
TrioXpert: An automated incident management
framework for microservice system

Yongqian Sun†‡‡, Yu Luo†, Xidao Wen¶, Yuan Yuan∗∗, Xiaohui Nie‡, Shenglin Zhang†∥ Tong Liu§, Xi Luo§
†Nankai University, {sunyongqian, zhangsl}@nankai.edu.cn, {2111934}@mail.nankai.edu.cn

‡Computer Network Information Center, Chinese Academy of Sciences, xhnie@cnic.cn
§Lenovo (TianJin) Co., Ltd., {liutong14, luoxi9}@lenovo.com

¶BizSeer, wenxidao@bizseer.com
∥Haihe Laboratory of Information Technology Application Innovation
∗∗National University of Defense Technology, yuanyuan@nudt.edu.cn

‡‡Tianjin Key Laboratory of Software Experience and Human Computer Interaction

Abstract—Automated incident management plays a pivotal
role in large-scale microservice systems. However, many existing
methods rely solely on single-modal data (e.g., metrics, logs,
and traces) and struggle to simultaneously address multiple
downstream tasks, including anomaly detection (AD), failure
triage (FT), and root cause localization (RCL). Moreover, the
lack of clear reasoning evidence in current techniques often leads
to insufficient interpretability. To address these limitations, we
propose TrioXpert, an end-to-end incident management frame-
work capable of fully leveraging multimodal data. TrioXpert
designs three independent data processing pipelines based on the
inherent characteristics of different modalities, comprehensively
characterizing the operational status of microservice systems
from both numerical and textual dimensions. It employs a
collaborative reasoning mechanism using large language models
(LLMs) to simultaneously handle multiple tasks while providing
clear reasoning evidence to ensure strong interpretability. We
conducted extensive evaluations on two microservice system
datasets, and the experimental results demonstrate that TrioXpert
achieves outstanding performance in AD (improving by 4.7% to
57.7%), FT (improving by 2.1% to 40.6%), and RCL (improving
by 1.6% to 163.1%) tasks. TrioXpert has also been deployed
in Lenovo’s production environment, demonstrating substantial
gains in diagnostic efficiency and accuracy.

Index Terms—Anomaly Detection, Failure Triage, Root Cause
Localization, Microservice System

I. INTRODUCTION

Microservice architectures have become the standard for
modern enterprise systems, offering scalability and modular
deployment [1], [2]. However, their dynamic behavior and
complex interdependencies [3], [4] pose significant challenges
for operations. Localized faults can quickly cascade, resulting
in system-wide outages and business disruption. Timely and
accurate incident management is thus essential. Traditional ap-
proaches rely on on-call engineers (OCEs) to manually inspect
metrics, logs, and traces—a process increasingly impractical
at scale. In response, AIOps has emerged to automate incident
response using data-driven and learning-based techniques.

As shown in Fig. 1, the typical lifecycle of software incident
management is divided into four stages [1], [5], [6]: (1)

¶Xidao Wen is the corresponding author.

S
S

Root Cause
Localization3.

i

Tr
ac

e

Multimodal Data

S2 S4

2025-02-01 19:00:12

2025-02-01 19:00:15

2025-02-01 19:00:30

UserReg-2 | severity: error, message: Failed to connect to database: connection refused

Dbservice-3 | severity: warn, message: Connection pool exhausted, waiting for available connection

Dbservice-3 | severity: error, message: Health check failed: unable to establish DB connectionLo
g

M
et

ric

Incident

1. Anomaly Detection

The incident happens during
[2025.02.01 19:00:00,
 2025.02.01 19:05:30].

2. Failure Triage

The failure type is “Database
Connection Timeout”

Assigned to Database team

Database team discovered
that the microservice
instance Dbservice-3 is the
culprit.

4. Incident Mitigation

Database team increased
the connection pool limit of
Dbservice-3 to 100 and
restarted the instance.

Trigger

Repair

Incident Management

Throughput

Success_Rate

i

Si

: Root Cause Instance
: Abnormal Instance

: Normal InstanceDbservice-3UserReg-2

Registration

Disk_Usage_Rate

Disk_IO_Rate

S1 Root S3

Fig. 1. Multimodal data and incident lifecycle. (Top) Examples of the three
data modalities used in incident management – metrics (time-series signals),
logs (timestamped events), and a trace (service call graph). (Bottom) The
four-stage incident management lifecycle: (1) Anomaly Detection, (2) Failure
Triage, (3) Root Cause Localization, and (4) Incident Mitigation.

Anomaly Detection (AD): Initially, an alert is generated upon
detecting deviations in system behavior, triggering the incident
management process. (2) Failure Triage (FT): The incident
is then categorized based on its characteristics and assigned to
the appropriate team. (3) Root Cause Localization (RCL):
A comprehensive analysis of all aspects of the incident is
conducted to identify the root cause. (4) Incident Mitigation

1

(IM): OCEs take appropriate measures based on the preceding
diagnostic results to restore system functionality.

Among the four stages, AD, FT, and RCL are both critical
and amenable to automation, making them the primary tar-
gets for AI-driven solutions. In contrast, mitigation typically
involves manual intervention and complex orchestration, thus
remains out of scope for this work. We therefore focus on
advancing automation across the first three stages.

Over the past decade, numerous AIOps models have been
proposed to enable automated incident management. Although
these approaches have demonstrated strong performance in
specific scenarios, their practical application has gradually re-
vealed several critical limitations as software systems continue
to grow in scale and complexity.

A major limitation lies in the fragmented design of existing
methods: most models are developed for single subtasks [7]–
[16], rather than end-to-end workflows. This leads to increased
deployment costs and integration overhead in real-world en-
vironments [1]. To address this issue, a few recent studies
attempt to unify multiple tasks [1], [2], [4], [17]–[19]. How-
ever, many of these approaches still face notable shortcomings:
some approaches utilize supervised learning paradigms that
demand high-quality labels [2], [4], [18], [19], while others
require domain experts to handcraft rules or causal graphs [17].
Among them, ART [1] stands out by jointly modeling multiple
tasks through self-supervised learning, requiring only unla-
beled data and minimal human effort. Moreover, it attempts
to integrate heterogeneous multimodal data into a unified
representation, offering a promising foundation for holistic
incident management.

However, the multimodal fusion in ART still faces two key
challenges. First, it reduces logs and traces to superficial statis-
tical features (i.e., log template frequencies, trace durations),
neglecting rich textual semantics that are essential for accurate
failure understanding. Second, the sheer volume of logs and
traces often exceeds processing capacity, introducing noise and
computational bottlenecks that hinder efficient analysis.

Beyond modeling limitations, incident management also
demands high interpretability. Interpretability, in our context,
refers to the ability to provide a reasonable and logically rigor-
ous reasoning process for diagnostic results, supported by data-
driven analysis. While deep-learning-based methods excel in
accuracy, their “black-box” nature makes it difficult for OCEs
to understand and trust model outputs. Although systems
like ART [1] enhance interpretability through deviation-based
heuristics, they still lack structured, step-by-step reasoning that
OCEs can inspect or validate.

In recent years, the rapid advancement of large language
models (LLMs) has demonstrated remarkable capabilities in
complex reasoning tasks such as math and programming,
making them promising candidates for incident management.
Moreover, their ability to generate natural language expla-
nations aligns well with the interpretability requirements in
incident management. However, current research applying
LLMs to incident management has not adequately addressed
the aforementioned challenges. For instance, works such as

Oasis [20], XPERT [21], and NISSIST [22] primarily focus
on isolated subtasks (i.e., summary generation, KQL query
construction, and mitigation recommendation), while COMET
[23] and LasRCA [24] are limited to single-task failure triage
or root cause localization. Moreover, many recent studies [5],
[25]–[27] rely solely on logs or partial diagnostic data, lacking
comprehensive integration of metrics, logs, and traces. As a
result, existing frameworks fail to support unified, multimodal,
and multi-task analysis across the full incident management
lifecycle—including anomaly detection, failure triage, and root
cause localization.

Even if we design a better framework integrating LLMs to
address these limitations, intrinsic constraints of LLMs pose
the third challenge to its effectiveness in real-world deploy-
ment. Internally, issues such as hallucinations and context
window limits are problems that persist regardless of model
prompting or fine-tuning strategies. These limitations further
prevent models from generating stable, rigorous reasoning
paths that satisfy the interpretability requirements of incident
management. We summarize the challenges as follows, and
more details are provided in Section II:

1) Challenge 1: Semantic impoverishment in multimodal fu-
sion.

2) Challenge 2: Textual data overload in real-time incident
management.

3) Challenge 3: LLM limitations in complex and trust-
critical incident management.

To tackle the aforementioned challenges, this paper pro-
poses TrioXpert, an end-to-end incident management frame-
work based on LLMs collaboration. Specifically, TrioXpert
consists of three core modules: (1) Multimodal Data Pre-
processing: To handle the heterogeneity of metrics, logs, and
traces, TrioXpert employs three modality-specific preprocess-
ing pipelines and two filtering mechanisms to extract incident-
relevant logs and traces, reducing noise and improving data
quality. (2) Multi-Dimensional System Status Representation:
This module consolidates numerical and textual features into
a unified multi-view representation, capturing statistical pat-
terns, semantic context, and service interactions. (3) LLMs
Collaborative Reasoning: A Mixture-of-Experts (MoE) ar-
chitecture coordinates three LLM-based agents—Numerical,
Textual, and Incident Experts—to jointly perform AD, FT, and
RCL. Outputs include structured reasoning chains to enhance
interpretability and trust. The contributions of this work are
summarized as follows:

1) We propose TrioXpert, the first end-to-end framework that
unifies AD, FT, and RCL using a collaborative reasoning
architecture built on LLMs. The design integrates met-
rics, logs, and traces through a structured Mixture-of-
Experts prompting strategy, enabling scalable and explain-
able multi-task diagnostics.

2) TrioXpert incorporates dedicated pipelines and filtering
mechanisms to extract and align heterogeneous observabil-
ity data. This enables a more complete system state rep-
resentation from both numerical and textual perspectives,

2

improving both diagnostic accuracy and interpretability.
3) We evaluated TrioXpert on two real-world microservice

systems and observed consistent improvements over base-
lines in both performance and interpretability. TrioXpert
has also been deployed in Lenovo’s production environ-
ment, demonstrating substantial gains in diagnostic effi-
ciency and accuracy. To ensure reproducibility, we release
all code, prompts, configurations, and data 1.

II. BACKGROUND

A. Motivating Study

1) Do metrics, logs, and traces all carry diagnostic value:
To understand how various modalities characterize microser-
vice systems, we conducted a qualitative and quantitative anal-
ysis of operational data collected from Lenovo’s production
environment. Specifically, we collected 20 incident cases and
gathered corresponding metrics, raw logs, and traces within a
10-minute window around each incident—reflecting standard
incident diagnosis practices in industry deployments.

Our findings are threefold: (1) Metrics reflect system health
in a quantitative and timely manner, but lack contextual
information to identify root causes. (2) Logs often contain
explicit failure clues, such as error or warning messages
like “Connection refused” or “Timeout exceeded”, which are
highly informative for diagnosis. However, the vast majority
of log entries are routine debug or info-level messages that
are unrelated to incidents (e.g., “severity: info, message:
conversion request successful”). (3) Similarly, traces capture
detailed execution paths across microservices and can reveal
dependency anomalies. However, most traces correspond to
normal operations, diluting their usefulness in root cause
analysis. For instance, during a database timeout incident, only
12 out of more than 8,000 trace spans reflected abnormal
behavior.

Takeaway 1: Metrics, logs, and traces reflect
distinct aspects of system behavior, all of which
contribute valuable diagnostic signals. However,
logs and traces are often dominated by redundant
entries that hinder efficient analysis.

2) Can a single LLM reliably perform well over multimodal
inputs in incident management: To assess the reliability of a
single LLM in multimodal incident analysis, we conducted
an exploratory study on the same 20 cases used in the
previous experiments. The model received concatenated inputs
comprising metrics, logs, and traces, and was prompted to
generate diagnostic reports addressing three tasks: AD, FT,
and RCL. The outputs were subsequently reviewed by two
experienced OCEs.

While the LLM often produced fluent and seemingly struc-
tured responses, both OCEs noted that: (1) In 50% of the
cases, the diagnostic conclusions were factually incorrect. (2)
Even when plausible, the reasoning paths were frequently

1https://anonymous.4open.science/r/TrioXpert-F244

untraceable, with fabricated intermediate steps that impeded
logical validation. (3) The model struggled with incidents
involving long service dependency chains or subtle textual
anomalies, as its fixed context window constrained the amount
of usable input and often resulted in the loss of diagnostic
signals through truncation.

These findings underscore the limitations of using a mono-
lithic LLM for end-to-end incident management. Halluci-
nations, opaque reasoning, and context window constraints
significantly impair both the accuracy and trustworthiness of
the outputs in realistic settings.

Takeaway 2: A single LLM often fails to produce
reliable and interpretable results when directly
applied to complex incident management tasks.

B. Challenges
Based on the above motivating studies, we summarize the

following key challenges:
1) Semantic impoverishment in multimodal fusion: Al-

though recent multimodal AIOps approaches [1], [2], [4] have
achieved promising results on downstream tasks such as AD,
FT, and RCL, they often fall short in capturing the full
diagnostic value of each modality.

For metrics, modeling based on time-series trends is both
appropriate and effective. However, for logs, these methods
typically extract only superficial statistical features—such as
log template frequencies [1] or event-template IDs [2]—ignor-
ing rich textual semantics that are critical for failure diagnosis.
A representative example is an authentication service failure
caused by expired credentials. In this case, existing methods
detected a high frequency of a specific event type and mild
latency deviations but failed to identify the root cause. In
contrast, a critical log entry (i.e., “message: authentication
failed due to expired token”) directly revealed the root cause,
which is an insight lost under purely numerical modeling.

Similarly, trace data is often reduced to coarse-grained
statistics like service dependency graphs and request durations.
This approach overlooks fine-grained signals embedded in
traces, such as call types and status codes, which can reveal
subtle yet important failure patterns.

As a result, current fusion strategies fail to align hetero-
geneous modalities at a meaningful semantic level, leading
to incomplete system state characterization and unreliable
diagnostic outcomes.

2) Textual data overload in real-time incident management:
While logs and traces contain rich diagnostic semantics, their
sheer volume poses a major obstacle to effective processing.
In even the most minor incidents, logs and traces often
generate over 10,000 entries independently. This scale not
only incurs high computational overhead but also obscures
the identification of incident-relevant signals.

Neither manual inspection nor basic natural language pro-
cessing techniques can efficiently process such massive vol-
umes in time-sensitive incident management scenarios. Fur-
thermore, the vast majority of log and trace entries are routine

3

or irrelevant to incidents, offering little diagnostic value while
introducing significant noise into the analysis. These issues
highlight the need for effective filtering mechanisms that distill
actionable signals from logs and traces before reasoning.

3) LLM limitations in complex and trust-critical incident
management: While LLMs offer strong general reasoning
capabilities, their application to incident management is fun-
damentally constrained by architectural limitations that hin-
der the generation of reliable and interpretable diagnostic
outputs. Specifically, long-context reasoning is impeded by
token limits, which truncate critical signals from extended
telemetry sequences—particularly problematic when analyzing
cascading failures across microservices. More critically, hal-
lucinations (e.g., fabricated service dependencies or spurious
causal explanations) introduce significant risks in high-stakes
environments, where diagnostic errors can delay mitigation
or erode operational trust. These issues hinder the system’s
ability to produce explicit, logically coherent reasoning paths
that align with real-world failure patterns.

C. Problem Definition

Typically, OCEs need to collect multimodal data (i.e., met-
rics, logs, and traces) and perform three core tasks: AD,
FT, and RCL. Specifically, the goal of the AD task is to
detect whether there are multiple abnormal timestamps within
a time window, thereby determining whether the system has
encountered an anomaly. The FT task involves selecting the
most probable failure type ci from a predefined set of fault
categories C = {c1, c2, ..., cn}. Finally, the RCL task identifies
the most likely root cause ri from all service instances
R = {r1, r2, ..., rm}.

However, traditional frameworks execute these tasks in a
fixed sequence, lacking the flexibility to adapt to real-world
operational needs. To address this, TrioXpert leverages LLMs
to support customized task execution. Given a time window T
and a subset of tasks S = AD,FT,RCL, TrioXpert constructs
a unified system representation and completes the selected
tasks via LLM-based reasoning.

III. METHODOLOGY

A. Overview

As illustrated in Fig. 2, TrioXpert comprises three core
modules: (1) Multimodal Data Preprocessing, (2) Multi-
Dimensional System Status Representation, and (3) LLMs
Collaborative Reasoning. These modules are orchestrated to
achieve accurate and interpretable incident analysis.

In the preprocessing stage, tailored strategies are applied
to metrics, logs, and traces to produce structured inputs:
a time-series matrix M, a service topology graph G, and
filtered logs L and traces T . Subsequently, three modality-
aware pipelines extract numerical and textual features for
system status characterization. Finally, an MoE architecture
coordinates multiple LLMs to jointly perform downstream
incident management tasks, supported by structured reasoning
evidence.

B. Multimodal Data Preprocessing

To effectively leverage the rich information contained in
multimodal data while minimizing information loss, this mod-
ule performs specific preprocessing on three modalities of data
to adapt them to subsequent three data processing pipelines.

1) Metrics: Considering the time-series characteristics of
metrics, it is organized into a three-dimensional time-series
matrix M. The three dimensions of this matrix represent
timestamps, service instances (e.g., emailservice-0, logservice-
1), and feature channels (e.g., cpu util, disk io rate), re-
spectively. This structured representation not only facilitates
subsequent time-series feature extraction but also effectively
captures the dynamic changes in system operational status.

Definition 1: Time-series matrix is a three-
dimensional tensor M ∈ RT×S×F where T rep-
resents the number of timestamps in the time series,
S denotes the number of service instances, and F
indicates the number of feature channels.

2) Logs: TrioXpert employs an LLM-based two-stage filter-
ing mechanism to isolate incident-relevant log entries, reduc-
ing noise and improving cross-scenario adaptability. Inspired
by COMET [23], the method preserves the core idea of
combining keyword filtering with semantic refinement, but
replaces manual heuristics with instruction-driven automation.

In the first stage, the LLM is prompted to extract incident-
relevant keywords from the dataset (e.g., generating terms such
as “error”, “failure”, or “timeout” in response to the in-
struction “Identify key terms commonly associated with system
failures in the following logs”). This approach eliminates the
need for labor-intensive manual curation while ensuring com-
prehensive coverage of incident-related terminology across
different system contexts. The keywords are then employed
to filter candidate logs, which are subsequently fed into the
second stage for deeper semantic analysis. In the second stage,
the LLM executes context-aware filtering through a structured
evaluation prompt. This instruction-driven mechanism replaces
TF-IDF’s surface-level term frequency analysis with semantic
reasoning, enabling the model to: (1) identify causally relevant
patterns beyond lexical matching, (2) dynamically weigh di-
agnostic significance based on contextual evidence, (3) gener-
alize from few examples without handcrafted thresholds [27].

Through this process, the filtered logs L can more accu-
rately indicate incident-related information while eliminating
interference caused by irrelevant logs.

Definition 2: Filtered logs L are a refined subset
of log entries obtained through a two-stage process:
keyword-based filtering to retain incident-related
logs, followed by TF-IDF prioritization to select
distinctive entries.

3) Traces: To identify anomalous invocation chains while
preserving end-to-end causality, we implement a type-aware

4

Tim
e Filter

Feature
Processor

Textual Perspective

Log Filter Log Summarizer

Filtered
Traces Trace Summarizer

Textual
Expert

Numerical
Expert

Incident
Expert

Anomaly Detection

Failure Triage

Root Cause Localization

Metrics

Traces

Logs

Metrics

Traces

Logs

Trace Filter

Filtered Logs

Service
Topology Graph

Time-series
Matrix

(a). Multimodal Data Preprocessing (b). Multi-Dimensional System
Status Representation (c). LLMs Collaborative Reasoning

Numerical Perspective

Trace Summary

Log Summary

Preliminary
Answers

Fig. 2. The overview of TrioXpert. The framework consists of three modules: (a) Multimodal Data Preprocessing, which filters and prepares metrics, traces,
and logs (e.g., aligning by time and extracting relevant subsets); (b) Multi-Dimensional System Status Representation, which derives a numerical feature-based
preliminary analysis and textual summaries of logs/traces (via specialized “Log Summarizer” and “Trace Summarizer”); and (c) LLMs Collaborative Reasoning,
a Mixture-of-Experts comprising a Numerical Expert and Textual Expert that collaborate with an Incident Expert LLM to perform anomaly detection, failure
triage, and root cause localization simultaneously.

trace filtering mechanism. First, for each invocation type
(e.g., HTTP, RPC), we compute a latency threshold as the
P95 percentile across all spans of that type, accounting for
their distinct latency distributions. Then, when a span’s latency
exceeds its type-specific threshold, we recursively include all
ancestor spans up to the root node. This ensures two critical
properties: (1) all spans contributing to high-latency paths are
retained, and (2) no partial invocation chains are preserved,
which is essential for accurate root cause localization. Addi-
tionally, following the methods of ART [1] and DiagFusion
[2], TrioXpert extracts service topology graphs G from trace
data, maintaining the same sampling frequency as the metrics
data to describe service instance invocation relationships at
any given time.

Definition 3: Service topology graph G is a directed
graph G = (V,E), where V represents the set of
service instances and E ⊆ V × V denotes the
invocation relationships between them.
Definition 4: Filtered traces T are a subset of trace
data containing spans with latency exceeding the
P95 threshold, recursively traced back to preserve
complete invocation chains indicative of anomalous
behavior.

Through the above preprocessing, four formalized input
datasets are obtained: a 3D time-series matrix M for met-
rics, service topology graphs G, filtered logs L, and filtered
traces T . These inputs support the subsequent data processing
pipelines, enabling comprehensive system analysis and effi-
cient reasoning.

C. Multi-Dimensional System Status Representation

To comprehensively capture the state of a microservice
system, TrioXpert employs three independent data processing
pipelines, targeting both numerical and textual modalities.
Each pipeline extracts and encodes salient features from spe-

cific modalities, providing structured inputs for downstream
reasoning.

1) Numerical Perspective: The numerical pipeline con-
structs a quantitative system state representation from the time-
series matrix M and service topology graph G. To model
heterogeneous dependencies, we adopt the established feature
processor architecture from ART [1]: a Transformer Encoder
captures channel-wise dependencies, a GRU models temporal
dynamics, and GraphSage encodes call-level structural rela-
tionships. This processor predicts next-step values of M and
computes deviations from observed metrics. With the devia-
tions above, we generate task-specific preliminary answers us-
ing: (a) extreme value theory thresholding for AD, (b) cut-tree-
based clustering for FT, and (c) deviation similarity sorting for
RCL. All downstream processing follows ART [1] to ensure
methodological consistency with standard diagnostic practices.
Crucially, the reliability of these preliminary answers stems
from self-supervised training, which minimizes the L2 norm
of prediction errors to learn robust normal-behavior patterns.
Thus, the preliminary answers form a compact numerical
representation of the microservice system state.

2) Textual Perspective: The second and third pipelines
operate on filtered logs L and traces T , respectively. Although
the preprocessing stage has already removed irrelevant entries,
the remaining data can still overwhelm LLMs due to context
length constraints. To mitigate this, both pipelines invoke
specialized LLMs—Log Summarizer (shown in Fig. 3) and
Trace Summarizer—to summarize their inputs into compact
natural language descriptions highlighting abnormal patterns.
These summaries serve as low-noise, semantically rich inputs
to the reasoning module.

Through the above three data processing pipelines, TrioX-
pert achieves a comprehensive sketch of the microservice sys-
tem’s status from both numerical and textual dimensions. The
numerical feature pipeline focuses on capturing the dynamic
changes of the system to derive preliminary results, while
the textual feature pipelines employ summarization techniques

5

Prompts for Log Summarizer

log_abstract_system_prompt = '''
Role: log summarizer
Goal:
- Generate an abstraction of the system based on the given key logs and your
insights.
Constraints:
- The content you generate must be based on the given key logs.
- Please ensure that the generated content is neither too long to include irrelevant
information nor too short to omit key details.
- You should only generate the abstraction in the format of a paragraph.
instructions:
- You need to describe the key system behaviors reflected in the logs.
- If you are unsure about a reasoning result, you can indicate that the result is
supported by a specific number of log entries.
- Carefully analyze the given key logs to gain insights about the potential failure
manifestations of the system and an analysis of the possible causes of the failure.
- Also try to locate the service where the failure occurred, analyze the possible
causes, and provide specific reasoning evidence.
Example:
- Input logs:
- [Timestamp: 1625414407346], service 'webservice1': call service:logservice2,
inst:http://0.0.0.2:9385 as a downstream service.
- Output abstract:

Fig. 3. The prompt of Log Summarizer. This prompt utilizes the “RGCIE”
principle (i.e., Role, Goal, Constraints, Instructions, Example) to define the
Log Summarizer, which helps mitigate the risk of hallucination.

to distill key information, thereby mitigating the interference
caused by information overload during the reasoning process.

D. LLMs Collaborative Reasoning

Despite the notable reasoning capacity of modern LLMs,
incident management remains a highly complex, multi-step
task requiring precise diagnosis and transparent logic. Relying
on a single LLM often results in suboptimal accuracy and poor
interpretability due to context overload and hallucinations.

To address these challenges, TrioXpert adopts the MoE
architecture comprising three specialized LLMs: a Numerical
Expert, a Textual Expert, and an Incident Expert. Each expert
operates on modality-specific inputs and contributes to a
collaborative diagnostic process.

1) Definition of LLMs experts:
1) Numerical Expert. The Numerical Expert focuses on ana-

lyzing numerical feature representations. Its input consists
of numerical features Fnum generated from time-series
matrix M and service topology graph G, while its output
includes the results Rnum and corresponding reasoning
evidence Enum for three downstream tasks: AD, FT, and
RCL. Specifically, preliminary diagnostic results are gener-
ated through a deviation matrix, and the Numerical Expert
is responsible for further validating the reasonableness of
these results to ensure diagnostic accuracy and reliability,
while providing clear explanatory support.

2) Textual Expert. The Textual Expert is responsible for
processing textual feature representations Ftxt derived
from filtered logs L and filtered traces T . Its inputs are
log summaries and trace summaries, and its output also

Prompts for Incident Expert

system_prompt="""
Role: incident expert
Goal:
- Integrate the predicted result and corresponding evidence from numerical
perspective and textual perspective, and leverage key information for reasoning to
accomplish downstream tasks in fault management.
Constraints:
- The reasoning process must be based on the input result and corresponding
evidence from numerical perspective and textual perspective.
- The reasoning process must ensure consistency from beginning to end.
- Strictly adhere to the output format specifications for each task.
- Do not introduce unsupported facts or assumptions. If unsure, provide a
confidence score (0-100%) indicating the reliability of the generated answer.
Instructions:
- The numerical perspective focus on the analysis of metrics and topology
generated from trace.
- The textual perspective focus on the analysis of logs and traces.
- When conflicting information arises between the numerical and textual
perspectives, prioritize the numerical perspective as it is generally more reliable.
Please evaluate and assign appropriate weight to each source accordingly.
- You need to combine the predicted result and corresponding evidence from
numerical perspective and textual perspective, and integrate key information to
complete the fault analysis task.
- You need to accomplish the task based on the instructions and examples
provided for each task."""

ad_task_prompt="""
Instructions:
Example:"""
ft_task_prompt="""......"""
rcl_task_prompt="""......"""

Fig. 4. The prompt of Incident Expert. This structure prompt is grounded
in the “RGCIE” principle to mitigate hallucination, providing clear definition
of the Incident Expert itself and its corresponding tasks (i.e., AD, FT, and
RCL). The prompt also contains conflict resolution and aggregation policy to
deal with the potential inconsistencies.

includes the results Rtxt and corresponding reasoning
evidenceRtxt. The objective of the Textual Expert is to an-
alyze textual information to resolve contradictions between
data from different sources (i.e., logs, traces), extract and
emphasize commonalities, and thereby supplement critical
details that may be overlooked by numerical features.

3) Incident Expert. The Incident Expert takes as input the
diagnostic results and corresponding reasoning evidence
generated by the Numerical Expert and Textual Expert,
which originate from different data modalities. Its output
includes the final results Rfinal and reasoning evidence
Efinal for AD, FT, and RCL. Due to potential conflicts
or inconsistencies arising from the different origins of
numerical and textual features, the Incident Expert em-
ploys a comprehensive reasoning mechanism to balance
information from various sources, eliminate contradictions,
and generate highly consistent and reliable diagnostic
results.

2) Coordination pipeline: TrioXpert adopts the MoE
paradigm, leveraging a dispatch-and-aggregation mechanism
to fully exploit the specialized strengths of each expert in
their respective domains. The pseudo-code for the coordination
pipeline is shown in Algorithm 1. Specifically, this mechanism

6

Algorithm 1: LLM-Based Coordination Pipeline in
TrioXpert

Data: Fnum: Numerical feature (from metrics and
topology)

Ftxt: Textual feature (from logs and traces)
Result: Rfinal: Final diagnostic decision (AD, FT,

RCL)
Efinal: Final explanation reasoning chain

22 Rnum, Enum ← NumericalExpert(Fnum) ;
// Process metric-based features

44 Rtxt, Etxt ← TextualExpert(Ftxt) ; // Process
logs and traces

66 Rfinal, Efinal ←
IncidentExpert(Rnum, Enum,Rtxt, Etxt) ;
// Aggregate and reconcile

7 return (Rfinal, Efinal)

first assigns numerical features Fnum and textual features
Ftxt to the Numerical Expert and Textual Expert, respec-
tively, for independent analysis. Both experts independently
generate results and corresponding reasoning evidence for AD,
FT, and RCL. Subsequently, the Incident Expert performs a
comprehensive analysis of the outputs from the Numerical Ex-
pert and Textual Expert, balancing information from different
sources to resolve potential conflicts and ultimately producing
a unified and reliable diagnostic result Rfinal along with
comprehensive reasoning evidence Efinal. This dispatch-and-
aggregation mechanism not only enables efficient integration
of multimodal data but also significantly enhances the accuracy
and interpretability of TrioXpert in performing AD, FT, and
RCL tasks within complex microservice systems.

3) Conflict resolution and aggregation policy: Due to po-
tential inconsistencies in incident information across modal-
ities, conflicts may arise between experts. For example, the
Numerical Expert may infer a failure type such as “Node CPU
overload”, based on time-series metrics, while the Textual
Expert may conclude it is a “Container Hardware” issue based
on logs and traces. To resolve discrepancies through semantic
reasoning rather than numerical fusion, we employ a text-
guided weighting mechanism. Specifically, LLM experts are
instructed via natural language prompts to prioritize informa-
tion sources based on their respective reliability.

Within the Textual Expert, higher weight is assigned to
log entries over trace data. Logs typically contain richer
semantic signals, including precise error messages and ex-
ception patterns, which are often more indicative of fault
semantics than raw trace delays. Furthermore, our keyword-
based filtering process ensures that the selected logs L are
contextually aligned with incident symptoms, thus improving
their diagnostic quality.

In Incident Expert, the output of the Numerical Expert
is given greater weight, as it extracts features and performs
downstream processing based on unfiltered, high-resolution
metric data, which tend to be more stable and comprehensive

TABLE I
DETAILED INFORMATION OF DATASETS.

Datasets Instances Failures Normal Failure Types Records

D1
trace 44,858,388

46 210 3714 5 log 66,648,685
metric 20,917,746

D2
trace 214,337,882

18 133 12297 6 log 21,356,870
metric 12,871,809

compared to partially filtered logs and trace spans. For exam-
ple, sustained CPU or memory anomalies are often reliably
captured in the metric view, whereas logs may omit such
patterns. This design has been validated through ablation
studies III, which demonstrate that using only the Numerical
Expert yields better performance than relying solely on the
Textual Expert.

4) Hallucination mitigation design: To address the chal-
lenge of hallucination in LLMs, TrioXpert introduces a com-
prehensive mitigation strategy centered around refined prompt
engineering. Specifically, TrioXpert adopts a structured prompt
engineering approach grounded in the “RGCIE” principle
(i.e., Role, Goal, Constraints, Instructions, Example) to tailor
prompts for different LLMs. By explicitly defining roles,
goals, instructions, and constraints, along with providing high-
quality examples, this approach promotes strict adherence of
LLMs to task requirements, thereby significantly reducing
the occurrence of hallucinations. As shown in Fig. 4, the
prompts are further formalized using YAML format, enabling
consistent structuring, easy customization, and programmable
parsing across diverse model interfaces. This systematic design
not only enhances the precision of model outputs but also
aligns them more closely with the intended objectives.

Through this strategy, TrioXpert effectively mitigates the
impact of hallucination, contributing to more robust and reli-
able performance in incident management tasks.

IV. EXPERIMENTS

In this section, we address the following research questions:
1) RQ1: How does TrioXpert perform in AD, FT and RCL?
2) RQ2: Does each component contribute to TrioXpert?
3) RQ3: Is TrioXpert interpretable and practically actionable

for real-world incident management?

A. Experimental Setup

1) Datasets: To comprehensively evaluate the performance
of TrioXpert in AD, FT, and RCL, we conducted extensive
experiments on two datasets, D1 and D2 (shown in Table I).
These datasets include three modalities of data (i.e., metrics,
logs, traces), and each incident case was annotated by senior
industry experts and researchers with extensive experience in
the AIOps community. Since these datasets not only encom-
pass multimodal information but also provide high-quality
annotations consistent with multi-task labels, they support a
comprehensive evaluation of TrioXpert’s performance.
1) D1: This dataset is derived from a simulated e-commerce

system based on a microservice architecture, which is

7

TABLE II
PERFORMANCE COMPARISON ON AD, FT, RCL, AND TIME. “-” MEANS THIS METHOD DOES NOT COVER THE TASK.

Methods

D1 D2

AD FT RCL Effiency AD FT RCL Effiency

Precision Recall F1 Precision Recall F1 Top@1 Top@3 Avg@5 Time (s) Precision Recall F1 Precision Recall F1 Top@1 Top@3 Avg@5 Time (s)

TrioXpert 0.880 0.972 0.924 0.852 0.768 0.807 0.651 0.778 0.773 14.314 0.854 0.972 0.909 0.814 0.725 0.767 0.550 0.775 0.750 12.597

ART [1] 0.759 0.621 0.683 0.786 0.794 0.790 0.683 0.762 0.757 0.872 0.593 0.972 0.737 0.860 0.650 0.740 0.375 0.825 0.738 1.363

DiagFusion [2] - - - 0.675 0.500 0.574 0.310 0.452 0.467 4.145 - - - 0.797 0.527 0.634 0.582 0.709 0.695 3.297

Eadro [4] 0.425 0.946 0.586 - - - 0.137 0.315 0.302 0.627 0.767 0.935 0.842 - - - 0.157 0.315 0.310 0.899

Hades [28] 0.866 0.863 0.865 - - - - - - 0.104 0.867 0.868 0.868 - - - - - - 0.415

MicroCBR [11] - - - 0.667 0.796 0.726 - - - 0.278 - - - 0.629 0.678 0.653 - - - 0.306

PDiagnose [29] - - - - - - 0.615 0.692 0.685 4.342 - - - - - - 0.037 0.296 0.285 9.919

deployed on a top bank’s cloud platform. Its traffic patterns
are consistent with real-world business scenarios, and
the failure types are summarized from common issues
observed in real systems. The dataset includes 40 microser-
vice instances and 6 virtual machines, covering five distinct
failure types.

2) D2: This dataset is sourced from the management system
of a top-tier commercial bank and encompasses real-world
business application scenarios. The dataset comprises a
total of 18 instances, involving various components such
as microservices, servers, databases, and Docker, and is
categorized into six failure types.

2) Baseline Methods: We selected six state-of-the-art
methods as baseline methods. Among them, ART [1], Di-
agFusion [2], and Eadro [4] are based on multimodal data
analysis and are capable of simultaneously addressing multiple
downstream tasks in incident management. In contrast, Hades
[28], MicroCBR [11], and PDiagnose [29] are specifically
designed to focus on single tasks, targeting AD, FT, and
RCL, respectively. Due to the absence of the AD module in
some methods, we assume that the timestamps of incidents
are known during the evaluation of FT and RCL tasks.
Additionally, we configured the parameters of these baseline
methods to align with their original papers. For dataset-specific
configurations (e.g., window length), we made appropriate
adjustments based on the characteristics of our data.

3) Evaluation Metrics: As described in Section II-C, the
goal of TrioXpert is to detect failures, determine failure types,
and locate the root cause. To better reflect the performance of
the evaluated methods in real-world applications, we designed
and selected different evaluation metrics for each task.

AD and FT are both inherently classification tasks, but their
objectives differ: AD is a binary classification task used to
determine whether a system has experienced a failure, while
FT is a multi-class classification task aimed at identifying the
type to which the failure belongs. To evaluate the performance
of these two tasks, we utilized the following metrics: True
Positives (TP), False Positives (FP), and False Negatives (FN).
Based on these metrics, we calculated Precision = TP

TP+FP

and Recall = TP
TP+FN , and subsequently derived the F1 =

2·Precision·Recall
(Precision+Recall) as a comprehensive evaluation criterion.

For the RCL task, we introduced the Top@K =
1
N

∑N
i=1(gti ∈ Pi[1 : K]) metric to calculate the probability

that the true root cause is included within the top K predicted

results, where gt represents groundtruth, P stands for predic-
tions and K is the total amount of failures. Additionally, to
comprehensively assess model performance, we also employed
the Avg@5 = 1

5

∑5
i=1 Top@K metric.

We also include per-case processing time Time (in seconds)
to evaluate the runtime efficiency of TrioXpert.

4) Implementations: We implemented TrioXpert using
Python 3.10.16 with PyTorch 2.4.0, Transformers 4.46.0,
and DGL 2.4.0+cu124. For the backbone LLM, we selected
Qwen2.5-7B-Instruct due to its state-of-the-art performance on
the Open LLM Leaderboard [30] among models under 10B
parameters. Experiments were conducted on a server with
16-core Intel Xeon Gold 5416S CPU, 376GB RAM, and 8
NVIDIA RTX A6000 GPUs (48GB memory each). To ensure
result reliability, we repeated each experiment five times and
reported the average performance.

B. RQ1: Overall Performance

Table II reports the performance of TrioXpert compared
with six baselines on the D1 and D2 datasets. These baselines
include both multi-task frameworks (e.g., ART, DiagFusion,
Eadro) and task-specific methods (e.g., Hades for AD, Mi-
croCBR for FT, PDiagnose for RCL).

TrioXpert consistently outperforms the baseline methods on
both the D1 and D2 datasets, achieving the best performance
in AD (improving by 4.7% to 57.7%), FT (improving by
2.1% to 40.6%), and RCL (improving by 1.6% to 163.1%)
tasks. Specifically, on the D1 and D2 datasets, TrioXpert
achieves an F1 score exceeding 0.9 in the AD task, an F1
score exceeding 0.75 in the FT task, and an Avg@5 score
exceeding 0.75 in the RCL task. These results demonstrate
that TrioXpert, by designing three independent data processing
pipelines tailored to the inherent characteristics of different
modalities, showcasing significant advantages. Furthermore,
the experimental results confirm that the textual information in
logs and traces indeed contains rich semantic content, which
traditional methods may fail to fully exploit.

We also evaluate the runtime efficiency of TrioXpert. While
the use of LLMs collaborative reasoning inevitably introduces
some latency, the average processing time per case remains
under 15 seconds across all test scenarios. This level of
responsiveness aligns with the latency requirements of most
production environments, confirming that TrioXpert is suitable
for real-time incident management in practical deployments.

8

TABLE III
THE EVALUATION RESULTS OF ABLATION STUDY.

Methods
D1 D2

AD: F1 FT: F1 RCL: Avg@5 AD: F1 FT: F1 RCL: Avg@5

TrioXpert 0.924 0.807 0.773 0.909 0.767 0.750

A1 0.725 0.190 0.667 0.832 0.685 0.625

A2 nan 0.261 0.238 nan 0.352 0.275

A3 0.672 0.398 0.534 0.583 0.284 0.608

A4 0.428 0.294 0.397 0.552 0.359 0.517

A5 0.339 0.157 0.362 0.405 0.287 0.233

C. RQ2: Ablation Study

We conduct ablation studies to assess the contribution of
key components in TrioXpert. We omit ablation on log/trace
filtering due to practical constraints—removing it causes input
sequences to exceed LLM context limits, resulting in unaccept-
able latency. Table III reports the performance of five ablated
variants across three tasks on both datasets.
• A1: Removes the textual pipelines (logs and traces), re-

taining only metrics and topology features.
• A2: Removes the numerical pipeline, relying solely on logs

and traces.
• A3: Replaces the multi-expert reasoning with a single

LLM.
• A4: Disables conflict resolution and aggregation; expert

outputs are used without coordination.
• A5: Disables hallucination mitigation by removing struc-

tured prompt constraints.
TrioXpert consistently outperforms all ablated variants on

both datasets, demonstrating the necessity of each component.
Notably, A1 and A2 suffer from incomplete modality cover-
age, confirming the value of multimodal input. The AD result
of A2 is undefined due to the lack of timestamp granularity in
textual data alone, highlighting the importance of numerical
signals for temporal localization.
A3 shows a marked drop across all tasks, indicating that

the MoE-based collaborative reasoning is more robust than a
monolithic LLM under multimodal input load. Similarly, A4
and A5 degrade due to the absence of support mechanisms for
resolving expert disagreement and mitigating hallucinations.

D. RQ3: Case Study

We adopt a qualitative approach to evaluate interpretability,
as most baseline methods do not produce explicit reasoning
evidence. Applying quantitative metrics in such a setting
would be misleading due to the lack of comparable outputs
from baselines. Importantly, TrioXpert has been deployed in
Lenovo’s production-grade microservice platform, where it
serves as a real-time diagnostic assistant for incident manage-
ment. In traditional operations, identifying the root cause of a
complex incident typically requires three experienced OCEs
working collaboratively for approximately 2.5 hours, often
cycling through five or more hypotheses before locating the
true root cause. By contrast, TrioXpert significantly improves
both efficiency and accuracy: it requires only 26 seconds

on average to produce a diagnosis, and typically identifies
the correct root cause within two prediction attempts. This
improvement in efficiency and precision directly translates
to reduced TTM and operational cost savings in production
environments. We illustrate TrioXpert ’s interpretability and
practical value through three real-world incident cases from
Lenovo’s system.

1) Case 1: Disk Space Exhaustion: When users reported
500 errors in a Java application, TrioXpert’s Numerical Expert
detected 100% disk usage across all service instances, while
the Textual Expert identified critical logs: “ERROR FileSys-
temError: Failed to write file... No space left on device.”
The Incident Expert synthesized these perspectives, correctly
attributing the issue to disk space exhaustion despite the
application’s multi-replica nature, and explicitly linked the
temporary file generation failure to the observed symptoms.

2) Case 2: Goroutine Leak: For an HTTP proxy service
with severe latency issues, TrioXpert’s Numerical Expert re-
vealed steadily increasing CPU utilization correlating with
response time degradation. The Textual Expert identified the
synchronous invocation pattern and absence of coroutine ter-
mination. The Incident Expert connected these observations
to diagnose a goroutine leak, explaining how unbounded
coroutine creation led to resource exhaustion.

3) Case 3: Proxy Misconfiguration: When a data center
worker exhibited widespread timeouts, TrioXpert’s Numeri-
cal Expert detected anomalous network patterns specific to
the affected data center. The Textual Expert identified the
HTTPS PROXY environment variable pointing to a foreign
data center. The Incident Expert reconstructed the faulty re-
quest flow, identifying how local requests were routed through
a foreign proxy, causing packet loss.

Two experienced Lenovo OCEs carefully reviewed the
reasoning chains across all three cases. They confirmed that
TrioXpert’s structured, evidence-based reasoning made root
causes transparent and traceable, enabling them to quickly
verify diagnostic conclusions without repeating manual in-
vestigations. This level of interpretability not only increased
their trust in the system’s outputs, but also reduced the effort
required for root cause analysis in terms of both time and
expert involvement, thereby improving diagnostic efficiency
and reducing operational burden in production environments.

V. RELATED WORK

Methods based on single-modal data. The metrics, logs,
and traces form the core support for the operation and mainte-
nance of modern microservice systems. In previous research,
many scholars have attempted to achieve incident management
by conducting in-depth analysis of a specific modality of data.
For example, regarding metrics data, some studies construct
dependency graphs to depict the relationships between system
components during incidents, with representative methods
including CloudRanger [31], MS-Rank [32], AutoMAP [3],
and MicroCause [33]. For log data, certain approaches [34]–
[36] first perform log parsing and then apply hierarchical
agglomerative clustering to cluster incidents. As for trace

9

data, many methods [13], [37], [38] typically use the 3-
sigma approach to determine whether delays are abnormal for
anomaly detection, followed by spectrum-based methods for
root cause localization. However, these approaches rely exclu-
sively on one modality and fail to capture cross-modal cues.
When anomalies manifest differently across modalities—or are
absent from the chosen one—such methods often break down.

Methods based on multimodal data. In recent years,
researchers have increasingly recognized that analyzing data
from multiple modalities can facilitate a more comprehensive
sketch of the operational status of microservice systems. Con-
sequently, many studies have attempted to integrate metrics,
logs, and trace data, including ART [1], DiagFusion [2],
Eadro [4], and DeepHunt [39]. However, since log and trace
data are typically presented in the form of massive text,
traditional processing approaches tend to extract statistical
features while primarily utilizing the topological structure
of traces. For instance, ART constructs a unified time-series
matrix by calculating the frequency of log templates over a
specific time period and the distribution of different status
codes within traces. Although these methods can achieve
multimodal data fusion to some extent, they inevitably result
in significant information loss, particularly failing to fully
leverage the textual information contained in logs and traces.

Methods based on Large Language Models. With the
emergence of powerful natural language understanding and
reasoning capabilities in LLMs, researchers have explored
their application in the field of incident management. However,
existing works have yet to adequately address the key limita-
tions in the current incident management domain. For instance,
Oasis [20] is primarily used for automatic incident summary
generation, Xpert [21] focuses on generating KQL query
languages, and Nissist [22] is dedicated to recommending
failure remediation measures. None of these methods directly
cover multiple stages of the incident management lifecycle.
Furthermore, a series of works [5], [23], [25] have analyzed the
root cause and failure type, but they rely solely on diagnostic
information of incidents, failing to fully leverage multimodal
data such as metrics, logs, and traces. More critically, these
systems do not address core limitations of LLMs—especially
hallucination and context window constraints—which hinder
their reliability in high-stakes operational environments.

VI. DISCUSSION

A. Limitations and Possible Solutions

Despite the effectiveness of TrioXpert, several limitations
remain. (1) Generalization of numerical modeling. The first
pipeline employs self-supervised learning over metric fea-
tures, which limits generalizability across evolving service
topologies or unseen deployment environments. Frequent re-
training is required to adapt, impeding deployment scala-
bility. Incorporating training-free anomaly detectors, such as
PatternMatcher [40], may reduce this retraining overhead
while preserving diagnostic sensitivity. (2) Expert coordination
and robustness. TrioXpert adopts a dispatch-and-aggregation
MoE architecture, which assumes that each expert (numerical,

textual) produces independently correct outputs. In practice,
error propagation can occur due to inconsistent reasoning or
incomplete evidence. Future work may introduce an adaptive
correction mechanism (e.g., a Judge LLM) that verifies cross-
expert consistency and triggers targeted re-analysis when se-
mantic contradictions are detected.

B. Threats to Validity

We recognize the following threats to the validity of our
results: (1) Dataset scope and system complexity. Both D1
and D2 are derived from controlled environments with fewer
microservices and lower workload volatility than industrial
systems. Although representative, they may not capture failure
dynamics at scale. Extending evaluations to real-world datasets
will be essential. (2) Simplified failure cases. The failure
patterns in D1 and D2 are relatively simple and do not
fully capture the complexity of real-world industrial incidents,
such as cascading faults or timing-sensitive interactions. This
may limit TrioXpert’s generalizability to more intricate failure
scenarios. Nonetheless, the current setup demonstrates strong
results with a 7B-scale LLM. Scaling to larger models and
more expressive inputs offers a promising direction for im-
proving robustness in production environments.

C. Effiency and Impact on Model Size

TrioXpert achieves low-latency inference despite integrat-
ing LLM-based summarization and collaborative reasoning.
Across all test cases, the average end-to-end diagnosis is
completed within 15 seconds, ensuring no adverse impact on
TTM and satisfying industrial requirements for rapid incident
response. Regarding model size, TrioXpert currently uses 7B-
parameter LLMs for each expert module. This configuration,
combined with carefully engineered prompts, achieves strong
performance on both D1 and D2, while effectively mitigating
hallucinations and preserving interpretability. Although larger
models may offer marginal performance gains, the increased
computational overhead and latency are not justified under
current task complexity. That said, in future deployments
targeting more intricate failure scenarios, scaling up the model
size may become necessary. At present, the 7B setup offers a
favorable trade-off between performance, interpretability, and
operational efficiency.

VII. CONCLUSION

This work introduces TrioXpert, an end-to-end frame-
work for unified incident management in microservice sys-
tems through modality-specific preprocessing and collabora-
tive LLM reasoning. By preserving semantic richness while
addressing LLM limitations via structured prompts, it simul-
taneously achieves significant accuracy improvements across
AD, FT, and RCL. The approach shows that modality-aware
representations and structured LLM collaboration enable scal-
able, interpretable incident management. While designed for
microservices, its principles can generalize to other complex,
high-stakes systems requiring multisource analysis.

10

REFERENCES

[1] Y. Sun, B. Shi, M. Mao, M. Ma, S. Xia, S. Zhang, and D. Pei, “Art:
A unified unsupervised framework for incident management in mi-
croservice systems,” in Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, 2024, pp. 1183–1194.

[2] S. Zhang, P. Jin, Z. Lin, Y. Sun, B. Zhang, S. Xia, Z. Li, Z. Zhong,
M. Ma, W. Jin et al., “Robust failure diagnosis of microservice system
through multimodal data,” IEEE Transactions on Services Computing,
vol. 16, no. 6, pp. 3851–3864, 2023.

[3] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
Proceedings of The Web Conference 2020, 2020, pp. 246–258.

[4] C. Lee, T. Yang, Z. Chen, Y. Su, and M. R. Lyu, “Eadro: An end-
to-end troubleshooting framework for microservices on multi-source
data,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 2023, pp. 1750–1762.

[5] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao,
H. Fan, M. Wen et al., “Automatic root cause analysis via large language
models for cloud incidents,” in Proceedings of the Nineteenth European
Conference on Computer Systems, 2024, pp. 674–688.

[6] V. Ganatra, A. Parayil, S. Ghosh, Y. Kang, M. Ma, C. Bansal, S. Nath,
and J. Mace, “Detection is better than cure: A cloud incidents per-
spective,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 1891–1902.

[7] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI, vol. 19, no. 7,
2019, pp. 4739–4745.

[8] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang,
L. Mo, J. Zeng, W. Xue et al., “Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2020, pp. 48–58.

[9] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu, C. Luo,
Y. Li, N. Qiu et al., “Diagnosing root causes of intermittent slow queries
in cloud databases,” Proceedings of the VLDB Endowment, vol. 13, no. 8,
pp. 1176–1189, 2020.

[10] D. Scheinert, A. Acker, L. Thamsen, M. K. Geldenhuys, and O. Kao,
“Learning dependencies in distributed cloud applications to identify
and localize anomalies,” in 2021 IEEE/ACM International Workshop
on Cloud Intelligence (CloudIntelligence). IEEE, 2021, pp. 7–12.

[11] F. Liu, Y. Wang, Z. Li, R. Ren, H. Guan, X. Yu, X. Chen, and G. Xie,
“Microcbr: Case-based reasoning on spatio-temporal fault knowledge
graph for microservices troubleshooting,” in International Conference
on Case-Based Reasoning. Springer, 2022, pp. 224–239.

[12] S. Zhang, Y. Zhao, S. Xia, S. Wei, Y. Sun, C. Zhao, S. Ma, J. Kuang,
B. Zhu, L. Pan et al., “No more data silos: Unified microservice
failure diagnosis with temporal knowledge graph,” IEEE Transactions
on Services Computing, 2024.

[13] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng,
X. Sun, and X. Li, “Microrank: End-to-end latency issue localization
with extended spectrum analysis in microservice environments,” in
Proceedings of the Web Conference 2021, 2021, pp. 3087–3098.

[14] D. Wang, Z. Chen, Y. Fu, Y. Liu, and H. Chen, “Incremental causal graph
learning for online root cause analysis,” in Proceedings of the 29th ACM
SIGKDD conference on knowledge discovery and data mining, 2023, pp.
2269–2278.

[15] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang,
L. Yan, Z. Wang et al., “Practical root cause localization for microservice
systems via trace analysis,” in 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS). IEEE, 2021, pp. 1–10.

[16] Y. Li, G. Yu, P. Chen, C. Zhang, and Z. Zheng, “Microsketch:
Lightweight and adaptive sketch based performance issue detection and
localization in microservice systems,” in International Conference on
Service-Oriented Computing. Springer, 2022, pp. 219–236.

[17] Y. Li, J. Tan, B. Wu, X. He, and F. Li, “Shapleyiq: Influence quantifica-
tion by shapley values for performance debugging of microservices,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 4,
2023, pp. 287–323.

[18] Z. Li, N. Zhao, M. Li, X. Lu, L. Wang, D. Chang, X. Nie, L. Cao,
W. Zhang, K. Sui et al., “Actionable and interpretable fault localization

for recurring failures in online service systems,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 996–
1008.

[19] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and
C. He, “Latent error prediction and fault localization for microservice
applications by learning from system trace logs,” in Proceedings of
the 2019 27th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering,
2019, pp. 683–694.

[20] P. Jin, S. Zhang, M. Ma, H. Li, Y. Kang, L. Li, Y. Liu, B. Qiao,
C. Zhang, P. Zhao et al., “Assess and summarize: Improve outage
understanding with large language models,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1657–1668.

[21] Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang,
S. Rajmohan, Q. Lin et al., “Xpert: Empowering incident management
with query recommendations via large language models,” in Proceedings
of the IEEE/ACM 46th International Conference on Software Engineer-
ing, 2024, pp. 1–13.

[22] K. An, F. Yang, L. Li, Z. Ren, H. Huang, L. Wang, P. Zhao, Y. Kang,
H. Ding, Q. Lin et al., “Nissist: An incident mitigation copilot based on
troubleshooting guides,” CoRR, 2024.

[23] Z. Wang, J. Li, M. Ma, Z. Li, Y. Kang, C. Zhang, C. Bansal,
M. Chintalapati, S. Rajmohan, Q. Lin et al., “Large language models can
provide accurate and interpretable incident triage,” in 2024 IEEE 35th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2024, pp. 523–534.

[24] Y. Han, Q. Du, Y. Huang, J. Wu, F. Tian, and C. He, “The potential of
one-shot failure root cause analysis: Collaboration of the large language
model and small classifier,” in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, 2024, pp.
931–943.

[25] X. Zhang, S. Ghosh, C. Bansal, R. Wang, M. Ma, Y. Kang, and S. Ra-
jmohan, “Automated root causing of cloud incidents using in-context
learning with gpt-4,” in Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering,
2024, pp. 266–277.

[26] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and
S. Rajmohan, “Recommending root-cause and mitigation steps for
cloud incidents using large language models,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 1737–1749.

[27] Y. Liu, Y. Ji, S. Tao, M. He, W. Meng, S. Zhang, Y. Sun, Y. Xie, B. Chen,
and H. Yang, “Loglm: From task-based to instruction-based automated
log analysis,” arXiv preprint arXiv:2410.09352, 2024.

[28] C. Lee, T. Yang, Z. Chen, Y. Su, Y. Yang, and M. R. Lyu, “Heteroge-
neous anomaly detection for software systems via semi-supervised cross-
modal attention,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 2023, pp. 1724–1736.

[29] C. Hou, T. Jia, Y. Wu, Y. Li, and J. Han, “Diagnosing performance issues
in microservices with heterogeneous data source,” in 2021 IEEE Intl
Conf on Parallel & Distributed Processing with Applications, Big Data
& Cloud Computing, Sustainable Computing & Communications, So-
cial Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
IEEE, 2021, pp. 493–500.

[30] C. Fourrier, N. Habib, A. Lozovskaya, K. Szafer, and T. Wolf, “Open llm
leaderboard v2,” https://huggingface.co/spaces/open-llm-leaderboard/
open llm leaderboard, 2024.

[31] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,” in
2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 2018, pp. 492–502.

[32] M. Ma, W. Lin, D. Pan, and P. Wang, “Ms-rank: Multi-metric and self-
adaptive root cause diagnosis for microservice applications,” in 2019
IEEE International Conference on Web Services (ICWS). IEEE, 2019,
pp. 60–67.

[33] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[34] C. M. Rosenberg and L. Moonen, “Spectrum-based log diagnosis,”
in Proceedings of the 14th ACM/IEEE International Symposium on

11

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Empirical Software Engineering and Measurement (ESEM), 2020, pp.
1–12.

[35] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th international conference on software engineering companion,
2016, pp. 102–111.

[36] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 26th ACM joint meeting on European software
engineering conference and symposium on the foundations of software
engineering, 2018, pp. 60–70.

[37] G. Yu, Z. Huang, and P. Chen, “Tracerank: Abnormal service localization
with dis-aggregated end-to-end tracing data in cloud native systems,”
Journal of Software: Evolution and Process, vol. 35, no. 10, p. e2413,

2023.
[38] Z. Ye, P. Chen, and G. Yu, “T-rank: A lightweight spectrum based fault

localization approach for microservice systems,” in 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). IEEE, 2021, pp. 416–425.

[39] Y. Sun, Z. Lin, B. Shi, S. Zhang, S. Ma, P. Jin, Z. Zhong, L. Pan,
Y. Guo, and D. Pei, “Interpretable failure localization for microservice
systems based on graph autoencoder,” ACM Transactions on Software
Engineering and Methodology, vol. 34, no. 2, pp. 1–28, 2025.

[40] C. Wu, N. Zhao, L. Wang, X. Yang, S. Li, M. Zhang, X. Jin, X. Wen,
X. Nie, W. Zhang et al., “Identifying root-cause metrics for incident
diagnosis in online service systems,” in 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2021,
pp. 91–102.

12

	Introduction
	Background
	Motivating Study
	Do metrics, logs, and traces all carry diagnostic value
	Can a single LLM reliably perform well over multimodal inputs in incident management

	Challenges
	Semantic impoverishment in multimodal fusion
	Textual data overload in real-time incident management
	LLM limitations in complex and trust-critical incident management

	Problem Definition

	Methodology
	Overview
	Multimodal Data Preprocessing
	Metrics
	Logs
	Traces

	Multi-Dimensional System Status Representation
	Numerical Perspective
	Textual Perspective

	LLMs Collaborative Reasoning
	Definition of LLMs experts
	Coordination pipeline
	Conflict resolution and aggregation policy
	Hallucination mitigation design

	Experiments
	Experimental Setup
	Datasets
	Baseline Methods
	Evaluation Metrics
	Implementations

	RQ1: Overall Performance
	RQ2: Ablation Study
	RQ3: Case Study
	Case 1: Disk Space Exhaustion
	Case 2: Goroutine Leak
	Case 3: Proxy Misconfiguration

	Related work
	Discussion
	Limitations and Possible Solutions
	Threats to Validity
	Effiency and Impact on Model Size

	Conclusion
	References

