
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023 3851

Robust Failure Diagnosis of Microservice System
Through Multimodal Data

Shenglin Zhang , Member, IEEE, Pengxiang Jin , Zihan Lin , Yongqian Sun , Member, IEEE,
Bicheng Zhang , Sibo Xia , Zhengdan Li , Zhenyu Zhong , Minghua Ma , Member, IEEE, Wa Jin ,

Dai Zhang , Zhenyu Zhu , and Dan Pei , Senior Member, IEEE

Abstract—Automatic failure diagnosis is crucial for large mi-
croservice systems. Currently, most failure diagnosis methods rely
solely on single-modal data (i.e., using either metrics, logs, or
traces). In this study, we conduct an empirical study using real-
world failure cases to show that combining these sources of data
(multimodal data) leads to a more accurate diagnosis. However,
effectively representing these data and addressing imbalanced fail-
ures remain challenging. To tackle these issues, we propose Diag-
Fusion, a robust failure diagnosis approach that uses multimodal
data. It leverages embedding techniques and data augmentation
to represent the multimodal data of service instances, combines
deployment data and traces to build a dependency graph, and
uses a graph neural network to localize the root cause instance
and determine the failure type. Our evaluations using real-world
datasets show that DiagFusion outperforms existing methods in
terms of root cause instance localization (improving by 20.9% to
368%) and failure type determination (improving by 11.0% to
169%).

Index Terms—Microservice systems, failure diagnosis, multi-
modal data, graph neural network.

Manuscript received 19 February 2023; revised 22 May 2023; accepted
14 June 2023. Date of publication 27 June 2023; date of current version 13
December 2023. This work was supported in part by the Advanced Research
Project of China under Grant 31511010501, in part by the National Natural
Science Foundation of China under Grants 62272249 and 62072264, and in part
by the Natural Science Foundation of Tianjin under Grant 21JCQNJC00180.
Recommended for acceptance by T. Batista. (Corresponding author: Yongqian
Sun.)

Shenglin Zhang is with the College of Software, Nankai University, Tianjin
300071, China, also with the Key Laboratory of Data and Intelligent System
Security, Ministry of Education, Tianjin 300071, China, and also with the Haihe
Laboratory of Information Technology Application Innovation (HL-IT), Tianjin
300350, China (e-mail: zhangsl@nankai.edu.cn).

Pengxiang Jin, Zihan Lin, Yongqian Sun, Sibo Xia, Zhengdan Li, Zhenyu
Zhong, and Wa Jin are with the College of Software, Nankai Univer-
sity, Tianjin 300071, China (e-mail: jinpengxiang@mail.nankai.edu.cn; linz-
ihan@mail.nankai.edu.cn; sunyongqian@nankai.edu.cn; xiasibo@mai.nankai.
edu.cn; lzd@nankai.edu.cn; zyzhong@mail.nankai.edu.cn; 1913173@mail.
nankai.edu.cn).

Bicheng Zhang is with the School of Computer Science, Fudan University,
Shanghai 200437, China (e-mail: 22210240069@m.fudan.edu.cn).

Minghua Ma is with the Microsoft, Beijing 100080, China (e-mail:
minghuama@microsoft.com).

Dai Zhang and Zhenyu Zhu are with the ZhejiangE-CommerceBank Co.,
Ltd., Hangzhou, Zhejiang 310013, China (e-mail: henry.zd@mybank.cn;
michael.zzy@mybank.cn).

Dan Pei is with the Department of Computer Science, Tsinghua University,
Beijing 100190, China, and also with the Beijing National Research Center for
Information Science and Technology, Beijing 100084, China (e-mail: peidan@
tsinghua.edu.cn).

Digital Object Identifier 10.1109/TSC.2023.3290018

I. INTRODUCTION

M ICROSERVICES architecture is becoming increasingly
popular for its reliability and scalability [1]. Typically, it

is a large-scale distributed system with dozens to thousands of
service instances running on various environments (e.g., phys-
ical machines, VMs, or containers) [2]. Due to the complex
and dynamic nature of microservice systems, the failure of one
service instance can propagate to other service instances, result-
ing in user dissatisfaction and financial losses for the service
provider. For example, Amazon Web Service (AWS) suffered a
failure in December 2021 that impacted the whole networking
system and took nearly seven hours to diagnose and mitigate [3].
Therefore, it is crucial to timely and accurately diagnose failures
in microservice systems.

To effectively diagnose failures, microservice system oper-
ators typically collect three types of monitoring data: traces,
logs, and metrics. Traces are tree-structured data that record
the detailed invocation flow of user requests. Logs are semi-
structured text that records hardware and software events of
a service instance, including business events, state changes,
hardware errors, etc. Metrics are time series indicating service
status, including system metrics (e.g., CPU utilization, memory
utilization) and user-perceived metrics (e.g., average response
time, error rate). From now on, we use the term modality to
describe a particular data type. Fig. 1 shows an example of the
three modalities of a microservice system.

Automatic failure diagnosis of microservice systems has been
a topic of great interest over the years, particularly when identify-
ing the root cause instance and determining the failure type. Most
approaches rely on single-modal data, such as traces [1], [4], [5],
[6], logs [7], [8], [9], [10], or metrics [11], [12], [13], [14], to
capture failure patterns. However, relying solely on single-modal
data for diagnosing failures is not effective enough for two
reasons. First, a failure can impact multiple aspects of a service
instance, causing more than one modality to exhibit abnormal
patterns. Using just one data source cannot fully capture these
patterns and accurately distinguish between different types of
failures. Second, some types of failures may not be reflected
in certain modalities, making it difficult for methods relying on
that modality to identify these failures.

Moreover, we conduct an empirical study on an open-source
dataset to verify the necessity of combining multimodal data
for robust failure diagnosis. As listed in Table I, the dataset

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0330-0028
https://orcid.org/0000-0003-3849-5478
https://orcid.org/0009-0009-1268-2372
https://orcid.org/0000-0003-0266-7899
https://orcid.org/0009-0000-2427-5349
https://orcid.org/0009-0008-2853-9549
https://orcid.org/0009-0004-9409-9909
https://orcid.org/0000-0003-2114-5308
https://orcid.org/0000-0002-6303-1731
https://orcid.org/0009-0002-1269-2051
https://orcid.org/0009-0009-0397-6600
https://orcid.org/0009-0007-2916-0461
https://orcid.org/0000-0002-5113-838X
mailto:zhangsl@nankai.edu.cn
mailto:jinpengxiang@mail.nankai.edu.cn
mailto:linzihan@mail.nankai.edu.cn
mailto:linzihan@mail.nankai.edu.cn
mailto:sunyongqian@nankai.edu.cn
mailto:xiasibo@mai.nankai.edu.cn
mailto:xiasibo@mai.nankai.edu.cn
mailto:lzd@nankai.edu.cn
mailto:zyzhong@mail.nankai.edu.cn
mailto:1913173@mail.nankai.edu.cn
mailto:1913173@mail.nankai.edu.cn
mailto:22210240069@m.fudan.edu.cn
mailto:minghuama@microsoft.com
mailto:henry.zd@mybank.cn
mailto:michael.zzy@mybank.cn
mailto:peidan@tsinghua.edu.cn
mailto:peidan@tsinghua.edu.cn

3852 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

TABLE I
DETAILED INFORMATION OF THE FAILURES IN THE EMPIRICAL STUDY

Fig. 1. Multimodal data of a microservice system. S1–S7 are different mi-
croservices.

contains failures caused by various reasons: high memory usage,
incorrect deallocation, code bug, misconfiguration, network in-
terruption, etc. We examine hundreds of service instance failures
and conclude that combining traces, logs, and metrics (mul-
timodal) is crucial for accurate diagnosis. For example, the
microservice shown in Fig. 1 is experiencing a failure due to
missing files. It generated error messages in logs and a significant
increase in status code 500 in related traces. Additionally, one
of its metrics, network out bytes, dropped dramatically during
this failure.

These observations highlight the importance of incorporating
multimodal data for robust failure diagnosis. However, com-
bining multimodal data for diagnosing failures in microservice
systems faces two major challenges:

1) Representation of multimodal data: The formats of met-
rics, logs, and traces are significantly different from each
other. Service instance metrics are often in the form of
time series (the bottom of Fig. 1), while logs are usually
semi-structured text (the middle of Fig. 1) and traces
often take the form of tree structures with spans as nodes
(the top of Fig. 1). It is challenging to find a unified
representation of all this multimodal data that fully utilizes
complementary information from each data type.

2) Imbalanced failure types: Fault tolerance mechanisms in
microservice systems often result in a high ratio of normal
data to failure-related data. Some types of failures are
much rarer than others, leading to an imbalance in the
ratio of different types of failures (Table I).

To tackle the above challenges, we present DiagFusion, an
automated failure diagnosis approach that integrates trace, log,

and metric data. To form a unified representation of the three
modalities with different formats and natures, DiagFusion com-
bines lightweight preprocessing and representation learning,
which maps data from different modalities into the same vec-
tor space. Since the labeled failures are usually inadequate to
train the representation model effectively, we propose a data
augmentation mechanism, which helps DiagFusion to learn the
correlation between the three modalities and failures effectively.
To further enhance the accuracy of our diagnosis, DiagFusion
uses historical failure patterns to train a Graph Neural Network
(GNN), capturing both spatial features and possible failure
propagation paths, which allows DiagFusion to conduct root
cause instance localization and failure type determination.

Our contributions are summarized as follows:
� We propose DiagFusion, a multimodal data-based ap-

proach for failure diagnosis (Section IV). DiagFusion
builds a dependency graph from trace and deployment
data to capture possible failure propagation paths. Then
it applies a GNN to achieve a two-fold failure diagnosis,
i.e., root cause instance localization and failure type deter-
mination. To the best of our knowledge, we are among the
first to learn a unified representation of the three modalities
for the failure diagnosis of microservice systems (i.e., trace,
log, and metric).

� We leverage data augmentation to improve the quality of
the learned representation, which allows DiagFusion to
work with limited labeled failures and imbalanced failure
types.

� We conduct extensive experiments on two datasets, one
from an open-source platform and another from a real-
world microservice system (Section V). The results show
that when DiagFusion is trained on 160 and 80 cases, it
achieves Avg@5 of 0.75 and 0.76 on the two datasets,
respectively, improving the accuracy of root cause instance
localization by 20.9% to 368%. Moreover, DiagFusion
achieves F1-score of 0.84 and 0.80, improving the accuracy
of failure type determination by 11.0% to 169%.

Our implementation of DiagFusion is publicly available.1

The rest of the paper is organized as follows: Section II
introduces the necessary background. Section III presents the
results of an empirical study of failures in microservice systems.
Section IV describes the overview and detailed implementation
of DiagFusion in failure diagnosis. In Section V, we evaluate
the performance and time efficiency of DiagFusion using two

1https://anonymous.4open.science/r/DiagFusion-378D

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ROBUST FAILURE DIAGNOSIS OF MICROSERVICE SYSTEM THROUGH MULTIMODAL DATA 3853

datasets. Section VI discusses the technical rationale, robust-
ness, and threats to validity. Section VII presents the related
work in failure diagnosis. Section VIII concludes the paper.

II. BACKGROUND

A. Microservice Systems and Multimodal Data

Microservice systems allow developers to independently de-
velop and deploy functional software units (microservice). For
example, when a user tries to buy an item on an online shopping
website, the user will experience item searching, item display-
ing, order generation, payment, etc. Each of these functions
is served by a specific microservice. A failure at a specific
service instance can propagate to other service instances in
many ways, bringing cascading failures. However, diagnosing
online failures in microservice systems is difficult due to these
systems’ highly complex orchestration and dynamic interaction.
To accurately find the cause of a failure, operators must carefully
monitor the system and record traces, logs, and metrics. These
three modalities of monitoring data stand as the three pillars of
the observability of microservice systems. The collection and
storage of instances’ monitoring data are not in the scope of
this paper. The three modalities: trace, log, and metric, and their
roles in failure diagnosis are described below.

Trace: Traces record the execution paths of users’ requests.
Fig. 1 shows an example of trace at the top. Google formally
proposed the concept of traces at Dapper [15], in which it defined
the whole lifecycle of a request as a trace and the invocation
and answering of a component as a span. By examining traces,
operators may identify microservices that have possibly gone
wrong [4], [6], [16], [17], [18], [19], [20], [21]. Traces can be
viewed as trees, with microservices as nodes and invocations as
edges. Each subtree corresponds to a span. Typically, traces carry
information about invocations, e.g., start time, caller, callee,
response time, and status code.

Log: Logs record comprehensive events of a service instance.
Some examples of logs are shown in the middle of Fig. 1.
Logs are generated by developers using commands like printf,
logging.debug, logging.error. They provide an internal picture
of a service instance. By examining logs, operators may discover
the actual cause of why an instance performs not well. Typically,
logs consist of three fields: timestamp, verbosity level, and raw
message [22]. Four commonly used verbosity levels, i.e., INFO,
WARN, DEBUG, and ERROR, indicate the severity of a log
message. The raw message of a log conveys detailed information
about the event. To utilize logs more effectively, researchers have
proposed various parsing techniques to extract templates and pa-
rameters, e.g., FT-Tree [23], Drain [22], POP [24], MoLFI [25],
Spell [26], and Logram [27].

Metric: Various system-level metrics (e.g., CPU utilization,
memory utilization) and user-perceived metrics (e.g., average
response time) are configured for monitoring system instances.
Each metric is collected at a predefined interval, forming a time
series, as shown at the bottom of Fig. 1. These metrics track
various aspects of performance issues. By examining metrics,
operators can determine which physical resource is anomalous
or is the bottleneck [28], [29], [30], [31], [32], [33].

In addition to trace, log, and metric, deployment data is also
important to failure diagnosis. A microservice system comprises
many hardware and software assets that form complicated inter-
relationships. Operators must carefully record these relation-
ships (a.k.a. deployment data) to keep high maintainability of the
system. Leveraging deployment data enables the understanding
of failure propagation paths and characteristics.

B. Preliminaries

Representation Learning: Representation learning has been
widely used in natural language processing tasks, usually in
the form of word embedding. Popular techniques of representa-
tion learning include static representation like word2vec [34],
GloVe [35], fastText [36], and dynamic representation like
ELMo [37], BERT [38], GPT [39]. With the similarities be-
tween logs and natural languages, representation learning can
be applied to extract log features [40]. We employ fastText
to learn a unified representation of events from multimodal
data. Compared to word2vec and GloVe, fastText can utilize
more information [36]. We employ fastText to learn a unified
representation of the multimodal data.

In essence, fastText is a neural network model that processes
words as input and takes the output from the hidden layer (a
vector of real numbers) as its representation. It can be trained
in both supervised and unsupervised modes, but the supervised
mode generally yields more accurate results due to its incor-
poration of label information. In the supervised training mode,
the neural network is optimized by predicting the class of the
document. Once the training is completed, fastText can be used
to provide vectorized representations (i.e., embeddings) for any
given input.

Graph Neural Network: GNN can effectively model data
from non-euclidean space, thereby being popular among fields
with graph structures, e.g., social networks, biology, and recom-
mendation systems. Popular GNN architecture includes Graph
Convolution Network (GCN) [41], GraphSAGE [42], Graph
Attention Network (GAT) [43], etc. GNNs apply graph convolu-
tions, allowing nodes to utilize their information and learn from
their neighbors through message passing. There are numerous
components in microservice systems that interconnect with each
other. Thus graph structure is suitable to model microservice
systems, and we employ GNN to learn the propagation patterns
of historical failure cases.

C. Problem Statement

When a failure occurs, operators need to localize the root
cause instance and determine what has happened to it to achieve
timely failure mitigation. For large-scale microservice systems,
the first task is a ranking problem: to rank the root cause instance
higher than other instances. We use the term root cause instance
localization to name this task (Task #1). The second task is a
classification problem: to classify the failure into a predefined
set of failure types. We use the term failure type determination
to name this task (Task #2).

After each failure, operators will carefully conduct a post-
failure analysis: labeling its root cause instance and its failure

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

3854 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

type. Additionally, chaos engineering can generate a large num-
ber of failure cases [44]. It can enlarge the number of failure cases
and enrich the types of failures. We train DiagFusion based on
these failure cases.

III. EMPIRICAL STUDY

Most existing failure diagnosis methods are based on single-
modal data. However, these methods cannot fully capture the
patterns of failed instances, leading to ineffective failure diagno-
sis. We conduct an empirical study conducted on Generic AIOps
Atlas (GAIA)2 dataset to show the ineffectiveness of these
methods. The dataset is collected from a simulation environment
consisting of 10 microservices, two database services (MySQL
and Redis), and five host machines. The system serves mobile
users and PC users. Operators injected five types of failures,
including system failures (System stuck and Process crash) and
service failures (Login failure, File missing, and Access denied).
The failure injection record is provided along with the data.
Table I lists some typical symptoms of failures. We can see
that no modality alone can distinguish the patterns of these five
types of failures. It also shows that traces, logs, and metrics
may display different anomalous patterns when a failure occurs.
Mining the correlation between multimodal data can provide
operators with a more comprehensive understanding of failures.

Besides, Table I shows that some failures occur much more
frequently than others. For example, the total occurrences of
Process crash, File missing, and Access denied (67) equals only
12% of the occurrences of Login failure (527).

To further understand the distribution of failure types in
the production environment, we investigated N failures in a
microservice system of Microsoft. Due to the company policy,
we have to hide some details of these failures. The failures of the
studied system are recorded in the Incident Management System
(IcM) of Microsoft, where a failure is centralized handled,
including the detection, discussion, mitigation, and post-failure
analysis of failures. The IcM data of failures are persistently
stored in a database. We query the failure records from the
database within the time range from 2021 August to 2022
August. We only keep the failures with the status of “completed”,
for their post-failure analyses have been reviewed. In the root
cause field of post-failure analysis, operators categorize the
failures into the following types: code, data, network, hardware,
and external. We can see from Fig. 2 that different failure
types are imbalanced regarding the number of failure cases.
The imbalanced data poses a significant challenge because most
machine learning methods perform poorly on failure types with
fewer occurrences.

IV. APPROACH

A. Design Overview

In this article, we propose DiagFusion, which combines the
modality of trace, log, and metric for accurate failure diagno-
sis. The training framework of DiagFusion is summarized in
Fig. 3. First, DiagFusion extracts events from raw traces, logs,

2https://github.com/CloudWise-OpenSource/GAIA-DataSet

Fig. 2. The distribution of failure types at a large-scale real-world microservice
system.

Fig. 3. The training framework of DiagFusion.

and metrics data and serializes them by their timestamps. Then,
we train a neural network to learn the distributed representation
of events by encoding events into vectors. The challenge of
data imbalance is overcome through data augmentation during
model training. We unify three modalities with different natures
by turning unstructured raw data into structured events and
vectors. Then we combine traces with deployment data to build
a dependency graph (DG) of the microservice system. After
that, the representations of events and DG are glued together
by a GNN. We train GNN using historical failures to learn the
propagation pattern of system failures.

After the training stage, we save the event embedding model
and the GNN. Fig. 5 depicts the real-time failure diagnosis
framework of DiagFusion. The trigger of DiagFusion can be
alerts generated through predefined rules. When a new failure is
alerted, DiagFusion will perform a real-time diagnosis and give
the results back to operators.

B. Unified Event Representation

DiagFusion unifies the three modalities by extracting events
from the raw data and encoding them into vectors. Specifically,
it collects failure-indicative events by leveraging effective and
lightweight methods, including anomaly detection techniques
for metrics and traces and template parsing techniques for logs.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

https://github.com/CloudWise-OpenSource/GAIA-DataSet

ZHANG et al.: ROBUST FAILURE DIAGNOSIS OF MICROSERVICE SYSTEM THROUGH MULTIMODAL DATA 3855

Then, it trains a fastText [36] model on event sequences to
generate embedding vectors of events.

First, we introduce the instances in a microservice system.
Microservice systems have the advantage of dynamic deploy-
ment by utilizing the container technique. In this paper, we
use the term instance to describe a running container and the
term service group to describe the logical component that an
instance belongs to. For example, Billing is a service group in
a microservice system, and Billing_cff19b denotes an instance,
where cff19b is the container id. Below we will describe the
event extraction from different modalities.

Trace Event Extraction: Traces record calling relationships
between services. We group trace data by its caller and callee
services. DiagFusion will examine multiple fields inside a trace
group. Under different implementations of trace recording, trace
data can carry different fields, e.g., response time and status
code, which reflect different aspects of operators’ interests.
We apply an anomaly detection algorithm (i.e., 3-sigma) for
numerical fields like response time to detect anomalous be-
haviors. For categorical fields like status code, we count the
number of occurrences of each value. If the count of some value
increases dramatically, we determine that this field is anomalous.
We determine that a group of caller and callee is anomalous
if one of its fields becomes anomalous. The extracted trace
events are in the form of tuple <timestamp, caller-instance-id,
callee-instance-id>.

Log Event Extraction: Logs record detailed activities of an
instance (service or machine). We perform log parsing for log
event extraction using Drain [22], which has been proven to
be effective in practice. Drain uses a fixed depth parse tree
to distinguish the template part and the variable part of log
messages. For example, in the log message “uuid: 8fef9f0 in-
formation has expired, mobile phone login is invalid”, “uuid:
****** information has expired, mobile phone login is invalid”
is the template part, and “8fef9f0” is the variable part. After we
get the template part of a log message, we hash the string of
the template part to obtain an event template id. The extracted
log events are in the form of tuple <timestamp, instance-id,
event-template-id>.

Metric Event Extraction: Metrics are also recorded at the
instance level. We perform 3-sigma to detect anomalous metrics.
When the value of a metric exceeds the upper bound of 3-sigma,
the anomaly direction is up. Similarly, the anomaly direction
is down if the value is below the lower bound. The extracted
metric events are in the form of tuple <timestamp, instance-id,
metric-name, anomaly-direction>.

The above extraction provides events from different modal-
ities. Despite the differences in raw data, all extracted events
share two fields, namely timestamp and instance-id. These are
the keys to unifying different modalities. We group events by
instance-id and serialize events in the same group by timestamp.
Fig. 4 shows the event extraction and serialization process for
one instance. The event sequence of instance i is denoted by Ei.

After getting the event sequence of every instance, we further
assign labels to every event sequence according to operators’
post-failure analysis. Original failure labels are often in the
form of tuple <root cause instance-id, failure type>. To fully

Fig. 4. The event extraction and serialization process using traces, logs, and
metrics.

utilize the label information, we relabel event sequences in an
instance-wise manner. Specifically, the root cause instance’s
event sequence is labeled by the actual failure type, while other
instances’ event sequences are labeled as “non-root-cause”. A
microservice system with p historical failures and q instances
results in N = p× q event sequences after relabeling. Then,
we learn unified representations from these relabeled historical
event sequences using the event embedding model.

With event sequence and instance labeling, we can transform
events into vectors. We use the term event embedding to describe
the mapping of events to real number vectors. Specifically, we
train a fastText model on the event sequences to obtain the
vectorized representation for events from all three modalities.
FastText is a neural network originally proposed for text classi-
fication. For a document with word sequences, fastText extracts
n-grams from it and predicts its label. In our scenario, we replace
word sequences with event sequences and replace document
labels with failure types. The training of fastText minimizes the
negative log-likelihood over classes:

min
f

− 1

N

N∑
n=1

yn log (f (xn)) (1)

where xn is the normalized bag of features of the n-th event
sequence, yn denotes the relabeled information, and f is the
neural network. We treat fastText’s output as the vectorized rep-
resentation of events. The training detail of the event embedding
model is described in Section IV-D.

C. Graph Neural Network

In the event representation process, DiagFusion captures the
local features of instances. However, failures can propagate
between instances, so we need to have a global picture of the
system, i.e., how a failure will affect the system. To this end,
we employ a GNN to learn the failure propagation between

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

3856 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

service instances and integrate all the information of the whole
system.

To leverage a GNN, it is essential to consider both nodes and
edges within a graph. The nodes in a GNN corresponds to the
instances in a microservice system. An instance is characterized
by its anomalous events in DiagFusion. We represent an instance
i by averaging all of its events:

h
(0)
i =

1

|Ei|
∑
∀e∈Ei

V1(e) (2)

where Ei is the extracted event sequences, and V1(e) is the vec-
torized representation of event e learned by the event embedding
model.

The edges in a GNN correspond to the dependency graph in
a microservice system. There are two dominant ways of prop-
agation failure between services: function calling or resource
contention [45]. So we combine traces and deployment data
to capture probable failure propagation paths. Specifically, we
aggregate traces to get a call graph. Then we add two directed
edges for each pair of caller and callee, with one pointing from
the caller to the callee and the other in the reverse direction.
From deployment data, we add edges between two instances if
they are co-deployed, i.e., sharing resources.

After obtaining the dependency graph and instance represen-
tations, we employ GNN to learn the failure propagation pattern
by its message-passing mechanism. At the K-th layer of GNN,
we apply topology adaptive graph convolution [46] and update
the internal data of instances according to:

HK =

K∑
k=0

(
D−1/2AD−1/2

)k

XΘk (3)

where A denotes the adjacency matrix, Dii =
∑

j=0 Aij is a
diagonal degree matrix, Θk denotes the linear weights to sum
the results of different hops together.

Finally, we add a MaxPooling layer as the readout layer to
integrate the information of the whole microservice system.
Following the MaxPooling layer, there is a fully connected layer
where each neuron corresponds to either a service group with
possible root cause instances for task #1 or a failure type for
task #2.

D. Training of DiagFusion

DiagFusion applies a two-phase training strategy to learn the
failure pattern of a microservice system. First, it trained the event
embedding model with data augmentation. Then it trains the
GNN with a joint learning technique.

1) Training of Event Embedding Model: DiagFusion em-
ploys a data augmentation strategy to enrich the training dataset
and reduce the model’s bias towards the majority class. First,
we train our event embedding model on the original data.
The trained neural network, denoted by f0, maps events to
the vector space V0. To increase the number of failure cases,
we add new event sequences for each failure type (including
“non-root-cause”) by randomly taking an event sequence of that
type and replacing one of the events with its closest neighbor

(determined by euclidean distance) in V0. After all failure types
are expanded to a relatively large size, e.g., 1000, we can obtain
a more balanced training set. Further details on the choice of
the expanding size can be found at Section V-E. Then we train
the event embedding model again (f1) on the expanded data and
regard the representations generated in this round (V1) as the
final unified event representations.

2) Training of Graph Neural Network: We train the GNN in
a joint learning fashion to fully utilize the shared information
between tasks #1 and #2. Then we combine the trained GNN
with a ranking strategy to better fit the nature of microservice
systems.

Ranking Strategy: One of the advantages of microservice
systems is that the architecture allows dynamic deployment of
service instances. Thus, service instances are constantly being
created and destroyed. However, when it comes to failure diag-
nosis, this kind of flexibility raises a challenge for learning-based
methods. The failure diagnosis model will have to be retrained
frequently if the output layer directly outputs the probability
of being the root cause instance for each instance since many
instances can be created or destroyed after the model training
is finished. We add an extract step in DiagFusion to overcome
this challenge. Instead of directly determining the root cause
instance, DiagFusion is trained on service groups, the logical
aggregation of service instances, for task #1. Then DiagFusion
ranks the instances inside a candidate service group by the length
of their event sequences. The instance with more anomaly events
will be ranked higher and likely be the root cause instance.

Joint Learning: Intuitively, the two tasks of failure diagnosis,
i.e., root cause instance localization and failure type determina-
tion, share some knowledge in common. For a given failure, the
only difference between task #1 and task #2 lies in their labels. So
DiagFusion integrates a joint learning mechanism to utilize the
shared knowledge and reduce the training time. (Training two
models separately requires twice the time otherwise.) Specifi-
cally, the joint loss function is:

− 1

F

F∑
i=1

⎛
⎝ S∑

j=1

y(s)i,j log p(s)i,j +

T∑
k=1

y(t)i,k log p(t)i,k

⎞
⎠
(4)

where F is the number of historical failures, S is the number
of service groups, T is the number of failure types, y(s) is the
root cause service group labeled by operators, y(t) is the failure
type, p(s) is the predicted service group, and p(t) is the predicted
failure type.

E. Real-Time Failure Diagnosis

After the training stage, we save the trained event embedding
model and the GNN. When a new failure is alerted, DiagFusion
performs a real-time diagnosis process as shown in Fig. 5.

1) Running Example: Fig. 6 shows how DiagFusion can be
integrated with microservice systems. To better explain how
DiagFusion diagnoses failure, we demonstrate the workflow of
DiagFusion using one real-world failure from D1. At 10:46,
service instance B1 encounters a failure of access denied.
Fig. 7 shows the original data, event sequence, and the DG.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ROBUST FAILURE DIAGNOSIS OF MICROSERVICE SYSTEM THROUGH MULTIMODAL DATA 3857

Fig. 5. Real-time failure diagnosis.

Fig. 6. Integration of DiagFusion with a microservice system.

From Fig. 7(a), we can see that failure-indicative events from
different modalities are temporally intertwined. Then the GNN
predicts service group “B” and failure type “access denied”.
Further ranking within the service group “B” gives “B1” as the
Top1 instance. The overall process takes less than 10 seconds.
Thus, DiagFusion effectively addresses tasks #1 and #2.

V. EVALUATION

In this section, we evaluate the performance of DiagFusion
using two real-world datasets. We aim to answer the following
research questions (RQs):

RQ1: How effective is DiagFusion in failure diagnosis?
RQ2: Does each component of DiagFusion have significant

contributions to DiagFusion’s performance?
RQ3: Is the computational efficiency of DiagFusion suffi-

cient for failure diagnosis in the real world?
RQ4: What is the impact of different hyperparameters?

A. Experimental Setup

1) Dataset: To evaluate the performance of DiagFusion, we
conduct extensive experiments on two datasets collected from
two microservice systems under different business backgrounds

TABLE II
DETAILED INFORMATION OF DATASETS

and architectures, D1 and D2. To prevent data leakage, we split
the data of D1 and D2 into training and testing sets according
to their start time, i.e., we use data from the earlier time as the
training set and data from the later time as the test set. Detailed
information is listed in Table II. The systems that produce D1
and D2 are as follows:

1) D1. The details of D1 are elaborated in Section III.
2) D2. The second dataset is collected from the manage-

ment system of a top-tier commercial bank. The studied
system consists of 14 instances, including microservices,
web servers, application servers, databases, and dockers.
Due to the non-disclosure agreement, we cannot make
this dataset publicly available. Two experienced operators
examined the failure records from January 2021 to June
2021. They classified the failures into five types of failures,
i.e., CPU-related failures, memory-related failures, JVM-
CPU-related failures, JVM-memory-related failures, and
IO-related failures. The classification was done separately,
and they checked the labeling with each other to reach a
consensus.

2) Baseline Methods: We select six advanced single-modal-
based methods (two for trace (i.e., MicroHECL [5], Micro-
Rank [6]), two for log (i.e., Cloud19 [8], LogCluster [7]),
and two for metric (i.e., AutoMAP [13], MS-Rank [12])),
and two multimodal-based methods (i.e., PDiagnose [47],
CloudRCA [48]) as the baseline methods. More details can be
found in Section VII. Among the baseline methods, Cloud19,
LogCluster, and CloudRCA cannot address Task #1 (root
cause instance localization), while MicroHECL, MicroRank,
AutoMAP, MS-Rank, and PDiagnose cannot address Task #2
(failure type determination). Therefore, we divide the baseline
methods into two groups to evaluate the performance of Task #1
and Task #2, respectively: MicroHECL, MicroRank, AutoMAP,
MS-Rank, and PDiagnose for Task #1, Cloud19, LogCluster, and
CloudRCA for Task #2.

We configure the parameters of all these methods according
to their papers. Specifically, we use the same configuration for
parameter settings explicitly mentioned in the papers and not
limited to a particular dataset (e.g., significance level, feature
dimension). For parameter settings that apply to a particular
dataset (e.g., window length, period), we adapt them according
to the range the papers provide or to our data.

3) Evaluation Metrics: As stated in Section II-C, DiagFu-
sion aims to localize the root cause instance and determine the
failure type. We carefully select different evaluation metrics for

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

3858 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

Fig. 7. A running example of DiagFusion. (a) the serialized multimodal event sequence of the root cause instance (B1); (b) the original data corresponding to
the event sequence; (c) part of the dependency graph in this failure.

both tasks to better reflect the real-world performance of all
selected methods.

For Task #1, we use Top-k accuracy (A@k) and Top-5 average
accuracy (Avg@5) as the evaluation metrics. A@k is a well-
adopted metric that quantifies the probability that top-k instances
output by each method indeed contain the root cause instance
[5]. Formally, given |A| as the test set of failures, RCi as the
ground truth root cause instance, RCs[k] as the top-k root cause
instances set generated by a method, A@k is defined as:

A@k =
1

|A|
∑
a∈A

{
1, if RCia ∈ RCsa [k]
0, otherwise

(5)

Avg@5 is another popular metric that evaluates a method’s
overall capability of localizing the root cause instance[49]. In
practice, operators often examine the top 5 results. Avg@5 is
calculated by:

Avg@5 =
1

5

∑
1≤k≤5

A@k (6)

For Task #2, which is a multi-class classification problem, we
use the weighted average precision, recall, and F1-score to test
the performances. These metrics have been selected based on
a previous study [50] as a reliable way to assess the model’s
effectiveness in this specific context. With True Positives (TP),
False Positives (FP), and False Negatives (FN), the calculation is
given by F1-score = 2× precision×recall

precision+recall , where precision =
TP

TP+FP and recall = TP
TP+FN .

4) Implementation: We implement DiagFusion and base-
lines with Python 3.7.13, PyTorch 1.10.0, scikit-learn 1.0.2,
fastText 0.9.2, and DGL 0.9.0. We run the experiments on a
server with 12× Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz
and 128 G RAM (without GPUs). We repeat every experiment
five times and take the average result to reduce the effect of
randomness.

B. Overall Performance (RQ1)

To demonstrate the effectiveness of DiagFusion, we compare
it with the baseline methods on Task #1 and Task #2.

TABLE III
EFFECTIVENESS OF FAILURE TYPE DETERMINATION (TASK #2)

The comparison result of Task #1 is shown in Fig. 8. Diag-
Fusion achieves the best performance. Specifically, the A@1 to
A@5 of DiagFusion are almost the best on D1 and D2. More
specifically, the Avg@5 of DiagFusion exceeds 0.75 on both D1
and D2, respectively. It is at least 0.13 higher on both datasets
than baselines using single-modal data due to the advantage of
using multimodal data. Compared with PDiagnose, which also
uses multimodal data, the Avg@5 of DiagFusion is higher by
at least 0.18. This indicates that learning from historical failures
improves the accuracy of diagnosis significantly.

The result of Task #2 is shown in Table III. For this task,
DiagFusion is better than almost all baselines. On D1, the
precision, recall, and F1-score of DiagFusion are over 0.80.
On D2, DiagFusion manages to maintain an F1-score of 0.80,
which is at least 0.195 higher than the baselines. Considering
both systems and tasks, DiagFusion consistently demonstrates
superior performance, thereby substantiating its effectiveness.

C. Ablation Study (RQ2)

To evaluate the effects of the three key technique contributions
of DiagFusion: 1) data augmentation; 2) fastText embedding;
3) DG and GNN, we create five variants of DiagFusion. C1:
Remove the data augmentation. C2: Use word2vec embedding
instead of fastText. C3: Use GloVe embedding instead of fast-
Text. C4: Replace the GNN output layer with a decision tree.
C5: Replace the GNN output layer with a kNN model.

Table IV lists that DiagFusion outperforms all the variants
on D1 and D2, demonstrating each component’s significance.
When removing the data augmentation (C1), the performance

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ROBUST FAILURE DIAGNOSIS OF MICROSERVICE SYSTEM THROUGH MULTIMODAL DATA 3859

Fig. 8. Effectiveness of root cause instance localization (Task #1).

TABLE IV
CONTRIBUTIONS OF COMPONENTS

reduces across the board as models trained from imbalanced
data are more likely to bias predictions toward classes with
more samples. Data augmentation can alleviate this problem.
The performance becomes worse when replacing fastText em-
bedding strategy (C2 & C3). The reason is that fastText can learn
from operators’ failure labeling as well as co-occur relationships,
while word2vec and GloVe can only learn from the co-occur
relationships between events. Replacing the GNN output layer
with classifiers such as decision trees and kNN (C4 & C5) de-
grades performance because the GNN can capture the interaction
patterns and fault propagation among instances in microservice
systems, but traditional classifiers cannot understand the graph
structure information.

D. Efficiency (RQ3)

We record the running time of all methods and compare them
in Table V. The offline training time of DiagFusion is acceptable,
particularly when considering its infrequent need for retraining.
It shows that DiagFusion can diagnose one failure within 12
seconds on average online, which means it can achieve quasi-
real-time diagnosis because the interval of data collection in D1
and D2 is at least 30 seconds. Although DiagFusion may not
possess apparent advantages among the methods in Table V,
DiagFusion can meet the needs of online diagnosis.

TABLE V
THE COMPARISON OF TRAINING TIME (OFFLINE) AND DIAGNOSIS TIME

(ONLINE) PER CASE (“-” MEANS NO NEED TRAINING)

E. Hyperparameter Sensitivity (RQ4)

We discuss the effect of four hyperparameters of DiagFusion.
Fig. 9 shows how Avg@5 (Task #1), F1-score (Task #2) change
with different hyperparameters.

Embedding Dimension: The performance of DiagFusion re-
acts differently on different datasets in terms of sensitivity to
dimensionality (D1 remains stable while D2 fluctuates more),
and the optimal dimensionality is inconsistent across datasets
and tasks. We choose the 100 dimensions in our experiments
because it has the best overall performance.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

3860 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

Fig. 9. The effectiveness of DiagFusion under different hyperparameters.

The Number of Augmented Samples: The experiments in
Section V-B show that data augmentation has some improvement
in the model’s performance. However, when the number of sam-
ples increases to a certain amount, the information in the training
set has already been fully utilized. Instead, the performance may
be degraded due to the excessive introduction of noise. Generally
speaking, DiagFusion does not need an excessive number of
augmented samples as long as the samples are balanced.

The Number of Layers in GNN: As the layer number of GNN
varies from 1 to 5, the performance of DiagFusion in three tasks
shows a decreasing trend. The model performs best when the
layer number is lower than 3. We do not recommend setting
the layer number too large since training deep GNN requires
extra training samples, which is hard to meet in real-world
microservice systems.

Time Window: The length of the time window has little impact
on performance because the moments when failures occur are
sparse, and the anomaly events reported in a time window
are only relevant to the current failure. With accurate anomaly
detection, the performance of DiagFusion is stable.

VI. DISCUSSION

A. Why Learning-Based Methods?

The DiagFusion approach incorporates several learning-
based techniques, such as fastText in the Unified Event Rep-
resentation (Section IV-B) and GNN (Section IV-C). By doing
so, DiagFusion significantly outperforms baseline approaches.
We chose to build DiagFusion using learning-based methods
for the following reasons: 1) Accuracy: learning-based meth-
ods provide high accuracy (Section V) and are therefore ideal
for diagnosing failures. 2) Generalization ability: failure cases
used to train DiagFusion contain different patterns of failure
propagation for different systems. A strong generalization abil-
ity allows DiagFusion to perform robust diagnosis for each
system. 3) Ability to handle complicated data: as microservice
systems become increasingly complex and monitoring data more
high-dimensional, manually setting up rules for failure diagno-
sis becomes time-consuming and error-prone. Learning-based
methods, on the other hand, take this data as input and learn their

relationships, making them well-suited to handle complicated
data.

Why FastText? FastText was chosen because trace, log, and
metric data have very different formats. However, they all share
timestamps, meaning they can be sequenced according to their
temporal order. FastText provides superior performance over
other static embeddings like word2vec and GloVe, which was
demonstrated in Section V-C. Although deep dynamic embed-
dings like ELMo, BERT, and GPT are popular in Natural Lan-
guage Processing, they are not suitable for microservice settings
as the number of failure cases is insufficient to train these large
models.

Why GNN? GNN was chosen because the structure of mi-
croservice systems involves many instances and their relation-
ships, which form the structure of a graph. Various approaches
incorporating Random Walk [12], [13] exist to accomplish fail-
ure diagnosis on such graph structures. However, their ability to
generalize is limited since domain knowledge can vary greatly
between different systems. The domain knowledge contained
in graph data can be effectively learned by GNNs [51], giving
them a stronger generalization ability than approaches based on
Random Walk.

Concerns About Learning-Based Methods: While learning-
based methods offer several advantages, they do require labeled
samples for training. This can be addressed by 1) utilizing the
well-established failure management system in microservice
systems as a natural source of failure labeling, 2) DiagFusion
not requiring too many training samples to achieve good per-
formance (the sizes of the training set of D1 and D2 are 160
and 80, respectively), and 3) the increasing adoption of chaos
engineering, which enables operators to quickly obtain sufficient
failure cases. Several successful practices with the help of chaos
engineering have been reported [2], [6], [16], [18].

B. Robustness

In practice, some modalities can be absent, hindering a suc-
cessful failure diagnosis system to some extent. The cause
of missing modalities can be generally classified into three
categories. The first category refers to missing modalities caused

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ROBUST FAILURE DIAGNOSIS OF MICROSERVICE SYSTEM THROUGH MULTIMODAL DATA 3861

TABLE VI
ROBUSTNESS COMPARED TO PDIAGNOSE (TASK #1)

by data collection problems. Modern microservice systems are
developing rapidly; the same truth applies to their monitoring
agents. Therefore, it is hard to guarantee that all monitoring data
are ideally collected and transmitted. As a result, missing data
is inevitable, which can give rise to missing modalities when
specific modalities of the monitoring data are having collection
problems. The second category refers to missing modalities
caused by data availability problems. In some large corporations,
monitoring data is individually collected by many different
divisions. Sometimes, specific modalities can be exclusively
governed by a division that does not want to disclose its service
maintenance data. Thus, these modalities are collected but not
available to general operators. The third category stands for
missing modalities caused by data retrieval problems. In prac-
tice, we often encounter situations where it is very inconvenient
to retrieve monitoring data from the data pool. Multimodal
failure diagnosis requires much more data to be collected than
single-modal-based methods and may face missing modality
problems. However, an excellent multimodal-based approach
should perform well even when some modalities are missing. We
discover that 62 failure cases of D1 lack metric data. DiagFusion
is compared with PDiagnose in these cases. As PDiagnose
cannot address Task #2, we only present the results of Task #1.

As shown in Table VI, the performance of PDiagnose drops
dramatically in these cases, while DiagFusion presents salient
robustness. Although DiagFusion also witnesses a performance
degradation, it is still better than PDiagnose and other Task
#1 baselines. DiagFusion has seen complete data modalities
during training and learned a unified representation, allowing
it to capture anomalous patterns’ correlation to failures better
than single-modal-based methods. On the other hand, PDiagnose
treats each modality independently, making it ineffective when
facing missing modalities. To sum up, DiagFusion demonstrates
robustness since it achieves satisfactory performance even when
working with data with incomplete modalities.

C. Concerns About Deployment and Validity

There are some concerns about deploying DiagFusion to
real-world microservice systems: 1) DiagFusion needs to adapt
to the highly dynamic nature of microservice architecture. The
stored model of DiagFusion can still be effective when service
instances are created or destroyed, for DiagFusion utilizes the
concept of service group as a middle layer. The only situation in
which DiagFusion needs to be retrained is when new service
groups are created. However, the creation of service groups
is very rare in practice. 2) Some production systems do not
monitor all three modalities at the same time. The workflow
of DiagFusion is general because the event embedding model
is trained on event sequences and does not rely on any specific

modality. Besides, the GNN module deals with feature vectors
rather than original monitor data. DiagFusion can work given
that any two of the three modalities are available.

There are two main threats to the validity of the study. The
first one lies in the limited sizes of the two datasets used in the
study. D1 and D2 are relatively smaller than complex industrial
microservice systems. The second one lies in the limitation
of the failure cases used in the study. Some failure cases of
D1 are simpler than industrial failures and represent only a
limited part of different types of failures. However, according to
our experiments, DiagFusion is effective and robust. It is very
promising that DiagFusion can also be effectively applied to
much larger industrial microservice systems and more complex
failure cases.

VII. RELATED WORK

Metric-Based Failure Diagnosis Methods: Monitoring met-
rics are one of the most important observable data in microser-
vice systems. Many works try to build a dependency graph to de-
pict the interaction between system components during failure,
such as Microscope [11], MS-Rank [12], and AutoMAP [13].
However, the correctness of the above works heavily depends
on the parameter settings, which degrades their applicability.
Besides, many methods extract features from system failures,
such as Graph-RCA [52] and iSQUAD [50]. Nonetheless, failure
cases are few in microservice systems because operators try to
run the system as robustly as possible, severely affecting the
performance of these feature-based methods.

Trace-Based Failure Diagnosis Methods: Trace can be used
to localize the culprit service, for example, TraceRCA [4],
MEPFL [18], MicroHECL [5], and MicroRank [6]. However,
these trace-based methods often focus on the global feature of
the systems and do not deal with the local features of a service
instance.

Log-Based Failure Diagnosis Methods: LogCluster [7] per-
forms hierarchical clustering on log sequences and matches
online log sequences to the most similar cluster. Cloud19 [8] ap-
plies word2vec to construct the vectorized representation of a log
item and trains classifiers to identify the failure type. Onion [9]
performs contrast analysis on agglomerated log cliques to find
incident-indicating logs. DeepLog [10] and LogFlash [53] inte-
grate anomaly detection and failure diagnosis. They calculate
the deviation from normal status and suggest the root cause
accordingly. Log-based methods often ignore the topological
feature of microservice systems.

Multimodal Data-Based Failure Diagnosis Methods: Re-
cently, combining multimodal data to conduct failure diagnosis
has drawn increasing attention. CloudRCA [48] uses both metric
and log. It uses the PC algorithm to learn the causal relationship
between anomaly patterns of metrics, anomaly patterns of logs,
and types of failure. Then it constructs a hierarchical Bayesian
Network to infer the failure type. PDiagnose [47] combines
metric, log, and trace. It uses lightweight anomaly detection
of the three modalities to detect anomaly patterns. Then its
vote-based strategy selects the most severe component as the
root cause. However, these two methods ignore the topology
feature of microservice systems. Groot [54] integrates metrics,

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

3862 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

TABLE VII
COMPARISON OF DIAGFUSION AND EXISTING REPRESENTATIVE APPROACHES

status logs, and developer activity. It needs numerous predefined
rules to conduct accurate failure diagnosis, which degrades its
applicability to most scenarios.

We compare DiagFusion and existing representative ap-
proaches in Table VII. In conclusion, compared to single-modal-
based methods, DiagFusion takes the three important modalities
into account. Compared to existing multimodal-based methods,
DiagFusion is among the first to represent different modalities in
a unified manner, thus performing more robustly and accurately.

VIII. CONCLUSION

Failure diagnosis is of great importance for microservice
systems. In this paper, we first conduct an empirical study to
illustrate the importance of using multimodal data (i.e., trace,
metric, log) for failure diagnosis of microservice systems. Then
we propose DiagFusion, an automatic failure diagnosis method,
which first extracts events from three modalities of data and
applies fastText embedding to unify the event from different
modalities. During training, DiagFusion leverages data aug-
mentation to tackle the challenge of data imbalance. Then it
constructs a dependency graph by combining trace and deploy-
ment data. Moreover, DiagFusion integrates event embedding
and the dependency graph through GNN. Finally, the GNN
reports the root cause instance and the failure type of online
failure. We evaluate DiagFusion using two real-world datasets.
The evaluation results confirm the effectiveness and efficiency
of DiagFusion.

REFERENCES

[1] X. Guo et al., “Graph-based trace analysis for microservice architecture
understanding and problem diagnosis,” in Proc. 28th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 1387–1397.

[2] X. Zhou et al., “Fault analysis and debugging of microservice systems:
Industrial survey, benchmark system, and empirical study,” IEEE Trans.
Softw. Eng., vol. 47, no. 2, pp. 243–260, Feb. 2021.

[3] AWS, “Summary of the AWS service event in the Northern Virginia (US-
EAST-1) region,” 2021. [Online]. Available: https://aws.amazon.com/cn/
message/12721/

[4] Z. Li et al., “Practical root cause localization for microservice systems
via trace analysis,” in Proc. IEEE/ACM 29th Int. Symp. Qual. Serv., 2021,
pp. 1–10.

[5] M. Jin et al., “An anomaly detection algorithm for microservice architec-
ture based on robust principal component analysis,” IEEE Access, vol. 8,
pp. 226 397–226 408, 2020.

[6] G. Yu et al., “MicroRank: End-to-end latency issue localization with
extended spectrum analysis in microservice environments,” in Proc. Web
Conf., 2021, pp. 3087–3098.

[7] Q. Lin et al., “Log clustering based problem identification for online
service systems,” in Proc. 38th Int. Conf. Softw. Eng. Companion, 2016,
pp. 102–111.

[8] Y. Yuan, W. Shi, B. Liang, and B. Qin, “An approach to cloud execution
failure diagnosis based on exception logs in OpenStack,” in Proc. IEEE
12th Int. Conf. Cloud Comput., 2019, pp. 124–131.

[9] X. Zhang et al., “Onion: Identifying incident-indicating logs for cloud
systems,” in Proc. 29th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2021, pp. 1253–1263.

[10] M. Du et al., “DeepLog: Anomaly detection and diagnosis from system
logs through deep learning,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2017, pp. 1285–1298.

[11] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,” in Proc. 16th Int. Conf.
Serv.-Oriented Comput., Springer, Hangzhou, China, Nov. 12–15, 2018,
pp. 3–20.

[12] M. Ma, W. Lin, D. Pan, and P. Wang, “Self-adaptive root cause diagnosis
for large-scale microservice architecture,” IEEE Trans. Services Comput.,
vol. 15, no. 3, pp. 1399–1410, May/Jun. 2022.

[13] M. Ma et al., “AutoMAP: Diagnose your microservice-based web appli-
cations automatically,” in Proc. Web Conf., Y. Huang Eds. et al., Taipei,
Taiwan, Apr. 20–24, 2020, pp. 246–258.

[14] Y. Pan et al., “Faster, deeper, easier: Crowdsourcing diagnosis of microser-
vice kernel failure from user space,” in Proc. 30th ACM SIGSOFT Int.
Symp. Softw. Testing Anal., 2021, pp. 646–657.

[15] B. H. Sigelman et al., “Dapper, a large-scale distributed systems tracing
infrastructure,” 2010. [Online]. Available: http://research.google.com/
archive/papers/dapper-2010-1.pdf

[16] T. Yang et al., “AID: Efficient prediction of aggregated intensity of
dependency in large-scale cloud systems,” in Proc. IEEE/ACM 36th Int.
Conf. Automated Softw. Eng., 2021, pp. 653–665.

[17] J. Kaldor et al., “Canopy: An end-to-end performance tracing and analysis
system,” in Proc. 26th Symp. Operating Syst. Princ., Shanghai, China, Oct.
28–31, 2017, pp. 34–50.

[18] X. Zhou et al., “Latent error prediction and fault localization for microser-
vice applications by learning from system trace logs,” in Proc. 27th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019,
pp. 683–694.

[19] C. Zhang et al., “DeepTraLog: Trace-log combined microservice anomaly
detection through graph-based deep learning,” in Proc. 44th Int. Conf.
Softw. Eng., 2022, pp. 623–634.

[20] B. Li et al., “Enjoy your observability: An industrial survey of microser-
vice tracing and analysis,” Empirical Softw. Eng., vol. 27, no. 1, 2022,
Art. no. 25.

[21] P. Liu et al., “Unsupervised detection of microservice trace anomalies
through service-level deep Bayesian networks,” in Proc. IEEE 31st Int.
Symp. Softw. Rel. Eng., 2020, pp. 48–58.

[22] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proc. IEEE Int. Conf. Web Serv.,
I. Altintas and S. Chen, Eds., Honolulu, HI, USA, Jun. 25–30, 2017,
pp. 33–40.

[23] S. Zhang et al., “Syslog processing for switch failure diagnosis and
prediction in datacenter networks,” in Proc. 25th IEEE/ACM Int. Symp.
Qual. Serv., Vilanova i la Geltrú, Spain, Jun. 14–16, 2017, pp. 1–10.

[24] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log
parsing for large-scale log data analysis,” IEEE Trans. Dependable Secure
Comput., vol. 15, no. 6, pp. 931–944, Nov./Dec. 2018.

[25] S. Messaoudi et al., “A search-based approach for accurate identification
of log message formats,” in Proc. 26th Conf. Prog. Comprehension, F.
Khomh, C. K. Roy, and J. Siegmund, Eds., Gothenburg, Sweden, May
27/28, 2018, pp. 167–177.

[26] M. Du and F. Li, “Spell: Online streaming parsing of large unstruc-
tured system logs,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 11,
pp. 2213–2227, Nov. 2019.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/cn/message/12721/
https://aws.amazon.com/cn/message/12721/
http://research.google.com/archive/papers/dapper-2010-1.pdf
http://research.google.com/archive/papers/dapper-2010-1.pdf

ZHANG et al.: ROBUST FAILURE DIAGNOSIS OF MICROSERVICE SYSTEM THROUGH MULTIMODAL DATA 3863

[27] H. Dai, H. Li, C. Chen, W. Shang, and T.-H. Chen, “Logram: Efficient
log parsing using n-gram dictionaries,” IEEE Trans. Softw. Eng., vol. 48,
no. 3, pp. 879–892, Mar. 2022.

[28] M. Sun et al., “CTF: Anomaly detection in high-dimensional time series
with coarse-to-fine model transfer,” in Proc. IEEE 40th Conf. Comput.
Commun., Vancouver, BC, Canada, May 10–13, 2021, pp. 1–10.

[29] Y. Su et al., “Detecting outlier machine instances through Gaussian mix-
ture variational autoencoder with one dimensional CNN,” IEEE Trans.
Comput., vol. 71, no. 4, pp. 892–905, Apr. 2022.

[30] L. Shen et al., “Time series anomaly detection with multiresolution ensem-
ble decoding,” in Proc. 35th AAAI Conf. Artif. Intell. 33rd Conf. Innov.
Appl. Artif. Intell. 11th Symp. Educ. Adv. Artif. Intell., 2021, pp. 9567–
9575.

[31] M. Ma et al., “Jump-starting multivariate time series anomaly detection
for online service systems,” in Proc. USENIX Annu. Tech. Conf., I. Calciu
and G. Kuenning, Eds., USENIX Assoc., 2021, pp. 413–426.

[32] Z. Li et al., “Multivariate time series anomaly detection and interpretation
using hierarchical inter-metric and temporal embedding,” in Proc. 27th
ACM SIGKDD Conf. Knowl. Discov. Data Mining, F. Zhu, B. C. Ooi, and
C. Miao, Eds., 2021, pp. 3220–3230.

[33] L. Dai et al., “SDFVAE: Static and dynamic factorized VAE for anomaly
detection of multivariate CDN KPIs,” in Proc. Web Conf., J. Leskovec Eds.
et al., 2021, pp. 3076–3086.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[35] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors
for word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process., A. Moschitti, B. Pang, and W. Daelemans, Eds., 2014, pp. 1532–
1543.

[36] P. Bojanowski et al., “Enriching word vectors with subword information,”
Trans. Assoc. Comput. Linguistics, vol. 5, pp. 135–146, 2017.

[37] M. E. Peters et al., “Deep contextualized word representations,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., M. A. Walker, H. Ji, and A. Stent, Eds., New Orleans, LA, USA,
Jun. 1–6, 2018, pp. 2227–2237.

[38] J. Devlin et al., “BERT: Pre-training of deep bidirectional transformers for
language understanding,” 2018, arXiv:1810.04805.

[39] T. B. Brown et al., “Language models are few-shot learners,” in Proc.
Int. Conf. Neural Inf. Process. Syst., H. Larochelle Eds. et al., 2020,
Art. no. 159.

[40] W. Meng et al., “LogAnomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs,” in Proc. 28th Int. Joint Conf.
Artif. Intell., S. Kraus, Ed., Macao, China, Aug. 10–16, 2019, pp. 4739–
4745.

[41] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[42] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst., I.
Guyon Eds. et al., Long Beach, CA, USA, 2017, pp. 1024–1034.

[43] L. Zhou, Q. Zeng, and B. Li, “Hybrid anomaly detection via multihead
dynamic graph attention networks for multivariate time series,” IEEE
Access, vol. 10, pp. 40 967–40 978, 2022.

[44] L. Zhang, B. Morin, P. Haller, B. Baudry, and M. Monperrus, “A Chaos
engineering system for live analysis and falsification of exception-handling
in the JVM,” IEEE Trans. Softw. Eng., vol. 47, no. 11, pp. 2534–2548,
Nov. 2021.

[45] Y. Wang et al., “Fast outage analysis of large-scale production clouds with
service correlation mining,” in Proc. IEEE/ACM 43rd Int. Conf. Softw.
Eng., Madrid, Spain, May 22–30, 2021, pp. 885–896.

[46] Y. Zhou et al., “Graph neural networks: Taxonomy, advances, and
trends,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 1, pp. 15:1–15:54,
2022.

[47] C. Hou, T. Jia, Y. Wu, Y. Li, and J. Han, “Diagnosing performance issues
in microservices with heterogeneous data source,” in Proc. IEEE Int.
Conf. Parallel Distrib. Process. Appl. Big Data Cloud Comput. Sustain.
Comput. Commun. Social Comput. Netw., New York, NY, USA, 2021,
pp. 493–500.

[48] Y. Zhang et al., “CloudRCA: A root cause analysis framework for cloud
computing platforms,” in Proc. 30th ACM Int. Conf. Inf. Knowl. Manage.,
G. Demartini Eds. et al., 2021, pp. 4373–4382.

[49] Y. Meng et al., “Localizing failure root causes in a microservice through
causality inference,” in Proc. IEEE/ACM 28th Int. Symp. Qual. Serv.,
Hangzhou, China, Jun. 15–17, 2020, pp. 1–10. [Online]. Available: https:
//doi.org/10.1109/IWQoS49365.2020.9213058

[50] M. Ma et al., “Diagnosing root causes of intermittent slow queries in
large-scale cloud databases,” in Proc. VLDB Endowment, vol. 13, no. 8,
pp. 1176–1189, 2020.

[51] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249–270, Jan. 2022.

[52] Á. Brandón et al., “Graph-based root cause analysis for service-
oriented and microservice architectures,” J. Syst. Softw., vol. 159, 2020,
Art. no. 110432.

[53] T. Jia, Y. Wu, C. Hou, and Y. Li, “LogFlash: Real-time streaming anomaly
detection and diagnosis from system logs for large-scale software sys-
tems,” in Proc. IEEE 32nd Int. Symp. Softw. Rel. Eng., Z. Jin Eds. et al.,
Wuhan, China, Oct. 25–28, 2021, pp. 80–90.

[54] H. Wang et al., “Groot: An event-graph-based approach for root cause anal-
ysis in industrial settings,” in Proc. IEEE/ACM 36th Int. Conf. Automated
Softw. Eng., Melbourne, Australia, Nov. 15–1, 2021, pp. 419–429.

Shenglin Zhang (Member, IEEE) received the BS
degree in network engineering from the School of
Computer Science and Technology, Xidian Univer-
sity, Xi’an, China, in 2012, and the PhD degree in
computer science from Tsinghua University, Beijing,
China, in 2017. He is currently an associate professor
with the College of Software, Nankai University,
Tianjin, China. His current research interests include
failure detection, diagnosis, and prediction for service
management.

Pengxiang Jin received the bachelor’s degree in soft-
ware engineering from Nankai University, Tianjin,
China, in 2020. He is currently working toward the
master degree with the College of Software, Nankai
University. His research interests include anomaly
detection and anomaly localization.

Zihan Lin received the bachelor’s degree in software
engineering from Nankai University, Tianjin, China,
in 2021. He is currently working toward the master
degree with the College of Software, Nankai Univer-
sity. His research interests include failure localization
and anomaly detection.

Yongqian Sun (Member, IEEE) received the BS de-
gree in statistical specialty from Northwestern Poly-
technical University, Xi’an, China, in 2012, and the
PhD degree in computer science from Tsinghua Uni-
versity, Beijing, China, in 2018. He is currently an as-
sistant professor with the College of Software, Nankai
University, Tianjin, China. His research focuses on
anomaly detection, root cause analysis, and failure
diagnosis in service management.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/IWQoS49365.2020.9213058
https://doi.org/10.1109/IWQoS49365.2020.9213058

3864 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

Bicheng Zhang received the bachelor’s degree from
Nankai University. He is currently working toward
the master degree with Fudan University. His research
interests include cloud native and AIOps.

Sibo Xia is currently working toward the master de-
gree. His main research interests include knowledge
graph, failure detection, and diagnosis.

Zhengdan Li is an experimentalist with Nankai Uni-
versity, Tianjin, China. Her research interests include
artificial intelligence and software engineering.

Zhenyu Zhong received the BS degree in software
engineering from Nankai University, Tianjin, China,
in 2020. He is currently working toward the PhD de-
gree with the College of Software, Nankai University,
Tianjin, China. His current research interests include
anomaly detection, deep learning, and NLP.

Minghua Ma (Member, IEEE) received the PhD
degree from Tsinghua University, in 2021. He is a
researcher with Microsoft. His current research inter-
ests include cloud intelligence/AIOps.

Wa Jin is currently working toward the bachelor
degree. Her main research interests include anomaly
detection and failure diagnosis.

Dai Zhang is employed with ZhejiangE-
CommerceBank Co., Ltd., Launched by Ant Group.
As a technical expert, he mainly focuses on financial
basic technical architecture and cloud-native system
stability.

Zhenyu Zhu is employed with ZhejiangE-
CommerceBank Co., Ltd., Launched by Ant Group.
As a technical expert, he mainly focuses on financial
basic technical architecture and cloud-native system
stability.

Dan Pei (Senior Member, IEEE) received the BE and
MS degrees in computer science from the Department
of Computer Science and Technology, Tsinghua Uni-
versity, in 1997 and 2000, respectively, and the PhD
degree in computer science from the Computer Sci-
ence Department, University of California, Los An-
geles (UCLA), in 2005. He is currently an associate
professor with the Department of Computer Science
and Technology, Tsinghua University. His research
interests include network and service management in
general. He is asenior member of the ACM.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on September 11,2025 at 07:44:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

