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Timely anomaly detection of multivariate time series (MTS) is of vital importance for managing large-scale
software systems. However, many deep learning-based MTS anomaly detection models require long-term
MTS training data to achieve optimal performance, which often conflicts with the frequent pattern changes
observed in software systems. Moreover, the training overhead of vast MTS in large-scale software systems
is unacceptably high. To address these issues, we design OmniTransfer, a model-agnostic framework that
combines weighted hierarchical agglomerative clustering with an adaptive transfer learning strategy, making
many state-of-the-art (SOTA) MTS anomaly detection models efficient and effective. Extensive experiments
using real-world data from a largeweb content service provider and a network operator show thatOmniTransfer
significantly reduces the model initialization time by 46.49% and the training cost by 74.51%, while maintaining
high accuracy in detecting anomalies.
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1 Introduction
With the rapid development of the Internet, the scale of software systems has grown exponentially.
There are thousands of entities such as containers, virtual machines, and physical machines deployed
in Information Technology (IT) infrastructure [4, 11, 25, 27, 43, 44]. Anomaly detection is critical
to the quality of service management since it helps operators identify anomalous behaviors,
improve system stability, and reduce economic losses [27, 34, 41, 47]. Operators configure multiple
monitoring metrics for each entity to monitor the running status.These metrics are usually collected
continuously at pre-defined intervals. As shown in Figure 1, the monitored metrics of an entity
form a multivariate time series (MTS), including system metrics (e.g., CPU load, memory usage,
network throughput, and disk I/O) and user-perceived metrics (e.g., average response latency, page
visits, and access error rates).

Recently, a series of deep learning-based MTS anomaly detection models have been proposed
[2, 7, 9, 22, 23, 33, 38, 53], but they suffer from some limitations. First, they need a long initialization
time1 to perform well. For instance, OmniAnomaly [33] and InterFusion [23] require several weeks
of training data. However, operators want to reduce the initialization time when there is a pattern
change, such as configuration upgrades or adding new entities. Second, training a model for each en-
tity is impractical as large-scale IT infrastructures havemassive entities.Third, the optimal algorithm
varies for different scenarios. For example, GDN [9] focuses on the correlation between metrics,
while InterFusion [23] also considers temporal dependencies. Therefore, a framework that can
effectively reduce initialization time and training overhead and be effective for all models is needed.

There have been some works trying to address the challenges above. Anomaly Detection in
High-Dimensional Time Series with Coarse-to-Fine Model Transfer (CTF) [35] utilizes
clustering and transfer learning to reduce the training overhead of large-scale MTS anomaly
detection. Nevertheless, CTF still requires a long model initialization time and only works for
the RNN+VAE models [33]. OmniCluster [45] is a model-agnostic framework for large-scale MTS
anomaly detection that reduces the training overhead by clustering. However, it is suitable for long-
term MTS (i.e., 7 days), resulting in a longer initialization time for anomaly detection. Additionally,
CTF and OmniCluster only train the final fine-grained model at the cluster level, which may not
apply to all entities within a cluster due to minor shape differences.

Nevertheless, clustering combined with transfer learning is a promising approach to solve these
problems [46]. By reducing the number of models through clustering, the training overhead is
reduced. Then, fine-tuning the pre-trained model to a new pattern with short-term data can reduce
the initialization time. Note that we denote the MTS and models in the source domain as the base
MTS and base models, respectively, and the MTS and models in the target domain as the target
MTS and target models. However, there are still some challenges when applying clustering and
transfer learning.

(1) High diversity of MTS. As shown in Figures 1 and 2, the diversity of MTS includes patterns,
irregular noise, anomalies, and phase shifts. MTS can be generated by various entities with diverse
patterns (i.e., different periodicity, amplitude, trend). Large-scale software systems use different
servers to serve users across a wide geographical area, resulting in similar MTS patterns with a
time delay. These diversities can affect the distance calculation of MTS and lead to poor clustering
performance.

(2) Aperiodic metrics may reduce the clustering performance. Figure 1 displays the MTS of different
entities. The metrics in the top MTS are with different strengths of periodicity. Many user-perceived
metrics and system metrics related to user behavior exhibit periodicity. However, there are also

1MTS’s model initialization time [28] is defined as the time lag between when the model is launched and when it becomes
well trained, mainly influenced by the length of historical data the model needs.
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Fig. 1. The MTS of entities in large-scale IT infrastructure.
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Fig. 2. An example of MTS phase shifts: two MTS are similar in shape but have a time lag.

aperiodic metrics that are unrelated to user behavior. The first three metrics have regular shapes
and strong periodicity, which are important for identifying patterns and clustering. The last three
metrics do not have regular shapes and contain frequent noise, which will interfere with distance
calculation. OmniCluster [45] uses a fixed empirical threshold to remove weak periodicity metrics
and keep strong periodicity metrics directly. It may delete metrics with key information and keep
metrics with interference. For example, the fourth and fifth metrics in Figure 1 are challenging to
define the strength of periodicity they are. It is vital to keep as much information as possible while
reducing the interference of aperiodic metrics on clustering.

(3) Selection of transfer strategy. There are various strategies for transferring parameters from
the base model to the target model. Full parameter transfer and partial parameter transfer strat-
egy are two typical strategies. In most cases, we have the following three observations: (1) The
distances between the base and target MTS are various, making the optimal transfer strategy
of each target MTS different. (2) The optimal transfer strategies for different models are diverse
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for the same dataset. (3) The optimal transfer strategies for different datasets are diverse for the
same model. Therefore, we need to use adaptive transfer strategies to achieve better detection
performance.

In this article, we propose OmniTransfer, an efficient, unsupervised, and model-agnostic frame-
work for MTS anomaly detection. In the offline training stage, OmniTransfer uses a weighted
hierarchical agglomerative clustering (W-HAC) method to cluster the data. It can handle
data diversity issues and mitigate the impact of aperiodic metrics. Then, OmniTransfer trains
a base model for each cluster. When transferring the model to a new pattern MTS, OmniTrans-
fer assigns it to the nearest cluster and fine-tunes the base model by an adaptive transfer
strategy.

The main contributions of our work are as follows:

(1) We propose OmniTransfer, an efficient, unsupervised, and model-agnostic framework for
MTS anomaly detection that can significantly reduce the initialization time and the training
overhead for large-scale IT infrastructure. OmniTransfer uses clustering and transfer learning
techniques to transfer the knowledge from well-trained base models to target models. To the
best of our knowledge, this is the first model-agnostic framework based on transfer learning
for state-of-the-art (SOTA) MTS anomaly detection models.

(2) We propose innovative strategies to improve the effectiveness of diversified MTS clustering.
We weight metrics based on periodicity to reduce the impact of non-periodic metrics and
use phase alignment to eliminate the impact of phase shifts.

(3) We propose an adaptive transfer strategy. It can automatically select either full or partial
parameter transfer strategy according to the distance between the target MTS and the base
MTS cluster centroid.

(4) We apply OmniTransfer on ten SOTA anomaly detection models and conduct experiments
with real-world datasets from two top-tier enterprises. Experimental results show that
OmniTransfer reduces the initialization time by 46.49% and the training cost by 74.51% on
average while maintaining high accuracy in detecting anomalies. Furthermore, we make our
source code and the labeled datasets publicly available [1] to make it easier for researchers
to understand our work.

The rest of this article is organized as follows. Section 2 introduces our motivation for proposing
this framework, Section 3 discusses the background, Section 4 discusses the details of the method,
Section 5 describes our experimental approach and results, and Section 6 introduces the related
work in the same field. Section 7 summarizes lessons learned, future work, and limitations.

2 Motivation
This section elaborates on our motivations by answering the following three questions:

(1) Why do we need to reduce training overhead?
(2) Why do we need to reduce model initialization time?
(3) Why do we need to provide a general framework?

2.1 Why Do We Need to Reduce Training Overhead
Deep learning requires the same distribution between the training and test data, and it is necessary
to train a model for each entity because of different data distributions. It will generate a large
number of models and a huge training overhead. Table 1 lists the training costs of some MTS
anomaly detection models. Such an unacceptable training overhead prevents deep learning-based
MTS anomaly detection models from being applied to large-scale software systems.
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Table 1. MTS Anomaly Detection Models’
Training Overhead

Model Training Time (1M Entities)

OmniAnomaly [33] 1.57 years
InterFusion [23] 1.41 years
SDFVAE [7] 5.28 weeks
DAGMM [53] 6.09 months
USAD [2] 5.72 weeks
GDN [9] 2.19 weeks

TranAD [38] 4.89 weeks
DOMI [34] 5.15 weeks
SLAVAE [15] 6.07 weeks

MTAD-GAT [49] 3.22 months
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Fig. 3. An example of the impact of addition and change of software systems on model initialization time.

2.2 Why Do We Need to Reduce Model Initialization Time?
Due to the rapid expansion of the Internet, additions and changes of web service entities become
more and more frequent [21, 29, 48, 50]. The additions of web service entities generally refer to
the horizontal expansion of the service, deploying the original service to a new node, and the
monitoring data on the new node lacks the historical training data in a short period. The change of
the web service entity includes the release, upgrade, and configuration modification of the service,
which will lead to changes in the service running status. Changes, such as less traffic and lower
CPU usage due to configuration modifications, are expected.

We use two cases to illustrate the impact of the addition and change of software systems on
model initialization time in Figure 3. Figure 3(a) shows a typical entity which uses sufficient data
for five days to train the model. For the first case, Figure 3(b) simulates the scenario of insufficient
training data when a new entity is added, which starts on the fifth day and has only one day of
data for training. Generally, we use �1 to evaluate the anomaly detection (Section 5 for details).
We use OmniAnomaly [33] to get �1 corresponding to the three types of entities corresponding
to Figure 3(a), (b), and (c) on the entire dataset. The �1 of the entities of type a is 0.99, while the
�1 of the entities of type b is only 0.70. Therefore, the model training is insufficient due to the
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Table 2. MTS Anomaly Type

Anomaly Type Characteristic

Global Anomalies Exhibiting extreme values compared
to all the remaining data.

Contextual Anomalies Deviating from the neighboring time points.

Pattern Anomalies Having different basic patterns
compared to normal patterns.

Frequency Anomalies Displaying unusual frequency compared
to the overall frequency.

Trend Anomalies Deviating from the underlying
trend of the time series.

Fig. 4. Five common anomaly types and the result of six SOTA MTS anomaly detection performances for
different anomaly types.

lack of training data. For the second case, the entities of type c have a shift change in the training
data, resulting in the inconsistency between the distribution of some training data and test data.
Correspondingly, the �1 of this type is 0.31, which is particularly poor.

The above two cases fully illustrate the problem of poor detection performance due to the long
model initialization time in the scenarios of addition and change of software systems. Thus proving
the necessity of reducing the model initialization time for anomaly detection.

2.3 Why Do We Need to Provide a General Framework?
Different deep models use dedicated designs to detect MTS anomalies in different scenarios. Existing
experimental results show that many SOTA models perform differently on different MTS anomaly
types. We cite the experimental results of empirical research [10] on many public datasets. The
research introduces five anomaly types, shown in Table 2. The upper part of Figure 4 shows a demo
of different anomaly types. The lower part of Figure 4 shows the detection performance of six SOTA
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models on five anomaly types. The best-performing model is different for each anomaly type. These
anomaly types may correspond to different business scenarios. Global anomalies often correspond
to obvious business interruptions. For example, excessive traffic causes the service to be temporarily
unavailable, often accompanied by an abnormal increase in global resource indicators such as CPU
and memory. Trend anomalies may indicate resource configuration changes, modifying the JVM
heap and stack configuration, causing the memory size occupied by the new service to steadily
increase compared to the occupancy before the change.

Different models have distinct characteristics, making each one suitable for handling different
types of anomalies. Therefore, the primary objective of this article is not to investigate the detection
capabilities of various anomaly detection models for different types of anomalies. Instead, it aims to
propose a general framework that can enhance the transfer learning capabilities of each anomaly
detection algorithm.

3 Background
3.1 MTS Anomaly Detection and Clustering
MTS Anomaly Detection. The collected data of each entity forms an MTS with M metrics and N time
points as a matrix - ∈ '"×# . Observing longer data segments reveals discernible specific patterns
within MTS. Whenever data deviations from the patterns, it signals an anomaly, potentially indicat-
ing a fault in the entity. For each time C , it is necessary to determine whether-C ∈ '" is an anomaly.
To quickly catch these anomalies, we usually take a data segment -ℎ = (-C−, , -C−, +1, ..., -C ) of
length, to assist in studying the patterns and further identifying whether -C is an anomaly [9,
33]. Note that both predicted-based and reconstruction-based methods can be represented by such
data segments.
MTS Anomaly Detection Models. There have been many SOTA MTS anomaly detection models

proposed, which we can categorize based on their structures. The first type is models consisting of
fully connected layers (i.e., Dense layers) [2, 53], typically using a reconstruction-based architecture
as depicted in Figure 5(a). The second type is models consisting of specialized layers such as
recurrent neural network (RNN), convolutional neural network (CNN), graph neural
network (GNN), and attention [7, 9, 15, 23, 33, 34, 38, 49]. These models usually use either a
reconstruction-based or predicted-based architecture and are shown in Figure 5(b) and (c). The
specialized layers can capture more effective features for anomaly detection. For instance, CNN,
attention, and GNN help capture inter-metric dependence, while RNN can capture the temporal
dependence of MTS.

MTS Clustering Methods. There have been many studies on MTS clustering, which can be catego-
rized into two types: traditional clustering methods and deep learning-based methods. The first type
of method typically employs either the original MTS or low-dimensional representations extracted
by traditional machine learning techniques such as principal component analysis (PCA) and
inverse correlation variance transformation [13, 19, 20, 40]. Dynamic time warping (DTW),
shape-based distance (SBD), and Euclidean distance are often used to measure the difference
between MTS. However, these methods usually cannot handle the interference of aperiodicity.
Meanwhile, DTW and SBD require high computation overhead. The second type of method [35, 45]
uses low-dimensional representations extracted by deep learning-based models for clustering. The
low-dimensional representations are usually free of noise and can improve clustering efficiency [35,
45]. However, these low-dimensional features lose much information and are usually relevant to
subsequent tasks, for example, anomaly detection. Moreover, training deep learning-based models
requires significant computing and time resources. To overcome these limitations, we propose a
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Fig. 5. The neural network architecture of MTS anomaly detection models. (a) Reconstruction-based models
with the same modules. (b) Reconstruction-based models with different modules. (c) Prediction-based models
with different modules.

task-agnostic clustering method, which ensures the efficiency, effectiveness, and robustness of
clustering.

3.2 Transfer Learning
Transfer learning, which focuses on transferring knowledge across domains, is a promising machine
learning methodology to solve problems such as insufficient training data and time-consuming
training processes [52]. Transfer learning utilizes the knowledge from sufficient source domain
data to help the task on the target domain lacking training data. Surveys [31, 52] summarize
approaches to transfer learning into four approaches based on “what to transfer.” They are the
instance-transfer approach, the feature-representation-transfer approach, the parameter-transfer
approach, and the relational-knowledge-transfer approach. The instance-transfer approach reuses
part of the source domain’s data by reweighting or sampling importance in the target domain. The
feature-representation-transfer approach improves the performance of the target task by learning a
good feature representation from the source domain to the target domain. The parameter-transfer
approach aims to share model parameters and prior distributions between the source and the target
domains. The relational-knowledge-transfer approach aims to discover the statistical correlation
between the source and the target domain data.

This article uses the parameter-transfer approach, combining pre-training and fine-tuning.
Transferring the pre-trained model to the target task is usually better than training from scratch
[37], which has three main reasons: (1) the performance of the initial model is generally better
than that of the randomly initialized model; (2) the learning speed of the fine-tuning is faster than
learning from scratch, and the convergence is better; (3) the final performance of the model has
better generalizability than training only with target domain data.

However, fully transferring parameters may lead to negative transfer due to the differences in the
prior distributions of the source and target domains [5]. To address this, AT-GP [5] and AnoTransfer
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Fig. 6. The overview of OmniTransfer.

Fig. 7. The overall process of W-HAC.

[46] propose adaptive transfer strategies to automatically select between full parameter transfer
and partial parameter transfer strategy. AnoTransfer uses the normalized cross-correlation
(NCC) to measure the distance among the KPIs. AT-GP formulates the transfer learning problem as
a unified Gaussian Process model. They both avoid negative transfer during the transfer learning
and achieve better generalizability.

4 Approach
4.1 Overview
We propose a model-agnostic framework, named OmniTransfer, to reduce initialization time and
training overhead of MTS anomaly detection. Figure 6 shows the overview of OmniTransfer, which
includes three main stages: offline training, transfer learning, and online detection.

The offline training stage comprises two steps: W-HAC and base model training. Figure 7
illustrates the process of W-HAC. To reduce interference from aperiodic metrics, we weigh the
contribution of metrics to clustering based on their strength of periodicity. Besides, we address the
problem of the MTS phase shifts. Thus, W-HAC can group MTS with similar shapes, addressing the
first and second challenges. In the base model training stage, OmniTransfer trains a base model
that can be used for transfer learning by using several MTS segments near the cluster centroid.

The target MTS undergoes transfer learning and online detection stages sequentially. First, we
match the short-term data of the target MTS to an appropriate cluster and then use an adaptive
transfer strategy to fine-tune the corresponding base model. The adaptive transfer strategy selects
the best transfer strategy based on the distance between the target MTS and its corresponding
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cluster centroid, which solves the third challenge. Finally, in the online detection stage, we use the
fine-tuned model to detect anomalies in the target MTS.

4.2 Pre-Processing
Data pre-processing is crucial for offline training, transfer learning, and online detection stages since
it is hard to guarantee that all monitoring data are ideally collected in large-scale IT infrastructure.
According to the previous experience [46], the proportion of missing points is typically less than 5%.
We can fill in these missing points directly by utilizing linear interpolation. Another widely used
pre-processing step for time series is standardization, which is useful for eliminating the impact of
amplitude by scaling the data to a standard normal distribution. The process of standardization is
given by (1),

X
′ 9 =

X9 −<40=(X9 )
BC3 (X9 ) , (1)

where - 9 ∈ '# is the 9th metric after filling in the missing value, and X
′ 9 ∈ '# is the 9th metric

after standardization.

4.3 Offline Training
4.3.1 W-HAC. The W-HAC (illustrated in Figure 7) aims to reduce the diversity of MTS and

thus lower the training overhead of anomaly detection models. The specific steps of W-HAC are as
follows:

Baseline Extraction. Noise and anomalies can significantly impact the normal pattern of MTS and
increase the diversity of MTS patterns, as mentioned in the first challenge. To address this issue, we
extract the baselines (normal patterns) of MTS by removing extreme values and applying a moving
average. Extreme values are more likely to be anomalies and their ratio is often less than 5% [24,
45, 46]. Therefore, W-HAC removes the top 5% data that deviates from the mean value and then
uses linear interpolation to fill the vacancies. Then, W-HAC applies the moving average to reduce
the impact of noise.
Periodic Weights. To determine the strength of periodicity of each metric in MTS, we use the

cumulative mean normalized difference (CMND) [8], which is an improved version of the
autocorrelation-based approach and well suited for long-term data.�"#� is given by (2), where g
is an empirical candidate periodicity value, such as 1 hour, 1 day, 1 week, or 1 month.

3 (g) =
#−g∑
8=1

(u8 − u8+g )2

�"#� (g) = 3 (g)
[(1/g)∑g

9=1 3 ( 9)]

. (2)

For each metric in the MTS, we calculate the �"#� and then average them across the entity
dimension to obtain P ∈ '" , where " is the number of metrics in the MTS. The smaller P9 ,
the stronger the periodicity of the 9th metric. We aim to assign high weights to strong periodic
metrics in clustering. Thus, we compute the periodic weight PW ∈ R" by PW = P−U , where U is a
hyper-parameter. A larger value of U leads to a greater weight difference between metrics with
different levels of periodicity.
Segmentation of MTS. After computing the baseline and periodic weights, we slice MTS into

short-term segments, denoted as MTSB46 ∈ '"×= , that match the length of the target MTS. Here, =
represents the time points after segmentation.
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Instead of MTS entities, we use MTS segments as input for clustering and transfer learning to
reduce model initialization time and training cost. The use of shorter MTS segments allows for
the selection of suitable clusters corresponding to the base model. When performing anomaly
detection for a new MTS data segment, the models can be fine-tuned well with less data. Moreover,
using complete entities for transfer learning requires longer data for cluster matching and model
fine-tuning. Additionally, the entity data need to be as consistent in length as possible. Clustering
entities of different lengths tend to be less accurate.
Phase Alignment. We then combine PW to align the phase shift because discussing the phase

shift for aperiodic metrics is less meaningful.
First, we get the pivot PVT of the entire offline segments D according to (3). The weighted

Euclidean distance between two MTSB46 can be calculated by (4).

PVT = arg min
A∈D

∑
B∈D

�D2F (A,B) (3)

�D2F (A,B) = (A − B)2 × PW. (4)

Next, we use weighted NCC (TIIw) to estimate the best phase shift for all MTSB46 to align to
PVT. B ∈ [−= + 1, = − 1] denotes the possible phase shifts. To retain short-term information, we use
(5) to wrap round MTS.

A(B) = (A1,A2, . . . ,A=)

B(B) =
{
(B=−B+1, . . . ,B=,B1, . . . ,B=−B ) B ≥ 0,
(B−B+1, . . . ,B=,B1, . . . ,B−B ) B < 0.

(5)

#��F reaches the maximum value when B is close to the real phase shift, which is given by (6).

��F (A,B, B, 9) =
=∑
8=1

A(B) 9
8
· B(B) 9

8
· PW9

#��F (A,B, B) =
"∑
9=1

��F (A,B, B, 9)
| |A(B) 9 | |2 · | |B(B) 9 | |2

.

(6)

The best phase shift B∗ obtained by (7).

B∗ = arg max
B∈[−=+1,=−1]

#��F (PVT,MTSB46, B). (7)

Finally, we align the phase shift B∗ of MTSB46 to get MTS
′
B46.

Clustering. OmniTransfer gets the clustering result using hierarchical agglomerative clus-
tering (HAC) and the weighted Euclidean distance. HAC with average linkage is adopted for the
following reasons. (1) The HAC algorithm is robust to the extreme value because it clusters on
the rank of distances rather than the value. (2) Each data in the cluster have the same effect on the
distance measure, making the distance measure transitive. After clustering, several segments near
the cluster centroid are saved for base model training.

4.3.2 Base Model Training. The VAE-based algorithms [7, 23, 33] model the relationship between
the latent variable I and the observed variable G . They typically train their models by optimizing
the evidence lower bound described in (8), which is comprised of a reconstruction probability
and a regularization term. ?\ is a generative model that represents the real posterior of the data,
while @q is an inference model aiming to estimate the posterior. The � ! term represents the
Kullback-Leibler divergence [18]. On the other hand, AE-based and prediction-based models
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[2, 9, 38, 53] focus on reconstructing or predicting the target. These models train by minimizing the
difference between the target and output in (9).

L1 = E@q (I |G ) [log?\ (G |I)] − � ! [@q (I |G) | |?\ (I)] (8)
L2 =MSE(C0A64C − >DC?DC). (9)

4.4 Transfer Learning
Transfer Preparations. To train the target model for each target MTS, OmniTransfer utilizes a base
model �, which is selected based on the cluster centroid’s proximity to the target short-term
data H ∈ '"×= . First, we perform baseline extraction and phase alignment to get H′. Then, we
calculate the distance between H

′ and the centroid of each cluster and select the closest one and its
corresponding base model for transfer learning. We use H to fine-tune the base model.
Adaptive Transfer Strategy. We propose an adaptive transfer strategy that automatically selects

whether to transfer full parameters or partial parameters for each target MTS. When the target MTS
and the nearest cluster centroid are relatively similar, we use the full parameter transfer strategy and
fine-tune the entire base model’s parameters directly. Otherwise, we employ the partial parameter
transfer strategy. Specifically, we initialize a target model with random parameters and load part
of the base model’s parameters into the target model. First, we update the remaining parameters
while keeping the transferred parameters fixed. Then we fine-tune all of the parameters of the
target model.

Distance Measurement. We use a distance measurement to help decide which transfer strategy to
select for each target MTS. The anomaly score measures the deviation between the target data and
the normal pattern learned by the base model. We use the summation across all time points anomaly
scores as the distance score. To avoid the impact of anomalies and noise in the data, we remove
the top 5% of the anomaly scores. The distance score is defined as (10), where �=><0;~(2>A4

′
�
is

obtained by removing extreme values from either (11) or (12).

�8 5 5 (2>A4� (H) = BD<(�=><0;~(2>A4
′
� (H)) . (10)

The threshold value V for �8 5 5 (2>A4 is usually determined by experienced operators or initialized
by referring to some entities in the dataset. Empirically, applying the initial V is sufficient to achieve
good results. As the data volume increases, the optimal value for V can be updated to further
enhance the detection performance.

Transfer Layer Selection. We adopt the partial parameter transfer strategy when there is a signifi-
cant difference between the target MTS and its corresponding base model. We select specific layers
based on the models’ capabilities and characteristics for transferring. As mentioned in Section 3.1,
these SOTA MTS anomaly detection models fall into two categories based on their structures. For
the former type, their outer layers focus on more general tasks and capture more generic features
[3, 36, 42], while the inner layers are designed to capture more task-specific features [12, 39].
For the latter, the specialized layers (e.g., RNN, CNN, attention, and GNN) capture more generic
features, while the fully connected layers focus more on specific tasks [6, 16, 26, 32, 35]. It is
recommended to transfer the parameters of the outer layers or the specialized layers when adopting
the partial parameter transfer strategy, as they learn generic features that are often not specific to a
particular task.

4.5 Online Detection
We use the fine-tuned model for online detection. For the VAE-based models, their anomaly
score corresponds to the negative reconstruction probability, which is given by (11). log?\ (G |I)
denotes the reconstruction probability of each observed variable G . The smaller the reconstruction
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probability, the greater the probability that this data point is an anomaly. For the AE-based models
and prediction-based models, we calculate the anomaly scores according to (12), which measures
the difference between the target and the output. A greater difference indicates a higher probability
that the data point is an anomaly.

In addition, determining the anomaly score threshold is crucial to identify the anomaly points.
To obtain the best results, we use grid search to select the optimal threshold from the available
range during evaluation.

�=><0;~(2>A41 = −E@q (I |G ) [log?\ (G |I)] (11)
�=><0;~(2>A42 =MSE(C0A64C − >DC?DC). (12)

In previous grid search selection of the optimal threshold selection, the selection was based on
the test set. We also prepared validation sets, but in a previous work we used a method called the
“Tree Based Pipeline Optimization Tool” to optimize the machine learning pipeline, this article
used a test set to select the best threshold, so this article also used a test set based approach to
select the best threshold.

5 Evaluation
In this section, we first introduce the experimental setup, including dataset, experiment environ-
ment, evaluation metrics, and hyper-parameters of OmniTransfer. Then, we conduct extensive
experiments to evaluate the performance of OmniTransfer and answer the following research
questions (RQs):

RQ1. How does the effectiveness and efficiency of OmniTransfer compare to baseline methods?
RQ2. How much initialization time can OmniTransfer reduce compared to non-transfer learning

methods?
RQ3. How much do the key techniques contribute to the overall performance?
RQ4. How well does the W-HAC perform compared to other clustering methods?
RQ5. How does the transfer strategy threshold influence the performance?

5.1 Experimental Setup
Dataset and Environment. In this work, we use two MTS datasets, Dataset1 is derived from the
operating systems and service data of a multitude of servers, which monitors the system software
data and application performance data when the machines provide services to the users. Dataset2
encompasses software system data from wireless base stations of one of the world’s leading ISPs.
It provides a comprehensive reflection of the monitoring data, capturing both user behavior and
service status, offering valuable insights into the performance and operational dynamics of the
wireless communication infrastructure.

More specific details are shown in Table 3. We do not use public datasets (e.g., SWaT and WADI
[30], SMD [33], SMAP and MSL [17]), mainly because the number of entities is too small (i.e., less
than 55 entities).

Please note that we only choose 400 entities from millions for evaluation since the labeling is
time-consuming. In real-world scenarios, additions or upgrades are relatively rare occurrences. To
simulate MTS pattern changes, we employ different entities from the original dataset. To be more
specific, we randomly choose 50% of the entities for training models offline, while the remaining
50% represent newly added entities used for transfer learning and online detection. The online data
are labeled by experienced operators based on real service faults using the labeling tools provided
by CTF [35]. The source code of OmniTransfer and the datasets are publicly available in [1]. All
experiments are run on a server with two 16C32T Intel Xeon Gold 5218 CPU @ 2.30 GHz, one
NVIDIA Tesla V100S, and 192 GB RAM.
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Table 3. Dataset Details

Dataset1 Dataset2

Entity type Web server Wireless base station
Number of entities 400 400
Number of metrics 19 25

Base model training data duration 7 days 14 days
Transfer training data duration 1 day 1 day

Test data duration 2 days 7 days
Anomaly proportion 5.52% 5.18%

Evaluation Metrics. OmniTransfer outputs an anomaly score for each point and determines
whether it is an anomaly by a threshold. Thus, MTS anomaly detection can be regarded as a binary
classification problem. We use the �1 to evaluate the effectiveness, which is given by (13). )%
represents true positives, �% represents false positives, and �# represents false negatives. The �1 of
each dataset is obtained using the micro-average method. By enumerating all possible thresholds,
we obtain the best �1 for each model, denoted by � ∗1 . Additionally, we record the time required for
model training to evaluate efficiency.

%A428B8>= =
)%

)% + �%

'420;; =
)%

)% + �#
(13)

�1B2>A4 = 2 × %A428B8>= × '420;;

%A428B8>= + '420;;
.

Hyper-Parameters. We use the best empirical values for most parameters based on experimental
results. Specifically, We set the sliding window length for the moving average to 12 and 4 for the
two datasets, respectively. The exponents U for the periodic weights applied to different metrics
during clustering are 1 for the two datasets. We use 5 and 20 segments closest to the centroid
for each cluster to train the base models for the two datasets, respectively. For all MTS, we slice
them using a sliding window with a length of 60. The epoch and learning rate of each base model
training, full-parameters transfer strategy fine-tuning, and partial-parameters transfer strategy
fine-tuning are presented in Table 4. The best threshold V is shown in Table 4.
Point-Adjust (PA) Strategy. In our experimental evaluation, we employed the PA strategy, a

widely recognized protocol in time series anomaly detection that adjusts the anomaly predictions
by considering the entire contiguous segment as detected if at least one point within it exceeds the
anomaly threshold. This method is particularly effective in scenarios where the detection of any
anomaly within a period is sufficient to trigger necessary actions, thereby providing a practical
approach to assess the performance of our anomaly detection models.

Validation Set. In our experimental evaluation, we used the validation set to select the threshold.
The first half of the labeled test set is used as the verification set to select the threshold value of the
abnormal score. The F1 score of the second half of the test set is calculated by using the calculated
threshold value, and the result is added to Table 6 in Section 5.2.

5.2 OmniTransfer vs. Baseline Models
To demonstrate the effectiveness and efficiency of OmniTransfer, we compare it with OmniCluster
[45], one model/entity, CTF [35], JumpStarter [28], and Uni-AD [14]. In addition, we have incorpo-
rated one of the most representative pre-training models, “One Fits All” [51], given that time series
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Table 4. Hyper-Parameters Settings

Model
Dataset1 Dataset2

4?>2ℎ1 ;A1 4?>2ℎ5 ;A 5 4?>2ℎ? ;A? V 4?>2ℎ1 ;A1 4?>2ℎ5 ;A 5 4?>2ℎ? ;A? V

OmniAnomaly 50 0.001 10 0.0005 10 0.001 868 50 0.001 10 0.0005 10 0.001 107
InterFusion 10 0.0005 10 0.0003 20 0.0005 807 10 0.0005 10 0.0003 20 0.0005 1,039
SDFVAE 100 0.001 10 0.001 20 0.001 2,430 100 0.002 20 0.0005 20 0.0005 364
DAGMM 500 0.001 20 0.002 50 0.006 7,157 500 0.001 20 0.005 50 0.003 9,917
USAD 100 0.001 5 0.0001 24 0.001 223 100 0.001 5 0.0002 10 0.001 132
GDN 50 0.005 10 0.0005 30 0.005 2,195 50 0.005 10 0.0005 20 0.005 1,152

TranAD 100 0.0005 10 0.0005 20 0.005 199 100 0.0005 10 0.0001 20 0.0001 24
DOMI 100 0.001 10 0.001 20 0.0005 849 100 0.002 10 0.0005 20 0.001 126
SLAVAE 100 0.001 20 0.0005 10 0.001 2,164 100 0.0001 20 0.0005 10 0.0005 251

MTAD-GAT 50 0.001 30 0.001 40 0.001 633 30 0.001 10 0.001 40 0.001 247

4?>2ℎ1 , 4?>2ℎ5 and 4?>2ℎ? denote the epochs of base model training, full-parameters transfer strategy fine-tuning, and partial-
parameters transfer strategy fine-tuning, respectively. ;A1 , ;A 5 and ;A? denote the learning rate similarly.

pre-training models have been extensively studied recently. One Fits All model avoids changing
the self-attention and feedforward layers of residual blocks in the pre-training language or image
model, and can produce equivalent or the most advanced performance in all major time series
analysis tasks. The details are as follows: (1) OmniCluster is a model-agnostic framework for MTS
anomaly detection. (2) One model/entity involves training a separate model for each MTS. (3) CTF
is a transfer-based framework to achieve scalable anomaly detection. (4) JumpStarter is an MTS
anomaly detection model that jump-starts quickly with a short initialization time. (5) Uni-AD is
a transformer-based model that works well for model sharing. OmniTransfer, OmniCluster, and
one model/entity are model-agnostic training frameworks or strategies that can be combined with
various deep anomaly detection models.

To demonstrate the advantages of the PA strategy, we also compared it with the case where the
PA strategy was not used.

We combine these frameworks/methods with 10 typical unsupervised MTS anomaly detection
methods: OmniAnomaly, InterFusion, SDFVAE, DAGMM, USAD, GDN, TranAD, DOMI, SLAVAE,
and MTAD-GAT. These models focus on different challenges in MTS anomaly detection and have
different structures. Table 5 shows the structure and characteristics of these selected models.
The results of these methods are presented at the top of Table 6. CTF is designed specifically for
the RNN+VAE model, JumpStarter is not based on deep learning and cannot be combined with
OmniTransfer, and Uni-AD designed a special model based on the transformer. The results of these
three baselines are shown at the bottom of Table 6. OmniTransfer outperforms all baselines in
effectiveness and is more efficient than all baseline models except for OmniCluster. We will try to
analyze the reasons for this result in detail.
Compare with OmniCluster. On Dataset1, OmniTransfer outperforms OmniCluster by 14.34%

to 88.06%, while on Dataset2, OmniTransfer outperforms OmniCluster by 8.84% to 94.46%. We
attribute this to OmniTransfer improving the clustering method and OmniTransfer training a better
model for each MTS. OmniTransfer applies periodic weighting to the metrics instead of removing
some metrics directly, which allows for a more comprehensive use of information. In contrast,
OmniCluster compresses MTS in the temporal dimension and removes some metrics, resulting in a
loss of both shape and metric information. OmniTransfer uses transfer learning to train a suitable
model for each MTS, whereas OmniCluster trains a base model for each cluster.

The training time of OmniTransfer is 29.94% and 52.24% higher than OmniCluster on two datasets.
Because OmniCluster only trains base models without fine-tuning. Nevertheless, effectiveness is
usually more important than efficiency in practice, making OmniTransfer a superior solution to
OmniCluster.
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Table 5. Selected Anomaly Detection Models

Model Structure Characteristics

OmniAnomaly [33] RNN+VAE For the first time, handling temporal dependence and stochasticity
of MTS and learning robust representation.

InterFusion [23] 1D-CNN+RNN+HVAE Novelly employing HVAE to obtain inter-metric
embeddings and temporal embeddings.

SDFVAE [7] 2D-CNN+RNN+VAE Making use of time invariance in MTS to enhance
the robustness and noise-resistance.

DAGMM [53] AE+GMM Using joint optimization to address the
decoupling problem in the model learning.

USAD [2] AE+GAN The combined use of AE and GAN results in
a more stable and faster model training process.

GDN [9] GNN+Attention GNN can accurately capture the correlations among metrics.

TranAD [38] AE+Attention+GAN Enabling powerful multi-modal feature extraction
and adversarial training improves stability.

DOMI [34] 1D-CNN+GMM+VAE Learning potential representations of machine instances
to capture their normal patterns.

SLAVAE [15] 1D-CNN+RNN+VAE Active learning is employed to update the online model
with a small number of uncertain samples.

MTAD-GAT [49] GNN+Attention Leveraging two parallel graph attention layers to learn the
relationships between different metrics dynamically.

Table 6. The Overall Performance of OmniTransfer Compared to Baseline Models

Model
Dataset1

OmniTransfer OmniCluster One Model/Entity

� ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1
OmniAnomaly 0.9721 1,212.99 0.9452 0.6795 0.5169 560.47 0.4751 0.5758 0.7000 9,888.25 0.6369 0.4933
InterFusion 0.9047 1,585.63 0.8892 0.6706 0.5830 566.56 0.5209 0.5609 0.4769 8,884.94 0.4286 0.76
SDFVAE 0.8512 209.73 0.8426 0.6447 0.4922 178.02 0.4155 0.4916 0.6055 638.93 0.5217 0.8445
DAGMM 0.8738 244.48 0.8521 0.6764 0.7104 137.37 0.5639 0.5653 0.8245 2,947.47 0.7642 0.7377
USAD 0.8539 80.16 0.8318 0.693 0.7468 109.04 0.7084 0.6334 0.7875 691.77 0.7184 0.602
GDN 0.8037 54.55 0.7756 0.481 0.6806 42.81 0.6129 0.4253 0.7405 265.27 0.6872 0.5189

TranAD 0.9714 114.53 0.9208 0.909 0.7797 102.10 0.7084 0.7389 0.8538 591.67 0.8144 0.9388
DOMI 0.8849 156.58 0.8529 0.6215 0.6418 119.56 0.5421 0.5542 0.7138 623.65 0.5871 0.6473
SLAVAE 0.8417 142.54 0.7122 0.6641 0.4831 101.34 0.4508 0.4539 0.5817 603.45 0.4428 0.5514

MTAD-GAT 0.9414 1,149.95 0.9098 0.6417 0.6466 305.06 0.6072 0.4792 0.9064 1,666.67 0.8413 0.6837

JumpStarter 0.4211 4,786.67 0.5227 0.458 - - - - - - - -
CTF 0.8661 4,965.61 0.3456 0.7257 - - - - - - - -

Uni-AD 0.6232 119.95 0.5489 0.5759 - - - - - - - -
One Fits All 0.9218 5,216.18 0.9127 0.7642 - - - - - - - -

Model
Dataset2

OmniTransfer OmniCluster One Model/Entity

� ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1
OmniAnomaly 0.974 1,430.14 0.9489 0.9106 0.7885 522.63 0.7109 0.5179 0.6316 7,791.65 0.5892 0.6446
InterFusion 0.9235 1,131.33 0.8962 0.8085 0.6756 479.01 0.6013 0.4819 0.4639 5,870.73 0.3872 0.5621
SDFVAE 0.8673 572.95 0.8127 0.7799 0.446 230.75 0.4321 0.5232 0.819 1,402.87 0.7356 0.8453
DAGMM 0.9439 271.29 0.8907 0.851 0.8048 133.57 0.7519 0.7066 0.9047 2,923.78 0.8265 0.7658
USAD 0.9355 138.39 0.8839 0.8334 0.7138 93.01 0.6692 0.5664 0.8514 665.19 0.7691 0.8753
GDN 0.9525 46.03 0.9088 0.7835 0.7503 17.15 0.6873 0.5429 0.9382 301.17 0.8819 0.7619

TranAD 0.9323 201.93 0.8873 0.8467 0.8566 82.40 0.7863 0.8196 0.5273 704.29 0.479 0.3334
DOMI 0.9316 309.25 0.7429 0.7537 0.8136 87.35 0.5421 0.6931 0.8426 1,059.76 0.5871 0.7431
SLAVAE 0.8589 465.77 0.7122 0.6308 0.8136 216.20 0.4508 0.6109 0.8025 1,304.03 0.4428 0.6706

MTAD-GAT 0.9757 262.68 0.9133 0.7814 0.5338 204.87 0.4802 0.4672 0.7682 506.35 0.6945 0.7439

JumpStarter 0.649 5,359.1 0.4852 0.5227 - - - - - - - -
CTF 0.8788 6,187.86 0.4454 0.7645 - - - - - - - -

Uni-AD 0.5978 23.30 0.5196 0.5931 - - - - - - - -
One Fits All 0.9167 5,971.93 0.8792 0.7831 - - - - - - - -

The bold values indicate the maximum value in a row in a dataset.
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Comparison with OneModel/Entity. In terms of �1,OmniTransfer achieves an average improvement
of 27.84% and 31.67% on the two datasets, respectively. When using a single entity model, ideally,
with sufficient training data, the detection results are similar to those of the migration base model.
One model/entity uses only short-term MTS for training, which is insufficient for deep learning-
based models. However, in most cases, when there is insufficient training data for online entities, if
a single entity model is not used based on the migration base model, the model training will be
insufficient due to insufficient training data, resulting in poor detection results. Moreover, training
the model from scratch usually takes longer to converge. As the amount of data increases, the
training overhead increases significantly. Furthermore, OmniTransfer reduces the training overhead
by 75.95% and 73.07%. After clustering, the number of basic models is much smaller than the number
of entities. Fine-tuning is performed on the basic model, the model converges faster, the number of
training rounds required is smaller, and the overall training cost is lower.Therefore, the performance
and efficiency of one model/entity strategy are unsatisfactory. In contrast, OmniTransfer performs
better by maximizing the use of the base MTS to train the base model. The overall training overhead
of OmniTransfer benefits from only a small number of base models that need to be trained and the
base models help accelerate the convergence of the target model training.

Comparison with Not PA. The results show that OmniTransfer still outperforms most of the other
baseline models. However, every model’ � ∗1 is notably diminished without the application of the
PA strategy, which may be due to insufficient accuracy in data collection or in the precision of
anomaly labeling. This could be the reason why other baseline studies all employ the PA strategy.

Comparison with CTF. The CTF is specifically designed for RNN+VAE-based models, particularly
for OmniAnomaly. Therefore, we only compare the performance of OmniTransfer+OmniAnomaly
with CTF. The �1 of OmniTransfer +OmniAnomaly is approximately 10% higher than CTF. CTF
produces a fine-tuned model at the cluster level, which cannot be deployed perfectly to each MTS.
The training time of CTF is more than four times that of OmniTransfer+OmniAnomaly on two
datasets. This is because CTF fine-tunes cluster-level models based on a dataset-level pre-trained
model. As the difference between the source domain and the target domain of CTF is significant, it
requires more MTS and training epochs during fine-tuning.
Comparison with JumpStarter. JumpStarter successfully reduces model initialization time by

sampling from the data and reconstructing the data for anomaly detection based on the sample.
However, its �1 is significantly lower and the training time is much longer compared to OmniTrans-
fer. JumpStarter uses only uses short-term data to sample and reconstruct the normal value, which
is usually sufficient. And the outlier-resistant sampling method may not always successfully remove
anomaly points in highly volatile metrics, limiting the performance of JumpStarter. Additionally,
the complicated sampling process in JumpStarter increases the training time seriously.
Comparison with Uni-AD. Uni-AD employs model sharing to address the challenges posed by

large-scale, diverse, and dynamic MTS. Based on transformer encoder layers, Uni-AD can model
diverse patterns for different monitored entities. On Dataset1, the training time of Uni-AD is similar
to OmniTransfer and has less training time on Dataset2 because it uses model sharing to reduce the
number of models and the model structure of the transformer is light-weighted. However, its �1 is
significantly lower compared to OmniTransfer. Uni-AD focuses on a large amount of data with the
same pattern and performs poorly when the patterns among different entities diverge.
Comparison with One Fits All. When compared with the OmniTransfer versions of 10 models,

the F1* of One Fits All is relatively balanced, ranking fourth on Dataset1 and ninth on Dataset2.
Additionally, in terms of efficiency, OmniTransfer performs much better than One Fits All. The
training time for One Fits All is more than 10 times longer than the average training time of
OmniTransfer on both Dataset1 and Dataset2. However, as a single model, One Fits All has a higher
F1* than the most single models, indicating its strong general applicability.
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Fig. 8. The performance of OmniTransfer and one model/entity with different initialization time. “*” denotes
the corresponding result of combining OmniTransfer, and without “*” denotes the result of one model/entity
strategy.

Comparison with Validation Set. It is evident that the OmniTransfer version continues to outper-
form the other models, even though the validation F1* scores for each model are slightly lower
than the F1* scores.

5.3 Effect on Reducing Model Initialization Time
In this section, we conduct experiments on 10 anomaly detection models to verify the effect of
OmniTransfer in reducing model initialization time. We increase the initialization time for the
two datasets from 1 day to 5 days and 1 day to 7 days. Figure 8 demonstrates that OmniTransfer
outperforms one model/entity by 16.53% and 21.48% with 1 day and 2 days of training data on
average. OmniTransfer using 2 days of training data performs almost the same as one model/entity
using all training data. This highlights its ability to significantly reduce model initialization time.
Specifically, the pre-training knowledge of the basic model based on offline data is used, and only
a small amount of online data is needed to achieve good detection results, reducing the model
initialization time. Moreover, the performance of both OmniTransfer and one model/entity improves
as the initialization time increases. However, for OmniTransfer, the performance becomes stable
after using less than 2 days of training data, while for one model/entity, the performance of most
models is unsatisfactory with less than 3 days of training data.

5.4 Ablation Experiment
To demonstrate the effect of five key technologies in OmniTransfer : (1) clustering; (2) weighting
metrics; (3) aligning phases; (4) transfer learning; and (5) adaptive transfer strategy, we reconfigure
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Table 7. Ablation Experiment

Model Dataset1 Dataset2

OmniTransfer C1 C2 C3 C4 C5 C6 C7 OmniTransfer C1 C2 C3 C4 C5 C6 C7

OmniAnomaly 0.9721 0.6452 0.8239 0.8018 0.694 0.775 0.9675 0.9675 0.974 0.6371 0.8092 0.9297 0.703 0.9194 0.9739 0.974
InterFusion 0.9047 0.566 0.6963 0.7686 0.6944 0.8115 0.9037 0.9037 0.9235 0.7184 0.6128 0.8564 0.6702 0.8818 0.8948 0.9061
SDFVAE 0.8512 0.6513 0.7111 0.7825 0.635 0.7163 0.8463 0.8485 0.8673 0.8473 0.8169 0.7114 0.7252 0.7959 0.8588 0.8626
DAGMM 0.8738 0.8011 0.7476 0.8249 0.7798 0.861 0.8647 0.8669 0.9439 0.9056 0.9172 0.871 0.8588 0.9439 0.9165 0.9439
USAD 0.8539 0.7834 0.8394 0.809 0.8267 0.8535 0.8313 0.8535 0.9355 0.8952 0.8043 0.7653 0.7928 0.9166 0.9289 0.9337
GDN 0.8037 0.763 0.792 0.7572 0.7548 0.7969 0.7742 0.7969 0.9525 0.8764 0.823 0.8601 0.9164 0.9488 0.9335 0.9488

TranAD 0.9714 0.9472 0.9643 0.9575 0.8733 0.9679 0.9485 0.9717 0.9323 0.8528 0.9069 0.9001 0.915 0.927 0.9309 0.9313
DOMI 0.8849 0.7914 0.7529 0.7731 0.7482 0.7608 0.8752 0.7608 0.9316 0.8247 0.8258 0.7953 0.8683 0.9241 0.9286 0.9241
SLAVAE 0.8417 0.7914 0.6368 0.7625 0.7196 0.7039 0.8158 0.7039 0.8589 0.8264 0.8011 0.6939 0.7136 0.7852 0.8427 0.7852

MTAD-GAT 0.9414 0.9109 0.8829 0.8983 0.7255 0.9407 0.9365 0.9407 0.9757 0.9265 0.9331 0.9238 0.6227 0.9714 0.9683 0.9715

The bold values indicate the maximum value in a row in a dataset.

OmniTransfer to create seven variants. C1: Only one base model is trained for transfer learning,
and the data used to train the base model are randomly selected. C2: All metrics have the same
weights when aligning phase shift and clustering. C3: Do not align the phase shift. C4: The base
model is directly used for anomaly detection. C5: Use the full parameter transfer strategy for all
MTS. C6: Use the partial parameter transfer strategy for all MTS. C7: Use the weighted Euclidean
distance to select the transfer strategy. Table 7 shows the results of each variant.

Effect of Clustering. With an �1 of lower than 0.57, the performance of C1 is far from satisfactory.
The large difference between the base MTS and the target MTS makes transfer learning challenging.
Clustering can effectively group MTS with similar shapes, making it easy to transfer the knowledge
of base MTS to target MTS.
Effect of Metric Weighting. C2 has relatively poor performance on both datasets regardless of

the algorithms. The reason is that aperiodic metrics are irregular and can have a negative impact
on clustering. Generally, the distance between two aperiodic metrics can be considerable even
though the periodic metrics in the same entities are relatively similar. Besides, aperiodic metrics
can make the target MTS and the corresponding cluster centroid not being very similar. Therefore,
it is indispensable to weighting these aperiodic metrics.
Effect of Phase Alignment. C3 needs more training overhead and has a poor performance than

OmniTransfer. Without phase alignment, the diversity of MTS patterns increases, resulting in
more clusters and more base models. Therefore, the training overhead increases dramatically.
Additionally, it is difficult to match the target data with the appropriate cluster without phase
alignment. Transfer learning cannot be effective when the target data and the base model training
data differ significantly.

Effect of Transfer Learning. C4 directly uses the base model of each cluster for anomaly detection.
Although the target MTS should be reasonably similar to its matching cluster centroid, there are
still many tiny differences. These differences make the �1 relatively poor. It is indispensable to
transfer model parameters and fine-tune the base model.
Effect of Adaptive Transfer Strategy. OmniTransfer with an adaptive transfer strategy performs

better than using a fixed transfer strategy. When the target MTS and its corresponding base cluster
centroid are similar, it is better to transfer full parameters because more parameters can carry
more valuable knowledge learned from the offline training stage. However, many target MTS have
relatively large shape differences compared to the centroid. It is better to transfer partial parameters
to avoid negative transfer problems. By automatically selecting the best transfer strategy for each
target MTS, OmniTransfer gets the highest �1.

Effects of the Distance Measurement of Adaptive Transfer Strategy. Compared with C7, OmniTrans-
fer has an improvement in the detection performance on most models. The weighted Euclidean dis-
tance measures the difference between the target MTS and the cluster centroid. However, we aim to
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Table 8. Comparison of Clustering Methods

Model Dataset1 Dataset2

OmniTransfer TICC FCFW M2PCA SPCA+AED OmniTransfer TICC FCFW M2PCA SPCA+AED

OmniAnomaly 0.9721 0.7209 0.7384 0.7341 0.6697 0.974 0.6339 0.6281 0.6494 0.6485
InterFusion 0.9047 0.6097 0.5528 0.6988 0.6949 0.9235 0.7006 0.6313 0.7897 0.8442
SDFVAE 0.8512 0.7231 0.7137 0.7399 0.71 0.8673 0.8327 0.8483 0.861 0.8663
DAGMM 0.8738 0.8537 0.8225 0.7886 0.8420 0.9439 0.8825 0.8965 0.8922 0.8937
USAD 0.8539 0.8167 0.8216 0.8157 0.8128 0.9355 0.9004 0.9014 0.8879 0.8933
GDN 0.8037 0.8022 0.7934 0.8033 0.7793 0.9525 0.8806 0.8778 0.8877 0.8599

TranAD 0.9714 0.9499 0.95 0.9564 0.9524 0.9323 0.8492 0.8426 0.8439 0.831
DOMI 0.8849 0.7439 0.7361 0.7515 0.7264 0.9316 0.8249 0.8628 0.8527 0.8362
SLAVAE 0.8417 0.7196 0.6709 0.7288 0.7047 0.8589 0.8251 0.8283 0.8477 0.8336

MTAD-GAT 0.9414 0.8933 0.9032 0.9009 0.9028 0.9757 0.9367 0.9355 0.9276 0.9296

The bold values indicate the maximum value in a row in a dataset.

transfer the knowledge in the base model to help detect anomalies in the target MTS.The�8 5 5 (2>A4
measures the degree of match between the target MTS and the knowledge in the base model.

5.5 Effectiveness of the Clustering Method
To verify the advantages of the W-HAC in OmniTransfer, we select four baseline clustering methods
for comparison: TICC [13], FCFW [20], Mc2PCA [19], and SPCA+AED [40]. We replace the
clustering methods in OmniTransfer and use the anomaly detection performance as the clustering
performance. Table 8 shows that the W-HAC’s �1 improves by 15.35% and 12.80% averagely on two
datasets. We try to analyze the reasons. In general, these methods cannot resist noise and anomaly
interference, and some cannot capture MTS shape features well. Specifically, TICC is only suitable
for short-term data, and it is difficult for TICC to cluster 1-day data. FCFW uses all metrics data,
which can be interfered with aperiodic metrics. SPCA+AED and Mc2PCA use PCA to reduce the
dimension of MTS, which loses a lot of shape information, resulting in inaccurate clustering.

5.6 Effect of Transfer Strategy Selection Threshold
Recall that V is the threshold of �8 5 5 (2>A4 . To investigate the effect of V , we conduct experiments
with different values of V . Figure 9 shows that the performance of OmniTransfer is higher than
the worse single transfer strategy on two datasets, regardless of the value of V . Moreover, it can
meet or even surpass the better single transfer strategy. The performance of OmniTransfer on
OmniAnomaly, InterFusion, SDFVAE, DOMI, and SLAVAE is sensitive to V , while other models are
insensitive. For insensitive models, the value of V will not greatly impact the experimental results.
Therefore, we can easily obtain the V that makes each model perform well. For sensitive models,
we randomly select some entities (e.g., 20 segments with 1 day of 200 entities) in the dataset to get
V
′ , which can reach the optimal V performance. Short-term segments also allow us to determine V ′

earlier. We invited three experienced operators, and it takes about 1 day to label 20 entities’ data,
so we only need less than 3 days of manpower to start the model, compared to 30 days for labeling
200 entities saves a lot of labor costs.

6 Related Work
6.1 MTS Clustering
There have been many studies on MTS clustering. SPCA+AED [40] proposes a hybrid method
based on the PCA similarity factor (SPCA) and the average-based Euclidean distance (AED).
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Fig. 9. The performance of different V . (The horizontal axis represents the value of V . The red vertical dotted
line denotes the optimal V , the blue vertical solid line denotes the V

′
determined by some segments, the green

horizontal dotted line denotes the performance of full parameter transfer strategy, the horizontal solid line
denotes the performance of partial parameter transfer strategy).

Nevertheless, employing SPCA results in the loss of a significant amount of crucial information,
and AED cannot address the phase shift problem. Toeplitz inverse covariance-based clustering
(TICC) [13] focuses on the subsequences segmentation and clustering of MTS simultaneously.
Segmentation is unnecessary in anomaly detection, and it is challenging for TICC to deal MTS
with more than 100 time points (about 1 day). Mc2PCA [19] constructs common projection axes as
the prototype of each cluster and uses the reconstruction error to assign the MTS. This method
only considers the similarity within clusters, without the dissimilarity among clusters. FCFW
[20] uses a fuzzy c-means method based on feature-weighted distance combining DTW and SBD.
The time complexity of DTW is too high, which is unacceptable for large-scale software systems.
Moreover, DTW and SBD consider each metric’s shape features, which can be interfered with
aperiodic metrics. CTF [35] uses the low-dimensional features extracted by the pre-trained anomaly
detection model, which is task-specific and model structure-specific model [33]. OmniCluster [45]
compresses the temporal dimension of MTS with a 1D convolutional auto-encoder (AE) and uses
a three-step feature selection strategy to remove aperiodic metrics. However, the compressing and
feature selection stages lose a lot of useful information. And the feature selection depends on an
empirical threshold, which is not general.

6.2 MTS Anomaly Detection
There have been many studies on MTS anomaly detection. Both USAD and TranAD adversely
train AE, and they take advantage of the stability of AE and the ability to isolate anomalies of
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GAN. DAGMM combines AE and Gaussian mixture model (GMM). It uses an AE to generate
the low-dimensional features and reconstruction errors and feeds them into GMM to get the
anomaly score. TranAD uses a sequence encoder with self-attention to shorten the inference time.
OmniAnomaly uses the RNN+VAE structure to model the temporal dependence and stochasticity
in MTS. Both SDFVAE and InterFusion adopt the structure of RNN+CNN+VAE. SDFVAE resists
noise by modeling time-invariant and time-varying features. InterFusion employs a two-view
embedding and prefiltering strategy to explicitly learn the inter-metric and temporal dependencies.
DOMI uses VAE+GMM to model the intrinsic multimodality of data by obtaining complex latent
representations. SLAVAE uses semi-supervised VAE and active learning to enhance robustness.
GDN and MTAD-GAT are both prediction-based models. GDN uses structure learning and GNN to
model the correlation between metrics. MTAD-GAT leverages two parallel graph attention layers
to learn the relationships between different metrics dynamically.

However, the above models face high training overhead when dealing with large-scale MTS data
and long initialization time. CTF, OmniCluster, JumpStarter, and Uni-AD successfully reduce the
training overhead. CTF provides a solution to reduce training overhead for RNN+VAE models [33],
but it is not universal to other models. OmniCluster is a model-agnostic framework that can reduce
the training overhead. It trains a model for each cluster and directly uses it for anomaly detection.
However, it performs poorly when the shape of the target MTS and the cluster centroid differs.
JumpStarter uses the Compressed Sensing to reduce the model initialization time. However, due
to only using short-term data and a simple model structure, it cannot capture complex patterns
and long temporal dependence. Uni-AD uses a model-sharing mechanism and transformer layers
to model large-scale time series. However, it does not work well when different entities’ patterns
diverge. In short, none of the above solutions can reduce the training cost and model initialization
time while improving most SOTA models’ detection results.

7 Discussion
In developing OmniTransfer, we have learned the following lessons. (1) The strength of periodicity
is very important for MTS clustering. The information obtained from weak periodicity metrics is
limited and can even seriously affect clustering. (2) The idea of adaptive transfer strategy and novel
distance measurement for transfer strategy selection can ensure that we can achieve the optimal
transfer strategy for each target MTS. (3) Reducing the number of detection models, reducing the
scale of training data and accelerating model convergence speed are all effective solutions to reduce
training overhead.

In addition, we have some ideas for future work. (1) We design a model-agnostic framework
OmniTransfer for large-scale anomaly detection. The same ideas and key techniques can be used to
reduce model initialization time and training overhead for other tasks, such as the prediction and
classification of large-scale MTS. (2) The weights employed in the W-HAC method can be derived
from prior knowledge or other methodologies, enhancing the clustering process by incorporating
additional information and improving accuracy. (3) In practical applications, V can be randomly
selected at first and be continuously updated with the supplement of data and manual feedback.
The detection accuracy of the model could gradually increase.

There are also some limitations in our work. We directly only use full parameter transfer and
partial parameter transfer strategies. When using partial parameter transfer strategies, the pa-
rameters of which layer to transfer are fixed for each model. It can be further investigated how to
choose which part of the parameters to transfer or to transfer different parts of the parameters for
different data to improve the effectiveness of transfer learning. Nevertheless, the adaptive strategy
has achieved good performance for most models, and a simple and elegant method is better than
complicated methods for a general framework.
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8 Conclusion
This article first clearly points out the limitations of existing methods in large-scale MTS scenarios.
And we propose OmniTransfer, a model-agnostic, unsupervised, and efficient anomaly detection
framework to address these limitations. OmniTransfer uses transfer learning to reduce model
initialization time and training overhead effectively. We propose W-HAC to reduce the interference
of aperiodic metrics in clustering and improve the effect of transfer learning. Our experiment results
using real-world datasets from a large web content service provider and a network operator show
that OmniTransfer can reduce the initialization time by 46.49% and improve training efficiency by
74.51% compared to baseline models. We believe OmniTransfer is useful for large IT infrastructure,
especially when monitoring millions of services that change frequently. OmniTransfer makes the
anomaly detection models as rapidly deployable and cost-effective as possible for the large-scale
and changing MTS.
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