
Adaptive Performance Regression Detection via
Semi-Supervised Siamese Learning

Yongqian Sun†, Mengyao Li†, Xiao Xiong†, Lei Tao†, Yimin Zuo†, Wenwei Gu‡,
Shenglin Zhang†∗, Junhua Kuang†, Yu Luo†, Huandong Zhuang††, Bowen Deng††, Dan Pei§

†Nankai University, China.
††Huawei Cloud, China.

‡The Chinese University of Hong Kong, China.
§Tsinghua University, China.

Abstract—Timely detection of performance regression issues is
critical to ensuring the stability and user experience of software
systems. Traditional methods often rely on high-quality annotated
data or data distribution assumptions, which cannot effectively
adapt to performance changes in dynamic workload environments.
To solve this problem, we propose DynamicRegress, a performance
regression detection method based on Siamese network and semi-
supervised learning. DynamicRegress integrates multi-dimensional
key performance indicators (KPIs) with workload context to
accurately characterize system states and detect performance
regressions in real-time. By employing a dual weight-shared LSTM
network, DynamicRegress reduces training complexity while
retaining strong feature extraction capabilities. Data augmentation
and a weighted loss function are incorporated to enhance
the learning of minority regression cases, mitigating the class
imbalance issue. Additionally, a semi-supervised learning strategy
generates high-quality pseudo-labels to expand the training
dataset, effectively addressing the challenge of limited labeled
data. Experiments on production data from a top-tier global
cloud service provider demonstrate that DynamicRegress achieves
a superior F1 Score of 0.958 (outperforming the best baseline
method by 0.282) while maintaining a low detection latency of
0.006 seconds per KPI pair. DynamicRegress provides a robust
adaptive solution for performance regression detection in dynamic
and complex software systems, and we have made the code publicly
available to facilitate further research.

Index Terms—Performance Regression Detection, Siamese
Network, Semi-supervised Learning

I. INTRODUCTION

In the digital age, software system stability and performance
are critical to ensuring user experience. Sudden increases in
traffic, iterative version changes, and other factors may cause
performance regression, which refers to the deterioration of
a system’s performance and manifests as increased response
time, reduced throughput, etc [1]. The impact of performance
regression on user experience and company costs is significant.
Previous research has shown that increasing load times from
one to three seconds can negatively impact user exploration
while increasing exit rates by 32% [2]. British Broadcasting
Corporation (BBC) loses 10% of its users for every extra second
it takes to load content [3]. Besides, a joint project between
Microsoft and Google introduced 400 milliseconds of network
latency, which cost the two companies 0.76% of revenue and
$175 million in 2020 [4]. Therefore, performing performance

∗Shenglin Zhang is the corresponding author.

Fig. 1: The testing process for 3 different versions of the same
interface. (Vuser is short for virtual users, which represent the
load in the testing. Response time, throughput, and success
rates are the three KPI of the interface.)

regression detection is essential after a new software version
is released [5].

With each software version update, necessary testing is
conducted to detect potential performance regressions by
analyzing collected KPIs. Assuming no significant functional
or architectural changes, baseline KPIs (Fig. 1 (a)) from the
previous version are used to represent the expected behavior
of each interface under stable conditions. Periodic KPIs are
compared against these baselines, and significant deviations,
such as increased response time, reduced throughput, or
unstable success rates, indicate performance regressions caused
by factors like increased load or resource exhaustion. (1) Fig. 1
(c) illustrates a regression scenario where solely relying on the
success rate can lead to misjudgments. Despite maintaining
a high success rate, the increased response time and reduced
throughput signal performance degradation under higher load
conditions. (2) Conversely, Fig. 1 (b) illustrates a stable
performance scenario under a logarithmic ramp-up load pattern,
which exhibits behavior consistent with the baseline in Fig. 1 (a).
Specifically, the throughput increases rapidly at first and then
stabilizes, while the response time remains steady initially and
then gradually rises. These trends reflect a normal adaptation
to increasing load rather than performance degradation. These

1

cases emphasize the importance of considering workload
information and echo insights from recent industry frameworks
such as SuperBench [6], which highlight that performance
regressions are often workload-dependent. However, challenges
remain: monitoring produces large volumes of data, but the
annotation process is resource-intensive, leading to limited
labeled samples. This issue is further compounded by the
diversity of software functionalities and interfaces, resulting in
sparse labeled data for individual interface types. Addressing
these challenges is critical to accurately identify performance
regressions and manage the nuanced scenarios depicted in
Figs. 1 (b) and 1 (c).

There has been extensive research on this issue. Statistical
approaches based on the Kolmogorov-Smirnov test [7] (KS)
and Mann-Whitney U test [8] (MWU) were applied to
analyze distribution differences between two-phase KPIs. While
these unsupervised methods make it efficient and low-cost for
detecting distributional shifts between samples, they are also
susceptible to numerical factors such as mean, median, and
variance. As shown in Figs. 1 (a) and Figs. 1 (b), both tests
reported p-values of 0 for throughput, and 0 (KS) / 0.0004
(MWU) for response time, suggesting significant differences. In
reality, no performance regression occurred—these differences
stemmed from normal variations in load conditions. This reveals
a key limitation: such tests may trigger false alarms when
facing expected, non-critical value shifts. Other methods adopt
feature extraction techniques and classifier training to detect
anomalous samples. However, these methods also rely on fixed
data structures and fail to account for the dynamic changes
in metrics caused by user behavior variations. AutoPerf [9]
detects performance regressions by clustering similar functional
codes and training autoencoders for each cluster, flagging
reconstruction errors above a threshold as regressions. While
effective for hardware performance counter (HWPC) metrics, its
performance declines in real-time scenarios involving service-
level metrics, where the need for manual cluster configuration
further limits its adaptability in dynamic environments. Siamese
Convolutional Neural Networks [10] (SCNNs) have also been
used for time series similarity measurement by comparing em-
beddings extracted via shared convolutional branches. However,
SCNNs require the two input sequences to be of equal length,
due to the fixed-size outputs of convolution and fully connected
layers. While preprocessing techniques like zero-padding or
truncation can align sequence lengths, they may introduce noise
or discard critical information, thus affecting model accuracy.

Therefore, our goal is to design a performance regression
detection method that captures the temporal trends and quickly
identifies instances of performance regression. However, it
faces the following three challenges:
(1) Comparing variable-length KPIs under Dynamically
Changing Loads. In real-world testing, KPI sequences in real-
world tests often differ in length due to varying durations or
sampling. Methods like SCNNs [10] require equal-length inputs
and rely on padding or truncation, which may distort trends.
A key challenge is comparing such sequences accurately while
preserving temporal and workload-dependent patterns.

(2) Diverse Interfaces and Scarce Labeled Samples per
Interface. Modern software systems are often composed of
multiple functional interfaces, and different types of interfaces
exhibit different normal data patterns. It is impractical to train
a separate model for each interface to recognize its normal
data patterns because of the scarce normal labeled samples in
each type of interface to support the training.
(3) Imbalanced Labeled Samples. Further observations reveal
that regression samples are significantly rarer compared to
the abundant normal status data, making it challenging to
design detection methods that can effectively capture subtle
trend changes while maintaining robustness to imbalanced data
distributions.

To address the aforementioned challenges, we propose Dy-
namicRegress, an end-to-end performance regression detection
method based on multi-dimensional KPIs. To address Chal-
lenge 1, DynamicRegress utilizes multi-dimensional KPIs and
workload to represent system status, and it naturally supports
variable-length inputs through LSTM encoders, avoiding the
need for artificial sequence alignment. To address Challenge 2,
DynamicRegress adopts a synergistic strategy of dual weights-
shared LSTM branches. Inspired by the success of Siamese
networks in facial recognition tasks (detailed in Section §II-A3),
we apply Siamese networks to our scenario, comparing new
data with known data patterns to determine whether the new
data belongs to the correct pattern. This weights-shared strategy
not only reduces model complexity but also enables learning
general and effective feature representations from limited
labeled data. To address Challenge 3, DynamicRegress uses
a semi-supervised learning strategy to expand the diversity
of training data while ensuring quality. By applying data
augmentation and weighted loss function techniques [11],
the quantity and diversity of minority (regression) samples
are increased, enabling DynamicRegress to focus more on
capturing subtle and evolving patterns of minority samples.
The combination of these three strategies enables effective
performance regression detection with imbalanced labeled data,
improving the model’s robustness and generalization ability.

In summary, the contributions of our work are as follows:
• As far as our knowledge extends, DynamicRegress is

among the first methods to represent system performance
using multi-dimensional KPIs jointly with workload
information, enabling robust modeling under dynamically
changing environments and variable-length KPI sequences.

• DynamicRegress employs a dual weights-shared LSTM
network branch to compare data pairs, eliminating the
need to train separate models for each interface. This
approach reduces training complexity while enhancing
detection accuracy.

• DynamicRegress uses the strategy of semi-supervised
learning, data augmentation strategy, and weighted loss
function strategy, which expands the diversity of minority
samples and solves the challenge of imbalanced labeled
samples.

• DynamicRegress has been deployed in a top-tier global
cloud service provider Huawei Cloud, and evaluated

2

on Huawei Cloud’s production environment data and
achieved an F1 Score of 0.958 for accurately identifying
performance regression, outperforming the best baseline
method by 0.282.

II. BACKGROUND

Stable performance is crucial for modern software systems,
especially with frequent updates and dynamic workloads. To
better understand the research objectives of this study, it is
important to first establish a clear understanding of key concepts.
This section introduces the foundational concepts that inform
our approach and discusses the motivations.

A. Preliminaries

1) KPIs: Key Performance Indicators (KPIs) are metrics
directly related to applications, used to assess application
performance and user experience [12], [13]. Examples include
response time (RT), transactions per second (TPS), and success
rate. These indicators reflect the operational efficiency, stability,
and quality of service provided to users by the application [14].

2) Performance Regression Detection: Performance regres-
sion refers to the degradation of system performance due to
code changes, environmental changes, or workload shifts [15],
[16]. Methods for detecting performance regression can be
divided into two types: low-level hardware performance regres-
sion detection, which primarily uses HWPC data to identify
significant performance bottlenecks [17]–[19]. HWPC data is
generally stable under normal conditions, and performance
issues are rare but catastrophic. Such methods usually rely
on unsupervised learning and statistical analysis to detect
deviations from normal hardware behavior. Still, HWPC data
is typically collected at a lower frequency due to the high-
performance overhead of too high a sampling frequency. The
other is advanced application performance regression detection,
which focuses on service-level degradation that directly impacts
the user experience, such as a sudden increase in response time
or a significant drop in throughput. This type of approach
leverages application-layer monitoring tools to collect KPIs
at a low cost [20]. These metrics are dynamic and time-
correlated, and support high-frequency sampling, enabling real-
time monitoring and alerting.

Our research focuses on advanced application performance
regression detection by analyzing the distribution of KPIs over
time. In our scenario, a system typically consists of numerous
functional interfaces, each serving a different purpose, such
as user authentication, data retrieval, or transaction processing.
Each interface presents a unique normal data pattern due to
differences in business logic, dependencies, and user behavior.

3) Siamese Network: The Siamese network is a specialized
neural network architecture primarily used for tasks involving
similarity comparison [21], [22]. It comprises two identical
subnetworks that share the same weights and parameters.
Each subnetwork processes an input sample and maps it to
a feature space, generating a feature vector. The similarity
between two input samples is then evaluated by calculating
the distance (e.g., Euclidean distance or cosine similarity)

between their feature vectors. A smaller distance indicates
higher similarity, whereas a larger distance implies dissimilarity.
Siamese networks excel in tasks with limited labeled data
as they do not require large-scale datasets for training [23].
They are simple in structure, easy to implement, and effective
in learning the similarity between samples. These networks
perform exceptionally well on paired data and are suitable for
tasks requiring similarity measurements, such as facial recogni-
tion [24], signature verification [25], and object tracking [22].

In facial recognition, the Siamese network compare the
features of two face images, and even if the target face image
is not in the database, it can also identify individuals by
comparing the similarity between the input image and the
known image [21]. In our scenario, this idea can be likened
to that when encountering new data that is not in the training
set, the Siamese network can accurately determine whether it
belongs to the correct pattern of an interface by comparing the
characteristics of the new data with the known data.

4) Semi-supervised Learning.: Semi-supervised learning is
a machine learning approach that combines a small amount of
labeled data with a large amount of unlabeled data to improve
model performance [26], [27]. Its core strength lies in reducing
reliance on expensive labeled datasets while leveraging the
predictive power of unlabeled data. Compared to traditional
supervised learning, which typically yields better performance
by leveraging large amounts of high-quality labeled data, semi-
supervised learning mitigates the reliance on expensive labeled
datasets. In practical production environments, obtaining high-
quality labeled data is often costly and labor-intensive. While
unsupervised learning does not rely on labeled data, its
performance in this task is significantly inferior to supervised
learning. To bridge this gap, we employ a semi-supervised
learning approach that reduces the dependence on extensive
labeled datasets while achieving satisfactory performance.

B. Motivation

Modern software systems are becoming increasingly complex
due to new features, architectural optimizations, and service
expansions. These changes introduce significant challenges in
accurately measuring performance and detecting regressions.
While traditional approaches focus on individual technical
bottlenecks, they often fail to address the broader issues caused
by dynamic KPI sequences and workloads, diverse interfaces,
and imbalanced labeled data. Our work is driven by the need
to tackle these limitations and enhance the accuracy and
robustness of performance regression detection.

1) Comparing variable-length KPIs under Dynamically
Changing Loads: System performance metrics are jointly
influenced by workload intensity, resource conditions, and
system configurations [28]. In real-world testing scenarios,
dynamic workloads and varying test durations result in KPI
sequences of different lengths and fluctuation patterns, even
under normal system behavior. These variations make it
difficult to distinguish genuine regressions from expected
changes. Therefore, an effective performance regression de-
tection method must accurately characterize system behavior

3

Baseline KPIs

Periodic KPIs

Is

Similar? SiameseLSTM

Data

Augmentation

Semi-Supervised Learning

Yes

No

Offline Training

LSTM

LSTM

Share Weights
Weighted

Loss

Not

Similar

Forward

Baseline KPIs

Periodic KPIs

SiameseLSTM
Inference

Normal

Performance

Regression

Online Detection

Similar

Vusers

Vusers

Vusers

Vusers

Fig. 2: The framework of DynamicRegress.

by modeling multi-dimensional KPIs together with workload
context, while supporting comparison across variable-length
sequences.

2) Diverse Interfaces and Scarce Labeled Samples per
Interface: Modern software systems feature diverse functional
interfaces, each exhibiting unique data patterns due to differ-
ences in business logic, dependencies, and user behavior. This
diversity, combined with the scarcity of labeled samples for
individual interfaces, creates a substantial challenge. Training
separate models for each interface is not feasible due to high
computational costs and maintenance demands. Instead, a
unified approach is needed to handle diverse data patterns
efficiently and learn effectively from limited labeled samples.
This requires methods capable of capturing the commonalities
across interfaces.

3) Imbalanced Labeled Samples: In user-centric metrics,
normal samples are plentiful, but regression samples are rare,
resulting in a significant imbalance. This imbalance hampers
traditional methods, which struggle to accurately identify
minority class patterns. The scarcity of regression-labeled
samples makes it difficult to detect subtle anomalies without
introducing bias or overfitting. To overcome this limitation, it is
essential to develop methods that enhance sensitivity to minority
samples, such as regression cases, while maintaining robustness
to imbalanced data distributions. This ensures reliable detection
of performance regressions in real-world scenarios.

III. APPROACH

In real-world stress-testing scenarios, it is often impractical
to ensure identical workload patterns across multiple testing
runs. Labeling large volumes of KPI data for performance
regression is similarly infeasible due to the extensive manual
effort required. Given the large number of functionalities and
interfaces in most software systems, labeled data for each
interface is scarce, making it unfeasible to train separate
models for each interface type. To address this, we propose
DynamicRegress, which learns the differences in data patterns
between periodic and baseline KPIs. Rather than treating each
interface type independently, we aggregate labeled data across
all interfaces, assuming that, within the same category, baseline
KPIs and normal periodic KPIs share similar patterns, while
patterns diverge for abnormal periodic KPIs. DynamicRegress

is designed to capture these pattern differences, learning the
regularities of their similarity or dissimilarity.

A. Overview

As shown in Fig. 2, DynamicRegress consists of four key
modules.
(1) Data Preprocessing (§III-B). To address Challenge 1,
DynamicRegress constructs a unified input by combining
multi-dimensional KPIs with contextual workload information.
Rather than enforcing fixed-length input, the design preserves
variable-length sequences, which are natively handled by LSTM
encoders.
(2) Training of DynamicRegress (§III-C). To address Chal-
lenge 2, DynamicRegress employs a twin weights-shared
LSTM network, which processes paired sequences with shared
parameters and enables DynamicRegress to learn sample
similarities effectively.
(3) Semi-supervised Learning (§III-D). To address Challenge
3, we propose three techniques that effectively mitigate
sample imbalance. First, the semi-supervised learning strategy
combines pseudo-labeling and confidence filtering, enabling
DynamicRegress to generate high-quality pseudo-labels for un-
labeled data using a small number of labeled samples. Second,
data augmentation methods enhance the diversity of minority-
class samples (detailed in Section §III-B). Finally, a weighted
loss function prioritizes regression samples, ensuring the model
focuses more on detecting performance regressions (detailed in
Section §III-C). These combined techniques effectively tackle
Challenge 3.
(4) Online Detection (§III-E). Here we describe the Dynami-
cRegress’s output and the performance regression of expert
rule definitions.

B. Data Preprocessing

The dataset originates from Huawei Cloud’s cluster envi-
ronment, established using CodeArts PerfTest. Analysis of the
dataset revealed a notable class imbalance, with regression KPI
pairs accounting for only 7.91% of the total samples. This
imbalance poses a challenge to DynamicRegress, potentially
limiting its ability to effectively learn the features of the
minority class. To address this issue, data augmentation was
applied during preprocessing. By transforming the original
data to generate additional samples, this technique enhances
the diversity of the regression KPIs data, thereby improving
DynamicRegress’s capacity to learn regression data patterns
and increasing its robustness [29], [30]. For time series data,
Wen et al. summarized common augmentation methods such
as flipping, scaling, window warping, slicing, and adding
noise [31]. In this study, we adopt two effective strategies:
adding noise and time shifting.

Noise addition introduces random perturbations to regression
samples, simulating slight variations in KPIs, which involves
modifying performance metrics to reflect insignificant devia-
tions and creating diverse examples of regression scenarios.
Time shifting applies slight temporal offsets to regression

4

s

𝑍(1) 𝑍(2)

ℎ1
(1)

ℎ2
(1) ℎ𝑇1

(1)
ℎ1
(2)

ℎ2
(2)

ℎ𝑇2
(2)

𝑥1
(1) 𝑥2

(1)
𝑥𝑇1
(1)

𝑥1
(2) 𝑥2

(2) 𝑥𝑇2
(2)

A A A A A A

W W W

…… ……

W W W

Fig. 3: Training Process of SiameseLSTM with Variable-Length
Sequences.

samples, generating variations of the sequences by shifting
timestamps while retaining core patterns.

Inspired by the intuition behind VPerfGuard’s workload-
aware design, we propose a more robust and model-friendly
preprocessing strategy: rather than adjusting KPI values, we
incorporate the workload (i.e., the number of virtual users)
as a first-class feature into the input time series. Specifically,
each input sample is represented as a multivariate time series,
where each time step contains both the workload and one KPI
value of interest. Formally,

In software performance regression detection, traditional
KPIs are typically analyzed independently, ignoring the impact
of dynamic workloads, as shown in Fig.1 (b). Failing to
account for the load as a critical factor can lead to model
learning features that do not align with real-world scenarios,
ultimately reducing the accuracy of performance evaluations.
To address this challenge, we combine multi-dimension KPIs
with the contextual information of workloads and input it into
DynamicRegress for feature learning.

In our task, each input sample is a multivariate time series
that combines a performance KPI with the contextual workload
(i.e., number of virtual users). Specifically, the input to the
SiameseLSTM is defined as:

X(1) = {x(1)
1 , x

(1)
2 , . . . , x

(1)
T1

}, X(2) = {x(2)
1 , x

(2)
2 , . . . , x

(2)
T2

}

where each x
(j)
i ∈ R2 (j ∈ {1, 2}) is a two-dimensional vector

at time step i, consisting of the workload (Vusers) and one KPI
value (TPS, RT, or success rate). For a complete characterization
of the system state, the model processes these three types of
KPIs independently. T1 and T2 denote the sequence lengths of
the two samples, which may differ.

By combining these two augmentation strategies, we effec-
tively expand the diversity of performance regression samples,
helping DynamicRegress learn richer representations of the
regression KPIs.

C. Training of DynamicRegress

1) LSTM: The core module of DynamicRegress, the Long
Short-Term Memory (LSTM) network, is a type of recurrent
neural network (RNN) specifically designed to handle sequen-
tial data. It excels at capturing both long-term dependencies and

short-term dynamic patterns, making it suitable for analyzing
time-series data such as performance KPIs and user workloads.
LSTM effectively addresses the vanishing and exploding
gradient problems often encountered in traditional RNNs
by introducing memory cells and gating mechanisms, which
control the flow of information through time.

Let ht denote the hidden state of the input at time step t,
calculated as:

ht = ϕ(Wxt +Aht−1 + b) (1)

Where xt ∈ R2 is the input vector at time t, composed of
vusers and KPI metrics. W and A are learnable weight matrices
that model the current input and the previous hidden state,
respectively, while b is a bias term. The activation function
ϕ(·) introduces non-linearity to capture complex patterns in the
sequence. Note that this simplified formulation abstracts away
the internal gating mechanisms of LSTM (such as input, forget,
and output gates) for clarity and brevity. These components are
critical to how LSTM learns to retain or discard information
over time selectively.

To obtain a total feature representation from a variable-length
input sequence, we use the hidden state from the last time
step:

Z = hT (2)

As shown in Fig. 3, this method condenses the entire temporal
dynamics of the input into a single vector. Because LSTM
processes sequences in a stepwise manner without requiring
fixed length, this approach naturally supports variable-length
inputs. Regardless of their lengths, sequences can be encoded
into comparable embeddings.

These embeddings are then compared using absolute dif-
ference due to the advantage of computational efficiency and
robustness to outliers compared to Euclidean distance (sensitive
to squared errors) or cosine similarity (requiring normalization):

∆Z = |Z(1) − Z(2)|
ŷ = softmax(Wfc ·∆Z + bfc)

(3)

The final output ŷ ∈ R2 gives the probability of whether the
two sequences are similar or not, enabling the model to detect
potential performance regressions based on learned temporal
patterns and workload-aware representations.

2) Weights-Shared: To address the challenge of limited
labeled samples, DynamicRegress adopts a twin LSTM network
structure with shared weights. By sharing parameters between
the two networks, the model ensures that paired sequences are
processed identically during feature extraction. This strategy
not only reduces the number of parameters, which is crucial for
training with limited labeled data, but also improves the model’s
ability to learn consistent and effective feature representations.

The weight-sharing mechanism enables the model to gen-
eralize well from a small set of labeled samples, as the
shared parameters maximize the utilization of available data.
Furthermore, it ensures fairness and accuracy in similarity
judgments by applying the same transformation to both input
sequences, making the learned features robust and reliable.

5

Reconstruction-based deep learning methods [9] are unsuit-
able in our context because they require a large number of
normal samples for each interface to effectively learn and
reconstruct normal data patterns. In real-world production
environments, such abundant normal data may not be available,
especially for less frequently used interfaces. Consequently,
these methods struggle to handle unseen normal patterns
and may lead to significant reconstruction errors. In contrast,
DynamicRegress focuses on learning the similarities and
differences, allowing it to operate effectively with limited
labeled data and avoiding the limitations of reconstruction-
based approaches.

Compared to traditional single LSTM network [32] that
concatenate data from two instances into a single input, the
weights-shared LSTM networks in DynamicRegress process the
two inputs separately, effectively preventing the model from
overutilizing similarity or redundant information, which allows
the model to focus more on the differences between the data.

3) Train: In order to improve the learning ability of
DynamicRegress on the features of minority samples, we
utilized a weighted cross-entropy loss function [33] during
model training. The traditional cross-entropy loss function is
widely used in classification tasks and is typically employed
to evaluate how well the predicted distribution matches the
ground truth. However, on imbalanced datasets, the traditional
cross-entropy loss may cause the model to favor the majority
class, as errors in predicting minority class samples have a
relatively smaller impact on the overall loss, making it difficult
to effectively guide the model to focus on the minority class.
To address this issue, we adopted a weighted cross-entropy
loss function. The formula for the weighted cross-entropy loss
is as follows:

Loss = − 1

N

N∑
i=1

[w1 · yi · log(ŷi) + w0 · (1− yi) · log(1− ŷi)]

(4)
Where wi represents the weight of the class i, yi denotes the
true label of the sample i, and ŷi is the predicted probability
of sample i belonging to the positive class.

Through extensive experiments, we found that setting the
loss weight ratio between the majority and minority classes
to 1:2 effectively enhanced the model’s performance without
introducing significant bias. Specifically, this weight ratio
avoids two issues: (1) overly small weights for the minority
class, which would cause the model to remain biased toward
the majority class, and (2) excessively large weights for the
minority class, which would lead to over-prediction of the
minority class. This balance achieves an optimal trade-off.

Subsequently, we used the Adam optimization algorithm to
iteratively adjust the weight parameters in the LSTM layers.

D. Semi-supervised Learning

To overcome the challenge of sample imbalance, we em-
ployed the strategy of semi-supervised learning, combined with
data augmentation and weighted loss function strategy. The
data augmentation strategy, introduced in the Section §III-B,

focuses on increasing the number and diversity of minority
samples. The weighted loss function strategy, introduced in the
Section §III-C3, assigns higher importance to minority sample.
Besides, semi-supervised learning strategy leverages both
labeled and unlabeled data to expand the training set. As shown
in Fig. 4, we integrated pseudo-labeling and confidence filtering
techniques [34] into the performance regression detection task.

The pseudo-labeling method generates labels for unlabeled
data using a model trained on high-quality labeled data. These
pseudo-labels are treated as new labels and combined with the
original labeled data during training. To avoid contamination by
incorrect labels, we use a confidence filtering mechanism, where
only samples with predicted probabilities above a threshold
are added.

As training progresses, the training set expands iteratively
until the model converges and the loss stabilizes. This process
enables the model to achieve strong detection performance with
limited labeled data, addressing the imbalanced data challenge.

E. Online Detection

As illustrated in Fig. 2, during the online detection phase,
the model trained in the offline phase is utilized to compare the
incoming periodic KPI sample with the baseline KPI sample.
The comparison involves evaluating KPIs such as response
time, throughput, and success rate. Experts believe that if the
distribution of any one of these three KPIs between the two
samples differs significantly, the system should be classified
as having a performance regression. Otherwise, the system is
considered normal.

IV. EVALUATION

We aim to answer the following research questions (RQs):
RQ1: How effective is DynamicRegress in performance regres-
sion detection compared to the baseline method?
RQ2: Does each component of DynamicRegress contribute
significantly to DynamicRegress’s performance?
RQ3: What is the impact of different hyperparameters?

A. Experimental Setup

TABLE I: Dataset information

Dataset Labeled
Train Dataset

Unlabeled
Train Dataset Test Dataset

Normal Pairs 3171 - 7573
Regression Pairs 351 - 572

Total Pairs 3522 6840 8145

Dataset. The experiments were conducted on Huawei
Cloud’s CodeArts PerfTest platform, where we set up a cluster
environment encompassing 78 functional interfaces and all
KPIs are sampled at 1-second granularity to capture transient
anomalies. CodeArts PerfTest is Huawei Cloud’s internal
performance testing platform, serving millions of microservices
by enabling routine performance diagnostics, fault localization,
and troubleshooting for developers. As shown in Table I covers
diverse system performance data. It consists of three parts: the
labeled training dataset, the unlabeled training dataset, and the

6

Epoch 1
Training

Set

SiameseLSTM
Train

Pseudo-label

Generation Above

Threshold

Yes

Adding to Training Set

NoReturn to Unlabeled Set

Epoch 2

Training

Set
Epoch 2

SiameseLSTM
Train

Pseudo-label

Generation Above

Threshold

Yes
Adding to Training Set

NoReturn to Unlabeled Set

Epoch …
Training

Set

Training

Set

Unlabeled

Set

Unlabeled

Set

Unlabeled

Set

Unlabeled

Set

Fig. 4: Training process of semi-supervised learning.

test dataset. The labeled training dataset includes 3522 pairs
of KPI samples, with 3171 normal pairs and 351 regression
pairs. The unlabeled training dataset contains 6840 pairs of
KPI samples, which are used to expand the training dataset
through pseudo-labeling techniques, ensuring data diversity
and broader coverage. Finally, the test dataset comprises 8145
pairs of KPI samples, including 7573 normal pairs and 572
regression pairs, and is used to evaluate the model’s ability to
detect performance regressions under varied conditions.

Settings. DynamicRegress is implemented using Python 3.9.
We’ve made the source code [35] public. In model training,
we adopt a fixed training schedule of 30 epochs, which proves
sufficient for convergence, as evidenced by the training loss
stabilizing around 0.3 in later training stages. The weighted
loss function ratio is set to 1:2, and the threshold for filtering
the generated pseudo-labels is set to 0.7, which we will discuss
in Section IV-D.

Baselines. We use the following methods as baselines, which
have been applied to performance regression detection and align
with the goals of DynamicRegress: (1) KS Test: Following the
approach in [7], the KS test measures the difference between
the empirical cumulative distribution functions (CDFs) of two
samples. The test statistic is computed as the maximum vertical
distance between the two CDFs, and the p-value is calculated
based on this statistic and the sample sizes. A significance level
of α=0.05, a widely used standard, is applied to determine
whether the samples originate from different distributions. (2)
MWU Test: As proposed in [8], the MWU test evaluates the
difference between two sample distributions by comparing
the rank sums of the samples. Similar to the KS test, we
use a significance level of α=0.05 to assess whether the
distributions differ significantly. (3) TSFEL Feature Extraction
and Classification: Based on [36], we use TSFEL to extract
features. A traditional classifier is then trained to distinguish
between positive and negative samples using these features.
To enhance efficiency, we select the top 10 features ranked
by importance scores for anomaly detection. (4) AutoPerf:
AutoPerf [9] applies K-means clustering during the training
phase to group similar functions into clusters based on normal
data patterns. An autoencoder is trained for each cluster to
model normal behaviors. In the online detection phase, new or
changed code is assigned to a cluster, and the corresponding

AE is used to compute reconstruction errors. Samples with
reconstruction errors exceeding a predefined threshold are
flagged as potential performance regressions. After parameter
tuning, we found that setting the number of clusters to 3 yields
the best F1 Score.

Evaluation metrics. To evaluate DynamicRegress and base-
line methods, we used Precision, Recall, and F1 Score to as-
sess their results. Precision (Precision = TP/(TP + FP))
represents the proportion of predicted dissimilar pairs that
are dissimilar. Recall (Recall = TP/(TP + FN)) measures
the proportion of actual dissimilar pairs correctly identified
by the model. F1 Score (F1 Score = 2 ∗ (Precision ∗
Recall)/(Precision + Recall)) is the harmonic mean of
Precision and Recall, providing a balance between the two
metrics. In addition, we also used the Run Time to calculate
the time required to detect a pair of KPIs.

B. Overall Performance (RQ1)

TABLE II: Effectiveness of performance regression detection

Method Precision Recall F1 Score Run Time
DynamicRegress 0.991 0.927 0.958 0.006

KS test [7] 0.160 0.998 0.276 0.038
MWU test [8] 0.159 0.998 0.274 0.038
TSFEL [36] 0.630 0.729 0.676 0.214
Autoperf [9] 0.181 0.603 0.279 0.003

C1 0.424 0.932 0.583 0.006
C2 0 0 0 0.007
C3 0.168 0.918 0.284 0.001
C4 1.000 0.792 0.884 0.001
C5 0.762 0.965 0.852 0.001

To evaluate the effectiveness of DynamicRegress in detecting
performance regression, we compared it against multiple
baseline methods. These baselines include statistical approaches
such as the KS test [7] and MWU test [8], feature extraction-
based methods [36], and AutoPerf [9]. The evaluation was
conducted using data from Huawei Cloud, and the results are
summarized in Table II.

The baseline methods perform poorly on our dataset due to
their inherent limitations. Both the KS test [7] and the MWU
test [8] achieve near-perfect recall (0.998) but suffer from very
low precision, indicating that they falsely classify many normal
samples as performance regressions. This issue primarily arises
from the sensitivity of the p-value threshold, as discussed

7

earlier, and the fact that these methods fail to account for the
impact of workloads on the performance metrics, as described
in Challenge 1. Feature extraction-based methods [36] perform
better than other methods in terms of detection accuracy. Still,
its detection time significantly increases due to the additional
feature extraction step required before detection, which makes
it relatively time-consuming. AutoPerf [9] also fails to perform
well, primarily because we lack sufficient normal data for
training the model per interface, as described in Challenge 2.

In contrast, DynamicRegress demonstrates the best overall
performance among all evaluated methods. It achieves an
F1Score of 0.958 (outperforming the best baseline method
by 0.282) and processes each detection task in just 0.006
seconds. Although its detection time is 0.003 seconds slower
than the fastest baseline, considering both F1Score and
detection time, we still regard DynamicRegress as the best.
These results highlight DynamicRegress’s ability to address
the challenges posed by dynamic service-level metrics and
imbalanced samples.

C. Contribution of Key Components (RQ2)

To further investigate the contribution of individual com-
ponents to DynamicRegress’s performance, we conducted an
ablation study. Table II illustrates DynamicRegress’s superior
performance across various application scenarios compared
to all these variants, demonstrating the importance of each
component.

Notably, excluding workload input (C1) results in a signifi-
cant performance degradation, with the F1 Score dropping to
0.583. This highlights the critical role that workload information
plays in capturing system performance changes, particularly
under dynamic load conditions. Similarly, normalizing KPIs
by dividing their values by the number of users (C2) leads
to an F1 Score of 0. As the training progresses, the pre-
cision gradually worsens until it reaches zero at epoch 25.
The low precision occurs because this simple normalization
approach mistakenly classifies normal samples as performance
regressions. Removing the data augmentation module (C3)
results in a significant drop in performance, with the F1 Score
declining to 0.284. This demonstrates that data augmentation
enhances the diversity of minority-class samples in the training
data, improving the model’s ability to recognize regression
patterns. Furthermore, replacing the weighted loss function
with a standard binary cross-entropy loss (C4) causes the F1
Score to decrease to 0.884. This shows that the weighted loss
function effectively mitigates class imbalance, preventing the
model from overfitting to the majority class. Finally, excluding
the semi-supervised learning strategy (C5) reduces the F1 Score
to 0.852, confirming that the semi-supervised module addresses
the challenge of insufficient labeled data by generating high-
quality pseudo-labels.

D. Hyperparameters Sensitivity (RQ3)

To assess the influence of key hyperparameters on the
performance of DynamicRegress, we conducted sensitivity
analyses focusing on two critical parameters: the confidence

Fig. 5: Parameters sensitivity on DynamicRegress.

threshold (p threshold) used for pseudo-labeling in the semi-
supervised learning strategy, and the weighted loss ratio, which
balances the learning emphasis between majority and minority
classes. The results of these experiments are shown in Fig. 5.
(1) P threshold determines the minimum confidence required
to include pseudo-labeled data in the training set. We evaluated
DynamicRegress with five threshold values: 0.5, 0.6, 0.65, 0.7,
and 0.9. The F1 Score remains relatively stable as p threshold
changes. At p threshold=0.7, DynamicRegress achieves the
highest F1 Score (0.958).
(2) The weighted loss ratio adjusts the relative importance
assigned to the majority and minority classes in the loss
function. We tested DynamicRegress with five different ratios:
1:1.5, 1:2, 1:2.5, 1:3, and 1:3.5. The F1 Score also remains
stable across the tested values, demonstrating the robustness
of DynamicRegress to variations in this parameter. The best
performance is observed at a ratio of 1:2.

E. Deployment

DynamicRegress has been deployed in the industrial en-
vironment of Huawei Cloud for over 6 months, enabling
real-time notifications for detected regressions, with over
90% of the regression pairs detected. Its integration into the
existing workflow leverages Huawei Cloud’s CodeArts PerfTest
platform, monitoring 78 interfaces across five critical business
domains in production environments, including resource man-
agement, version control, data retrieval, pipeline operations,
and system administration. The implementation architecture
aligns with the industrial workflow shown in Fig. 6, with
DynamicRegress embedded in the “Algorithm Service” module
as the core algorithmic component. And key deployment details
and component interactions are as follows:

1

User Web Service Load Balancing Service Scheduler Service

Data Center ServiceAlgorithm Service Data Monitor Service

Request

Response

DynamicRegress

Fig. 6: The workflow of DynamicRegress in Huawei
Cloud’industrial environment.

The model achieves an average detection latency of 0.006
seconds per KPI pair in our experiments. For the three
core KPIs (response time, throughput, and success rate), the
measured total latency is approximately 0.018 seconds, which
satisfies the industrial requirement of detecting regressions

8

Fig. 7: Distribution of normal KPIs in system status.

within 1 second. Regarding future scalability, the architecture
is designed to support additional KPIs and resource-type
indicators (e.g., resource utilization metrics like CPU/memory
usage). The latency scales roughly linearly with the number
of KPIs. Based on the current implementation, we estimate
the total latency would be in the range of 0.006 × N ± 20%
seconds for N KPIs. However, this may vary depending on
hardware configuration and workload characteristics.

V. DISCUSSION

A. Case Study

We evaluated DynamicRegress using 2715 pairs of stress test
reports (including 8145 metrics) from the cluster environment
at company. DynamicRegress achieved a Precision of 0.991,
Recall of 0.927, and F1 Score of 0.958, with a detection time
of just 0.006 seconds per pair. Among the 8145 metrics, 7598
showed no regression, while 277 regressed due to response
time changes, 254 due to throughput changes, and 16 due to
success rate fluctuations.
(1) Normal Case. Fig. 7 compares periodically executed KPIs
(b) with baseline KPIs (a) to detect regressions. Response time
shows matching fluctuation ranges and central values, indicating
no regression. Throughput maintains similar fluctuation ranges
without decline, demonstrating stable capacity. Success rate
remains consistently near 1, confirming all requests succeeded.
These results collectively confirm no performance regression
occurred.
(2) Regression Case. As shown in Fig. 8, Fig. 8 (a) shows the
baseline KPIs and Fig. 8 (b) shows the periodically executed
KPIs. For response time, periodic execution exhibits sharp
drops followed by recovery, with overall values exceeding the
stable baseline, indicating significant changes in distribution.
Throughput exhibits transient spikes then sustained decline,
with values consistently below baseline, which further shows
the decline of the system’s processing capacity. In terms of
success rate, both show a smooth horizontal line, and the
success rate is close to 1, indicating that the system is still
functional and no request errors have occurred.

It should be noted that the success rate only reflects whether
the request is completed, but cannot reflect the processing
efficiency and system performance of the request. If response

Fig. 8: Distribution of KPIs in the performance regression
status.

time and throughput deteriorate beyond what is acceptable to
the business, even a success rate of 1 indicates a regression
in system performance. This phenomenon also validates our
expert rule: a change in the data distribution of one metric can
indicate a performance regression in the system.

B. Limitations and Possible Solutions

Based on the experiments performed, we identified the
following two limitations of DynamicRegress and proposed
possible solutions:
(1) Limited Augmentation Diversity. Currently, we use time-
shifting and noise addition to augment regression samples.
While effective, these methods may not fully capture the
variety and complexity of real-world anomalies. In future work,
we plan to incorporate more advanced techniques such as
DTW-based augmentation [37] and Mixup [38], which could
better simulate timing misalignments and enrich minority-class
sample diversity.
(2) Limited Loss Function Flexibility. We adopt a weighted
binary cross-entropy loss to mitigate the impact of class
imbalance, effectively guiding the model to pay more attention
to regression cases. An alternative commonly used in Siamese
networks is contrastive loss, which encourages similar pairs to
stay close and dissimilar pairs to stay apart in the embedding
space. Its formulation is:

L =
1

2N

N∑
i=1

[
yi ·D(xi, x

′
i)

2 + (1− yi) ·max(0,m−D(xi, x
′
i))

2]
(5)

Here, yi indicates whether a pair is similar, D is the distance
function, and m is a margin for dissimilar pairs.

While contrastive loss is theoretically well-suited for pairwise
similarity modeling, we did not adopt it due to its higher
computational cost during training. In our production context,
fast training and deployment are critical, and binary cross-
entropy has proven both efficient and sufficiently effective.
(3) Lack of Joint Reasoning Across Multiple KPIs. In the
current implementation, each KPI is independently compared
and classified, with the final decision derived via simple
majority voting. However, performance regressions in real-
world systems may arise only when multiple indicators degrade
together. To address this, DynamicRegress allows SREs to

9

define customized decision rules that combine per-KPI results
in various ways, such as:

• Rule-based voting strategies, such as “two-out-of-three
KPIs must indicate regression”;

• Weighted fusion, where each KPI’s importance can be
adjusted according to business criticality;

• Hybrid logic, where specific combinations of metric
deviations trigger regression alerts (e.g., high response
time and low throughput).

These strategies can be tailored per interface or service,
allowing SREs to balance sensitivity and precision based on
operational priorities.

VI. RELATED WORK

We discuss related work in following directions: predicting
the impact of source code changes on system performance,
contrastive learning and identifying anomalous traffic samples
in network intrusion detection.

A. Detecting Performance Regression via Code Analysis and
Runtime Modeling

Accurately diagnosing the root causes is essential for modern
software systems undergoing continuous evolution. Several
prior works have attempted to assess the impact of code changes
or system-level factors on performance regression.

PerfImpact [39], PRICE [40], and Perphecy [41] analyze
code changes for performance regression risks. PerfImpact [39]
uses a genetic algorithm with dynamic change impact analysis
to rank impactful changes. PRICE [40] combines static (code
complexity) and dynamic metrics (execution time) with NSGA-
II to generate detection rules. Perphecy [41] employs metric
templates and greedy algorithms to threshold static/dynamic
metrics for regression prediction. In contrast, vPerfGuard [42]
detects performance regressions by comparing predicted versus
observed service metrics under production workloads. It
builds analytical performance models using historical data,
incorporating workload patterns, resource demands, and service
dependencies to predict component-level latency/throughput.
During operation, it flags regressions when actual metrics
deviate significantly from predictions beyond normal workload
variations.

However, DynamicRegress focuses on post-deployment
regression detection via behavioral monitoring. In practical
industrial scenarios, resource-level metrics such as CPU and
memory are typically collected at coarse granularity (e.g., five
minutes per point), which makes it difficult to associate them
with real-time interface performance. Moreover, service-level
dependency tracing is often incomplete or unavailable across
all tested interfaces. These constraints make DynamicRegress
particularly suitable for black-box monitoring scenarios where
internal system information is limited or inaccessible.

B. Contrastive Learning

Contrastive learning, inspired by Siamese networks, is
an unsupervised or semi-supervised learning method that
constructs sample pairs to learn effective representations by

pulling positive pairs closer and pushing negative pairs apart
in feature space.

Contrastive learning has been widely applied across computer
vision (CV), natural language processing (NLP), and time series
analysis (TS). In CV, SimCLR [43] leverages image pairs to
learn representations from unlabeled data, while MoCo [44]
employs dynamic dictionaries with query (q)/ positive (k+)/
negative representations (k−) for contrastive optimization. NLP
applications include Minsearch [45] for string edit similarity,
Word2Vec [46] for semantic vector relationships, and Sentence-
BERT [47] for sentence-level tasks. For TS, TS-TCC [48]
enhances feature learning, SimMTM [49] uses cosine-based
reconstruction, and TimeCLR [37] applies transformations
like cropping/shifting to improve sample similarity. These
demonstrate the versatility of contrastive learning in cross-
domain representation learning.

C. End-to-End Similarity Analysis Methods in Network Traffic
Anomaly Detection

Network traffic anomaly detection similarly identifies anoma-
lous behavior or threats by comparing new samples to normal
patterns [50]. For example, CANN [51] utilizes Euclidean
distance to measure similarity, clustering traffic data with
K-means and classifying anomalies using a K-NN classifier.
However, its fixed number of clusters and lack of handling
for imbalanced data reduce its flexibility in detecting minority-
class anomalies, such as attack traffic. Other approaches,
including [52]–[54], employ Gaussian distance metrics to
define decision boundaries. These methods often train models
using normal traffic data to construct thresholds that separate
normal and anomalous patterns. Techniques such as feature
selection, dimensionality reduction, and incremental clustering
further enhance their performance in complex traffic scenarios.
GARUDA [54], for instance, uses Gaussian similarity to group
traffic data into clusters and applies classifiers for anomaly
detection, achieving better scalability and adaptability.

VII. CONCLUSION

To address the challenge of performance regression detection
in dynamic software environments, we introduce Dynami-
cRegress, a novel methodology that leverages multi-dimensional
KPIs, semi-supervised learning, and a dual weight-shared
network. By integrating workload context and enhancing
training data diversity through semi-supervised learning, Dy-
namicRegress ensures robust performance under dynamic
workloads. The data augmentation and weighted loss function
strategies further enhance DynamicRegress’s ability to learn
from minority regression cases, improving its generalization
and sensitivity. Our experimental evaluations, conducted on
CodeArts PerfTest platform from Huawei Cloud, demonstrate
the efficacy of DynamicRegress. DynamicRegress achieves an
F1 Score of 0.958 and detects a pair of indicators in 0.006
seconds, which validates the robustness of DynamicRegress
in detecting performance regressions. The source code for
DynamicRegress has been made publicly available to support
further research and development in this area [35].

10

REFERENCES

[1] Lizhi Liao. Addressing performance regressions in devops: Can we escape
from system performance testing? In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 203–207. IEEE, 2023.

[2] Xiao Bai, Ioannis Arapakis, B Barla Cambazoglu, and Ana Freire.
Understanding and leveraging the impact of response latency on user
behaviour in web search. ACM Transactions on Information Systems
(TOIS), 36(2):1–42, 2017.

[3] Christina Xilogianni, Filippos-Rafail Doukas, Ioannis C Drivas, and
Dimitrios Kouis. Speed matters: What to prioritize in optimization for
faster websites. Analytics, 1(2):175–192, 2022.

[4] Mohammad Babar, Muhammad Sohail Khan, Farman Ali, Muhammad
Imran, and Muhammad Shoaib. Cloudlet computing: recent advances,
taxonomy, and challenges. IEEE access, 9:29609–29622, 2021.

[5] Tarek M Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E Hassan,
and Weiyi Shang. Studying the effectiveness of application performance
management (apm) tools for detecting performance regressions for
web applications: an experience report. In Proceedings of the 13th
International Conference on Mining Software Repositories, pages 1–12,
2016.

[6] Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Guoshuai Zhao,
Shuguang Liu, Dong Zhong, Boris Pinzur, Jie Zhang, Yang Wang, et al.
{SuperBench}: Improving cloud {AI} infrastructure reliability with
proactive validation. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), pages 835–850, 2024.

[7] Rafi Abbel Mohammad and Achmad Imam Kistijantoro. Development
of performance regression analysis tool using distributed tracing on
microservice-based application. In 2022 9th International Conference on
Advanced Informatics: Concepts, Theory and Applications (ICAICTA),
pages 1–6. IEEE, 2022.

[8] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Jianmei Guo,
Catalin Sporea, Andrei Toma, and Sarah Sajedi. Using black-box
performance models to detect performance regressions under varying
workloads: an empirical study. Empirical Software Engineering, 25:4130–
4160, 2020.

[9] Mejbah Alam, Justin Gottschlich, Nesime Tatbul, Javier S Turek, Tim
Mattson, and Abdullah Muzahid. A zero-positive learning approach
for diagnosing software performance regressions. Advances in Neural
Information Processing Systems, 32, 2019.

[10] Linshan Hou, Xiaofeng Jin, and Zhenshuang Zhao. Time series similarity
measure via siamese convolutional neural network. In 2019 12Th
international congress on image and signal processing, biomedical
engineering and informatics (CISP-BMEI), pages 1–6. IEEE, 2019.

[11] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian
Stimberg, Olivia Wiles, and Timothy A Mann. Data augmentation
can improve robustness. Advances in Neural Information Processing
Systems, 34:29935–29948, 2021.

[12] Issa Atoum. Measurement of key performance indicators of user
experience based on software requirements. Science of Computer
Programming, 226:102929, 2023.

[13] Adam Trendowicz, Eduard C Groen, Jens Henningsen, Julien Siebert,
Nedo Bartels, Sven Storck, and Thomas Kuhn. User experience key
performance indicators for industrial iot systems: A multivocal literature
review. Digital Business, 3(1):100057, 2023.

[14] Caixiang Fan, Sara Ghaemi, Hamzeh Khazaei, and Petr Musilek.
Performance evaluation of blockchain systems: A systematic survey.
IEEE Access, 8:126927–126950, 2020.

[15] Jinfu Chen and Weiyi Shang. An exploratory study of performance
regression introducing code changes. In 2017 ieee international
conference on software maintenance and evolution (icsme), pages 341–
352. IEEE, 2017.

[16] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. Performance
regression testing target prioritization via performance risk analysis.
In Proceedings of the 36th International Conference on Software
Engineering, pages 60–71, 2014.

[17] Malcolm Bourdon, Eric Alata, Mohamed Kaâniche, Vincent Migliore,
Vincent Nicomette, and Youssef Laarouchi. Anomaly detection using
hardware performance counters on a large scale deployment. In 10th
European Congress Embedded Real Time Systems (ERTS 2020), 2020.

[18] Lai Leng Woo. Hardware performance counters (hpcs) for anomaly
detection. Hardware Supply Chain Security: Threat Modelling, Emerging
Attacks and Countermeasures, pages 147–165, 2021.

[19] Jingyi Xu, Sehoon Kim, Borivoje Nikolic, and Yakun Sophia Shao.
Memory-efficient hardware performance counters with approximate-
counting algorithms. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 226–228.
IEEE, 2021.

[20] Christoph Heger, André van Hoorn, Mario Mann, and Dušan Okanović.
Application performance management: State of the art and challenges
for the future. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, pages 429–432, 2017.

[21] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese
neural networks for one-shot image recognition. In ICML deep learning
workshop, volume 2, pages 1–30. Lille, 2015.

[22] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi,
and Philip HS Torr. Fully-convolutional siamese networks for object
tracking. In Computer Vision–ECCV 2016 Workshops: Amsterdam, The
Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14,
pages 850–865. Springer, 2016.

[23] Nilakshi B Pokharkar. Improving Anomaly Detection in the Cognitive Test
Scores using Siamese Neural Network and Metric Learning as Ordinal
Classification Task. PhD thesis, 2024.

[24] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
815–823, 2015.

[25] Sounak Dey, Anjan Dutta, J Ignacio Toledo, Suman K Ghosh, Josep
Lladós, and Umapada Pal. Signet: Convolutional siamese network
for writer independent offline signature verification. arXiv preprint
arXiv:1707.02131, 2017.

[26] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and
Ian Goodfellow. Realistic evaluation of deep semi-supervised learning
algorithms. Advances in neural information processing systems, 31, 2018.

[27] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised
learning. Machine learning, 109(2):373–440, 2020.

[28] Mohammad S Aslanpour, Sukhpal Singh Gill, and Adel N Toosi.
Performance evaluation metrics for cloud, fog and edge computing: A
review, taxonomy, benchmarks and standards for future research. Internet
of Things, 12:100273, 2020.

[29] Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel
Lang, Sandra Hirche, Urban Fietzek, and Dana Kulić. Data augmentation
of wearable sensor data for parkinson’s disease monitoring using
convolutional neural networks. In Proceedings of the 19th ACM
international conference on multimodal interaction, pages 216–220, 2017.

[30] Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data
augmentation for time series classification with neural networks. Plos
one, 16(7):e0254841, 2021.

[31] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue
Wang, and Huan Xu. Time series data augmentation for deep learning:
A survey. arXiv preprint arXiv:2002.12478, 2020.

[32] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of
recurrent neural networks: Lstm cells and network architectures. Neural
computation, 31(7):1235–1270, 2019.

[33] Ziyun Zhou, Hong Huang, and Binhao Fang. Application of weighted
cross-entropy loss function in intrusion detection. Journal of Computer
and Communications, 9(11):1–21, 2021.

[34] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han
Zhang, Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and
Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in neural information processing
systems, 33:596–608, 2020.

[35] dynamicregress. https://github.com/limengyaoi/SiameseLSTM, 2025.
[36] Marı́lia Barandas, Duarte Folgado, Letı́cia Fernandes, Sara Santos,

Mariana Abreu, Patrı́cia Bota, Hui Liu, Tanja Schultz, and Hugo Gamboa.
Tsfel: Time series feature extraction library. SoftwareX, 11:100456, 2020.

[37] Xinyu Yang, Zhenguo Zhang, and Rongyi Cui. Timeclr: A self-supervised
contrastive learning framework for univariate time series representation.
Knowledge-Based Systems, 245:108606, 2022.

[38] Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412, 2017.

[39] Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Mining performance
regression inducing code changes in evolving software. In Proceedings
of the 13th International Conference on Mining Software Repositories,
pages 25–36, 2016.

[40] Deema Alshoaibi, Kevin Hannigan, Hiten Gupta, and Mohamed Wiem
Mkaouer. Price: Detection of performance regression introducing

11

https://github.com/limengyaoi/SiameseLSTM

code changes using static and dynamic metrics. In Search-Based
Software Engineering: 11th International Symposium, SSBSE 2019,
Tallinn, Estonia, August 31–September 1, 2019, Proceedings 11, pages
75–88. Springer, 2019.

[41] Augusto Born De Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias
Hauswirth, and Peter F Sweeney. Perphecy: Performance regression
test selection made simple but effective. In 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST), pages
103–113. IEEE, 2017.

[42] Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. vper-
fguard: An automated model-driven framework for application perfor-
mance diagnosis in consolidated cloud environments. In Proceedings of
the 4th ACM/SPEC International Conference on Performance Engineer-
ing, pages 271–282, 2013.

[43] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations. In
International conference on machine learning, pages 1597–1607. PMLR,
2020.

[44] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.
Momentum contrast for unsupervised visual representation learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

[45] Haoyu Zhang and Qin Zhang. Minsearch: An efficient algorithm for
similarity search under edit distance. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 566–576, 2020.

[46] Emi Suryati, Styawati Styawati, and Ahmad Ari Aldino. Analisis sentimen
transportasi online menggunakan ekstraksi fitur model word2vec text
embedding dan algoritma support vector machine (svm). Jurnal Teknologi
dan Sistem Informasi, 4(1):96–106, 2023.

[47] N Reimers. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

[48] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu,
Chee Keong Kwoh, Xiaoli Li, and Cuntai Guan. Time-series represen-
tation learning via temporal and contextual contrasting. arXiv preprint
arXiv:2106.14112, 2021.

[49] Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang,
and Mingsheng Long. Simmtm: A simple pre-training framework for
masked time-series modeling. Advances in Neural Information Processing
Systems, 36, 2024.

[50] Lei Tao, Shenglin Zhang, Junhua Kuang, Xiao-Wei Guo, and Canqun
Yang. Real-time anomaly detection for large-scale network devices. IEEE
Transactions on Networking, pages 1–12, 2025.

[51] Wei-Chao Lin, Shih-Wen Ke, and Chih-Fong Tsai. Cann: An intrusion
detection system based on combining cluster centers and nearest
neighbors. Knowledge-based systems, 78:13–21, 2015.

[52] Bouchra Lamrini, Augustin Gjini, Simon Daudin, Pascal Pratmarty,
François Armando, and Louise Travé-Massuyès. Anomaly detection
using similarity-based one-class svm for network traffic characterization.
In DX, 2018.

[53] Arun Nagaraja, Uma Boregowda, Khalaf Khatatneh, Radhakrishna
Vangipuram, Rajasekhar Nuvvusetty, and V Sravan Kiran. Similarity
based feature transformation for network anomaly detection. IEEE Access,
8:39184–39196, 2020.

[54] Shadi A Aljawarneh and Radhakrishna Vangipuram. Garuda: Gaussian
dissimilarity measure for feature representation and anomaly detection
in internet of things. The Journal of Supercomputing, 76(6):4376–4413,
2020.

12

	Introduction
	Background
	Preliminaries
	KPIs
	Performance Regression Detection
	Siamese Network
	Semi-supervised Learning.

	Motivation
	Comparing variable-length KPIs under Dynamically Changing Loads
	Diverse Interfaces and Scarce Labeled Samples per Interface
	Imbalanced Labeled Samples

	Approach
	Overview
	Data Preprocessing
	Training of DynamicRegress
	LSTM
	Weights-Shared
	Train

	Semi-supervised Learning
	Online Detection

	Evaluation
	Experimental Setup
	Overall Performance (RQ1)
	Contribution of Key Components (RQ2)
	Hyperparameters Sensitivity (RQ3)
	Deployment

	Discussion
	Case Study
	Limitations and Possible Solutions

	Related Work
	Detecting Performance Regression via Code Analysis and Runtime Modeling
	Contrastive Learning
	End-to-End Similarity Analysis Methods in Network Traffic Anomaly Detection

	Conclusion
	References

