information extraction in templates or summaries. Edit
Distance quantifies the number of character-level operations needed to transform the
generated output into the reference text, making it especially useful for tasks with strict
format constraints such as log parsing. We also considered BLEU (Papineni et al. 2002), a
common n-gram based metric, but it was not chosen due to its sensitivity to word order and
reduced robustness in tasks with high output variability like summarization and parsing. To
comprehensively assess the efficiency and usability of LLMs, we additionally incorporate
Average Number of Tokens and Inference Time. These two metrics are critical for real-
world applications—longer outputs often imply higher computational and memory costs,
and longer inference times directly affect system responsiveness. While alternative system-
level metrics were considered, they were excluded due to cross-platform inconsistency and
difficulty in reproducibility. Instead, token count and time are universally measurable and
meaningful across different LLMs and environments. The metrics and formulas presented
above help evaluate the performance of each task, ensuring that the system can quickly
identify issues, diagnose faults, and generate actionable summaries for system operators.

3 Related Work

In this section, we first discuss the existing evaluations of LLMs in general NLP tasks, as
our research also focuses on evaluating LLMs. These evaluations highlight the broad appli-
cations of LLMs in NLP. However, there is currently no systematic evaluation of LLMs spe-
cifically in the field of log analysis. Therefore, we also examine the applications of LLMs
in log analysis tasks, providing context for our research and emphasizing the potential of
LLMs in this area, as well as the current lack of standardized evaluation frameworks.

3.1 Evaluation of LLMs in General NLP Tasks

The evaluation of LLMs in general NLP tasks has diversified, as these models have become
capable of handling increasingly complex and varied tasks. Such evaluations now not
only measure basic linguistic understanding and generation, but also delve into nuanced
capabilities such as reasoning, adaptability to different tasks, and the use of domain-
specific knowledge. We categorize these evaluations into two main areas: general domain
evaluations and specialized domain evaluations.

Evaluations in General Domain Comprehensive assessments are designed to evaluate the
broad capabilities of LLMs across multiple dimensions. For instance, HELM (Liang et al.

@ Springer

Empirical Software Engineering (2025) 30:173 Page70f32 173

2022) utilizes a diverse set of metrics to assess LLMs in 42 unique scenarios, providing
insights into their general linguistic abilities and reasoning skills. BIG-bench (Srivastava
et al. 2022) extends this by including tasks that challenge the models’ understanding of com-
mon sense, logic, and even creativity.

Evaluations In Specialized Domains These assessments focus on evaluating LLMs’ perfor-
mance in domains requiring specialized knowledge. For example, FinEval (Zhang et al.
2023) measures financial acumen, while MultiMedQA (Singhal et al. 2023) tests medical
knowledge using datasets derived from professional exams and consultation records. Simi-
larly, Huatuo-26M (Li et al. 2023) evaluates medical consultation capabilities, reflecting
real-world medical inquiry handling. NetOps (Miao et al. 2023) focuses on network opera-
tions, and tests LLMs with tasks that mimic real-world challenges in network management.
OpsEVAL (Liu et al. 2023) assesses the ability of LLMs to manage IT operations, through
a set of structured tasks, in both Chinese and English. RepairBench (Silva and Monperrus
2024) establishes an execution-based leaderboard for program repair, evaluating LLMs on
real-world Java bugs through test-suite validation and syntactic analysis, providing stan-
dardized assessment for Al-driven code repair.

3.2 Applications of LLMs in Log Analysis Tasks

With the growing application of LLMs in log analysis tasks, researchers are increasingly
exploring how these models can improve key processes such as log parsing and anomaly
detection.

Log Parsing LILAC (Jiang et al. 2024) leverages the in-context learning (ICL) capabilities
of LLMs by employing a hierarchical candidate sampling algorithm to select high-quality
examples for log template generation. It also introduces an adaptive parsing cache to store
and refine templates generated by LLMs, reducing query frequency and ensuring template
consistency. LogParser-LLM (Zhong et al. 2024) combines the semantic understanding
capabilities of LLMs with a prefix tree clustering approach. It utilizes LLMs to process
the semantic information of logs and performs online log parsing without requiring
hyperparameter tuning or labeled data. DivLog (Xu et al. 2023) uses the ICL capabilities
of LLMs to select diverse offline log samples as candidate examples, it then constructs
prompts to generate log templates for target logs, enabling unsupervised log parsing.
ECLIPSE (Zhang et al. 2024) integrates the semantic understanding capabilities of LLMs
with data-driven template matching algorithms to handle cross-lingual log parsing. LLMs
are used to extract semantic information from log keywords, improving parsing efficiency in
cross-lingual environments. LogPrompt (Liu et al. 2024) employs the zero-shot capabilities
of LLMs and advanced prompt strategies to perform log parsing tasks, it enhances LLM
interpretability and flexibility, enabling log analysis without relying on training data.

Log Anomaly Detection LogExpert (Wang et al. 2024) integrates LLMs with domain
knowledge from technical forums such as Stack Overflow. LLMs are utilized to parse rel-
evant technical solutions and automatically generate recommended resolutions for anoma-
lous logs, reducing the need for manual intervention. SealLog (Liu et al. 2023) employs
LLMs, such as ChatGPT, to provide expert-level feedback that enhances the accuracy of its

@ Springer

173 Page 8 of 32 Empirical Software Engineering (2025) 30:173

Trie-based Detection Agent (TDA) for real-time anomaly detection, allowing the system to
adapt to evolving log data more effectively. LogGPT (Qi et al. 2023) utilizes ChatGPT’s lan-
guage understanding and knowledge transfer capabilities through prompt-based techniques
for log anomaly detection, exploring the application of large-scale corpora knowledge to
the processing of complex log data. LogPrompt (Liu et al. 2024) everages the zero-shot
capabilities of LLMs through a set of advanced prompting strategies specifically designed
for log anomaly detection tasks. This approach enables LLMs to perform detection without
relying on training data, while also offering interpretability of the results.

Other Applications In addition to log parsing and anomaly detection, LLMs have potential
applications in various aspects of log analysis. For example, Face It Yourselves (Shan et al.
2024) introduces a two-stage, LLM-based framework for diagnosing configuration errors
through log analysis. This framework, called LogConfigLocalizer, leverages LLMs to help end-
users, particularly those without source code access, identify the root causes of configuration
issues by analyzing logs. UniLog (Xu et al. 2024) employs the ICL paradigm of LLMs to
automatically generate appropriate log statements without requiring any fine-tuning. By using
prompts with a few demonstration examples, LLMs can determine log positions, verbosity
levels, and generate log messages, thus aiding in system maintenance and troubleshooting.
LLM4Sec (Karlsen et al. 2024) utilizes various LLM architectures, such as BERT, RoBERTa,
and GPT-2 (Radford et al. 2019), to analyze log files for cybersecurity purposes. These LLMs
are fine-tuned for specific log types to enhance security log analysis. Summary Cycles (Block
etal. 2023) applies LLMs, specifically ChatGPT, to summarize interaction logs in collaborative
intelligence analysis. LLMs are used iteratively with recursive summarization techniques to
extract key entities, topics, and summaries from user interaction sequences.

However, currently there is no dedicated benchmark for evaluating the performance of
different LLMs in various log analysis tasks. This work bridges this gap and proposes an
evaluation framework for LLMs in log analysis. Our evaluation efforts intend to understand
the strengths and limitations of different LLMs in various log analysis tasks, while provid-
ing valuable resources and guidance for the log analysis domain, promoting the effective
application of LLMs in real-world scenarios.

4 LogEval Benchmark

In this section, we first introduce the platform architecture and the technical stack behind
LogEval, which provide the foundation for its operation and scalability. The architecture
is designed to ensure flexibility and extensibility, supporting a wide range of log analysis
tasks. Following this, we describe the key components of our benchmark and its specific
evaluation process.

4.1 Platform Architecture and Technology Stack
The design and implementation of the LogEval platform rely on a powerful and flexible technol-

ogy stack that ensures high scalability, efficient processing, and easy extensibility. Below, we
highlight the core aspects of the platform’s architecture and the tools chosen for log analysis.

@ Springer

Empirical Software Engineering (2025) 30:173 Page9of32 173

4.1.1 Platform Architecture

The LogEval platform is primarily developed using Python 3.9.6 and runs on Amazon EC2
servers. Flask 3.0.3 is used for building API interfaces, enabling the platform to handle
concurrent requests efficiently. The modular architecture allows components to be updated
or replaced without disrupting the entire system, ensuring the platform’s scalability. Key
features of the architecture include:

o Multilingual Support: Integration of Flask-Babel 4.0.0 enables bilingual support (Chi-
nese and English).

o Flexible Data Access: The platform uses the json 2.0.9 package for Managing data
in JSON format and Pandas 2.2.2 for data processing. These tools are chosen for their
robustness and ability to handle large-scale data efficiently.

4.1.2 Extensibility and Scalability Design

To ensure flexibility, the LogEval platform is designed to scale and integrate with new fea-
tures. The following mechanisms support its extensibility:

o Plugin Mechanism: Users can easily integrate new LLM models or log processing
techniques by adding custom plugins. This allows for seamless adaptation to future
requirements.

o Modular Architecture: The platform’s core functionalities, such as log parsing and
fault diagnosis, are designed as independent modules. New modules can be added as
needed without modifying the underlying system.

o API Interfaces: The platform provides open API interfaces to enable users to integrate
with external systems and extend functionality. For example, new LLM models can be
integrated via simple API calls, allowing users to switch models based on task require-
ments.

e Hardware Configurations for Performance Testing: The platform’s performance
across various tasks May be influenced by the underlying hardware configurations.
For local deployments, the platform uses a high-performance setup, including 8
NVIDIA A6000 GPUs, each equipped with 48GB of memory, and Intel Xeon proces-
sors. For external API calls, the platform uses the official recommended API inter-
faces provided by the API provider, ensuring consistency and fairness in performance
evaluations.

This scalable and modular design ensures that LogEval can adapt to future needs, whether it
involves adding new features, models, or data sources.

4.2 Evaluation Benchmark

In this section, we introduce the evaluation benchmark LogEval, which is designed to assess
the performance of various LLMs in performing log analysis tasks. As shown in Fig. 2.

@ Springer

173 Page 10 of 32 Empirical Software Engineering (2025) 30:173

(@ Data Collection @ Task Formalization ® LLM Evaluation
R T | I || 1Tmmsssmesosomsoee- !
! Muti-task 1 ! 1 !Prompting T i Inference Strategies |
1 Log Parsin: 1 1 ive Task Objective Task 1 1 1
1 0g g . 1 I |[LogParsing |![LogAnomaly Detection | | ! o q ‘g 1
1| Log Anomaly Detection| | I || Tog Summary | ! [~ Log Fault Diagnosis I 1 =] o 1
1 ___I:,Q“I;:g?}!sl}_]_)_‘_%g!‘_"él_s___ : ! = ! ' z::t.;};m F:;ft-isnl;)t g;i\: Self-c((;r;[i:lency:
: . o 1 1[" Chinese Prompt EB English Prompt_ | | - : |

Muti-source 1 I N 1 i 1

) 1 - [T lulr;l_';l’:n:l’a.xulpe 1 i Metrles !

] 1 f Insructon: #0 ¥ 1| ||| Pllowinglog eny imon | g g Y !

1 — 1 HE, i <> Tormat,selacing 1 V74 1
\ 0 i, s | || e pars wih <and) |

' 1 : ?*F?ﬁIZE focus the answerafterthe || | : = (AL | : 1

. 1 nput: *“log” : Taput; *log” : gementing | | A Edit Average Number Inference | |

: CMCC Aliyun LogHub| | :- | 82 e co'ﬂjz'z]sk" e 1 : Y score_Distance._of Tokens__Time_|

_____________ — 1 | e = == d

Fig.2 The framework of LogEval

4.2.1 Data Collection

Data Collection is the foundational step that supports the entire evaluation process. To
ensure comprehensive assessment, we curated datasets from diverse sources and tasks, cov-
ering a wide range of log processing needs. We designed four core tasks to evaluate LLM
capabilities across different log analysis scenarios. In addition, we integrated multi-source
datasets to enhance the framework’s adaptability and generalizability:

e Aliyun: The dataset contains a total of 299,817 logs, which are grouped by serial num-
ber and sorted chronologically. The dataset captures three main fault categories, and
their root causes, as flagged by operation and maintenance staff, include issues such as
high CPU temperature, memory leaks, and hardware crashes. The dataset provides a
real-world perspective on server failures, enhancing its value for anomaly detection and
fault diagnosis tasks. The dataset is publicly available at https://tianchi.aliyun.com/com
petition/entrance/531947/information.

o CMCC: The dataset consists of 482,515 logs collected from OpenStack’s (Rosado and
Bernardino 2014) OpenVSwitch services, distributed across 493 nodes in a high-perfor-
mance computing cluster. This dataset spans six fault categories, with root causes rang-
ing from software bugs to resource underprovisioning and unexpected process restarts.
The dataset’s scale and complexity, derived from an industrial OpenStack environment,
make it an excellent benchmark for evaluating anomaly detection methods. The dataset
is available at https://github.com/SycIsDD/LogKG.

e LogHub: (Jiang et al. 2024) This open-source repository contains large-scale logs from
multiple open-source projects, covering real-world scenarios in industries such as server
management and cloud computing. These datasets not only feature extensive diversity
but also include detailed annotations, providing a reliable foundation for evaluating the
performance of LLMs in log processing tasks.

By combining multi-task and multi-source datasets, the LogEval framework simulates real-

world production environments, providing a solid foundation for comprehensive evaluation
of LLM performance in log processing.

@ Springer

https://tianchi.aliyun.com/competition/entrance/531947/information
https://tianchi.aliyun.com/competition/entrance/531947/information
https://github.com/SycIsDD/LogKG

Empirical Software Engineering (2025) 30:173 Page 11 0f32 173

4.2.2 Task Formalization

The purpose of this step is to structure the log analysis tasks to match the input requirements
of LLMs, thereby achieving effective LLM evaluation and comparison. Task classification
is a core step in the formalization process. Based on the nature of task evaluation, we cat-
egorize log analysis tasks into two main types:

e Subjective Tasks: These include Log Parsing and Log Summary. These tasks do not
have a unique correct answer and rely on semantic understanding and content genera-
tion for assessment.

® Objective Tasks: These include Log Anomaly Detection and Log Fault Diagnosis.
These tasks have definite answers, allowing for straightforward quantitative evaluation.

Prompt design is another key aspect to ensure that LLMs can understand and effectively
complete each task, each prompt consists of the following four elements:

e Task: Clearly specifies the log analysis task to be evaluated, such as Parsing (Log Pars-
ing), Detection (Log Anomaly Detection), Diagnosis (Log Fault Diagnosis), and Sum-
mary (Log Summary).

e Instruction: Thoroughly describes the task requirements, guiding the LLM’s behavior,
for example, instructing the LLM on how to transform a log entry into a structured format.

e Input: Provides the log entry or sequence to be analyzed, presented in a uniform format,
prefixed with explicit labels like “log entry:" or “log sequence:".

e Output: Defines the format of the response to ensure that the LLM’s output meets the
expected standards.

To evaluate LLMs’ performance across different languages, we have prepared prompts in
both Chinese and English for each task. Additionally, we provide each task with 15 differ-
ent prompts to minimize the influence of prompt variations. Table 1 gives three different
English prompts for each task.

Table 1 Three Different English Prompts for Each Task

Tasks English Prompts

1. Parse the following log into a template format, replacing variable parts with <*>: [log]

2. Convert the following log into a standardized template by identifying and replacing the variable parts with
<*>: [log]

3. Transform the raw log [log] into a log late by replacing variable with <*>

Log Parsing

1. Review and mark the log entry as “normal” or “anomalous” , only output “normal” or “anomalous”
Log Anomaly 2. Analyze the log content, classify it as “normal” or “anomalous” , only output “normal” or “anomalous”
Detection 3. Check the log entry, and determine if it belongs to the “normal” or “anomalous” category, only output
“normal” or “anomalous”

1. In our data scenario, there are several types of faults {fault types}. Analyze the log [log] and identify the type
of fault that occurred. Only output the fault type

2. In our data scenario, there are several types of faults {fault types}. Based on the information in the log [log],
determine which type of fault the log represents. Only output the fault type

3. In our data scenario, there are several types of faults {fault types}. Use the detailed information provided by
the log [log] to conduct an in-depth analysis to determine the category of the fault. Only output the fault type

1. Analyze the following 20 logs [log], extract key information, phrases, sentences, or recurring content to generate
a summary, and only output the summary

2. Extract the most important events, phrases, and activities or recurring content from the following 20 logs [log],
create a concise log overview, only output the summary

3. Extract key events, sentence phrases, or recurring information from the following 20 logs [log] to form a
comprehensive summary, only output the summary

Log Fault
Diagnosis

Log Summary

@ Springer

173 Page 12 of 32 Empirical Software Engineering (2025) 30:173

4.2.3 LLM Evaluation

labelsubsec:evaluation This section evaluates LLMs’ capabilities in log analysis through
systematic benchmarking. We first introduce the evaluation strategies, then detail the
selected models. Our benchmarking framework combines two evaluation strategy:

Inference Strategy We employ two different inference strategies to process and interpret the
responses generated by LLMs: Naive Q&A and Self-Consistency Q&A. These strategies aim
to investigate the stability of LLM outputs.

e Naive Q&A: This strategy involves a single model invocation per query, and the gener-
ated answer is directly treated as the final prediction. Naive Q&A is simple and efficient,
and it is especially suitable for tasks with subjective nature and diverse valid answers,
such as log parsing and summarization.

o Self-Consistency Q&A: To enhance the stability and accuracy of model outputs, Self-
Consistency Q&A performs multiple model invocations on the same query (set to 5
times in our study), generating multiple answers. The most frequent answer among
these is selected as the final result through a voting mechanism. This approach effec-
tively reduces the randomness of single-shot outputs and is particularly well-suited for
tasks with objective ground truth, such as log anomaly detection and fault diagnosis.

Prompting Technique We use various settings to evaluate LLMs on LogEval to get a com-
prehensive overview of their performance. We evaluate LLMs in zero-shot and few-shot
(5-shot) settings.

® Zero-shot setting: This technique involves presenting the LLM with a task without prior
examples, thereby testing its ability to adapt to new situations based on its pre-existing
knowledge. It is a measure of the LLM’s capacity to generalize from its training data to
unseen tasks. The examples for the zero-shot setting can be found in Table 2.

o Few-shot setting: The LLM is provided with a limited number of exemplars before
being asked to perform the task. Few-shot prompting helps the model better capture
task-specific patterns or structures within the log data, often leading to improved
performance compared to zero-shot. The examples for the few-shot setting can be
found in Table 3.

Table 2 Zero-shot prompts for the four log analysis tasks

Task Parsing
Parse the following log
entry into a template
format, replacing variable
parts with <*>, and focus
the answer
after the keyword
‘Answer’

Instruction

Input log entry: ized to

Anomaly Detcetion

Please review the log entry
and explicitly mark it
as ‘normal’ or

“anomalous’ , only
output ‘normal’ or
‘anomalous’

ry:
10.100.28.250, stratum 3

Output synchronized to <*>,

stratum <*>"

log entry: i ion cache
parity error corrected

normal

Diagnosis
In our data scenario, there are three types of
faults: Processor CPU Caterr,

Memory Throttled Uncorrectable Error
Correcting Code, Hard Disk Drive Control Error
Computer System Bus Short Circuit
Programmable Gate Array Device Unknown.
Analyze the log entry and identify the type of
fault that occurred. Only output the fault type.

log entry: Processor #0xfa | Configuration Error|
Asserted

Processor CPU Caterr

Summary

Analyze the following 20 logs, extract key
information, phrases, sentences, or recurring
content to generate a summary, only output
the summary.

log sequence:[blockMap updated:
10.251.193.175:50010 is added to blk -
3864576029521084501 size 3540711, ...

blockMap updated; PacketResponder
terminating; Received block;

@ Springer

Empirical Software Engineering

(2025) 30:173

Page 130f32 173

Table 3 Few-shot prompts for the four log analysis tasks

Task Parsing
Instruction

Parse the following log entry into a template format, replacing variable
parts with <*>, and focus the answer after the keyword ‘Answer’. For
example:log entry: no floppy controllers found, answer: ‘no floppy
controllers found’; log entry: 13 tree receiver in re-synch state event(s)
(der 0x0185) detected over 4562 seconds, answer: ‘<*> tree receiver
<*> in re-synch state event(s) (dcr <*>) detected over <*> seconds’;
log entry: ... autorun DONE., answer: *... autorun DONE.’; log entry: 2
L3 EDRAM error(s) (der0x0157) detected and corrected over 282
seconds, answer: ‘<*>L3 EDRAM error(s) (dcr <*>) detected and
corrected over <*> seconds’; log entry: probe of vesafb0 failed with
error-6, answer: ‘probe of vesafb0 failed with error <*>*.”

Diagnosis

In our data scenario, there are three types of faults {Processor CPU Caterr, Memory
Throttled Uncorrectable Error Correcting Code, Hard Disk Drive Control Error
Computer System Bus Short Circuit Programmable Gate Array Device Unknown}.
Analyze the log entry and identify the type of fault that occurred. Only output the
fault type. For Example: log entry: Temperature CPUO_ Margin_Temp | Lower
Critical going low | Asserted| Reading -16 < Threshold 0 degrees C answer:
“Processor CPU Caterr’; log entry: MemoryCPU1EO_ DIMM_Stat | Correctable ECC
| Asserted answer: ‘Memory Throttled Uncorrectable Error Correcting Code’; log
entry: System Boot Initiated BIOS_Boot_ Up | Initiated by power up
|Assertedanswer: ‘Hard Disk Drive Control Error Computer System Bus ShortCircuit
Programmable Gate Array Device Unknown

Input log entry: synchronized to 10.100.28.250, stratum 3 log entry: Processor #0xfa | Configuration Error| Asserted

Output synchronized to <*>, stratum <*>" Processor CPU Caterr
Table 4 LLMs Chosen for Evaluation
Model Creator Size Access
GPT-4 OpenAl et al. 2024 OpenAl undisclosed Commercial
GPT-3.5 OpenAl 2022 OpenAl undisclosed Commercial
Claude-3-Sonnet Anthropic 2023 Anthropic undisclosed Commercial
Gemini-Pro Team et al. 2023 Google undisclosed Commercial
Mistral Jiang et al. 2023 Mistral 7B Open-source
InternLM2-Chat InternLM 2023 Shanghai AI Laboratory 7B/20B Open-source
DevOps-Model-Chat CodeFuse 2023 CodeFuse 7B/14B Open-source
AquilaChat BAAI 2023 BAAI 7B Open-source
ChatGLM-4 THUDM 2024 Tsinghua undisclosed Commercial
LLaMA-2 Touvron et al. 2023 Meta 7/13/70B Open-source
Qwen-1.5-Chat Bai et al. 2023 Alibaba Cloud 7/14/72B Open-source
Baichuan2-Chat Yang et al. 2023 Baichuan Intelligence 13B Open-source

We select 12 state-of-the-art LLMs covering diverse architectures and accessibility

modes, as summarized in Table 4.

5 Evaluation Results

In this section, we aim to explore the following key aspects of LLMs’ performance in log

analysis tasks:

o RQI1: What is the overall performance of different LLMs when applied to various log

analysis tasks?

e RQ2: How do LLMs perform under Naive Q&A settings across different log analysis

tasks?

e RQ3: How do LLMs perform under Self-Consistency Q&A settings in the context of

log analysis tasks?

e RQ4: What is the impact of inference time and the average number of tokens on the

performance of LLMs?

o RQS5: How do factors such as parameter size and language choice influence the perfor-
mance of LLMs in log analysis tasks?

@ Springer

173 Page 14 of 32 Empirical Software Engineering (2025) 30:173
Baichuan2-13B 9.10" 4 2.26- 1072
Mistral-7B 0.12 0.31
AquilaChat-7B 3.69-10 2 0.31
InternLM2-20B 0.2
InternLM2-7B 0.14
DeVops-14B 0.17
DeVops-7B 7.75-10" 2
LLaMA2-708 7.2-107 2
s LllamA2138 7.18-107 2
= LLaMA2-78 4.76 - 107 2
Qwen1.5-72b 0.26
Qwen1.5-14b 8.29 - 10" 2 0.27 0.27 0.32
Qwen1.5-7b 5.86-10 2
GPT-3.5 0.23
ChatGLM-4 0.23
Gemini Pro 0.26
GPT-4

Claude3 Sonnet

Fig. 3 Accuracy in zero-shot Naive Q&A across four tasks

Parsing

Detection Diagnosis Summary

Task

Baichuan2-13B 2.5-10" 4
Mistral-7B 0.14
AquilaChat-7B 3.59 . 107 2

InternLM2-20B

InternLM2-7B
DevOps-14B 0.17 0.26
DevOps-7B 0.1 0.2
LLaMA2-70B 8.3-10" 2 2.09 - 107 2
S LlaMA2-138 2.5-1074
= LLaMA2-7B 2.13-107°
Qwen1.5-72B 0.3
Qwen1.5-14B 7.05-10" 2
Qwen1.5-7B 4.95.10" 2
GPT-3.5
ChatGLM-4
Gemini Pro
GPT-4

Claude3 Sonnet

Parsing

0.32

Detection Diagnosis Summary

Task

Fig.4 Accuracy in few-shot Naive Q&A across four tasks

5.1 RQ1: Overall Performance

To evaluate the performance of various LLMs on different log analysis tasks, we conducted
a comparative analysis of their Naive Q&A accuracy under both zero-shot and few-shot
settings. The results are shown in Figs. 3 and 4, respectively. For the sake of simplicity, we
use the abbreviation of each task in these two and subsequent figures, i.e., we use “Parsing”
instead of “Log Parsing”, “Detection” instead of “Log Anomaly Detection”, “Diagnosis”
instead of “Log Fault Diagnosis”, and “Summary” instead of “Log Summary”. From Figs. 3
and 4, we have the following findings for each task:

@ Springer

Empirical Software Engineering (2025) 30:173 Page 150f32 173

Log Parsing: For log parsing, GPT-4 and Claude3 Sonnet demonstrate outstanding per-
formance in both zero-shot and few-shot settings, with GPT-4 achieving the highest pars-
ing accuracy under the few-shot condition, showcasing its exceptional parsing capabilities.
Gemini Pro also exhibits strong adaptability in the few-shot setting, achieving a high level
of parsing accuracy, which positions it as a competitive and promising LLM for this task.
Log Anomaly Detection: In the log anomaly detection task, LLaMA2-70B performs
better than other LLMs in the zero-shot setting, but it still lags slightly behind GPT-4
and Claude3 Sonnet in overall performance. In the few-shot setting, Mistral-7B shows
a significant improvement, demonstrating strong contextual learning abilities, making
it the standout LLM in this task. Gemini Pro also performs well in the few-shot setting,
showcasing its adaptability to different prompt conditions, making it suitable for appli-
cations in dynamic data environments.

Log Fault Diagnosis: In the log fault diagnosis task, performance differences among
LLMs in the zero-shot setting are relatively small; however, Baichuan2-13B and the
LLaMAZ2 series LLMs show relatively weaker performance in this task. In the few-shot
setting, GPT-4 shows a marked improvement, establishing itself as the best choice for
this task, while Gemini Pro and Qwen1.5-72B also exhibit excellent diagnostic capabili-
ties. These results suggest that GPT-4 can effectively enhance fault diagnosis accuracy
under few-shot conditions, making it an ideal LLM for complex diagnostic tasks.

Log Summary: In the log summarization task, the DeVops series LLMs perform well in
both zero-shot and few-shot settings, showing their advantage in summary generation.
In the few-shot setting, Mistral-7B and Qwen1.5-72B show significant improvement,
demonstrating the ability to generate high-quality log summaries with limited prompts.
These LLMs have application potential in scenarios requiring high-quality log summa-
rization, especially where limited data is available.

We further compare the accuracy of Commercial and Open-source LLMs, in accordance
with the access types listed in the “Access" column of Table 4. The results are shown in
Figs. 5 and 6, from which we can draw the following key findings:

Zero-shot Setting Analysis: In zero-shot scenarios, weight-based LLMs generally out-
perform API-based LLMs, with InternLM2-20B and Mistral-7B standing out for their
high accuracy, demonstrating the stability and superior performance of weight-based
LLMs in local runtime environments. Among the API-based LLMs, Claude3 Sonnet
and GPT-4 show relatively stable performance, indicating that in multi-task scenarios,
these LLMs can deliver reliable performance under zero-shot conditions, making them
suitable for generic task applications that do not require fine-tuning.

Few-shot Setting Analysis: In few-shot settings, weight-based LLMs show signifi-
cant performance improvements, with InternLM2-20B and Mistral-7B exhibiting high
adaptability with few-shot prompts. API-based LLMs also see noticeable improvement
in the few-shot setting, especially with Gemini Pro and GPT-4 achieving high few-
shot accuracy, demonstrating strong adaptability. However, weight-based LLMs dem-
onstrate a more pronounced capacity for adaptation in few-shot learning, making them
well-suited for complex task scenarios requiring frequent updates and optimizations. In
contrast, API-based LLMs, with limited fine-tuning flexibility, are better suited for ap-
plications requiring stability and immediate responsiveness.

@ Springer

173 Page 16 of 32 Empirical Software Engineering (2025) 30:173

Avg (Weights-based LLMs): 0.341
DeVops-7B 1313

InternLM2-7B 0324

[

Mistral-7B o340 Weights-based LLMs
IntemLM2-20B 0349

DeVops-14B 0379

BaiChuan2-13B 0134 !
Quenl.5-14B 0236 E
AquilaChat-7B 0294 E
LLaMa2-13B 0294 E
Quenl 5728 0.302:
LLaMa2-7B 0308

LLaMa2-70B 10316 API-based LLMs
Quenl.5-7B 0323

GPT35 032

ChatGLM4 0345
Gemini Pro 0387

GPT4 0419

Claude3 Sonnet 0433

Fig.5 Overall Performance in zero-shot Naive Q&A

1 Avg (Weights-based LLMs): 0.491
DeVops-7B 0396

DeVops-14B 0449
InternLM2-7B 0468 Weights-based LLMs
Mistral- 7B 0561
InternLM2-20B 0582
LLaMa2-13B 0,068
LLaMa2-7B 0082
AquilaChat-7B 0151
BaiChuan2-13B 0.185
LLaMa2-70B 0202

Qwenl.5-7B 0283

Qwenl 5-14B 0417 APl-based LLMs
GPT3.5 483

ChatGLM4 0516
Claude3 Sonnet 0592
Qwenl 5-72B 0.635

GPT4 0719

Gemini Pro 0741
Avg (API-based LLMs): 0.390 | i
0.0 ol 02 03 04 05 0.6 07

Score

Fig. 6 Overall Performance in few-shot Naive Q&A

5.2 RQ2: Naive Q&A Performance

To investigate the performance of various LLMs in Naive Q&A across different log analysis
tasks, we conducted a comparative analysis of their performance under both zero-shot and
few-shot settings. This section examines the results for each task, highlights the strengths
and weaknesses of different models, and explores the potential factors influencing their
performance,we present the following findings for each task.

@ Springer

Empirical Software Engineering (2025) 30:173 Page 17 0of 32 173

5.2.1 Naive Q&aA results on Log Parsing

We evaluated the performance of various LLMs on Naive Q&A log parsing task in both
zero-shot and few-shot settings. The following conclusions can be drawn:

Few-shot learning consistently boosts LLM accuracy: Across most LLMs, few-shot
learning substantially improves accuracy compared to zero-shot settings. This improve-
ment is particularly notable in high-performing LLMs such as GPT-4 and Claude3-
Sonnet, indicating that few-shot learning can effectively enhance LLM adaptability to
complex log parsing tasks.

GPT-4 and Claude3-Sonnet excel in multiple parsing tasks: Among the evaluated
LLMs, GPT-4 and Claude3-Sonnet consistently deliver high performance across both
Chinese and English log parsing tasks in zero-shot and few-shot settings. Their robust
accuracy and low Edit Distance suggest strong generalization and adaptability across
languages and parsing scenarios.

LLM performance scales with LLM size and architecture: The performance data
reveals that larger, more sophisticated LLMs, such as GPT-4 and Claude 3-Sonnet,
consistently outperform smaller LLMs, including BaiChuan2-13B and AquilaChat-7B.
This scaling effect underscores the advantage of larger LLMs with advanced architec-
tures in capturing complex patterns in log parsing tasks, while smaller LLMs struggle to
generalize and adapt effectively.

5.2.2 Naive Q&A results on Log Anomaly Detection

We evaluated the performance of various LLMs on Naive Q&A log anomaly detection task
in both zero-shot and few-shot settings. The following conclusions can be drawn:

Limited Impact of Few-shot Learning: In both Chinese and English tasks, few-shot
learning does not significantly outperform zero-shot learning in log anomaly detection.
This may be due to the LLMs’ tendency to reproduce the answers found in the few-shot
examples, thereby failing to effectively identify new anomaly cases. Table 5 illustrates
some specific examples of anomaly detection tasks where the LLM repeats answers
given in the samples, reflecting the LLM’s performance in real-world applications. This
indicates that simply increasing the number of samples may not significantly enhance
LLM performance, especially when dealing with imbalanced datasets where anomaly
classes are underrepresented.

Sensitivity to Prompt Language: The differences in performance between Chinese
and English prompts are not substantial overall, but some LLMs do exhibit varying
performance levels depending on the prompt language. For example, certain LLMs,
such as LLaMA2-70B, show lower F1-Score under Chinese prompts, particularly in the
few-shot setting, where an F1-Score of 0 was observed. This suggests that these LLMs
have limited generalization capabilities when processing Chinese prompts, highlighting
the sensitivity of the LLM to the prompt language.

@ Springer

173

Page 18 of 32 Empirical Software Engineering (2025) 30:173

Table 5 Few error examples on Log Anomaly Detection

“Task”: Detection “Task”: Detection “Task”: Detection “Task”: Detection
“label”: “normal” “label”: “normal” “label”: “normal” “label”: “normal”
“predict”:

“logl: normal

log2: normal “predict”: “normal | “predict”: “‘nor- | “predict”: “nor-
log3: anomalous normal anomalous | mal’ ‘normal’ | mal normal normal
4: anomalous normal” ‘normal’ ‘abnormal’” | abnorma anomalous”
5: normal

6 anomalous”

Table 6 A failed zero-shot example by BaiChuan2-13B

“Task”: “Detection” “Task”: “Detection”

“label”:“anomalous” “label”:“normal”

“predict”: “anomalous”

“predict”: “Based solely on the information provided in
the log entry, it is not possible to definitively classify it as
‘normal’ or ‘anomalous’. The log entry mentions “double-
hummer alignment exceptions”, but without additional
context or information about what this means within the
specific system or application being monitored, it is diffi-
cult to determine whether this is expected behavior or an
indication of a problem. Therefore, I would classify this
log entry as ‘unclear’ or ‘inconclusive’ rather than ‘nor-
mal’ or ‘anomalous’. It may be necessary to gather more
information or consult additional logs or documentation
in order to make a more accurate classification.”

5.2

We

Challenges with Complex or Domain-Specific Questions: In zero-shot settings, LLMs
often struggle with addressing complex or domain-specific questions, resulting in vague
or uncertain outputs. As illustrated by the BaiChuan2-13B model’s performance on log
analysis tasks (Table 6), even high-performing models may fail to accurately classify
log entries without sufficient domain knowledge. Integrating domain-specific informa-
tion into the training process can significantly improve comprehension and response
accuracy for specialized tasks like log analysis.

3 Naive Q&A Results on Log Fault Diagnosis

evaluated the performance of various LLMs on Naive Q&A log fault diagnosis task in

both zero-shot and few-shot settings. The following conclusions can be drawn:

Effectiveness of Few-shot Learning: Few-shot learning markedly enhances accuracy
and F1-Score across most LLMs. High-performing LLMs, such as GPT-4 and Qwen1.5-
72B, show significant improvements in the few-shot setting, highlighting the value of
providing examples in fault diagnosis. However, some smaller LLMs, like the LLaMA
series, exhibit limited benefits from few-shot learning, indicating their difficulty in

@ Springer

Empirical Software Engineering (2025) 30:173 Page 190f32 173

adapting to complex tasks through minimal examples.

o Superiority of GPT in Complex Tasks: Among the evaluated LLMs, GPT-3.5 and
GPT-4 perform exceptionally well in few-shot log fault diagnosis, with both LLMs
achieving an F1-Score above 0.9. GPT-4’s superior performance in both Chinese and
English tasks suggests that it can effectively generalize in complex fault diagnosis sce-
narios, making it ideal for critical applications requiring high accuracy.

o Limitations of Smaller LLMs: Smaller LLMs with fewer parameters exhibit significant
limitations in handling complex fault diagnosis tasks. Their reduced capacity to capture
diverse fault types, particularly in zero-shot settings, leads to inaccurate predictions.
Table 7 showcases several failure examples from 7B models. For instance, when tasked
with diagnosing “Processor CPU Caterr,” the model inaccurately predicts “Processor
CPUR,” and for “Mirror does not specify output,” the model erroneously outputs “Mirror
specified output.” These issues demonstrate that smaller models struggle to capture the
deeper, intricate features of log data, resulting in lower reliability of their fault diagnosis
predictions.

5.2.4 Naive Q&A Results on Log Summary

We evaluated the performance of various LLMs on Naive Q&A log summary task in both
zero-shot and few-shot settings. The following conclusions can be drawn:

o Effectiveness of Few-shot Learning: The majority of LLMs show significant improve-
ment in log summarization performance when transitioning from zero-shot to few-shot
settings. This suggests that few-shot learning enables LLMs to better grasp and adapt
to the summarization context, enhancing both accuracy and F1-Score. However, certain
LLMs, especially in the LLaMA series and AquilaChat-7B, display a counterintuitive
trend, with performance sometimes higher in zero-shot than in few-shot settings, pos-
sibly due to noise introduced by few-shot examples.

e Strong Performance of DeVops: The DeVops-7B and DeVops-14B models consist-
ently outperform others across both zero-shot and few-shot settings. DeVops-14B, in
particular, demonstrates exceptional summarization capabilities, making it well-suited
for applications where accuracy and robustness in log summarization are critical.

Table 7 Few error examples on Log Fault Diagnosis

“Task”: Diagnosis

“Task”: Diagnosis

“Task”: Diagnosis

“label”:“Processor ~ CPU | “label”: “Mirror does not | “label”: “Processor CPU
Caterr” specify output” Caterr”
“predict”: “1. Processor
CPU Cater 2. Memory
Throttled Uncorrectable
13 H ”»” i
predict”: « Qe T . | Error Correcting Code 3.
dict”: “M - . .
“answer:‘Processor ﬁ:;eoultc ut” HHOT SPEC | None 4. Hard Disk Drive
CPUR’;” p Control Error Computer

System Bus Short Circuit
Programmable Gate Array
Device Unknown”

@ Springer

173 Page 20 of 32 Empirical Software Engineering (2025) 30:173

o Task-Specific LLM Performance Diversity: In different tasks and language settings,
specific LLMs exhibit notable performance variations, highlighting their adaptability
and Limitations in particular tasks or languages. For example, Gemini Pro performs ex-
ceptionally well in few-shot English tasks, demonstrating high adaptability, but shows
weaker performance in zero-shot Chinese tasks. Similar trends are observed in LLMs
Like Claude 3-Sonnet. These results suggest that variations in LLM performance across
tasks may reflect the impact of optimization focus and training data.

5.3 RQ3: Self-Consistency Q&A Performance

To evaluate the capability of various LLMs in Self-Consistency Q&A for log anomaly detec-
tion and log fault diagnosis, as well as self-consistency in LLM robustness performance, we
conducted experiments under zero-shot and few-shot settings, and provide a corresponding
analysis of these findings, we present the following findings for each task.

5.3.1 Self-Consistency Q&A results on Log Anomaly Detection
From the overall performance results, we can draw the following scientifically conclusions:

o Few-shot learning does not outperform zero-shot learning in log anomaly detection
tasks, highlighting its limitations in this context. In the Self-Consistency Q&A test,
which involves multiple inquiries to the LLM and taking the most frequent answer,
few-shot learning did not significantly surpass zero-shot learning. This outcome may be
because the provided few-shot examples still do not sufficiently cover all patterns, thus
failing to improve LLM consistency. LLMs in this setup tend to repeat examples rather
than effectively learn new anomaly detection patterns from limited samples.

o The BaiChuan model shows a significant improvement in the Self-Consistency mode,
indicating potential for more consistent responses, though its performance remains
volatile. Compared to the Naive Q&A test, the BaiChuan model improved notably in
the Self-Consistency Q&A test, suggesting a greater likelihood of generating consist-
ent answers in repeated queries. However, it also shows considerable variability in re-
sponses across rounds, revealing a lack of stability in multi-turn interactions. Further
optimization is needed to enhance the BaiChuan model’s consistency and coherence in
continuous query settings.

o The LLaMA2 series of models demonstrates poor performance and lack of stability in
Self-Consistency Q&A test, suggesting the need for further improvements and optimi-
zations. In multiple queries, the LLaMA2 models continue to produce low and incon-
sistent performance, indicating deficiencies in generating stable responses. This result
may stem from limited generalization capabilities in handling complex tasks or a lack
of optimization for log anomaly detection tasks. Enhancing the consistency of the LLa-
MAZ2 models in multi-turn Q&A may require architectural improvements or additional
fine-tuning on relevant data to improve robustness in repeated queries.

@ Springer

Empirical Software Engineering (2025) 30:173 Page 21 0f32 173

5.3.2 Self-Consistency Q&A Results on Log Fault Diagnosis

From the overall performance results, we find that the few-shot results are better than zero-
shot results, similar to the Naive Q&A results. This indicates stable output in the log fault
diagnosis task, with GPT-3.5 and GPT-4 showing far superior results. The Baichuan model
performs poorly under both Self-Consistency and Naive Q&A, while other LLMs do not
change much relative to the Naive Q&A results. The zero-shot and few-shot performance
of the LLMs are examined for English and Chinese test sets by comparing the results of
the Naive and Self-Consistency Q&A experiment. The following conclusions can be drawn
from the results:

o For most LLMs, performance does not change much from Naive Q&A to Self-Consist-
ency Q&A. In the anomaly detection task, the performance under few-shot conditions
is inferior to zero-shot. Conversely, in the fault diagnosis task, the performance under
few-shot conditions exceeds zero-shot scenarios.

e In these settings, Self-Consistency prompts relatively minor improvements to the LLM.
In repeated questions, the LLM’s answers were consistent.

5.4 RQ4: Performance on Inference Time and Average Number of Tokens

To investigate the reasoning efficiency of LLMs and whether they are in generating
responses, we summarized the inference time for different LLMs and the average number of
tokens output per log. The inference time and Average Number of Tokens used for each task
on the English dataset in the zero-shot case of the Naive Q&A are shown below.

5.4.1 Inference Time

Figure 7 presents the inference time of 18 mainstream LLMs across four log analysis tasks,
measured under the English dataset and zero-shot Naive Q&A setting. We first analyze the
inference performance by task and model, and then discuss their potential in high-through-
put scenarios.

Task-wise Inference Time Comparison The log summarization task generally exhibits the
longest inference time, with some models reaching 5—7 seconds. This is primarily due to the
longer input length and the need for the model to integrate and rewrite information across
multiple sentences. Log fault diagnosis and log parsing tasks show moderate inference time
(mostly 1-3 seconds), indicating a relatively structured reasoning path and lower com-
putational demand. Log anomaly detection, the only real-time task, achieves the shortest
inference time. Lightweight models like DevOps-7B and InternLM2-7B Maintain consistent
latency between 0.4—0.7 seconds, demonstrating their suitability for real-time applications.

We also observe a clear correlation between model size and inference latency. 70B-scale
models (e.g., LLaMA2-70B, Qwenl.5-72B) show significantly higher latency and are more
appropriate for offline tasks, while 7B/14B models provide excellent responsiveness suitable
for latency-sensitive deployments.

@ Springer

173 Page 22 of 32 Empirical Software Engineering (2025) 30:173

25 -

Inference Time/s

il Hanﬂﬂéﬁu | — HEHHN

R R D
AN P RIS IR P

9 o N F QAP L]
NG9 Y A VR S K AN S
S LT T W F KRSV S
F TIPS FE LS E
S T V7Y \(‘\\-\é@?g

0o Summary B Diagnosis 00 Detection 0D Parsing ‘

Fig.7 The Inference Time in the Naive Q&A in log analysis

Analysis of Scalability under High Log Volumes Inference time directly affects a model’s
capacity to handle large-scale log streams. Based on our measurements, we further analyze
the models’ applicability in high-throughput industrial scenarios. For example, typical pro-
duction systems generate approximately 100,000 logs/hour (28 logs/sec). Among the four
tasks, only log anomaly detection requires real-time processing. DevOps-7B, with an aver-
age latency of 0.43s, can theoretically support over 2,000 logs/sec, exceeding real-world
demands and ensuring both low latency and system stability. The remaining three tasks can
be processed in offline batches, allowing for the use of larger models (e.g., Qwenl.5-72B)
that trade latency for improved accuracy. A practical solution involves a two-stage archi-
tecture, Stage 1 (Light Filtering): Rule-based filters or Lightweight LLMs remove 90% of
normal logs. Stage 2 (LLM Analysis): The remaining 10% (2.8 logs/sec) are processed by
more capable LLMs.

Furthermore, LogGPT (Qi et al. 2023) and LogPrompt (Liu et al. 2024) have demon-
strated the ability to process log anomaly detection, further validating the scalability of
LLM-based log analysis pipelines. In summary, inference time serves as a practical indica-
tor not only for real-time responsiveness but also for guiding the architectural design of
LLM-based solutions to meet high-throughput industrial requirements.

5.4.2 Average Number of Tokens

Figure 8 shows the Average Number of Tokens of the four classes of tasks on the English
data set with zero-shot setting for Naive Q&A.

From the overall performance evaluation results, the log summary task outputs the
highest average number of tokens among the four tasks. This phenomenon is mainly
determined by the nature of the task because the log summary task requires the LLM to
generate a concise summary, which usually requires more tokens to accurately represent

@ Springer

Empirical Software Engineering (2025) 30:173 Page 230f32 173

‘ 08 Summary B8 Diagnosis B B Detection B @ Parsing ‘

| Q
K4
o o o © © o o o o
S & & & & & &
K & » ¥ » Q& =

SUONO], JO Ioquun 93RIOAY

Fig. 8 The Average Number of Tokens in the Naive Q&A in log analysis

@ Springer

173 Page 24 of 32 Empirical Software Engineering (2025) 30:173

the main content of the log. However, our evaluation results show that ChatGLM-4,
GPT, and Mistral models output a lower average number of tokens, indicating that their
answers are more concise, without excessive redundant information, and their outputs
are cleaner. Conversely, LLaMA and Qwen models output more tokens on average,
meaning their answers contain more extraneous content. In practice, this can result in
users spending more time and effort sifting useful information from responses, which
reduces efficiency.

5.5 RQ5: Performance on Different parameters and Language

To provide the impact of different parameter sizes on models, this section conducts a com-
parative analysis of the performance of LLaMA-2 and Qwen-1.5, each evaluated with three
different parameter sizes, offering insights into their adaptability and potential use cases.

Figure 9 shows the accuracy of LLaMA-2 and Qwen-1.5 with different parameter sizes.
We used a zero-shot Naive Q&A assessment on English prompts.

From the comparison of results, most LLMs achieve better performance with a param-
eter size of 7B across the majority of tasks. This finding suggests that LLM size is not a
determining factor for log analysis tasks. While an increase in the number of parameters
generally means that the LLM can capture more features and patterns, a large number of
parameters can also cause the LLM to be too complex to process log data quickly and accu-
rately in real-world applications. Therefore, we can conclude that for log analysis tasks,
choosing the right number of parameters is crucial, not simply “bigger is better." Future
research should focus on how to optimize the size of the LLM for a more efficient and cost-
effective log analysis solution without sacrificing performance.

To provide the impact of different language on models, this section conducts a com-
parative analysis , as illustrated in Fig. 10, reveals notable differences. LLMs such as
LLaMA series, GPT-4, ChatGLM4, and Claude3-Sonnet excel in English tasks, while
LLMs like Qwen and DevOps, trained with a substantial amount of Chinese data,
outperform in Chinese tasks. This performance disparity is attributable to the linguis-
tic distribution in the LLMs’ pretraining datasets. Therefore, task-specific language
requirements must guide LLM selection. For Chinese-focused applications, LLMs like
Qwen and DevOps are recommended, whereas English-dominant tasks may benefit
from the LLaMA series or GPT-4.This discussion outlines the specific performance of
LLMs in different languages.

This section provides a comprehensive performance evaluation of several LLMs.
Through comparative analysis of these LLMs, we find significant differences in their per-
formance on log analysis tasks. These differences may be due to differences in LLM
design philosophy, training strategies, and LLM architecture. For example, some LLMs
may perform better in parsing, while others may show greater efficiency in generating
summaries or detecting anomalies. Additionally, the number of parameters and training
objectives of the LLM are also important factors affecting its performance in the log
analysis task. Our evaluation highlights the need to consider these factors when selecting
and customizing a log analysis LLM to ensure that the LLM effectively meets the needs
of real-world applications.

@ Springer

Empirical Software Engineering

(2025) 30:173

Page 250f32 173

AoeInooy

’ 08 Summary 8 Diagnosis fl @ Detection 0 Parsing ‘

Fig.9 The Accuracy of LLaMA-2 and Qwen-1.5 in zero-shot English Naive Q&A

@ Springer

(2025) 30:173

$)25 159} YSI[SUF pue osduIy) Y10oq Ul 290 FATEN ,I0YS-019Z,, o) Jopun S|\ Jo doueunojrad oy, o ‘614

7 USI3UF [fosouyD A 7

Empirical Software Engineering

Lz
Lz

W Ak & o
\%%u 906%\\@# vo oﬂ«& & \a& a.//\n.v/ &/o
<y S & & &«&o& & &S e

ez

7
%
[N N
7
Qo a
=) =) =)
AoeINooy

Page 26 of 32

173

pringer

A's

Empirical Software Engineering (2025) 30:173 Page 27 of 32 173

6 Conclusion

In this study, we have addressed a significant gap in the field of log analysis, where a stan-
dardized and systematic evaluation framework for assessing LLMs across multiple tasks has
been lacking. The heterogeneity in LLM architectures, varying parameter sizes, and diverse
applicability in log analysis complicate the decision-making process for selecting the most
suitable LLM. To overcome this challenge, we introduced LogEval, a unified and compre-
hensive benchmarking suite designed to rigorously evaluate the performance of different
LLMs across key log analysis tasks, including log parsing, anomaly detection, fault diag-
nosis, and summarization. LogEval provides a robust framework that facilitates consistent
comparisons among LLMs. The benchmark is complemented by a real-time, dynamically
updating platform, accessible at https://nkcs.iops.ai/LogEval/, which serves as a valuable
resource for both researchers and practitioners in the domain. This platform enables users
to stay up-to-date with the latest advancements in LLM technology and understand how
different LLMs perform in practical log analysis scenarios. Our code repository is avail-
able at https://github.com/LinDuoming/LogEval. Our evaluation results have highlighted
the strengths and limitations of various LLMs, underscoring the importance of task-specific
LLM selection and the impact of zero-shot versus few-shot prompting techniques. LogEval
not only offers a clear performance overview but also provides insights that can guide the
design and deployment of LLM-based log analysis systems.

Moving forward, we plan to expand LogEval in three directions: (1) incorporating syn-
thetic and real-world log generation tasks to evaluate LLMs’ generative capabilities under
structural and semantic constraints; (2) continuously integrating emerging LLMs and
instruction-tuning methods to maintain the benchmark’s relevance; and (3) collecting more
fine-grained industrial logs across diverse domains to support broader downstream evalua-
tions, including security incident response, fault localization, and self-healing automation.

Acknowledgements This work is supported by the National Natural Science Foundation of China
(62272249, 62302244), and the Fundamental Research Funds for the Central Universities (XXX-63253249).

Author Contributions All authors contributed to the study conception, design, implementation, and manu-
script preparation. All authors read and approved the final manuscript.

Funding Not applicable.

Data Availability To facilitate further work by other researchers in this area, all of our scripts and datasets
are available online. The material and data from this study are available from the following URL: https://nk
cs.iops.ai/LogEval/.

Declarations

Ethical approval Not applicable.

Informed consent Not applicable.

Conflict of Interest The authors declare that they have no conflict of interest.

Clinical trial number Not applicable.

@ Springer

https://nkcs.iops.ai/LogEval/
https://github.com/LinDuoming/LogEval
https://nkcs.iops.ai/LogEval/
https://nkcs.iops.ai/LogEval/

173 Page 28 of 32 Empirical Software Engineering (2025) 30:173

References

Cito J, Leitner P, Fritz T, Gall HC (2015) The making of cloud applications: An empirical study on software
development for the cloud. In: Proceedings of the 2015 10th joint meeting on foundations of software
engineering. ESEC/FSE 2015, Association for Computing Machinery New York NY USA, pp 393-403.
https://doi.org/10.1145/2786805.2786826

LiY, Jiang ZMJ, Li H, Hassan AE, He C, Huang R, Zeng Z, Wang M, Chen P (2020) Predicting node failures
in an ultra-large-scale cloud computing platform: An aiops solution. ACM Trans Softw Eng Methodol
29 (2). https://doi.org/10.1145/3385187

Zhang X, Xu Y, Qin S, He S, Qiao B, Li Z, Zhang H, Li X, Dang Y, Lin Q, Chintalapati M, Rajmohan S,
Zhang D.: Onion: identifying incident-indicating logs for cloud systems. In: Proceedings of the 29th
ACM joint meeting on european software engineering conference and symposium on the foundations
of software engineering. ESEC/FSE 2021, Association for Computing Machinery New York NY USA,
pp 1253-1263. https://doi.org/10.1145/3468264.3473919

Nedelkoski S, Bogatinovski J, Acker A, Cardoso J, Kao O (2020) Self-attentive classification-based anomaly
detection in unstructured logs. In: 2020 IEEE international conference on data mining (ICDM), pp
1196-1201. https://doi.org/10.1109/ICDM50108.2020.00148

Wang J, Chu G, Wang J, Sun H, Qi Q, Wang Y, Qi J, Liao J (2024) Logexpert: Log-based recommended reso-
lutions generation using large language model, pp 42—46. https://doi.org/10.1145/3639476.3639773

Zhong A, Mo D, Liu G, Liu J, Lu Q, Zhou Q, Wu J, Li Q, Wen Q (2024) Logparser-llm: Advancing efficient
log parsing with large language models. In: Proceedings of the 30th ACM SIGKDD conference on
knowledge discovery and data mining. KDD ’24, Association for Computing Machinery, New York NY
USA, pp 4559-4570. https://doi.org/10.1145/3637528.3671810

Locke S, Li H, Chen THP, Shang W, Liu W (2022) Logassist: Assisting log analysis through log summariza-
tion. IEEE Trans Softw Eng 48(9):3227-3241. https://doi.org/10.1109/TSE.2021.3083715

Ma L, Yang W, Xu B, Jiang S, Fei B, Liang J, Zhou M, Xiao Y (2024) Knowlog: Knowledge enhanced pre-
trained language model for log understanding. In: ICSE, pp 32-13213. https://doi.org/10.1145/35975
03.3623304

Lin Q, Zhang H, Lou JG, Zhang Y, Chen X (2016) Log clustering based problem identification for online
service systems. In: 2016 IEEE/ACM 38th international conference on software engineering compan-
ion (ICSE-C), pp 102-111

Fawcett T (2006) An introduction to roc analysis. Patt Recognit Lett 27(8):861-874

Meng W, Liu Y, Zaiter F, Zhang S, Chen Y, Zhang Y, Zhu Y, Wang E, Zhang R, Tao S, Yang D, Zhou R, Pei D
(2020) Logparse: Making log parsing adaptive through word classification. In: 2020 29th international
conference on computer communications and networks (ICCCN), pp 1-9. https://doi.org/10.1109/ICC
(CN49398.2020.9209681

He S, He P, Chen Z, Yang T, Su'Y, Lyu MR (2021) A survey on automated log analysis for reliability engi-
neering. ACM Comput Surv 54(6):1-37

Liu Y, Zhang X, He S, Zhang H, Li L, Kang Y, Xu Y, Ma M, Lin, Q, Dang Y, Rajmohan S, Zhang D.:
Uniparser: A unified log parser for heterogeneous log data. In: Proceedings of the ACM Web Confer-
ence 2022. WWW °22, pp 1893-1901. Association for Computing Machinery New York NY USA
(2022). https://doi.org/10.1145/3485447.3511993

Coustié¢ O, Mothe J, Teste O, Baril X (2020) Meting: A robust log parser based on frequent n-gram mining,
pp 84-88. https://doi.org/10.1109/ICWS49710.2020.00018

Le VH, Zhang H (2023) Log parsing with prompt-based few-shot learning. In: 2023 IEEE/ACM 45th inter-
national conference on software engineering (ICSE) pp. 2438-2449. https://doi.org/10.1109/ICSE486
19.2023.00204

Xiao T, Quan Z, Wang ZJ, Zhao K, Liao X (2020) Lpv: A log parser based on vectorization for offline and
online log parsing. In: 2020 IEEE international conference on data mining (ICDM), pp 1346-1351.
https://doi.org/10.1109/ICDM50108.2020.00175

Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR (2019) Tools and benchmarks for automated log parsing.
In: 2019 IEEE/ACM 41st international conference on software engineering: Software engineering in
practice (ICSE-SEIP), pp 121-130. https://doi.org/10.1109/ICSE-SEIP.2019.00021

Wang X, Zhang X, Li L, He S, Zhang H, Liu Y, Zheng L, Kang Y, Lin Q, Dang Y, Rajmohan S, Zhang D
(2022) Spine: a scalable log parser with feedback guidance. In: Proceedings of the 30th ACM joint
european software engineering conference and symposium on the foundations of software engineering.
ESEC/FSE 2022, Association for Computing Machinery New York NY USA, pp 1198-1208. https://d
oi.org/10.1145/3540250.3549176

@ Springer

https://doi.org/10.1145/2786805.2786826
https://doi.org/10.1145/3385187
https://doi.org/10.1145/3468264.3473919
https://doi.org/10.1109/ICDM50108.2020.00148
https://doi.org/10.1145/3639476.3639773
https://doi.org/10.1145/3637528.3671810
https://doi.org/10.1109/TSE.2021.3083715
https://doi.org/10.1145/3597503.3623304
https://doi.org/10.1145/3597503.3623304
https://doi.org/10.1109/ICCCN49398.2020.9209681
https://doi.org/10.1109/ICCCN49398.2020.9209681
https://doi.org/10.1145/3485447.3511993
https://doi.org/10.1109/ICWS49710.2020.00018
https://doi.org/10.1109/ICSE48619.2023.00204
https://doi.org/10.1109/ICSE48619.2023.00204
https://doi.org/10.1109/ICDM50108.2020.00175
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1145/3540250.3549176
https://doi.org/10.1145/3540250.3549176

Empirical Software Engineering (2025) 30:173 Page 29 0f32 173

Du M, Li F, Zheng G, Srikumar V (2017) Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and com-
munications security. CCS *17, Association for Computing Machinery New York NY USA, pp. 1285—
1298. https://doi.org/10.1145/3133956.3134015

Karlsen E, Luo X, Zincir-Heywood N, Heywood M (2024) Benchmarking large language models for log
analysis security and interpretation. J Netw Syst Manag 32(3):59

Guo H, Yuan S, Wu X (2021) Logbert: Log anomaly detection via bert. In: 2021 international joint confer-
ence on neural networks (IJCNN), pp 1-8. https://doi.org/10.1109/IJCNN52387.2021.9534113

Le VH, Zhang H (2022) Log-based anomaly detection with deep learning: how far are we? In: Proceedings
of the 44th international conference on software engineering. ICSE ’22, Association for Computing
Machinery, New York NY USA, pp 1356-1367. https://doi.org/10.1145/3510003.3510155

Zhao N, Wang H, Li Z, Peng X, Wang G, Pan Z, Wu Y, Feng Z, Wen X, Zhang W, Sui K, Pei D (2021) An
empirical investigation of practical log anomaly detection for online service systems. ESEC/FSE 2021.
Association for Computing Machinery New York NY USA. https://doi.org/10.1145/3468264.3473933

Zhang X, Xu'Y, Lin Q, Qiao B, Zhang H, Dang Y, Xie C, Yang X, Cheng Q, Li Z, Chen J, He X, Yao R, Lou
JG, Chintalapati M, Shen F, Zhang D (2019) Robust log-based anomaly detection on unstable log data.
In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering. ESEC/FSE 2019, Association for Computing
Machinery New York NY USA, pp 807-817. https://doi.org/10.1145/3338906.3338931

Du Q, Zhao L, Xu J, Han Y, Zhang S (2021) Log-based anomaly detection with multi-head scaled dot-
product attention mechanism, pp 335-347. https://doi.org/10.1007/978-3-030-86472-9 31

Lin CY (2004) Rouge: A package for automatic evaluation of summaries. In text summarization branches out.
association for computational linguistics, Association for Computational Linguistics Barcelona Spain

Zhou X, Peng X, Xie T, Sun J, Ji C, Liu D, Xiang Q, He C (2019) Latent error prediction and fault localiza-
tion for microservice applications by learning from system trace logs. In: Proceedings of the 2019 27th
ACM joint meeting on european software engineering conference and symposium on the foundations
of software engineering. ESEC/FSE 2019, Association for Computing Machinery New York NY USA,
pp 683-694. https://doi.org/10.1145/3338906.3338961

He S, Lin Q, Lou JG, Zhang H, Lyu MR, Zhang D (2018) Identifying impactful service system problems via
log analysis. In: Proceedings of the 2018 26th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering. ESEC/FSE 2018, Association
for Computing Machinery New York NY USA, pp 60-70. https://doi.org/10.1145/3236024.3236083

Liu Y, Yang H, Zhao P, Ma M, Wen C, Zhang H, Luo C, Lin Q, Yi C, Wang J, Zhang C, Wang P, Dang Y,
Rajmohan S, Zhang D (2022) Multi-task hierarchical classification for disk failure prediction in online
service systems. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and
data mining. KDD ’22, Association for Computing Machinery New York NY USA, pp 3438-3446.
https://doi.org/10.1145/3534678.3539176

Ma M, Liu Y, Tong Y, Li H, Zhao P, Xu Y, Zhang H, He S, Wang L, Dang Y, Rajmohan S, Lin Q (2022) An
empirical investigation of missing data handling in cloud node failure prediction. In: Proceedings of
the 30th ACM Joint european software engineering conference and symposium on the foundations of
software engineering. ESEC/FSE 2022, Association for Computing Machinery New York NY USA, pp
1453—1464. https://doi.org/10.1145/3540250.3558946

Luo C, Zhao P, Qiao B, Wu Y, Zhang H, Wu W, Lu W, Dang Y, Rajmohan S, Lin Q, Zhang D (2021) Ntam:
Neighborhood-temporal attention model for disk failure prediction in cloud platforms. In: Proceedings
of the web conference 2021. WWW °21, Association for Computing Machinery New York NY USA, pp
1181-1191. https://doi.org/10.1145/3442381.3449867

Zhou P, Wang Y, Li Z, Wang X, Tyson G, Xie G (2020) Logsayer: Log pattern-driven cloud component
anomaly diagnosis with machine learning, pp 1-10 . https://doi.org/10.1109/IWQ0S49365.2020.921
2954

Meng W, Zaiter F, Zhang Y, Liu Y, Zhang S, Tao S, Zhu Y, Han T, Zhao Y, Wang E, Zhang Y, Pei D (2023)
Logsummary: Unstructured log summarization for software systems. IEEE Trans Netw Serv Manag
20(3):3803-3815. https://doi.org/10.1109/TNSM.2023.3236994

Sui Y, Zhang Y, Sun J, Xu T, Zhang S, Li Z, Sun Y, Guo F, Shen J, Zhang Y, Pei D, Yang X, Yu L (2023)
Logkg: Log failure diagnosis through knowledge graph. IEEE Trans Serv Computl6(5):3493-3507.
https://doi.org/10.1109/TSC.2023.3293890

Liu F, Wen Y, Zhang D, Jiang X, Xing X, Meng D (2019) Log2vec: A heterogeneous graph embedding based
approach for detecting cyber threats within enterprise. In: Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security. CCS *19, Association for Computing Machinery
New York NY USA, pp 1777-1794. https://doi.org/10.1145/3319535.3363224

Locke S, Li H, Chen THP, Shang W, Liu W (2022) Logassist: Assisting log analysis through log summariza-
tion. IEEE Trans Softw Eng 48(9):3227-3241. https://doi.org/10.1109/TSE.2021.3083715

@ Springer

https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1145/3510003.3510155
https://doi.org/10.1145/3468264.3473933
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1007/978-3-030-86472-9_31
https://doi.org/10.1145/3338906.3338961
https://doi.org/10.1145/3236024.3236083
https://doi.org/10.1145/3534678.3539176
https://doi.org/10.1145/3540250.3558946
https://doi.org/10.1145/3442381.3449867
https://doi.org/10.1109/IWQoS49365.2020.9212954
https://doi.org/10.1109/IWQoS49365.2020.9212954
https://doi.org/10.1109/TNSM.2023.3236994
https://doi.org/10.1109/TSC.2023.3293890
https://doi.org/10.1145/3319535.3363224
https://doi.org/10.1109/TSE.2021.3083715

173 Page 30 of 32 Empirical Software Engineering (2025) 30:173

He M, Jia T, Duan C, Cai H, Li Y, Huang G (2024) Llmelog: An approach for anomaly detection based on
Illm-enriched log events. In: 2024 IEEE 35th international symposium on software reliability engineer-
ing (ISSRE), IEEE, pp 132-143

Liu Y, Tao S, Meng W, Wang J, Ma W, Chen Y, Zhao Y, Yang H, Jiang Y (2024) Interpretable online log
analysis using large language models with prompt strategies. In: Proceedings of the 32nd IEEE/ACM
international conference on program comprehension, pp 3546

OpenAl Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman, FL, Almeida D, Altenschmidt J, Altman
S, Anadkat S, Avila R, Babuschkin I, Balaji S et al (2024) GPT-4 technical report. arXiv:2303.08774

Meng W, Zaiter F, Zhang Y, Liu Y, Zhang S, Tao S, Zhu Y, Han T, Zhao Y, Wang E, Zhang Y, Pei D (2023)
Logsummary: Unstructured log summarization for software systems. IEEE Trans Netw Serv Manag
20(3):3803-3815. https://doi.org/10.1109/TNSM.2023.3236994

THUDM (2024) Thudm/chatglm4. https://github.com/THUDM/ChatGLM4

Bai J, Bai S, Chu Y, Cui Z, Dang K, Deng X, Fan Y, Ge W, Han Y, Huang F, Hui B, Ji L, Li M et al (2023)
Qwen Technical Report . arXiv:2309.16609

Fawcett T (2006) An introduction to roc analysis. Patt Recognit Lett 27(8):861-874

Lin CY (2004) Rouge: A package for automatic evaluation of summaries. In text summarization branches out.
association for computational linguistics. Association for Computational Linguistics Barcelona Spain

Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the association for computational linguistics, Asso-
ciation for Computational Linguistics Philadelphia Pennsylvania USA

Liang P, Bommasani R, Lee T, Tsipras D, Soylu D, Yasunaga M, Zhang Y, Narayanan D, Wu Y, Kumar A et
al (2022) Holistic evaluation of language models. arXiv e-prints

Srivastava A, Rastogi A, Rao A, Shoeb AAM, Abid A, Fisch A, Brown AR, Santoro A, Gupta A, Garriga-
Alonso A, et al (2022) Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. arXiv e-prints

Zhang L, Cai W, Liu Z, Yang Z, Dai W, Liao Y, Qin Q, Li Y, Liu X, Liu Z et al (2023) Fineval: A chinese
financial domain knowledge evaluation benchmark for large language models. arXiv e-prints

Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, Scales N, Tanwani A, Cole-Lewis H, Pfohl S, et
al.: Large language models encode clinical knowledge. Nat 620(7972):172-180

Li J, Wang X, Wu X, Zhang Z, Xu X, Fu J, Tiwari P, Wan X, Wang B (2023) Huatuo-26m,a large-scale chi-
nese medical qa dataset. arXiv e-prints

Miao Y, Bai Y, Li Chen HS, Dan Li Wang X, Luo Z, Sun D, Xu X, Zhang Q, Xiang C, Li, X (2023) An empiri-
cal study of netops capability of pre-trained large language models. arXiv e-prints

LiuY, Pei C, Xu L, Chen B, Sun M, Zhang Z, Sun Y, Zhang S, Wang K, Zhang H, Li J, Xie G, Wen X, Nie
X, Ma M, Pei D (2023) Opseval: A comprehensive it operations benchmark suite for large language
models. arXiv e-prints

Silva A, Monperrus M (2024) Repairbench: Leaderboard of frontier models for program repair. arXiv pre-
print arXiv:2409.18952

Jiang Z, Liu J, Chen Z, LiY, Huang J, Huo Y, He P, Gu J, Lyu MR (2024) Lilac: Log parsing using llms with
adaptive parsing cache. Proc ACM Softw Eng 1(FSE):137-160

Sui Y, Zhang Y, Sun J, Xu T, Zhang S, Li Z, Sun Y, Guo F, Shen J, Zhang Y, Pei D, Yang X, Yu L (2023)
Logkg: Log failure diagnosis through knowledge graph. IEEE Trans Serv Comput 16(5):3493-3507.
https://doi.org/10.1109/TSC.2023.3293890

Zhang W, Cheng X, Zhang Y, Yang J, Guo H, Li Z, Yin X, Guan X, Shi X, Zheng L et al (2024) Eclipse:
Semantic entropy-Ics for cross-lingual industrial log parsing. arXiv preprint arXiv:2405.13548

Liu J, Huang J, Huo Y, Jiang Z, Gu J, Chen Z, Feng C, Yan M, Lyu MR (2023) Scalable and adaptive log-
based anomaly detection with expert in the loop. arXiv preprint arXiv:2306.05032

Qi J, Huang S, Luan Z, Yang S, Fung C, Yang H, Qian D, Shang J, Xiao Z, Wu Z (2023) Loggpt: Exploring
chatgpt for log-based anomaly detection. In: 2023 IEEE international conference on high performance
computing & communications data science & systems smart city & dependability in sensor cloud & big
data systems & application (HPCC/DSS/SmartCity/DependSys), IEEE, pp 273-280

Shan S, Huo Y, Su'Y, LiY, Li D, Zheng Z (2024) Face it yourselves: An llm-based two-stage strategy to local-
ize configuration errors via logs. In: Proceedings of the 33rd ACM SIGSOFT international symposium
on software testing and analysis, pp 13-25

Xul, Cui Z, Zhao Y, Zhang X, He S, He P, Li L, Kang Y, Lin Q, Dang Y et al (2024) Unilog: Automatic log-
ging via llm and in-context learning. In: Proceedings of the 46th IEEE/ACM international conference
on software engineering, pp 1-12

Karlsen E, Luo X, Zincir-Heywood N, Heywood M (2024) Benchmarking large language models for log
analysis security and interpretation. J Netw Syst Manag 32(3):59

@ Springer

http://arxiv.org/abs/2303.08774
https://doi.org/10.1109/TNSM.2023.3236994
https://github.com/THUDM/ChatGLM4
http://arxiv.org/abs/2309.16609
http://arxiv.org/abs/2409.18952
https://doi.org/10.1109/TSC.2023.3293890
http://arxiv.org/abs/2405.13548
http://arxiv.org/abs/2306.05032

Empirical Software Engineering (2025) 30:173 Page310f32 173

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multi-
task learners. https://api.semanticscholar.org/CorpusID:160025533

Block J, Chen YP, Budharapu A, Anthony L, Dorr B (2023) Summary cycles: Exploring the impact of prompt
engineering on large language models’ interaction with interaction log information. In: Proceedings of
the 4th workshop on evaluation and comparison of NLP systems, pp 85-99

Rosado T, Bernardino J (2014) An overview of openstack architecture. In: Proceedings of the 18th inter-
national database engineering & applications symposium. IDEAS ’14, Association for Computing
Machinery New York NY USA, pp 366—367. https://doi.org/10.1145/2628194.2628195

Jiang Z, Liu J, Huang J, Li Y, Huo Y, Gu J, Chen Z, Zhu J, Lyu MR (2024) A large-scale evaluation for log
parsing techniques: How far are we? In: Proceedings of the 33rd ACM SIGSOFT international sympo-
sium on software testing and analysis, pp 223-234

OpenAl (2022) Introducing ChatGPT. https://openai.com/blog/chatgpt

Anthropic (2023). https://claude.ai/

Team G, Anil R, Borgeaud S, Alayrac JB, Yu J, Soricut R, Schalkwyk J et al (2023) Gemini: A family of
highly capable multimodal models. arXiv preprint arXiv:2312.11805

Jiang AQ, Sablayrolles A, Mensch A, Bamford C, Chaplot DS, Casas D, Bressand F, Lengyel G, Lample G,
Saulnier L, Lavaud LR, Lachaux MA, Stock P, Scao TL, Lavril T, Wang T, Lacroix T, Sayed WE (2023)
Mistral 7B

InternLM (2023) InternLM: A multilingual language model with progressively enhanced capabilities. https:
//github.com/InternLM/InternLM

CodeFuse (2023). https://github.com/codefuse-ai/CodeFuse-DevOps-Model/

BAAI (2023). https://github.com/FlagAI-Open/Aquila2

Yang A, Xiao B, Wang B, Zhang B, Bian C, Yin C, Lv C, Pan D, Wang D, Yan D, Yang F, Deng F, Wang F,
Liu F et al (2023) Baichuan 2: Open large-scale language models. arXiv:2309.10305

Liu Y, Tao S, Meng W, Yao F, Zhao X, Yang H (2024) Logprompt: Prompt engineering towards zero-shot
and interpretable log analysis. In: Proceedings of the 2024 IEEE/ACM 46th international conference on
software engineering: Companion proceedings, pp 364-365

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a

publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manu-
script version of this article is solely governed by the terms of such publishing agreement and applicable law.

@ Springer

https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1145/2628194.2628195
https://openai.com/blog/chatgpt
https://claude.ai/
http://arxiv.org/abs/2312.11805
https://github.com/InternLM/InternLM
https://github.com/InternLM/InternLM
https://github.com/codefuse-ai/CodeFuse-DevOps-Model/
https://github.com/FlagAI-Open/Aquila2
http://arxiv.org/abs/2309.10305

173 Page 32 of 32 Empirical Software Engineering (2025) 30:173

Authors and Affiliations

Tianyu Cui’ - Shiyu Ma' - Ziang Chen’ - Tong Xiao? - Chenyu Zhao' - Shimin Tao® -
Yilun Liu3 - Shenglin Zhang'*® . Duoming Lin" - Changchang Liu’ - Yuzhe Cai’ -
Weibin Meng? - Yongqian Sun'~® - Dan Pei?

P4 Shenglin Zhang
zhangsl@nankai.edu.cn

Tianyu Cui
cuitianyu@mail.nankai.edu.cn

Shiyu Ma
mashiyu@mail.nankai.edu.cn

Ziang Chen
2120240792 @mail.nankai.edu.cn

Tong Xiao
xiaotong@tsinghua.edu.cn

Chenyu Zhao
zhaochenyu@mail.nankai.edu.cn

Shimin Tao
taoshimin@huawei.com

Yilun Liu
linyilun3@huawei.com

Duoming Lin
1052148783(@qq.com

Changchang Liu
2113411 (@mail.nankai.edu.cn

Yuzhe Cai
2212113@mail.nankai.edu.cn

Weibin Meng
m_weibin@163.com

Yonggian Sun
sunyongqian@nankai.edu.cn

Dan Pei

peidan@tsinghua.edu.cn

Nankai University, Tianjin, China

Tsinghua University, Beijing, China

Huawei, Beijing, China

Haihe Laboratory of Information Technology Application Innovation (HL-IT), Tianjin, China

Tianjin Key Laboratory of Software Experience and Human Computer Interaction, Tianjin,
China

@ Springer

http://orcid.org/0000-0003-0330-0028

	﻿LogEval: A comprehensive benchmark suite for LLMs in log analysis
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Background
	﻿3﻿ ﻿Related Work
	﻿3.1﻿ ﻿Evaluation of LLMs in General NLP Tasks
	﻿3.2﻿ ﻿Applications of LLMs in Log Analysis Tasks

	﻿4﻿ ﻿LogEval Benchmark
	﻿4.1﻿ ﻿Platform Architecture and Technology Stack
	﻿4.1.1﻿ ﻿Platform Architecture
	﻿4.1.2﻿ ﻿Extensibility and Scalability Design

	﻿4.2﻿ ﻿Evaluation Benchmark
	﻿4.2.1﻿ ﻿Data Collection
	﻿4.2.2﻿ ﻿Task Formalization
	﻿4.2.3﻿ ﻿LLM Evaluation

	﻿5﻿ ﻿Evaluation Results
	﻿5.1﻿ ﻿RQ1: Overall Performance
	﻿5.2﻿ ﻿RQ2: Naive Q&A Performance
	﻿5.2.1﻿ ﻿Naive Q&A results on Log Parsing
	﻿5.2.2﻿ ﻿Naive Q&A results on Log Anomaly Detection
	﻿5.2.3﻿ ﻿Naive Q&A Results on Log Fault Diagnosis
	﻿5.2.4﻿ ﻿Naive Q&A Results on Log Summary

	﻿5.3﻿ ﻿RQ3: Self-Consistency Q&A Performance
	﻿5.3.1﻿ ﻿Self-Consistency Q&A results on Log Anomaly Detection
	﻿5.3.2﻿ ﻿Self-Consistency Q&A Results on Log Fault Diagnosis

	﻿5.4﻿ ﻿RQ4: Performance on Inference Time and Average Number of Tokens
	﻿5.4.1﻿ ﻿Inference Time
	﻿5.4.2﻿ ﻿Average Number of Tokens

	﻿5.5﻿ ﻿RQ5: Performance on Different parameters and Language
	﻿6﻿ ﻿Conclusion
	﻿References

