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Abstract—In large-scale enterprises, on-call engineers (OCEs)
are critical for ensuring service availability and reliability.
However, as incidents grow in volume and complexity, tra-
ditional manual on-call processes are becoming increasingly
inadequate. Recent advances in large language models (LLMs)
have demonstrated remarkable capabilities in reasoning and
multi-agent collaboration, presenting new opportunities for au-
tomation. We propose OncallX, an end-to-end automated on-
call system designed for real-world industrial scenarios that
integrates LLMs with multi-agent cooperation to enable intel-
ligent and efficient incident management. OncallX first enhances
user queries by leveraging external knowledge bases and multi-
turn dialogue interactions. Subsequently, multiple expert agents
collaborate through tree-search-based mechanisms to generate
effective responses and solutions. When incidents cannot be
resolved automatically, OncallX accurately assigns them to the
most appropriate teams. Comprehensive experiments conducted
in the real-world production environment of a top-tier global
online video service provider demonstrate that OncallX efficiently
responds to incidents and accurately triages tickets, significantly
outperforming existing methods in both automated metrics and
human evaluations. Furthermore, OncallX has been success-
fully deployed in production for two months, during which it
has substantially enhanced on-call efficiency, reducing average
incident response time to just 21 seconds and average triage
time to 4 seconds—representing a transformative improvement
in operational excellence.

Index Terms—On-Call, Large Language Model, Multi-Agent

I. INTRODUCTION

On-call engineers (OCEs) are responsible for handling
urgent technical issues and emergencies, including system
alerts and troubleshooting critical problems [1]. They serve as
the frontline defenders of system reliability, ensuring timely
incident management during exceptions to minimize business
disruptions and mitigate operational risks. As enterprise IT
infrastructure continues to expand in scale and complexity,
modern systems now encompass thousands of services, dis-
tributed architectures, cross-regional data centers, and diverse
technology stacks [2]–[4]. In such environments, OCEs must
rapidly respond to a wide spectrum of emergencies—from ker-
nel failures and network delays to database anomalies—while
providing accurate and effective solutions [5].

However, a significant gap exists between the limited ca-
pabilities of manual on-call processes and the increasingly
demanding operational requirements. First, manual on-call

§ Shenglin Zhang is the corresponding author.

response speed heavily depends on individual OCE experience
and expertise. Developing a competent OCE typically requires
months or even years of intensive training, encompassing both
systematic technical documentation study and extensive hands-
on incident handling experience [6]. Second, manual processes
are constrained by human workload limitations, potentially
preventing timely responses during critical situations. Such
delays can escalate minor issues into major incidents, resulting
in substantial business losses. For instance, a single hour of
Amazon.com downtime could translate to direct revenue losses
exceeding $100 million [7]. Consequently, on-call automa-
tion has emerged as an urgent enterprise need to enhance
operational efficiency while alleviating the burden on human
operators.

Recent advances in large language models (LLMs), includ-
ing GPT-4-Turbo [8] and LLaMA [9], have demonstrated
remarkable capabilities across various natural language pro-
cessing (NLP) tasks. However, individual LLMs still struggle
with complex tasks requiring intensive domain knowledge
and sophisticated reasoning [10]–[12]. In contrast, human
teams effectively address on-call challenges through collabo-
rative problem-solving, where domain specialists complement
each other’s knowledge limitations, tackle cross-domain issues
through coordinated expertise, and enhance solution quality
through diverse perspectives and specialized knowledge inte-
gration.

Inspired by this collaborative paradigm, we propose On-
callX, a multi-agent collaborative framework that automates
two critical tasks spanning the complete on-call lifecycle:
(1) Efficient incident response, where the framework dy-
namically orchestrates domain expert agents to collaboratively
address user queries, enabling rapid and accurate incident
resolution; and (2) Accurate ticket triage, which serves as
the final safeguard by assigning incidents that cannot be auto-
matically resolved to appropriate specialized teams for timely
human intervention. Together, these components address our
core research objective of enabling efficient on-call incident
management. However, realizing this vision presents three core
challenges (detailed in Section III).
Challenge 1: How to enhance LLMs’ understanding of
ambiguous on-call queries? Due to limited domain-specific
knowledge and the inherent ambiguity in on-call incident
descriptions, LLMs often struggle to accurately discern user
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(a) Human on-call workflow

[Problem type]: Abnormal restart or failover during task running
                                                                             The task is hanging.

[Priority]: P1                              [originator]: @_user_1
[Problem Region]: ***                [Main Oncall staff]: @_user_2 @_user_3

[Problem parameters]: ***
...

[Problem description]: 

Discussion:
@user1  @user2 This task is hanging. Could you please check it out?
https://clound.service/...
@user2  Won't a restart fix it?
@user1  We can fix it, but there's no way to completely eliminate the 
root cause. �
 ...

(b) Example of incident ticket

Fig. 1: Illustration of overview of human on-call workflow and incident ticket.

intent, leading to imprecise and inefficient incident responses.
On-call queries frequently contain technical jargon, incomplete
information, and context-dependent references that require
domain expertise to interpret correctly.
Challenge 2: How to improve the accuracy of LLMs’
responses to complex on-call incidents? The complexity
and diversity of on-call scenarios often exceed the capabil-
ities of individual LLMs. Unlike many conventional LLM
applications [13], on-call incidents are highly unpredictable,
lack clear domain boundaries, and resist decomposition into
predefined modules. Effective resolution requires coordinated
expertise from multiple domains, necessitating sophisticated
collaboration mechanisms among specialized LLM agents.
Challenge 3: How to enable efficient and accurate LLM-
based ticket triage? While LLMs demonstrate strong lan-
guage understanding capabilities, their direct application to
ticket triage faces significant challenges. The presence of
textual noise (e.g., formatting artifacts, irrelevant metadata)
and the large category space of potential teams/domains create
both accuracy and efficiency bottlenecks that hinder practical
deployment.

To address these challenges, this paper presents OncallX,
an end-to-end automated on-call system that utilizes multi-
agent LLM collaboration. For Challenge 1, OncallX com-
bines knowledge base retrieval with multi-turn dialogue to
systematically refine and clarify user intent. For Challenge
2, we employ a tree-search-based multi-agent collaboration
mechanism that enables specialized agents to coordinate their
expertise effectively. For Challenge 3, we develop a knowledge
graph-enhanced approach that filters textual noise and provides
structured domain guidance for accurate and efficient ticket
triage.

The main contributions of this work are as follows:
(1) Novel end-to-end multi-agent framework for on-call
automation. To the best of our knowledge, OncallX represents
the first comprehensive on-call system designed around a
multi-LLM-agent architecture that automates the complete on-
call workflow, from initial incident response to final ticket

triage.
(2) Comprehensive solution addressing key automation
challenges. We develop three innovative modules that col-
lectively tackle the core challenges of automated on-call
systems: (i) a user intent enhancement module that leverages
domain knowledge and multi-turn dialogue to improve query
understanding; (ii) a tree-search-based multi-agent orchestra-
tion mechanism that enables effective collaborative problem-
solving; and (iii) a knowledge graph-enhanced ticket triage
approach that achieves high accuracy and efficiency without
requiring additional model training.
(3) Real-world validation and deployment success. We
demonstrate OncallX’s practical effectiveness through compre-
hensive experiments conducted on real System Technologies &
Engineering (STE) scenarios at a top-tier global online video
service provider B. The system has been successfully deployed
in production for two months, achieving transformative perfor-
mance improvements with average incident response times of
21 seconds and ticket triage times of 4 seconds, representing
significant operational enhancements over traditional manual
processes.

II. BACKGROUND
A. On-call Workflow

On-call is a critical operational mechanism designed to en-
sure the stability of business systems and the timely resolution
of issues. It generally comprises three key stages: incident
reporting, incident response and ticket triage, as illustrated in
Figure 1a.

1) Incident Reporting: In production environments, the
continual evolution of business requirements, frequent system
updates, and iterative improvements make incidents inevitable.
When an issue arises, engineers can manually submit a ticket
to the OCE teams. As shown in Figure 1b, each ticket
comprehensively records the necessary information for triage,
diagnosis, and resolution of the issue. Tickets typically in-
clude the following fields: problem type, problem description,
priority (set according to its potential impact on business),
originator, problem parameters, and discussion, among others.
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2) Incident Response: Incident response refers to the pro-
cess by which OCEs promptly investigate user-reported issues
or system-generated alerts and strive to implement effective
mitigation strategies. In practice, OCEs typically rely on alert
data, system logs, and monitoring metrics to rapidly identify
the root cause of an incident. Mitigation actions are then
executed based on predefined runbooks or the engineers’
operational expertise. To illustrate typical failure scenarios
in this process, we provide manually labeled error analysis
reports in Figure 2, which highlight two most frequent types
of failures: fault-related issues and consultation requests. The
primary objective of this phase is to resolve the incident as
quickly as possible, thereby minimizing disruptions to system
stability and user experience. In most cases, incidents are
effectively mitigated at this stage, preventing unnecessary
escalation.

Query: Server downtime.

Manually labeled error analysis report:
Root Cause: The fault location was observed in dmesg. It is preliminarily 
determined to be an issue with a GPU, but the specific GPU has not been 
identified.
Solution: 1. Try restarting the system to see if the GPU recovers after being reset. 
2. Provide the kernel logs (preferably crash logs; if unavailable, provide the full 
dmesg output, at least including the logs around the reboot) for analysis of the 
anomaly. 3. Verify the driver version.

Query: How to evaluate a program's performance on a dual-NIC machine under 
single-NIC versus dual-NIC configurations?

Manually labeled error analysis report:
Root Cause: None.
Solution: 1. It is recommended to try namespace-isolated testing. For example, 
use ‘ip netns add ns1’ to add a namespace, ‘ip link set eth1 netns ns1’ to assign 
the network interface to the namespace, ‘ip netns exec ns1 bash’ to enter the 
namespace, ‘ip route add default xxx’ to add a route inside the namespace, and 
then ping the target address. 2. Propose different testing modes, such as: Mode 1: 
Bring down the ‘eth2’ interface, and set ‘eth0’ affinity on ‘numa0’. Mode 2: Set 
‘eth0’ affinity on the first 24 CPUs of ‘numa0’ and ‘eth2’ affinity on the last 24 
CPUs of ‘numa0’.

Fig. 2: Illustration of manually labeled error analysis reports.

3) Ticket Triage: Ticket triage refers to the process in
which, when OCEs are unable to resolve an issue within their
scope of responsibility, triage engineers review the ticket de-
tails and forward it to the appropriate team for further handling
[2], [3], [7]. Each ticket typically contains the incident context
and engineers’ discussions to help the receiving team quickly
understand and take over. In practice, triage mechanisms may
support automatic escalation based on incident severity to
ensure timely response and resolution. However, due to the
high complexity and interdependencies of systems, tickets are
frequently misrouted to incorrect teams, leading to prolonged
service downtime.

B. Multi-Agent Collaboration

In recent years, LLMs have emerged as pervasive and
foundational technologies in the field of NLP, owing to their
remarkable performance. Nevertheless, single LLM possess
inherent limitations in addressing complex tasks, chiefly due to
their inability to effectively collaborate with other agents and
to acquire knowledge through social interactions [14]. These

constraints impede their capacity to leverage multi-turn feed-
back for continual learning and performance improvement.

To address these challenges, researchers have proposed
multi-LLM-agent systems [13], [15], [16], which incorporate
multiple autonomous agents. Each agent focuses on a specific
subtask and is equipped with its own knowledge base, toolset,
and behavioral strategy. By engaging in efficient information
sharing and human-like collaboration, these agents collectively
leverage their specialized expertise to solve complex prob-
lems, effectively overcoming the limitations of single-agent
systems. This architecture significantly enhances the system’s
robustness, adaptability, and overall effectiveness in handling
real-world complexity.

III. MOTIVATION

The STE team of B specializes in core system technologies,
including operating system kernels, virtualization, founda-
tional system software, and the stability of large-scale data
centers. Its OCEs are responsible for handling a high volume
of system failures and operating system related issues on a
daily basis, with a commitment to delivering reliable and
efficient technical support for upper-layer business services.
The stark imbalance between the overwhelming workload
and the limited number of OCEs presents a significant chal-
lenge to timely incident response. Moreover, the complexity
and diversity of incidents often make it difficult for even
highly experienced OCEs to respond accurately and promptly.
Therefore, to alleviate the burden of manual on-call duties
and improve response efficiency, the development of a more
automated on-call system has become an urgent necessity.

To address this, we propose an end-to-end automated on-
call system powered by LLMs and collaborative multi-agent
interactions. This system integrates multiple expert agents that
actively participate across the entire on-call lifecycle to ensure
accurate and efficient incident response and ticket triage.
However, it confronts the following three challenges.

A. Challenge 1: How to enhance LLMs’ understanding of
ambiguous on-call queries?

IT operations is inherently complex, involving a vast amount
of specialized terminologies, intricate operational workflows,
as well as subtle semantic nuances that depend heavily on
specific contextual environments. LLMs trained on general-
purpose corpora struggle to fully comprehend these domain-
specific knowledge [17]–[19], resulting in limited performance
in real-world IT operations scenarios.

This challenge is particularly evident in on-call scenarios,
where users face intense time pressure and often report issues
in brief, vague, or incomplete ways. For example, a user might
simply input, a terse phrase like “GWPAsan related questions.”
Such expressions are inherently ambiguous and lack the nec-
essary contextual information, making it difficult for LLMs to
accurately interpret the specific meaning of “GWPAsan” and
the user’s intent. Due to insufficient domain knowledge and
contextual understanding, LLMs cannot effectively determine
which expert agent to invoke and what actions to take, often
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responding with failure messages such as “Unable to identify
user intent. Please provide more information.”

To address this, we propose a user intent enhancement
module that leverages domain knowledge and employs a spe-
cially designed intent clarification agent. Through multi-turn
dialogue, this agent assists users in refining and completing
their problem descriptions.

B. Challenge 2: How to improve the accuracy of LLMs’
responses to complex on-call incidents?

Multi-agent collaboration can generally be categorized into
adversarial and cooperative types. Adversarial interaction
achieves shared goals through agent competition [20]–[22],
but often incurs prolonged debates, increased latency, and
significant computational overhead. Moreover, agents may
converge on an incorrect consensus, each confidently believing
it to be correct [21]. In contrast, cooperative multi-agent
systems are more suitable for scenarios that emphasize long-
term collaboration, limited resources, and system stability.
Cooperative interaction can be further divided into disordered
[23], [24] and ordered [13], [15], [16] cooperation. Disordered
cooperation refers to the introduction of a dedicated coordi-
nating agent within a multi-agent system, which is responsible
for aggregating and organizing the responses from all agents,
thereby continuously updating and refining the final answer.
In contrast, ordered cooperation involves agents following
specific rules to engage in a highly structured and sequential
discussion, where each agent expresses their opinion in turn
to collaboratively produce the final answer.

In on-call scenarios, incidents are highly diverse and unpre-
dictable, with vague responsibility boundaries and module def-
initions, making rule-based approaches inadequate. Therefore,
when confronting complex on-call issues, agents must possess
strong multi-turn interaction and dynamic reasoning abilities,
enabling them to continuously track and comprehend con-
textual information while flexibly adjusting decision-making
strategies in response to real-time environmental changes.

To address this challenge, we propose a tree-search-based
multi-agent orchestration framework designed to guide LLMs
in exhaustively exploring potential solution paths. Addition-
ally, by incorporating a reflection mechanism, LLMs can
backtrack to previous steps when the current action fails or
yields no valuable information, enabling effective correction
of the solution paths.

C. Challenge 3: How to enable efficient and accurate LLM-
based ticket triage?

In real-world production environments, the continuous evo-
lution of ticket categories resulting from ongoing business
changes renders the training and maintenance of a static
ticket classifier impractical. Therefore, we aim to leverage the
powerful language understanding and reasoning capabilities
of LLMs to support ticket triage. However, directly applying
LLMs to this task poses challenges in two key aspects.

Textual Noise Interference. In ticket triage, textual infor-
mation (such as titles and engineers’ discussions) is crucial for

identifying the appropriate team. However, discussion qual-
ity is inconsistent, often including disorganized expressions,
ambiguous phrases, images, or links. Inputting raw tickets
directly into an LLM may cause the model to hallucinate due
to noisy inputs, overly relying on the beginning and end of
the text while neglecting important information in the middle
[25], [26]. Thus, effective noise filtering and key information
extraction are essential for improving triage accuracy.

Large Category Space. In practice, the number of ticket
categories is often very large. Asking an LLM to choose
the correct category from the full set significantly increases
reasoning complexity [27]. To enhance LLMs’ classification
performance, it is necessary to impose constraints on the
candidate category space.

To address this, we propose a two-step strategy: first, a
LLM is employed to summarize the row tickets, effectively
reducing noise and irrelevant content, and then a knowledge
graph is used to constrain the candidate category space. This
strategy improves the triage accuracy of the LLM by directly
leveraging discriminative information and reducing the number
of possible categories.

IV. METHODOLOGY

A. Overview

As shown in Figure 3, OncallX consists of three modules.
Module 1, upon receiving an incident ticket, the system
first extracts key technical terms from the user’s query and
retrieves relevant knowledge from domain knowledge bases.
This knowledge is provided to the ClarifyAgent, which deter-
mines whether the user’s intent is sufficiently clear. If the intent
is incomplete, the agent initiates follow-up questions to help
the user fill in missing details. If the intent is deemed complete,
the dialogue ends, resulting in a well-formed query for the
OCEAgent. Module 2, the OCEAgent employs a tree-based
search strategy to coordinate multiple domain expert agents
and explore diverse solution paths. A reflection mechanism
guides the LLM to backtrack previous steps when no useful
information is found to improve search efficiency. Module 3,
if the OCEAgent fails to resolve the incident, the TriageAgent
assigns the ticket to the appropriate expert team, they will
collaborate via group chat to further address the problem.

B. User Intent Enhancement Module

OCE teams are often approached by non-expert users seek-
ing assistance. These queries typically lack sufficient context,
are semantically vague, and involve domain terminology that
general-purpose LLMs struggle to understand due to limited
domain expertise. As a result, LLMs often fail to accurately
grasp the user’s true intent, which can result in suboptimal or
erroneous solutions. To address this, OncallX enhances intent
understanding through two key mechanisms at this stage.

Domain Knowledge Augmentation. OncallX employs a
retrieval augmented generation approach that strategically
combines the strengths of both knowledge retrieval with
the language understanding capabilities of LLM. Specifically,
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Fig. 3: The framework of OncallX.

when a query is received, OncallX first utilizes the LLM to ex-
tract domain terms (e.g., “GWPAsan”, “kdump”, “clang11”),
which are then used as targeted search keys to query a
curated professional knowledge base comprising authoritative
documentation, historical incident reports, and expert insights.
The knowledge base is dynamically updated through two
mechanisms: resolved tickets are archived into the historical
incident repository, and domain documents are periodically
refreshed to ensure the timeliness and reliability of the content.
The retrieved, contextually relevant information is seamlessly
integrated with the original user query, effectively enriching
the input data that is fed into the LLM for further processing.

Multi-turn Dialogue for Intent Clarification. In real-
world production environment, engineers frequently submit
questions that are concise, ambiguous, or lacking crucial de-
tails, typically due to the intense time constraints. Such incom-
plete queries present significant challenges for LLM, which
struggles to accurately interpret the user’s true intent without
sufficient contextual information. To address this, OncallX
introduces a specialized agent called the ClarifyAgent. This
agent leverages carefully designed, context-aware prompts to
engage users in multi-turn interactive dialogue, with the goal
of systematically eliciting essential information that may have
been omitted, such as broader incident context, specific error
messages, system states, and the user’s core concerns. By
iteratively refining the initial query in this manner, OncallX
significantly enhances the LLM’s ability to comprehend the
user intent more precisely, thereby improving the accuracy of
incident response.

C. On-call Question Answer Module

To efficiently and accurately address user queries, we
propose a multi-agent collaborative framework for on-call

question answering. This framework employs a tree-based
search strategy to orchestrate multiple expert agents, guiding
the LLMs to comprehensively explore potential solution paths.
A reflection mechanism is further introduced to enable LLMs
to backtrack to previous steps when the current operation fails
or yields no valuable information, thereby achieving effective
correction and optimization of solution paths.

1) Design of expert agents: In designing expert agents,
we employ a general agent construction strategy to enable
efficient and scalable development [13], [28], [29]. These
agents harness the robust capabilities of LLMs, displaying
advanced competencies in language comprehension, planning,
and tool use, enabling them to reason effectively in complex
on-call scenarios. Engineers can rapidly assemble agents with
well-defined roles and task scopes by modularly selecting and
configuring a set of built-in components. The prompt design
example for an expert agent is shown in Figure 4.

Each expert agent is assigned a clearly defined role descrip-
tion, which serves to constrain its operational boundaries and
guide its task execution. This role-oriented design paradigm
ensures behavioral consistency and maintains domain-specific
expertise, both of which are essential for effective collabora-
tion in multi-agent systems. To further support their special-
ized functions, expert agents are equipped with domain tools.
For instance, the CompileAgent is provisioned with tools such
as a compilation knowledge base retriever and a user self-
diagnosis manual. These tools enable the agent to accurately
and efficiently address user queries, improving its reliability
in real-world applications.

2) Design of the multi-agent planner: To effectively orches-
trate multi-agent collaboration for on-call problem solving, we
adopt a tree-search–based planning strategy. In OncallX frame-
work, OCEAgent serves as a central planner, responsible for
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<Role> You are an expert skilled in compile pro-
blem solving, you can use many tools to do the 
following task.
...
<Task> { User Query }
<Tools> You have access of the following tools: 
1. complie_knowledge_api: This tool offers a co-
mprehensive compilation knowledge base ...
 ...

Fig. 4: Example prompt for expert agent.

interpreting user query, dispatching expert agents, coordinating
multi-step reasoning processes, and integrating responses to
generate a final solution.

Upon receiving a user query enhanced by ClarifyAgent, the
OCEAgent leverages the language comprehension capabilities
of LLM to infer user intent and select appropriate expert agents
to handle corresponding subtasks. Each selected expert agent
invokes its domain tools to execute the task and returns the
results to the OCEAgent. The overall collaboration unfolds
iteratively as a tree-structured search process, consisting of
three key steps.

Step1: Planning. We have carefully designed and config-
ured reflection-oriented prompts for OCEAgent (e.g., “if you
can’t handle the task, please give up and restart”). These
prompts are intended to guide OCEAgent in actively evaluat-
ing the current context and history actions, enabling dynamic
self-assessment and strategic adjustment. During the planning
process, if the OCEAgent determines that a previous action has
failed or produced uninformative results, it will automatically
backtrack to an earlier decision point and replan accordingly.
Conversely, if a useful outcome is obtained, the agent leverages
the successful result to expand new search nodes, thereby fur-
ther advancing the problem-solving process. This mechanism
improves decision quality, reduces unnecessary computational
overhead caused by unproductive paths, and enhances overall
efficiency.

Step2: Execution. During the execution phase, OCEAgent
distributes specific subtask instructions to the corresponding
expert agents based on the task allocation determined in the
planning stage. Upon receiving the instructions, the selected
expert agent autonomously invokes its equipped tools (e.g.,
knowledge retriever, IP query tool) to perform the assigned
operations and generate intermediate result. The result is
subsequently returned to the OCEAgent and serve as guidance
for subsequent planning decisions.

Step3: Integration. Upon receiving intermediate results
from expert agents, the OCEAgent incorporates the informa-
tion into its maintained list of historical messages, thereby
continuously refining the system’s understanding of the current
problem state.

The process iterates until the OCEAgent identifies a sat-
isfactory solution and outputs the final answer, or terminates
when no viable solution can be found. To prevent infinite ex-

ploration, the search space is constrained by predefined depth
and width limits, ensuring that the tree-search-based planning
process remains bounded and computationally tractable.

D. Ticket Triage Module
Tickets comprise both title and discussions. In this stage,

OncallX filters out noise from tickets and constructs a knowl-
edge graph (KG) to assist LLM in achieving more accurate
ticket triage.

Noise Reduction. The title and discussions of a ticket
usually provide a textual description of the incident’s symp-
toms, which play a critical role in determining the appropriate
team for handling the incident. However, the quality of these
discussions varies greatly, and they often include irrelevant or
redundant information that acts as noise, hindering effective
triage. LLM have demonstrated strong capabilities in summa-
rizing and refining textual information. Therefore, TriageAgent
feeds the raw discussion content into a LLM and prompts
it to generate a concise summary, enhancing readability and
facilitating accurate decision-making. Finally, the title and
summarized discussions are concatenated to serve as input for
triage.

Processed 
Ticket

LLM

Relation Knowledge Graph

KG Construction

Entity Extraction

Relation Generation
Keyword 

Entity

Fig. 5: The KG construction framework of OncallX.

Knowledge Graph Construction. As shown in Figure 5,
the construction of the KG involves three key stages: entity
extraction, relation generation, and graph database storage. To
construct the KG, we leverage an LLM to extract key entities
(e.g., “jemalloc”, “velinux”, “coredump”) from historical tick-
ets and to generate semantic relations between these entities
(e.g., “belongs to”, “occurs”, “leads to”) based on contextual
understanding. Specifically, to enhance the relevance of the
KG for ticket triage, we extract entities and relations that are
semantically associated with the ticket’s category. To achieve
this, we adopt a label-informed prompting strategy, where the
ticket category label is used as a weak supervisory signal
during the LLM prompting process. This guides the LLM
to focus on extracting entities and relations most pertinent
to triage. Furthermore, as illustrated in Figure 6, to improve
the quality of entity–relation extraction, we incorporate a
few-shot prompting design, enabling the LLM to learn the
mapping pattern from unstructured ticket data to structured
triples. Subsequently, to support the efficient storage and
querying of large-scale and complex relational information,
we adopted Neo4j [30], a graph-based database. It supports
efficient query execution through the Cypher Query Language
(CQL), enabling fast graph traversal.
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## Instruction ##
You are a system technology expert with extensive experience in extract-
ing key entities from ticket texts and generating relations among them. I 
will provide a text along with its corresponding category. Based on this 
category, please extract the key entities most relevant to it and generate 
the relations between these entities. Return the output in JSON format. 
## Example ##
Please refer to the following examples.
Example 1：
Ticket Text:  An error occurred with RapidJSON when compiling the co-
debase locally.
Text Category:  Compilation/C++
Output:
[{"head": "RapidJSON", "relation": "belongs to", "tail":"Compilation/C++"},
{"head": "Local compilation", "relation": "involves", "tail": "Codebase"}]

Example 2：
...
Now extract from the following:
Ticket Text: [New text here]
Text Category: [New category label]
Output:

Fig. 6: Illustration of few-shot prompting designs.

Online Multi-round Ticket Triage. In the online ticket
triage, we propose an efficient multi-round semantic-driven
triage approach that integrates LLM with KG. The online
process is mainly divided into three rounds. Specifically,
(1) we design domain-knowledge-enhanced prompts to guide
the LLM in automatically extracting key entities E(k) =

{e(k)1 , e
(k)
2 , . . . , e

(k)
N } from the incoming ticket. The extracted

entities serve as initial query points within the pre-constructed
KG and retrieved via CQL. For each entity, the retrieval
process explores directly connected entities as well as multi-
hop relations, effectively traversing the graph to identify all
entities potentially related to the ticket. From this traver-
sal, entities associated with predefined categories are ex-
tracted and aggregated, forming a set of candidate categories
C(k) = {c(k)1 : num1, c

(k)
2 : num2, . . . , c

(k)
N : numN}.

The candidate categories are ranked by their frequency of
association with the ticket, and the top N most relevant
categories as the final candidate set. The candidate set, together
with the preprocessed ticket content, is fed into TriageAgent.
Additionally, background knowledge related to the ticket and
detailed descriptions of each candidate category are provided
to TriageAgent. Based on these inputs, TriageAgent infers the
most appropriate category label from the restricted candidate
set by leveraging semantic information. (2) To further improve
the triage accuracy, we incorporate a reflection mechanism
that prompts TriageAgent to reflect on the initially generated
label, evaluate its correctness, and revise it if necessary to
produce the final triage result. (3) To address the potential
incompleteness of the KG, we incorporate an LLM-enhanced
strategy: when TriageAgent determines that the correct label is
not present in the provided candidate set, it is granted access to
the full set of categories for a more comprehensive selection.
This enables synergistic augmentation between LLM and the
KG. To more clearly illustrate the multi-round ticket triage,
we use the following equations. Here, C represents the set

of categories along with their descriptions, R represents the
predictive result.

LLM(query, knowledge, Ccandidate) → Rtemp (1)
LLM(query, knowledge, Ccandidate, Rtemp) → Rfinal (2)

LLM(query, knowledge, Call) → Rfinal (3)

V. EVALUATION

In this section, we conduct a comprehensive evaluation of
OncallX to answer the subsequent research questions (RQs):

• RQ1: How does OncallX perform in incident response?
• RQ2: How does OncallX perform in ticket triage?
• RQ3: Does each component contribute to OncallX?
• RQ4: How efficient is OncallX in production environ-

ment?

A. Experiment Setup

1) Dataset: To evaluate the accuracy of incident response,
we constructed a test set of 70 tickets from the full dataset
of 1,285 tickets collected over several months. To minimize
selection bias and ensure representativeness, the subset was
drawn from the first month after ticket volumes had stabilized.
The selection criteria ensured both (i) balanced ticket priorities
to evaluate performance across different urgency levels, with
a distribution of low : medium : high = 51 : 15 : 4, and
(ii) varied complexity to assess performance across tasks of
differing difficulty, with a distribution of simple : medium :
complex = 1 : 3 : 3. These statistics demonstrate that the
sampled tickets are both high-quality and representative of the
full dataset. To evaluate the accuracy of ticket triage, we collect
a total of 8,662 tickets from the production environment of B.
Among these, 8,517 tickets from Q1 2023 to Q4 2024 are
used for knowledge graph construction and model training,
whereas the remaining 145 tickets are utilized to evaluate
triage performance.

2) Implementation Details: We conduct all the experiments
with one NVIDIA A6000 GPU. We use gpt-3.5-turbo-16k and
doubao-1.5-pro-32k [31] as the backbone models. Notably,
gpt-3.5-turbo-16k provides performance comparable to GPT-4
at a significantly lower price [32].

3) Evaluation Metrics: In order to assess the performance
of OncallX in incident response, we conduct three types
of evaluations [16], [33]: (1) Human evaluation, (2) GPT4
evaluation and (3) Pass Rate.

• Human Evaluation. For this evaluation, we present both
our solution and the baseline solution side-by-side to
human participants, without revealing their identities.
Participants are then asked to evaluate which solution
is more effective according to two objective criteria:
Accuracy and Readability. The codebook employed in
our human evaluation is shown in Figure 7.

• GPT4 Evaluation. We employ GPT-4 to assess the
performance of Model 1 (ours) and Model 2 (baseline)
on various tasks by prompting it to score and determine
the superior solution for each task.
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TABLE I: Performance comparison of incident response

Model Method Evaluator Baseline Wins (%) OncallX Wins (%) Pass Rate (%) Avg.Tokens

GPT-3.5
Direct GPT-4 35.48 64.52 72.46 0.30K

Human 19.35 80.65 - -

ReAct GPT-4 39.13 60.87 71.01 9.00K
Human 26.09 73.91 - -

OncallX GPT-4 - - 78.26 12.51K

Doubao
Direct GPT-4 30.65 69.35 73.91 0.92K

Human 16.13 83.87 - -

ReAct GPT-4 26.47 73.53 69.57 10.57K
Human 19.70 80.30 - -

OncallX GPT-4 - - 75.36 9.75K

In this evaluation task, you will be given pairs of solutions to certain probl-
ems. Your task is to rate the quality of the solutions on three levels based 
on the following two fundamental and objective dimensions:
1. Accuracy: Whether the response is correct and effectively addresses the 
user’s query.
2. Readability: Whether the response is concise, clear, and easy to understa-
nd, as engineers in real-world production environments prefer solutions 
that are straightforward and actionable.

Now, please read the following evaluation criteria and rate the given probl-
em–solution pairs accordingly.

## Evaluation Criteria ##
1. Accuracy:
- 3 points: The response is completely correct, fully addresses the user’s qu-
ery, and effectively resolves the user’s needs.
- 2 points: The response is mostly correct and partially addresses the user’s 
query, but contains minor omissions or ambiguities.
- 1 point: The response is incorrect or deviates from the user’s query, failin-
g to provide an effective solution.
2. Readability:
- 3 points: The response is concise and clear, logically structured, and easy 
to understand and apply.
- 2 points: The response is generally clear but somewhat redundant or not 
fully fluent, requiring additional effort to comprehend.
- 1 point: The response is lengthy, obscure, or poorly structured, making it 
difficult for engineers to quickly understand and use.

Fig. 7: The codebook for human evaluation.

• Pass Rate. We directly utilize GPT-4 to assess the effec-
tiveness of the solutions proposed by different approachs
in resolving the incident. The pass rate is calculated using
the formula:

Pass Rate =
# (Solved)

# (Solved) + # (Unsolved)
(4)

Following existing methods [2], [32], we adopt the widely-
used accuracy metric to evaluate the effectiveness of our
ticket triage method. This metric means that a prediction
is considered correct if the actual responsible team appears
within the top N teams ranked by the classifier’s predicted
probabilities. We report two metrics, ACC@1 and ACC@3,
which are calculated as follows.

ACC@N =
Sum(Correct Team in Top N Teams)

Test Size
(5)

4) Baseline Approaches: To evaluate the incident response
of OncallX, we adopt the following evaluated methods. (1)
GPT-3.5 model that does not utilize the techniques, which

receives a user query and outputs the solution; (2) Doubao
model evaluated similarly without applying any additional
techniques; (3) GPT-3.5-ReAct. GPT-3.5 model with the Re-
Act [34] framework, utilizing various external tools during
reasoning; (4) Doubao-ReAct. Doubao model with the ReAct
framework, also leveraging tools to support the inference
process.

To evaluate ticket triage performance of OncallX, we adopt
the following methods.

• DeepCT [2]: DeepCT proposed a gated recurrent unit
(GRU) model with attention-based mask strategy and a
revised loss function, enabling incremental learning from
discussions and updating incident triage results.

• DeepTriage [3]: DeepTriage ensembles several sub-
models, including a simple multiple additive regression
tree (MART) model, a light gradient boosting machine
(LGBM) model, an inverted index model, a locality-
sensitive hashing model (SI), and a deep neural network
(DNN) model.

• COMET [32]: COMET filters non-critical logs, extracts
keywords using LLM enhanced with domain knowledge,
and uses a fine-tuned FastText model to generate embed-
dings for precise triage via similarity matching.

B. RQ1: The Performance of OncallX in Incident Response

The results presented in Table I clearly indicate that OncallX
significantly outperforms other baselines across all evalua-
tion metrics, highlighting its substantial performance advan-
tages. Specifically, OncallX (GPT-3.5) achieves a pass rate
of 78.26%, representing a 5.8% improvement over GPT-3.5-
Direct and a 7.25% improvement over GPT-3.5-ReAct. While
OncallX requires slightly more tokens due to its compre-
hensive reasoning for complex on-call tasks, this increase is
marginal compared to the substantial gains in performance.
This superior performance can be attributed to the following
three key factors.

Firstly, OncallX leverages domain knowledge to help LLMs
better understand specialized concepts, and uses multi-turn
dialogue to progressively clarify the user’s true intent. Ex-
perimental results show that when the query is incomplete,
the baselines are unable to provide a definitive answer and
instead returns a message such as, “Sorry, the information you
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provided is insufficient to determine the specific cause of the
issue.” Moreover, vague queries can mislead GPT-3.5-ReAct
and Doubao-ReAct into incorrect reasoning paths, resulting in
wrong answers.

Secondly, OncallX enables evidence-based reasoning
through collaboration among expert agents equipped with do-
main tools. For instance, it can leverage the “System Software
Center Data Steward” tool to accurately diagnose the cause of
system configuration errors. In contrast, the baseline often fail
to identify root causes, offering only generic and impractical
troubleshooting suggestions. These responses are typically
verbose and fall short of users’ expectations for conciseness.

Thirdly, OncallX exhibits capabilities in tree-search-based
planning and reflective reasoning. OncallX flexibly plans
multiple solution paths using tree-search-based planning and
performs dynamic reflection using contextual information.
When a particular path fails or yields no effective output,
the system can automatically backtrack and explore alternative
directions, ensuring a robust and efficient reasoning process.

C. RQ2: The Performance of OncallX in Ticket Triage

TABLE II: Performance comparison of triage methods.

Method ACC@1 ACC@3

MART 0.372 0.710
LGBM 0.359 0.655
InvertedIndex 0.186 0.331
SI 0.117 0.269
DNN 0.048 0.379
DeepTriage 0.359 0.641
DeepCT 0.207 0.455
COMET 0.262 0.455
Ours 0.652 0.774

As shown in Table II, TriageAgent consistently outper-
forms all baseline approaches in ticket triage. Specifically,
TriageAgent outperforms the SOTA methods by 28.0% in
ACC@1 and by 6.4% in ACC@3. Although DeepTriage ex-
hibits suboptimal performance, its effectiveness is constrained
by the limitations of its sub-models. These traditional machine
learning methods use simple feature extraction techniques,
which struggle to model complex contextual semantics. The
poor performance of DeepCT can be attributed to its reliance
on attention mechanisms to reduce noise by assessing the
correlation between discussions and title. However, the high
noise level within engineers’ discussions leads to distorted
correlation judgments, making it difficult for the model to
accurately identify key information. As a result, noisy data
may receive disproportionately high weights, weakening the
model’s discriminative ability and ultimately impairing its
overall triage performance. While COMET effectively lever-
ages the language understanding capabilities of LLMs, unlike
logs, engineers’ discussions are highly diverse, even incidents
of the same category can differ significantly in expression,
making keyword-based similarity unreliable.

D. RQ3: Ablation Study

To evaluate the contribution of each component in OncallX,
we conducted ablation studies focusing on its performance in
incident response and ticket triage.

1) Incident Response: To evaluate the contributions of each
component to incident response, we focus on the user intent
enhancement module and the multi-agent & tree-planner. (1)
User Intent Enhancement Module. As shown in Table III,
removing this module more than doubles token consump-
tion and reduces the pass rate significantly from 75.36% to
65.22%, highlighting its essential role. By leveraging multi-
turn dialogue and domain knowledge, this module clarifies
vague or incomplete queries and restructures them into well-
defined inputs. This improves the LLM’s understanding of user
intent, facilitates more accurate expert agents selection, and
ultimately enhances response accuracy. (2) Multi-Agent &
Tree-Planner. The results show that removing this module
leads to a 13.04% performance drop, highlighting the impor-
tance of well-defined agent roles and effective coordination.
The Multi-Agent architecture supports task decomposition and
specialization, while the Tree-Planner allows the LLM to ex-
plore diverse solutions paths and enhance response efficiency
through strategic pruning.

TABLE III: Component effectiveness in OncallX response.

Method Pass Rate (%) Avg.Tokens

OncallX 75.36 9.75K
- User Intent Enhancement Module 65.22 19.26K
- Multi-Agent & Tree-Planner 62.32 10.56K

2) Ticket Triage: Table IV shows that OncallX outperforms
all variants in ticket triage. Removing the noise reduction mod-
ule leads to a 7.3% drop in ACC@1, as excessive irrelevant
information can cause LLMs hallucinations. Without the KG,
ACC@1 drops by 20.9% due to the challenge LLMs face in
reasoning over a large number of categories. Disabling multi-
round triage causes an 8.9% drop, highlighting the role of
reflection mechanism in correcting LLMs’ inference errors.
Moreover, LLMs can compensate for incomplete knowledge
coverage, enabling effective synergy between LLMs and KG.

TABLE IV: Component effectiveness in OncallX triage.

Method ACC@1 ACC@3

TriageAgent 0.652 0.774
- Noise Reduction 0.579 0.729
- KG 0.443 0.752
- Multi-Round Triage 0.563 0.714

E. RQ4: Efficiency of OncallX

Previously, resolving a ticket required an average of 0.58
person-days, equivalent to approximately 4.6 hours of work
by an OCE. The process typically involved troubleshooting
and developing mitigation plan. Additionally, the average time
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to triage a ticket was around 200 seconds. This prolonged
duration of the on-call process was primarily due to two
factors: (1) a heavy workload that delayed timely responses
from OCEs, and (2) manual troubleshooting and ticket triage
relied heavily on individual expertise and often led to slow
resolution. With OncallX deployed, the average response time
per incident has been reduced to just 21 seconds and ticket
triage time dropped to 4 seconds, leading to a significant
reduction in both labor and time costs. Intuitively, OncallX
reduced the response time by approximately 789 times and
increased the ticket triage speed by 50 times, dramatically
improving operational efficiency.

F. Case Study

To comprehensively demonstrate the workflow of OncallX,
we present a detailed case study. To maintain strict corporate
data privacy standards, all sensitive information has been
excluded from the description.

As shown in Figure 8, the user query first undergoes
preprocessing through the User Intent Enhancement Module.
In this stage, domain term are extracted from the user’s query
and explained via retrieval from domain knowledge bases,
thereby enhancing the LLMs’ understanding of on-call issues.
The enriched query, which includes both the original user
query and the retrieved domain knowledge, is then passed to
the ClarifyAgent. This agent interacts directly with the user by
asking targeted clarification questions to resolve ambiguities
in the initial query. The goal is to ensure that the final query is
clear, complete, and actionable, making it easier for the LLMs
to grasp task ideas.

Once the query is clarified, it is submitted to the OCEAgent,
which serves as the central controller responsible for selecting
and orchestrating collaboration among multiple expert agents.
Each expert agent is equipped with specialized tools and
domain knowledge tailored to handling specific aspects of the
problem. The OCEAgent dynamically manages this collabora-
tion by distributing subtasks, aggregating intermediate results,
and synthesizing a final response.

If the expert agents collectively generate an accurate and
reliable response, the incident response process automatically
terminates with the proposed solution. However, if the re-
sponse is assessed by the user as inaccurate or inadequate,
the query along with all relevant contextual information is
forwarded to TriageAgent, which assigns the issue to the
appropriate team for manual intervention and resolution.

VI. DISCUSSION

A. Limitations

Our study explores the potential of multi-agent collaboration
in on-call scenarios and identifies three major limitations.
(1) Overestimated capabilities of autonomous agents. While
they can significantly improve response efficiency and reduce
human effort, their execution accuracy remains highly de-
pendent on the quality and reliability of external knowledge
bases and tool integrations. Therefore, future work should

ipmitool mc info\n Get De-
vice ID command failed: 0-
xd5 Command not suppor-
ted in present state.

Domain Term
 Extraction

Knowledge Retrieval

Knowledge:
1.ipmitool: ipmit-
ool is a server m-
anagement utili-
ty based ...

Multi-turn Dialogue

Could you please spe-
cify which … 
Currentin formation …

I want to know 
the reasons for …

When using the ip-
mitool ... I would 
like to …

Query: When using the ipmitool utility to... I 
would like to understand the possible reasons for 

being unable to obtain the Device ID and ....

Thought: It is necessary to investigate firmware-
related issues to understand the reasons for the 
failure to retrieve the Device ID and to ....
Action: FirewareAgent
Arguments: "{\“question\":\"When using the 
ipmitool…\"}"

LLM Inference

……

Example of the solution path generation  

Thought: The firmware-related issues need to be 
investigated to understand the cause and soluti-
on for the failure to retrieve the Device ID.
Action: get_firewareknow
Arguments: "{\“question\":\"When using the ipm-
itool…\"}"

Next

Observation: Reason: The default configuration of 
the original package disables in-band access …

Answer: The reason for failing to retrieve the 
device ID may be that in-band access is disabled 
by default in the original configuration package …

Fig. 8: The workflow of an example.

focus on equipping agents with more specialized and di-
verse capabilities, particularly in terms of domain tools and
knowledge, to enhance their adaptability and effectiveness in
complex on-call scenarios. (2) Performance limitations and
resource overhead remain key practical challenges in multi-
agent systems. The complexity of coordination and frequent
inter-agent communication often introduce additional latency
and computational burden. To mitigate these issues, future
research should explore more efficient orchestration strategies
aimed at reducing interaction overhead and improving overall
system performance. (3) Limitations in contextual reasoning
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present another bottleneck. As the number of interaction
rounds increases, LLMs’ capacity to comprehend and retain
contextual information rapidly degrades, hindering its ability
to accurately track task objectives and follow historical in-
structions, ultimately compromising the success rate of prob-
lem resolution. This highlights an urgent need for effective
conversation history compression mechanism that can distill
essential information from lengthy interaction chains, thereby
reducing LLMs’ reasoning burden and enhancing its long-
range understanding.

B. Threats to Validity

1) Internal threats: OncallX relies on LLMs, which may
cause hallucinations and introduce incorrect actions or triage.
To mitigate this issue, we carefully designed the prompt
templates used by OncallX and incorporated a reflection
mechanism (detailed in Section IV-C and Section IV-D). Our
experimental results indicate that this strategy is effective in
reducing this threat.

2) External threats: The threat to external validity lies in
the extent to which our experimental results can be gener-
alized. We evaluated OncallX only on on-call issues from
the STE team in B’s real-world production environment.
Nevertheless, we believe that the method proposed by OncallX
possesses strong transferability and can be easily applied to on-
call scenarios in other organizations. The framework is plug-
and-play and does not require any module training. However,
adjustments may be necessary based on the specific require-
ments of different application contexts. In future work, we plan
to further validate and enhance the generality and adaptability
of the system in more diverse operational environments.

VII. RELATED WORK

A. Ticket Triage

Ticket triage methods aim to accurately triage ticket to the
appropriate team by extracting both textual and non-textual
features to build various classifier models. For instance, [35]
enhances classifier accuracy by ensembling multiple models
such as Naive Bayes, SVM, KNN, and Decision Tree. CNN
Triager [36] explored Convolutional Neural Network to further
improve the handling of textual information. DeepCT [2]
leverages a GRU model to capture temporal relationships in
discussions and applies attention mechanisms to reduce noise
in the triage process. Moreover, [7] employs deep learning
to improve the accuracy and efficiency of incident triage.
DeepTriage [3] combines multiple machine learning models
for automated incident triage. COMET [32] utilizes LLMs
to extract domain keywords and calculates embedding-based
similarity between new and historical incidents for effective
triage. In contrast, we adopt a fine-tuning-free approach that
leverages KG to constrain the category space, thereby enhanc-
ing the effectiveness of ticket triage by LLMs.

B. LLM Agent

LLMs have been widely adopted as central controllers for
AI agents, enabling them to accomplish given goals. For

instance, Auto-GPT [37] leverages LLMs as an AI agent that
utilizes a suite of tools to complete given tasks. To enhance
the problem-solving capabilities of LLMs, recent studies have
increasingly explored coordinating multiple LLM agents for
collective intelligence [13], [15], [16], [38]–[41]. For example,
BabyAGI [38] is an AI-powered task management system
composed of several LLM-driven agents. These include agents
responsible for creating new tasks based on previous objective
and result, prioritizing the task lists, and completing tasks.
Camel [16], a communicative agent framework, demonstrates
how role playing can be used to enable chat agents to collab-
orate toward shared objectives. Moreover, traditional multi-
agent systems often rely on handcrafted or user-specified role
agents and typically lack support for automatic agent gener-
ation, thereby constraining their scalability and adaptability.
To address this limitation, AgentVerse [39] and AutoAgent
[41] introduce strategies for the automatic generation of an
unlimited number of agents. Inspired by the demonstrated ef-
fectiveness of LLM-based multi-agent collaboration in various
tasks, OncallX presents a LLM-powered automated on-call
system in the multi-agent paradigm.

C. LLMs in incident management

In the realm of cloud system incident management, LLMs
have been widely applied to improve various aspects of
incident handling [4], [32], [42]–[47]. RCAgent [43] uti-
lizes a tool-augmented multi-agent architecture to perform
root cause analysis of cloud incidents, thereby improving
the effectiveness of incident resolution. NetAssistant [44] is
a dialogue-based network diagnostic system that leverages
natural language processing to understand user queries and
conducts diagnostics based on predefined workflows informed
by the expertise of network engineers. To the best of our
knowledge, OncallX is the first attempt to tackle the on-call
problem through a multi-agent collaborative framework.

VIII. CONCLUSION

To effectively alleviate the burden of manual on-call oper-
ations, we propose OncallX, a system that leverages LLMs
for end-to-end on-call automation. OncallX enhances LLMs’
understanding of on-call problems through external knowledge
bases and employs a multi-turn dialogue mechanism to guide
users in refining their problem descriptions, thereby improving
LLMs’ intent comprehension. We design role-playing agents
and introduce a tree-search-based multi-agent orchestration
strategy to coordinate agent collaboration efficiently and im-
prove response performance. For unresolved tickets, OncallX
includes a dedicated ticket classifier that automatically assigns
tasks to the appropriate expert teams, completing the full
lifecycle of on-call handling. Extensive experiments on a real-
world ticket dataset demonstrate that OncallX significantly
outperforms state-of-the-art methods. Moreover, OncallX has
been deployed in production environment for two months,
significantly improving on-call efficiency, with an average
incident response time of 21 seconds and ticket triage time
of 4 seconds.
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