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Abstract
Log analysis is vital in Artificial Intelligence for IT Operations (AIOps) and plays a crucial 
role in ensuring software reliability and system stability. However, challenges such as the 
absence of comprehensive evaluation standards, inconsistencies in benchmarking practices, 
and limited exploration of Large Language Models (LLMs) in log-related tasks persist. 
To address these issues, we introduce LogEval, a comprehensive benchmark designed to 
systematically evaluate LLMs’ performance across four key log analysis tasks: log parsing, 
log anomaly detection, log fault diagnosis, and log summarization. LogEval systematically 
tackles these challenges through the following aspects: (i) it incorporates 4,000 publicly 
available log entries, spanning diverse tasks and providing a strong foundation for evaluating 
LLM performance; (ii) it utilizes standardized prompts in both English and Chinese to ensure 
consistent and objective evaluations, this benchmark covers two experimental paradigms: 
Naive question-answering (Q&A) and self-consistency (SC) Q&A, under both zero-shot 
and few-shot settings, while also considering inference efficiency and average token usage; 
(iii) it features an open-source, continuously updated platform (https://nkcs.iops.ai/LogEval/) 
that integrates new LLMs and user-uploaded production data, fostering reproducibility 
and adaptability in performance comparisons. The experimental results provide valuable 
insights into the varying strengths of LLMs across different tasks, highlighting opportunities 
for further optimization and innovation for LLMs in log analysis. Our code repository is 
available at https://github.com/LinDuoming/LogEval.
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1  Introduction

With the rapid advancement of information technology, software systems have become 
essential to the operations of businesses and organizations (Cito et al. 2015). These systems 
generate vast amounts of log data that capture operational behavior, status changes, and 
potential failures (Li et al. 2020). As software systems grow in both scale and complexity, 
the manual log analysis performed by experts is becoming increasingly difficult and error-
prone (Zhang et al. 2021; Nedelkoski et al. 2020; Wang et al. 2024; Zhong et al. 2024). It is 
not only time-consuming but also inefficient, often leading to delayed responses to critical 
system failures (Locke et al. 2022; Ma et al. 2024; Lin et al. 2016). Consequently, there is an 
urgent need for automated log analysis tools capable of quickly providing insights to ensure 
the reliability and stability of modern large-scale systems (He et al. 2021).

To meet these needs, various automated log analysis tools have been developed, focusing 
on four primary tasks: log parsing (Meng et al. 2020; Zhu et al. 2019; Liu et al. 2022; Coustié 
et al. 2020; Le and Zhang 2023; Xiao et al. 2020; Zhu et al. 2019; Wang et al. 2022), log anom-
aly detection (Du et al. 2017; Meng et al. 2019; Guo et al. 2021; Le and Zhang 2022; Zhao 
et al. 2021; Zhang et al. 2019; Du et al. 2021), log fault diagnosis (Jia et al. 2021; Zhou et al. 
2019; Zhang et al. 2021; He et al. 2018; Liu et al. 2022; Ma et al. 2022; Luo et al. 2021; Zhou 
et al. 2020), and log summarization (Meng et al. 2023; Locke et al. 2022). In recent years, 
deep learning (DL) methods have been widely applied in log analysis to address the limita-
tions of traditional approaches (He et al. 2021; Sui et al. 2023). Unlike traditional machine 
learning (ML) methods, deep learning is more effective at handling large-scale and complex 
log data  (Ma et  al. 2024; Le and Zhang 2022; Zhang et  al. 2019), and can automatically 
extract features in an end-to-end manner, avoiding the constraints of manual feature engineer-
ing and fixed rule-based methods (Liu et al. 2019). While deep learning-based approaches 
offer significant improvements over traditional ML methods, they also come with certain chal-
lenges (Le and Zhang 2024). One major limitation is that deep learning models, especially 
PLMs, require substantial computational resources and large datasets for both pre-training and 
fine-tuning (Ma et al. 2024). Additionally, these models may struggle with domain-specific 
terminologies, such as the abbreviations commonly found in logs, log events of the same 
type exhibit different semantics and different log events share many similar words but exhibit 
opposite (He et al. 2024), which are not typically present in general language corpora. Further-
more, the variability of logs across different systems poses another challenge, as DL models 
often need to be retrained or fine-tuned frequently to effectively handle new log types.

To address the generalization challenge, data requirements, and retraining issues of 
DL-based methods, researchers have begun to explore the use of Large Language Models 
(LLMs) in log analysis tasks (Liu et al. 2024; Zhong et al. 2024), as LLMs have demon-
strated outstanding performance in various natural language processing (NLP) tasks such 
as text generation, language translation, and sentiment analysis. LLMs like GPT-4 (OpenAI 
et al. 2024), LLaMA-2 2023, ChatGLM-4 (THUDM 2024), and Qwen-1.5 (Bai et al. 2023) 
have shown promising performance in these tasks. Nevertheless, with the diversification 
of LLMs, their performance varies across different tasks. As a result, selecting the most 
appropriate LLM for a given log analysis task has become an important consideration in 
both research and practice. However, in the field of log analysis, there is currently no com-
prehensive and systematic evaluation standard or toolkit to help researchers and developers 
understand and compare the performance of different LLMs across various log analysis 
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tasks. The diverse architectures, model sizes, and applicability of LLMs make selecting the 
optimal model a complex task that lacks scientific guidance. Therefore, there is an urgent 
need to construct a unified benchmark that can scientifically assess the performance of dif-
ferent LLMs and provide objective, comprehensive comparisons. To address this, we pro-
pose and develop a comprehensive benchmark suite called LogEval, designed to evaluate 
LLMs’ performance across various log analysis tasks. The main contributions of this paper 
are as follows:

	● Diverse Log Dataset Collection: LogEval incorporates log datasets from multiple 
sources, covering core tasks such as log parsing, log anomaly detection, log fault di-
agnosis, and log summarization. This curated dataset provides a robust foundation for 
evaluating LLM performance comprehensively.

	● Unified and Reliable Evaluation: LogEval utilizes standardized English and Chinese 
prompts to ensure consistent and objective assessments of LLMs. A unified prompt de-
sign is introduced for all tasks, minimizing variations caused by differing prompt styles 
and ensuring fair comparisons. The evaluation spans two paradigms: Naive Q&A and 
Self-Consistency Q&A under zero-shot setting and few-shot setting, while also consid-
ering inference efficiency and token usage.

	● Dynamic Benchmarking Platform: LogEval features an open-source, continuously up-
dated online platform (https://nkcs.iops.ai/LogEval/) that allows dynamic integration of 
new LLMs and user-uploaded production log data. This platform promotes reproducibility, 
fairness, and adaptability in performance comparisons, ensuring long-term relevance and 
scalability. Our code repository is available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​L​i​n​D​u​o​m​i​n​g​/​L​o​g​E​v​a​l​​​​​.​​​​​

2  Background

Automated log analysis typically involves four core tasks–log parsing, log anomaly detection, 
log fault diagnosis, and log summarization. Each task addresses specific challenges and plays 
a crucial role in transforming raw log sequences into actionable insights. Figure 1 illustrates 
the sequence of these tasks in the log analysis pipeline. Below, we describe each task, the 
results depicted in the figure, and the evaluation metrics used to measure their performance.

Log Parsing  Log parsing is the initial task in the log analysis pipeline. It involves transform-
ing raw log data into a structured format that can be processed by subsequent tasks. The goal 
of log parsing is to extract relevant components (such as interface states, error messages, or 
system events) from unstructured logs and represent them in a consistent format, often as 
key-value pairs or predefined templates. In Fig. 1, the first section illustrates log entries such 
as interface state changes or member port status updates, which are parsed and organized 

Fig. 1  A demonstration of the log analysis tasks
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into templates (e.g., "Interface <*>, changed state to <*>") in the following table. This 
structured output enables the identification of recurring patterns or anomalies. Metrics and 
Formula: The parsing performance is evaluated using two key metrics:

	● Parsing Accuracy: The formula for parsing accuracy is given by 

	
Accuracy = Correctly Parsed Entries

Total Entries
× 100%� (1)

 where Correctly Parsed Entries refers to log lines that exactly match predefined tem-
plates, and Total Entries refers to all log entries in the dataset.

	● Edit Distance: The formula for edit distance is given by 

	 Edit Distance = I + D + S� (2)

 where Insertions (I) is the number of characters added to match the template, Deletions 
(D) is the number of characters removed to match the template, and Substitutions (S) is the 
number of character replacements needed.

Log Anomaly Detection  Once logs are parsed, the next step is log anomaly detection. This 
task aims to identify unusual log entries that may indicate potential issues or system faults. 
Anomalies are detected based on patterns that deviate from normal system behavior, such 
as unexpected state changes, errors, or performance issues. In Fig. 1, the second section 
of the diagram shows the log anomaly detection task. After parsing, each log sequence is 
examined for anomalous behavior. For example, an unexpected interface state change or an 
error message could be flagged as anomalous. The detected anomalies are then passed on for 
further investigation in the fault diagnosis stage. Metrics and Formula: The performance 
of anomaly detection is commonly assessed using the following metrics: - Precision (the 
proportion of detected anomalies that are true positives):

	
Precision = True Positives

True Positives + False Positives
� (3)

	– Recall (the proportion of actual anomalies that are correctly detected): 

	
Recall = True Positives

True Positives + False Negatives
� (4)

	– F1-score (the harmonic mean of precision and recall): 

	
F1-score = 2 × Precision × Recall

Precision + Recall
� (5)
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Where True Positives (TP) are correctly identified anomalies, False Positives (FP) are 
incorrectly flagged as anomalies, and False Negatives (FN) are missed anomalies.

Log Fault Diagnosis  The log fault diagnosis task aims to identify the root cause of the 
detected anomalies by analyzing the correlations between log entries. This step often 
involves mapping anomalies to known fault categories or failure modes. In Fig. 1, the third 
section illustrates this task, where the system correlates parsed and anomalous log entries 
to diagnose faults. For example, a change in interface state from "up" to "down" might cor-
relate with hardware failure or misconfiguration. Metrics: This task shares the same evalu-
ation metrics with anomaly detection.

Log Summarization  Finally, log summarization condenses large volumes of log data into a 
concise and interpretable format, highlighting key events that require attention. The goal is to 
present a summary of the most critical log entries in a format that is easy for system adminis-
trators to understand and act upon. In Fig. 1, the log summarization task is shown in the final 
section, where the relevant log entries identified during the previous stages are summarized. 
For example, entries like "interface changed state to down" and "member port became inac-
tive" are distilled into a more concise format that provides key insights for further analysis. 
Metrics and Formula: The performance of summarization is commonly assessed using the 
following metrics:

	● ROUGE-L F1: The formula for ROUGE-L is given by 

	
ROUGE-L = |LCS(S, R)|

|R|
(Recall)� (6)

 and the formula for F1 is given by 

	
F1 = 2 × ROUGE-L × PLCS

ROUGE-L + PLCS
� (7)

 where LCS refers to the Longest Common Subsequence between summary (S) and refer-
ence (R), and P_LCS refers to the Precision of LCS, which is |LCS(S,R)|

|S| .

	● Threshold Accuracy: The formula for threshold accuracy is given by 

	
Accuracy =

∑n
i=1 I(ROUGE-Li ≥ θ)

n
× 100%� (8)

 where θ is the similarity threshold (typically 0.7-0.9), and I is the indicator function (1 if 
condition met, 0 otherwise).
In this study, we carefully selected evaluation metrics tailored to the nature of each log 
analysis task to ensure a comprehensive, objective, and practically meaningful assessment. 
For tasks such as log anomaly detection and log fault diagnosis, we adopt Accuracy and 
F1-score as the primary evaluation metrics. Accuracy reflects the overall correctness of 
predictions, especially when class distributions are relatively balanced. In contrast, F1-score, 
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which harmonizes precision and recall, is more suitable for scenarios with class imbalance, 
a common challenge in log analysis where normal logs significantly outnumber anomalies . 
Although metrics like ROC-AUC (Fawcett 2006) and PR-AUC were considered, they were 
ultimately excluded due to their reliance on probabilistic outputs and threshold variation, 
which are not directly applicable to classification-style outputs generated by LLMs through 
prompt engineering. For tasks such as log parsing and log summary, where multiple valid 
outputs may exist, we use ROUGE-L (Lin 2004) and Edit Distance to measure semantic 
and structural similarity between the generated and reference texts. ROUGE-L evaluates 
the longest common subsequence between two texts, capturing the structural overlap, 
which is ideal for assessing key information extraction in templates or summaries. Edit 
Distance quantifies the number of character-level operations needed to transform the 
generated output into the reference text, making it especially useful for tasks with strict 
format constraints such as log parsing. We also considered BLEU (Papineni et al. 2002), a 
common n-gram based metric, but it was not chosen due to its sensitivity to word order and 
reduced robustness in tasks with high output variability like summarization and parsing. To 
comprehensively assess the efficiency and usability of LLMs, we additionally incorporate 
Average Number of Tokens and Inference Time. These two metrics are critical for real-
world applications–longer outputs often imply higher computational and memory costs, 
and longer inference times directly affect system responsiveness. While alternative system-
level metrics were considered, they were excluded due to cross-platform inconsistency and 
difficulty in reproducibility. Instead, token count and time are universally measurable and 
meaningful across different LLMs and environments. The metrics and formulas presented 
above help evaluate the performance of each task, ensuring that the system can quickly 
identify issues, diagnose faults, and generate actionable summaries for system operators.

3  Related Work

In this section, we first discuss the existing evaluations of LLMs in general NLP tasks, as 
our research also focuses on evaluating LLMs. These evaluations highlight the broad appli-
cations of LLMs in NLP. However, there is currently no systematic evaluation of LLMs spe-
cifically in the field of log analysis. Therefore, we also examine the applications of LLMs 
in log analysis tasks, providing context for our research and emphasizing the potential of 
LLMs in this area, as well as the current lack of standardized evaluation frameworks.

3.1  Evaluation of LLMs in General NLP Tasks

The evaluation of LLMs in general NLP tasks has diversified, as these models have become 
capable of handling increasingly complex and varied tasks. Such evaluations now not 
only measure basic linguistic understanding and generation, but also delve into nuanced 
capabilities such as reasoning, adaptability to different tasks, and the use of domain-
specific knowledge. We categorize these evaluations into two main areas: general domain 
evaluations and specialized domain evaluations.

Evaluations in General Domain  Comprehensive assessments are designed to evaluate the 
broad capabilities of LLMs across multiple dimensions. For instance, HELM (Liang et al. 
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2022) utilizes a diverse set of metrics to assess LLMs in 42 unique scenarios, providing 
insights into their general linguistic abilities and reasoning skills. BIG-bench (Srivastava 
et al. 2022) extends this by including tasks that challenge the models’ understanding of com-
mon sense, logic, and even creativity.

Evaluations In Specialized Domains  These assessments focus on evaluating LLMs’ perfor-
mance in domains requiring specialized knowledge. For example, FinEval  (Zhang et  al. 
2023) measures financial acumen, while MultiMedQA (Singhal et al. 2023) tests medical 
knowledge using datasets derived from professional exams and consultation records. Simi-
larly, Huatuo-26M (Li et  al. 2023) evaluates medical consultation capabilities, reflecting 
real-world medical inquiry handling. NetOps (Miao et al. 2023) focuses on network opera-
tions, and tests LLMs with tasks that mimic real-world challenges in network management. 
OpsEVAL (Liu et al. 2023) assesses the ability of LLMs to manage IT operations, through 
a set of structured tasks, in both Chinese and English. RepairBench (Silva and Monperrus 
2024) establishes an execution-based leaderboard for program repair, evaluating LLMs on 
real-world Java bugs through test-suite validation and syntactic analysis, providing stan-
dardized assessment for AI-driven code repair.

3.2  Applications of LLMs in Log Analysis Tasks

With the growing application of LLMs in log analysis tasks, researchers are increasingly 
exploring how these models can improve key processes such as log parsing and anomaly 
detection.

Log Parsing  LILAC (Jiang et al. 2024) leverages the in-context learning (ICL) capabilities 
of LLMs by employing a hierarchical candidate sampling algorithm to select high-quality 
examples for log template generation. It also introduces an adaptive parsing cache to store 
and refine templates generated by LLMs, reducing query frequency and ensuring template 
consistency. LogParser-LLM  (Zhong et  al. 2024) combines the semantic understanding 
capabilities of LLMs with a prefix tree clustering approach. It utilizes LLMs to process 
the semantic information of logs and performs online log parsing without requiring 
hyperparameter tuning or labeled data. DivLog (Xu et al. 2023) uses the ICL capabilities 
of LLMs to select diverse offline log samples as candidate examples, it then constructs 
prompts to generate log templates for target logs, enabling unsupervised log parsing. 
ECLIPSE (Zhang et al. 2024) integrates the semantic understanding capabilities of LLMs 
with data-driven template matching algorithms to handle cross-lingual log parsing. LLMs 
are used to extract semantic information from log keywords, improving parsing efficiency in 
cross-lingual environments. LogPrompt (Liu et al. 2024) employs the zero-shot capabilities 
of LLMs and advanced prompt strategies to perform log parsing tasks, it enhances LLM 
interpretability and flexibility, enabling log analysis without relying on training data.

Log Anomaly Detection  LogExpert  (Wang et  al. 2024) integrates LLMs with domain 
knowledge from technical forums such as Stack Overflow. LLMs are utilized to parse rel-
evant technical solutions and automatically generate recommended resolutions for anoma-
lous logs, reducing the need for manual intervention. SeaLog  (Liu et  al. 2023) employs 
LLMs, such as ChatGPT, to provide expert-level feedback that enhances the accuracy of its 

1 3

Page 7 of 32    173 



Empirical Software Engineering          (2025) 30:173 

Trie-based Detection Agent (TDA) for real-time anomaly detection, allowing the system to 
adapt to evolving log data more effectively. LogGPT (Qi et al. 2023) utilizes ChatGPT’s lan-
guage understanding and knowledge transfer capabilities through prompt-based techniques 
for log anomaly detection, exploring the application of large-scale corpora knowledge to 
the processing of complex log data. LogPrompt  (Liu et al. 2024) everages the zero-shot 
capabilities of LLMs through a set of advanced prompting strategies specifically designed 
for log anomaly detection tasks. This approach enables LLMs to perform detection without 
relying on training data, while also offering interpretability of the results.

Other Applications  In addition to log parsing and anomaly detection, LLMs have potential 
applications in various aspects of log analysis. For example, Face It Yourselves (Shan et al. 
2024) introduces a two-stage, LLM-based framework for diagnosing configuration errors 
through log analysis. This framework, called LogConfigLocalizer, leverages LLMs to help end-
users, particularly those without source code access, identify the root causes of configuration 
issues by analyzing logs. UniLog (Xu et al. 2024) employs the ICL paradigm of LLMs to 
automatically generate appropriate log statements without requiring any fine-tuning. By using 
prompts with a few demonstration examples, LLMs can determine log positions, verbosity 
levels, and generate log messages, thus aiding in system maintenance and troubleshooting. 
LLM4Sec (Karlsen et al. 2024) utilizes various LLM architectures, such as BERT, RoBERTa, 
and GPT-2 (Radford et al. 2019), to analyze log files for cybersecurity purposes. These LLMs 
are fine-tuned for specific log types to enhance security log analysis. Summary Cycles (Block 
et al. 2023) applies LLMs, specifically ChatGPT, to summarize interaction logs in collaborative 
intelligence analysis. LLMs are used iteratively with recursive summarization techniques to 
extract key entities, topics, and summaries from user interaction sequences.

However, currently there is no dedicated benchmark for evaluating the performance of 
different LLMs in various log analysis tasks. This work bridges this gap and proposes an 
evaluation framework for LLMs in log analysis. Our evaluation efforts intend to understand 
the strengths and limitations of different LLMs in various log analysis tasks, while provid-
ing valuable resources and guidance for the log analysis domain, promoting the effective 
application of LLMs in real-world scenarios.

4  LogEval Benchmark

In this section, we first introduce the platform architecture and the technical stack behind 
LogEval, which provide the foundation for its operation and scalability. The architecture 
is designed to ensure flexibility and extensibility, supporting a wide range of log analysis 
tasks. Following this, we describe the key components of our benchmark and its specific 
evaluation process.

4.1  Platform Architecture and Technology Stack

The design and implementation of the LogEval platform rely on a powerful and flexible technol-
ogy stack that ensures high scalability, efficient processing, and easy extensibility. Below, we 
highlight the core aspects of the platform’s architecture and the tools chosen for log analysis.
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4.1.1  Platform Architecture

The LogEval platform is primarily developed using Python 3.9.6 and runs on Amazon EC2 
servers. Flask 3.0.3 is used for building API interfaces, enabling the platform to handle 
concurrent requests efficiently. The modular architecture allows components to be updated 
or replaced without disrupting the entire system, ensuring the platform’s scalability. Key 
features of the architecture include:

	● Multilingual Support: Integration of Flask-Babel 4.0.0 enables bilingual support (Chi-
nese and English).

	● Flexible Data Access: The platform uses the json 2.0.9 package for Managing data 
in JSON format and Pandas 2.2.2 for data processing. These tools are chosen for their 
robustness and ability to handle large-scale data efficiently.

4.1.2  Extensibility and Scalability Design

To ensure flexibility, the LogEval platform is designed to scale and integrate with new fea-
tures. The following mechanisms support its extensibility:

	● Plugin Mechanism: Users can easily integrate new LLM models or log processing 
techniques by adding custom plugins. This allows for seamless adaptation to future 
requirements.

	● Modular Architecture: The platform’s core functionalities, such as log parsing and 
fault diagnosis, are designed as independent modules. New modules can be added as 
needed without modifying the underlying system.

	● API Interfaces: The platform provides open API interfaces to enable users to integrate 
with external systems and extend functionality. For example, new LLM models can be 
integrated via simple API calls, allowing users to switch models based on task require-
ments.

	● Hardware Configurations for Performance Testing: The platform’s performance 
across various tasks May be influenced by the underlying hardware configurations. 
For local deployments, the platform uses a high-performance setup, including 8 
NVIDIA A6000 GPUs, each equipped with 48GB of memory, and Intel Xeon proces-
sors. For external API calls, the platform uses the official recommended API inter-
faces provided by the API provider, ensuring consistency and fairness in performance 
evaluations.

This scalable and modular design ensures that LogEval can adapt to future needs, whether it 
involves adding new features, models, or data sources.

4.2  Evaluation Benchmark

In this section, we introduce the evaluation benchmark LogEval, which is designed to assess 
the performance of various LLMs in performing log analysis tasks. As shown in Fig. 2.

1 3

Page 9 of 32    173 



Empirical Software Engineering          (2025) 30:173 

4.2.1  Data Collection

Data Collection is the foundational step that supports the entire evaluation process. To 
ensure comprehensive assessment, we curated datasets from diverse sources and tasks, cov-
ering a wide range of log processing needs. We designed four core tasks to evaluate LLM 
capabilities across different log analysis scenarios. In addition, we integrated multi-source 
datasets to enhance the framework’s adaptability and generalizability:

	● Aliyun: The dataset contains a total of 299,817 logs, which are grouped by serial num-
ber and sorted chronologically. The dataset captures three main fault categories, and 
their root causes, as flagged by operation and maintenance staff, include issues such as 
high CPU temperature, memory leaks, and hardware crashes. The dataset provides a 
real-world perspective on server failures, enhancing its value for anomaly detection and 
fault diagnosis tasks. The dataset is publicly available at ​h​t​t​p​s​:​​/​/​t​i​a​​n​c​h​i​.​a​​l​i​y​u​​n​.​c​o​m​​/​c​o​m​
p​​e​t​i​t​i​o​​n​/​e​n​​t​r​a​n​c​e​/​5​3​1​9​4​7​/​i​n​f​o​r​m​a​t​i​o​n.

	● CMCC: The dataset consists of 482,515 logs collected from OpenStack’s (Rosado and 
Bernardino 2014) OpenVSwitch services, distributed across 493 nodes in a high-perfor-
mance computing cluster. This dataset spans six fault categories, with root causes rang-
ing from software bugs to resource underprovisioning and unexpected process restarts. 
The dataset’s scale and complexity, derived from an industrial OpenStack environment, 
make it an excellent benchmark for evaluating anomaly detection methods. The dataset 
is available at https://github.com/SycIsDD/LogKG.

	● LogHub: (Jiang et al. 2024) This open-source repository contains large-scale logs from 
multiple open-source projects, covering real-world scenarios in industries such as server 
management and cloud computing. These datasets not only feature extensive diversity 
but also include detailed annotations, providing a reliable foundation for evaluating the 
performance of LLMs in log processing tasks.

By combining multi-task and multi-source datasets, the LogEval framework simulates real-
world production environments, providing a solid foundation for comprehensive evaluation 
of LLM performance in log processing.

Fig. 2  The framework of LogEval
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4.2.2  Task Formalization

The purpose of this step is to structure the log analysis tasks to match the input requirements 
of LLMs, thereby achieving effective LLM evaluation and comparison. Task classification 
is a core step in the formalization process. Based on the nature of task evaluation, we cat-
egorize log analysis tasks into two main types:

	● Subjective Tasks: These include Log Parsing and Log Summary. These tasks do not 
have a unique correct answer and rely on semantic understanding and content genera-
tion for assessment.

	● Objective Tasks: These include Log Anomaly Detection and Log Fault Diagnosis. 
These tasks have definite answers, allowing for straightforward quantitative evaluation.

Prompt design is another key aspect to ensure that LLMs can understand and effectively 
complete each task, each prompt consists of the following four elements:

	● Task: Clearly specifies the log analysis task to be evaluated, such as Parsing (Log Pars-
ing), Detection (Log Anomaly Detection), Diagnosis (Log Fault Diagnosis), and Sum-
mary (Log Summary).

	● Instruction: Thoroughly describes the task requirements, guiding the LLM’s behavior, 
for example, instructing the LLM on how to transform a log entry into a structured format.

	● Input: Provides the log entry or sequence to be analyzed, presented in a uniform format, 
prefixed with explicit labels like “log entry:" or “log sequence:".

	● Output: Defines the format of the response to ensure that the LLM’s output meets the 
expected standards.

To evaluate LLMs’ performance across different languages, we have prepared prompts in 
both Chinese and English for each task. Additionally, we provide each task with 15 differ-
ent prompts to minimize the influence of prompt variations. Table 1 gives three different 
English prompts for each task.

Table 1  Three Different English Prompts for Each Task
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4.2.3  LLM Evaluation

labelsubsec:evaluation This section evaluates LLMs’ capabilities in log analysis through 
systematic benchmarking. We first introduce the evaluation strategies, then detail the 
selected models. Our benchmarking framework combines two evaluation strategy:

Inference Strategy  We employ two different inference strategies to process and interpret the 
responses generated by LLMs: Naive Q&A and Self-Consistency Q&A. These strategies aim 
to investigate the stability of LLM outputs.

	● Naive Q&A: This strategy involves a single model invocation per query, and the gener-
ated answer is directly treated as the final prediction. Naive Q&A is simple and efficient, 
and it is especially suitable for tasks with subjective nature and diverse valid answers, 
such as log parsing and summarization.

	● Self-Consistency Q&A: To enhance the stability and accuracy of model outputs, Self-
Consistency Q&A performs multiple model invocations on the same query (set to 5 
times in our study), generating multiple answers. The most frequent answer among 
these is selected as the final result through a voting mechanism. This approach effec-
tively reduces the randomness of single-shot outputs and is particularly well-suited for 
tasks with objective ground truth, such as log anomaly detection and fault diagnosis.

Prompting Technique  We use various settings to evaluate LLMs on LogEval to get a com-
prehensive overview of their performance. We evaluate LLMs in zero-shot and few-shot 
(5-shot) settings.

	● Zero-shot setting: This technique involves presenting the LLM with a task without prior 
examples, thereby testing its ability to adapt to new situations based on its pre-existing 
knowledge. It is a measure of the LLM’s capacity to generalize from its training data to 
unseen tasks. The examples for the zero-shot setting can be found in Table 2.

	● Few-shot setting: The LLM is provided with a limited number of exemplars before 
being asked to perform the task. Few-shot prompting helps the model better capture 
task-specific patterns or structures within the log data, often leading to improved 
performance compared to zero-shot. The examples for the few-shot setting can be 
found in Table 3.

Table 2  Zero-shot prompts for the four log analysis tasks
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We select 12 state-of-the-art LLMs covering diverse architectures and accessibility 
modes, as summarized in Table 4.

5  Evaluation Results

In this section, we aim to explore the following key aspects of LLMs’ performance in log 
analysis tasks:

	● RQ1: What is the overall performance of different LLMs when applied to various log 
analysis tasks?

	● RQ2: How do LLMs perform under Naive Q&A settings across different log analysis 
tasks?

	● RQ3: How do LLMs perform under Self-Consistency Q&A settings in the context of 
log analysis tasks?

	● RQ4: What is the impact of inference time and the average number of tokens on the 
performance of LLMs?

	● RQ5: How do factors such as parameter size and language choice influence the perfor-
mance of LLMs in log analysis tasks?

Table 3  Few-shot prompts for the four log analysis tasks

Table 4  LLMs Chosen for Evaluation
Model Creator Size Access
GPT-4 OpenAI et al. 2024 OpenAI undisclosed Commercial
GPT-3.5 OpenAI 2022 OpenAI undisclosed Commercial
Claude-3-Sonnet Anthropic 2023 Anthropic undisclosed Commercial
Gemini-Pro Team et al. 2023 Google undisclosed Commercial
Mistral Jiang et al. 2023 Mistral 7B Open-source
InternLM2-Chat InternLM 2023 Shanghai AI Laboratory 7B/20B Open-source
DevOps-Model-Chat CodeFuse 2023 CodeFuse 7B/14B Open-source
AquilaChat BAAI 2023 BAAI 7B Open-source
ChatGLM-4 THUDM 2024 Tsinghua undisclosed Commercial
LLaMA-2 Touvron et al. 2023 Meta 7/13/70B Open-source
Qwen-1.5-Chat Bai et al. 2023 Alibaba Cloud 7/14/72B Open-source
Baichuan2-Chat Yang et al. 2023 Baichuan Intelligence 13B Open-source
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5.1  RQ1: Overall Performance

To evaluate the performance of various LLMs on different log analysis tasks, we conducted 
a comparative analysis of their Naive Q&A accuracy under both zero-shot and few-shot 
settings. The results are shown in Figs. 3 and 4, respectively. For the sake of simplicity, we 
use the abbreviation of each task in these two and subsequent figures, i.e., we use “Parsing” 
instead of “Log Parsing”, “Detection” instead of “Log Anomaly Detection”, “Diagnosis” 
instead of “Log Fault Diagnosis”, and “Summary” instead of “Log Summary”. From Figs. 3 
and 4, we have the following findings for each task:

Fig. 4  Accuracy in few-shot Naive Q&A across four tasks
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	● Log Parsing: For log parsing, GPT-4 and Claude3 Sonnet demonstrate outstanding per-
formance in both zero-shot and few-shot settings, with GPT-4 achieving the highest pars-
ing accuracy under the few-shot condition, showcasing its exceptional parsing capabilities. 
Gemini Pro also exhibits strong adaptability in the few-shot setting, achieving a high level 
of parsing accuracy, which positions it as a competitive and promising LLM for this task.

	● Log Anomaly Detection: In the log anomaly detection task, LLaMA2-70B performs 
better than other LLMs in the zero-shot setting, but it still lags slightly behind GPT-4 
and Claude3 Sonnet in overall performance. In the few-shot setting, Mistral-7B shows 
a significant improvement, demonstrating strong contextual learning abilities, making 
it the standout LLM in this task. Gemini Pro also performs well in the few-shot setting, 
showcasing its adaptability to different prompt conditions, making it suitable for appli-
cations in dynamic data environments.

	● Log Fault Diagnosis: In the log fault diagnosis task, performance differences among 
LLMs in the zero-shot setting are relatively small; however, Baichuan2-13B and the 
LLaMA2 series LLMs show relatively weaker performance in this task. In the few-shot 
setting, GPT-4 shows a marked improvement, establishing itself as the best choice for 
this task, while Gemini Pro and Qwen1.5-72B also exhibit excellent diagnostic capabili-
ties. These results suggest that GPT-4 can effectively enhance fault diagnosis accuracy 
under few-shot conditions, making it an ideal LLM for complex diagnostic tasks.

	● Log Summary: In the log summarization task, the DeVops series LLMs perform well in 
both zero-shot and few-shot settings, showing their advantage in summary generation. 
In the few-shot setting, Mistral-7B and Qwen1.5-72B show significant improvement, 
demonstrating the ability to generate high-quality log summaries with limited prompts. 
These LLMs have application potential in scenarios requiring high-quality log summa-
rization, especially where limited data is available.

We further compare the accuracy of Commercial and Open-source LLMs, in accordance 
with the access types listed in the “Access" column of Table 4. The results are shown in 
Figs. 5 and 6, from which we can draw the following key findings:

	● Zero-shot Setting Analysis: In zero-shot scenarios, weight-based LLMs generally out-
perform API-based LLMs, with InternLM2-20B and Mistral-7B standing out for their 
high accuracy, demonstrating the stability and superior performance of weight-based 
LLMs in local runtime environments. Among the API-based LLMs, Claude3 Sonnet 
and GPT-4 show relatively stable performance, indicating that in multi-task scenarios, 
these LLMs can deliver reliable performance under zero-shot conditions, making them 
suitable for generic task applications that do not require fine-tuning.

	● Few-shot Setting Analysis: In few-shot settings, weight-based LLMs show signifi-
cant performance improvements, with InternLM2-20B and Mistral-7B exhibiting high 
adaptability with few-shot prompts. API-based LLMs also see noticeable improvement 
in the few-shot setting, especially with Gemini Pro and GPT-4 achieving high few-
shot accuracy, demonstrating strong adaptability. However, weight-based LLMs dem-
onstrate a more pronounced capacity for adaptation in few-shot learning, making them 
well-suited for complex task scenarios requiring frequent updates and optimizations. In 
contrast, API-based LLMs, with limited fine-tuning flexibility, are better suited for ap-
plications requiring stability and immediate responsiveness.
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5.2  RQ2: Naive Q&A Performance

To investigate the performance of various LLMs in Naive Q&A across different log analysis 
tasks, we conducted a comparative analysis of their performance under both zero-shot and 
few-shot settings. This section examines the results for each task, highlights the strengths 
and weaknesses of different models, and explores the potential factors influencing their 
performance,we present the following findings for each task.

Fig. 6  Overall Performance in few-shot Naive Q&A

 

Fig. 5  Overall Performance in zero-shot Naive Q&A
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5.2.1  Naive Q&A results on Log Parsing

We evaluated the performance of various LLMs on Naive Q&A log parsing task in both 
zero-shot and few-shot settings. The following conclusions can be drawn:

	● Few-shot learning consistently boosts LLM accuracy: Across most LLMs, few-shot 
learning substantially improves accuracy compared to zero-shot settings. This improve-
ment is particularly notable in high-performing LLMs such as GPT-4 and Claude3-
Sonnet, indicating that few-shot learning can effectively enhance LLM adaptability to 
complex log parsing tasks.

	● GPT-4 and Claude3-Sonnet excel in multiple parsing tasks: Among the evaluated 
LLMs, GPT-4 and Claude3-Sonnet consistently deliver high performance across both 
Chinese and English log parsing tasks in zero-shot and few-shot settings. Their robust 
accuracy and low Edit Distance suggest strong generalization and adaptability across 
languages and parsing scenarios.

	● LLM performance scales with LLM size and architecture: The performance data 
reveals that larger, more sophisticated LLMs, such as GPT-4 and Claude 3-Sonnet, 
consistently outperform smaller LLMs, including BaiChuan2-13B and AquilaChat-7B. 
This scaling effect underscores the advantage of larger LLMs with advanced architec-
tures in capturing complex patterns in log parsing tasks, while smaller LLMs struggle to 
generalize and adapt effectively.

5.2.2  Naive Q&A results on Log Anomaly Detection

We evaluated the performance of various LLMs on Naive Q&A log anomaly detection task 
in both zero-shot and few-shot settings. The following conclusions can be drawn:

	● Limited Impact of Few-shot Learning: In both Chinese and English tasks, few-shot 
learning does not significantly outperform zero-shot learning in log anomaly detection. 
This may be due to the LLMs’ tendency to reproduce the answers found in the few-shot 
examples, thereby failing to effectively identify new anomaly cases. Table 5 illustrates 
some specific examples of anomaly detection tasks where the LLM repeats answers 
given in the samples, reflecting the LLM’s performance in real-world applications. This 
indicates that simply increasing the number of samples may not significantly enhance 
LLM performance, especially when dealing with imbalanced datasets where anomaly 
classes are underrepresented.

	● Sensitivity to Prompt Language: The differences in performance between Chinese 
and English prompts are not substantial overall, but some LLMs do exhibit varying 
performance levels depending on the prompt language. For example, certain LLMs, 
such as LLaMA2-70B, show lower F1-Score under Chinese prompts, particularly in the 
few-shot setting, where an F1-Score of 0 was observed. This suggests that these LLMs 
have limited generalization capabilities when processing Chinese prompts, highlighting 
the sensitivity of the LLM to the prompt language.
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	● Challenges with Complex or Domain-Specific Questions: In zero-shot settings, LLMs 
often struggle with addressing complex or domain-specific questions, resulting in vague 
or uncertain outputs. As illustrated by the BaiChuan2-13B model’s performance on log 
analysis tasks (Table 6), even high-performing models may fail to accurately classify 
log entries without sufficient domain knowledge. Integrating domain-specific informa-
tion into the training process can significantly improve comprehension and response 
accuracy for specialized tasks like log analysis.

5.2.3  Naive Q&A Results on Log Fault Diagnosis

We evaluated the performance of various LLMs on Naive Q&A log fault diagnosis task in 
both zero-shot and few-shot settings. The following conclusions can be drawn:

	● Effectiveness of Few-shot Learning: Few-shot learning markedly enhances accuracy 
and F1-Score across most LLMs. High-performing LLMs, such as GPT-4 and Qwen1.5-
72B, show significant improvements in the few-shot setting, highlighting the value of 
providing examples in fault diagnosis. However, some smaller LLMs, like the LLaMA 
series, exhibit limited benefits from few-shot learning, indicating their difficulty in 

Table 5  Few error examples on Log Anomaly Detection

Table 6  A failed zero-shot example by BaiChuan2-13B
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adapting to complex tasks through minimal examples.
	● Superiority of GPT in Complex Tasks: Among the evaluated LLMs, GPT-3.5 and 

GPT-4 perform exceptionally well in few-shot log fault diagnosis, with both LLMs 
achieving an F1-Score above 0.9. GPT-4’s superior performance in both Chinese and 
English tasks suggests that it can effectively generalize in complex fault diagnosis sce-
narios, making it ideal for critical applications requiring high accuracy.

	● Limitations of Smaller LLMs: Smaller LLMs with fewer parameters exhibit significant 
limitations in handling complex fault diagnosis tasks. Their reduced capacity to capture 
diverse fault types, particularly in zero-shot settings, leads to inaccurate predictions. 
Table 7 showcases several failure examples from 7B models. For instance, when tasked 
with diagnosing “Processor CPU Caterr,” the model inaccurately predicts “Processor 
CPUR,” and for “Mirror does not specify output,” the model erroneously outputs “Mirror 
specified output.” These issues demonstrate that smaller models struggle to capture the 
deeper, intricate features of log data, resulting in lower reliability of their fault diagnosis 
predictions.

5.2.4  Naive Q&A Results on Log Summary

We evaluated the performance of various LLMs on Naive Q&A log summary task in both 
zero-shot and few-shot settings. The following conclusions can be drawn:

	● Effectiveness of Few-shot Learning: The majority of LLMs show significant improve-
ment in log summarization performance when transitioning from zero-shot to few-shot 
settings. This suggests that few-shot learning enables LLMs to better grasp and adapt 
to the summarization context, enhancing both accuracy and F1-Score. However, certain 
LLMs, especially in the LLaMA series and AquilaChat-7B, display a counterintuitive 
trend, with performance sometimes higher in zero-shot than in few-shot settings, pos-
sibly due to noise introduced by few-shot examples.

	● Strong Performance of DeVops: The DeVops-7B and DeVops-14B models consist-
ently outperform others across both zero-shot and few-shot settings. DeVops-14B, in 
particular, demonstrates exceptional summarization capabilities, making it well-suited 
for applications where accuracy and robustness in log summarization are critical.

Table 7  Few error examples on Log Fault Diagnosis
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	● Task-Specific LLM Performance Diversity: In different tasks and language settings, 
specific LLMs exhibit notable performance variations, highlighting their adaptability 
and Limitations in particular tasks or languages. For example, Gemini Pro performs ex-
ceptionally well in few-shot English tasks, demonstrating high adaptability, but shows 
weaker performance in zero-shot Chinese tasks. Similar trends are observed in LLMs 
Like Claude 3-Sonnet. These results suggest that variations in LLM performance across 
tasks may reflect the impact of optimization focus and training data.

5.3  RQ3: Self-Consistency Q&A Performance

To evaluate the capability of various LLMs in Self-Consistency Q&A for log anomaly detec-
tion and log fault diagnosis, as well as self-consistency in LLM robustness performance, we 
conducted experiments under zero-shot and few-shot settings, and provide a corresponding 
analysis of these findings, we present the following findings for each task.

5.3.1  Self-Consistency Q&A results on Log Anomaly Detection

From the overall performance results, we can draw the following scientifically conclusions:

	● Few-shot learning does not outperform zero-shot learning in log anomaly detection 
tasks, highlighting its limitations in this context. In the Self-Consistency Q&A test, 
which involves multiple inquiries to the LLM and taking the most frequent answer, 
few-shot learning did not significantly surpass zero-shot learning. This outcome may be 
because the provided few-shot examples still do not sufficiently cover all patterns, thus 
failing to improve LLM consistency. LLMs in this setup tend to repeat examples rather 
than effectively learn new anomaly detection patterns from limited samples.

	● The BaiChuan model shows a significant improvement in the Self-Consistency mode, 
indicating potential for more consistent responses, though its performance remains 
volatile. Compared to the Naive Q&A test, the BaiChuan model improved notably in 
the Self-Consistency Q&A test, suggesting a greater likelihood of generating consist-
ent answers in repeated queries. However, it also shows considerable variability in re-
sponses across rounds, revealing a lack of stability in multi-turn interactions. Further 
optimization is needed to enhance the BaiChuan model’s consistency and coherence in 
continuous query settings.

	● The LLaMA2 series of models demonstrates poor performance and lack of stability in 
Self-Consistency Q&A test, suggesting the need for further improvements and optimi-
zations. In multiple queries, the LLaMA2 models continue to produce low and incon-
sistent performance, indicating deficiencies in generating stable responses. This result 
may stem from limited generalization capabilities in handling complex tasks or a lack 
of optimization for log anomaly detection tasks. Enhancing the consistency of the LLa-
MA2 models in multi-turn Q&A may require architectural improvements or additional 
fine-tuning on relevant data to improve robustness in repeated queries.
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5.3.2  Self-Consistency Q&A Results on Log Fault Diagnosis

From the overall performance results, we find that the few-shot results are better than zero-
shot results, similar to the Naive Q&A results. This indicates stable output in the log fault 
diagnosis task, with GPT-3.5 and GPT-4 showing far superior results. The Baichuan model 
performs poorly under both Self-Consistency and Naive Q&A, while other LLMs do not 
change much relative to the Naive Q&A results. The zero-shot and few-shot performance 
of the LLMs are examined for English and Chinese test sets by comparing the results of 
the Naive and Self-Consistency Q&A experiment. The following conclusions can be drawn 
from the results:

	● For most LLMs, performance does not change much from Naive Q&A to Self-Consist-
ency Q&A. In the anomaly detection task, the performance under few-shot conditions 
is inferior to zero-shot. Conversely, in the fault diagnosis task, the performance under 
few-shot conditions exceeds zero-shot scenarios.

	● In these settings, Self-Consistency prompts relatively minor improvements to the LLM. 
In repeated questions, the LLM’s answers were consistent.

5.4  RQ4: Performance on Inference Time and Average Number of Tokens

To investigate the reasoning efficiency of LLMs and whether they are in generating 
responses, we summarized the inference time for different LLMs and the average number of 
tokens output per log. The inference time and Average Number of Tokens used for each task 
on the English dataset in the zero-shot case of the Naive Q&A are shown below.

5.4.1  Inference Time

Figure 7 presents the inference time of 18 mainstream LLMs across four log analysis tasks, 
measured under the English dataset and zero-shot Naive Q&A setting. We first analyze the 
inference performance by task and model, and then discuss their potential in high-through-
put scenarios.

Task-wise Inference Time Comparison  The log summarization task generally exhibits the 
longest inference time, with some models reaching 5–7 seconds. This is primarily due to the 
longer input length and the need for the model to integrate and rewrite information across 
multiple sentences. Log fault diagnosis and log parsing tasks show moderate inference time 
(mostly 1–3 seconds), indicating a relatively structured reasoning path and lower com-
putational demand. Log anomaly detection, the only real-time task, achieves the shortest 
inference time. Lightweight models like DevOps-7B and InternLM2-7B Maintain consistent 
latency between 0.4–0.7 seconds, demonstrating their suitability for real-time applications.

We also observe a clear correlation between model size and inference latency. 70B-scale 
models (e.g., LLaMA2-70B, Qwen1.5-72B) show significantly higher latency and are more 
appropriate for offline tasks, while 7B/14B models provide excellent responsiveness suitable 
for latency-sensitive deployments.
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Analysis of Scalability under High Log Volumes  Inference time directly affects a model’s 
capacity to handle large-scale log streams. Based on our measurements, we further analyze 
the models’ applicability in high-throughput industrial scenarios. For example, typical pro-
duction systems generate approximately 100,000 logs/hour (28 logs/sec). Among the four 
tasks, only log anomaly detection requires real-time processing. DevOps-7B, with an aver-
age latency of 0.43s, can theoretically support over 2,000 logs/sec, exceeding real-world 
demands and ensuring both low latency and system stability. The remaining three tasks can 
be processed in offline batches, allowing for the use of larger models (e.g., Qwen1.5-72B) 
that trade latency for improved accuracy. A practical solution involves a two-stage archi-
tecture, Stage 1 (Light Filtering): Rule-based filters or Lightweight LLMs remove 90% of 
normal logs. Stage 2 (LLM Analysis): The remaining 10% (2.8 logs/sec) are processed by 
more capable LLMs.

Furthermore, LogGPT (Qi et al. 2023) and LogPrompt (Liu et al. 2024) have demon-
strated the ability to process log anomaly detection, further validating the scalability of 
LLM-based log analysis pipelines. In summary, inference time serves as a practical indica-
tor not only for real-time responsiveness but also for guiding the architectural design of 
LLM-based solutions to meet high-throughput industrial requirements.

5.4.2  Average Number of Tokens

Figure 8 shows the Average Number of Tokens of the four classes of tasks on the English 
data set with zero-shot setting for Naive Q&A.

From the overall performance evaluation results, the log summary task outputs the 
highest average number of tokens among the four tasks. This phenomenon is mainly 
determined by the nature of the task because the log summary task requires the LLM to 
generate a concise summary, which usually requires more tokens to accurately represent 
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the main content of the log. However, our evaluation results show that ChatGLM-4, 
GPT, and Mistral models output a lower average number of tokens, indicating that their 
answers are more concise, without excessive redundant information, and their outputs 
are cleaner. Conversely, LLaMA and Qwen models output more tokens on average, 
meaning their answers contain more extraneous content. In practice, this can result in 
users spending more time and effort sifting useful information from responses, which 
reduces efficiency.

5.5  RQ5: Performance on Different parameters and Language

To provide the impact of different parameter sizes on models, this section conducts a com-
parative analysis of the performance of LLaMA-2 and Qwen-1.5, each evaluated with three 
different parameter sizes, offering insights into their adaptability and potential use cases.

Figure 9 shows the accuracy of LLaMA-2 and Qwen-1.5 with different parameter sizes. 
We used a zero-shot Naive Q&A assessment on English prompts.

From the comparison of results, most LLMs achieve better performance with a param-
eter size of 7B across the majority of tasks. This finding suggests that LLM size is not a 
determining factor for log analysis tasks. While an increase in the number of parameters 
generally means that the LLM can capture more features and patterns, a large number of 
parameters can also cause the LLM to be too complex to process log data quickly and accu-
rately in real-world applications. Therefore, we can conclude that for log analysis tasks, 
choosing the right number of parameters is crucial, not simply “bigger is better." Future 
research should focus on how to optimize the size of the LLM for a more efficient and cost-
effective log analysis solution without sacrificing performance.

To provide the impact of different language on models, this section conducts a com-
parative analysis , as illustrated in Fig. 10, reveals notable differences. LLMs such as 
LLaMA series, GPT-4, ChatGLM4, and Claude3-Sonnet excel in English tasks, while 
LLMs like Qwen and DevOps, trained with a substantial amount of Chinese data, 
outperform in Chinese tasks. This performance disparity is attributable to the linguis-
tic distribution in the LLMs’ pretraining datasets. Therefore, task-specific language 
requirements must guide LLM selection. For Chinese-focused applications, LLMs like 
Qwen and DevOps are recommended, whereas English-dominant tasks may benefit 
from the LLaMA series or GPT-4.This discussion outlines the specific performance of 
LLMs in different languages.

This section provides a comprehensive performance evaluation of several LLMs. 
Through comparative analysis of these LLMs, we find significant differences in their per-
formance on log analysis tasks. These differences may be due to differences in LLM 
design philosophy, training strategies, and LLM architecture. For example, some LLMs 
may perform better in parsing, while others may show greater efficiency in generating 
summaries or detecting anomalies. Additionally, the number of parameters and training 
objectives of the LLM are also important factors affecting its performance in the log 
analysis task. Our evaluation highlights the need to consider these factors when selecting 
and customizing a log analysis LLM to ensure that the LLM effectively meets the needs 
of real-world applications.
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6  Conclusion

In this study, we have addressed a significant gap in the field of log analysis, where a stan-
dardized and systematic evaluation framework for assessing LLMs across multiple tasks has 
been lacking. The heterogeneity in LLM architectures, varying parameter sizes, and diverse 
applicability in log analysis complicate the decision-making process for selecting the most 
suitable LLM. To overcome this challenge, we introduced LogEval, a unified and compre-
hensive benchmarking suite designed to rigorously evaluate the performance of different 
LLMs across key log analysis tasks, including log parsing, anomaly detection, fault diag-
nosis, and summarization. LogEval provides a robust framework that facilitates consistent 
comparisons among LLMs. The benchmark is complemented by a real-time, dynamically 
updating platform, accessible at https://nkcs.iops.ai/LogEval/, which serves as a valuable 
resource for both researchers and practitioners in the domain. This platform enables users 
to stay up-to-date with the latest advancements in LLM technology and understand how 
different LLMs perform in practical log analysis scenarios. Our code repository is avail-
able at https://github.com/LinDuoming/LogEval. Our evaluation results have highlighted 
the strengths and limitations of various LLMs, underscoring the importance of task-specific 
LLM selection and the impact of zero-shot versus few-shot prompting techniques. LogEval 
not only offers a clear performance overview but also provides insights that can guide the 
design and deployment of LLM-based log analysis systems.

Moving forward, we plan to expand LogEval in three directions: (1) incorporating syn-
thetic and real-world log generation tasks to evaluate LLMs’ generative capabilities under 
structural and semantic constraints; (2) continuously integrating emerging LLMs and 
instruction-tuning methods to maintain the benchmark’s relevance; and (3) collecting more 
fine-grained industrial logs across diverse domains to support broader downstream evalua-
tions, including security incident response, fault localization, and self-healing automation.
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