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Abstract—Multivariate time series anomaly detection (MT-
SAD) plays a crucial role in monitoring system health and
ensuring operational reliability across various domains. While
deep learning models have shown promising results in this field,
deploying these computationally intensive models on resource-
constrained edge devices remains challenging, particularly when
considering the need for continuous model adaptation to evolving
data patterns. We introduce the RefinedEdge framework, explic-
itly developed to enable effective deployment of multivariate time
series anomaly detection within resource-constrained edge com-
puting environments. The RefinedEdge framework utilizes three
key strategies: Aggregated Compression, Knowledge Refinement,
and Reciprocal Edge-Cloud Learning. These strategies collec-
tively tackle prominent challenges such as maintaining high accu-
racy despite significant model compression and ensuring seamless
synchronization and continuous adaptation across cloud and edge
systems. By reducing the complexity of models without sacrificing
performance, and by adapting anomaly detection to the dynamic
conditions typical of edge computing, the RefinedEdge framework
validates its significant enhancements in detection performance
through empirical testing on real-world datasets. This makes it
a practical solution for real-time applications in sectors such as
smart manufacturing.

Index Terms—Anomaly detection, Edge computing, Knowledge
distillation, Time-series analysis, Edge-cloud collaboration, Model
compression

I. INTRODUCTION

ITH the explosive growth of the Internet of Things

(IoT), a multitude of sensors or devices have emerged,
churning out copious amounts of time series data during
operation [1]. To ensure the reliability of devices, reduce
downtime, and prevent malicious attacks, efficient anomaly de-
tection for multivariate time series (MTSAD) has become in-
creasingly critical [2]. For instance, in automotive production,
undetected anomalies in operational data can lead to severe
disruptions, such as complete shutdowns of production lines.

This work was supported by Alibaba Innovative Research Program. (Cor-
responding author: Yongqgian Sun.)

Shenglin Zhang, Jiacheng Zhang, Shiqi Chen, Chenyu Zhao, Yutong
Chen, and Yonggian Sun are with the College of Software, Nankai
University, Tianjin 300071, China (e-mail: zhangsl@nankai.edu.cn;
milocheung @mail.nankai.edu.cn; 2120240791 @mail.nankai.edu.cn;
zhaochenyu@mail.nankai.edu.cn; 2111782 @mail.nankai.edu.cn;
sunyongqian @nankai.edu.cn).

Guohua Liu is with Alibaba Cloud Computing Ltd, Hangzhou 310030,
China (e-mail: suoni@alibaba-inc.com).

Minghua Ma is with Microsoft,
minghuama@microsoft.com).

Dan Pei is with the Department of Computer Science, Tsinghua University,
Beijing 100190, China (e-mail: peidan@tsinghua.edu.cn).

Redmond, 98052 USA (e-mail:

This can result in costly repairs and significant production
downtime [3]. The importance of robust anomaly detection
systems in manufacturing is crucial to predict and mitigate
potential machinery failures before they escalate.

Previously, anomaly detection in cloud computing had
evolved into the predominant paradigm, leveraging abundant
computing resources to achieve robust detection performance
across diverse applications [4]. In the face of the massive
growth in data volume, combined with the demands for real-
time processing and data privacy, the trend has been gradually
migrating from cloud computing to edge computing (EC) [5].
However, the computing power and resource limitations of
edge devices pose considerable obstacles to the deployment
of complex anomaly detection models. For instance, state-of-
the-art time series anomaly detection models typically contain
millions or even tens of millions of parameters and require
GPU resources for efficient operation [6], while edge devices
are usually equipped with only 2.6 GHz six-core CPUs or
lower computational capabilities. Through experiments, we
found that such CPU-based edge devices can only effectively
handle models with fewer than 0.15M parameters.

Computational disparity creates significant challenges for
deploying effective multivariate time series anomaly detection
in edge environments. Capturing complex temporal depen-
dencies and variable correlations under strict resource con-
straints is critical for achieving accurate anomaly detection.
Current approaches face a challenging trade-off. Although
statistical methods are computationally efficient, they often
fail to capture the complex temporal dependencies in mul-
tivariate data [7]. Deep learning models can achieve excellent
detection performance, but they face challenges in deploying
on resource-constrained devices [8]. Cloud-based solutions
have computational capabilities, but they also have limitations
in practical applications due to latency and bandwidth con-
straints [9].

Recent advances in edge-cloud collaborative frame-
works [10]-[12] have shown promise in balancing compu-
tational efficiency with model performance. However, these
frameworks primarily focus on computer vision or general ma-
chine learning tasks. While these advances provide valuable in-
sights, directly applying them to time series anomaly detection
presents significant challenges due to the unique characteristics
of temporal data and edge deployment requirements.

Based on our analysis of existing approaches and the
specific demands of edge-based time series anomaly detection,
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we identify three key challenges that remain inadequately
addressed:

Challenge I: Maintaining effective anomaly detection un-
der data quality constraints and limited local datasets in
edge environments. Edge devices often encounter issues like
sensor failures, environmental interference, and connectivity
problems, which lead to the data they receive being noisy,
incomplete, and unbalanced. Each edge device operates with
significantly smaller local datasets compared to centralized
systems, making them more vulnerable to data quality degra-
dation. The limited data volume at individual edge nodes
amplifies the impact of noisy or incomplete samples, as there
are insufficient clean samples within each local dataset to
compensate for the corrupted data, thereby severely com-
promising the reliability and accuracy of anomaly detection
models deployed on individual devices.

Challenge II: Constructing efficient multivariate time series
anomaly detection models on resource-limited edge devices.
To accommodate scarce resources, multivariate time series
anomaly detection models with high complexity must un-
dergo significant pruning or simplification. Nevertheless, a
formidable challenge lies in figuring out how to make these
compressed models not only proficiently capture the correla-
tions within time series but also guarantee the reliability of
detection.

Challenge III: Continuous synchronization and adaptation
of models across cloud-edge platforms. Edge computing en-
vironments present unique synchronization challenges distinct
from cloud-based systems. Heterogeneous edge devices with
varying data characteristics necessitate personalized model
adaptations rather than the uniform updates typical in cloud en-
vironments. Additionally, bandwidth constraints significantly
limit the frequency and size of model synchronization between
edge and cloud, contrasting sharply with cloud environments
that benefit from abundant network resources. These lim-
itations require careful orchestration of model updates to
ensure continuous adaptation to evolving data patterns while
maintaining real-time detection capabilities without service
interruption.

To address these challenges, we adopt a knowledge
distillation-based approach that leverages both cloud and edge
computing capabilities through a two-model paradigm, where
the teacher model is a large, high-capacity model trained on
cloud servers with abundant computing resources, and the
student model is a lightweight, compressed version designed
for resource-limited edge devices. Building on this paradigm,
we propose RefinedEdge, a reciprocal edge-cloud learning
framework that integrates multi-strategy model compression,
knowledge refinement, and continuous model adaptation to
enable efficient and accurate multivariate time series anomaly
detection on edge devices.

Specifically, to tackle the first challenge, we propose an
Aggregated Compression module that consolidates data from
multiple edge devices into a centralized cloud for developing
a robust teacher model. By pruning this teacher model to suit
resource constraints, we ensure the deployment of lightweight
yet reliable anomaly detection models on edge devices. For the
second challenge, we adopt a Knowledge Refinement process

that distills a unified student model from the teacher model
using aggregated data. Governed by a balanced distillation
coefficient (Arq), this process enables the student model to
effectively capture temporal correlations despite aggressive
compression. To address the final challenge, we introduce a
Reciprocal Edge-Cloud Updating module that establishes a
continuous learning cycle between cloud and edge devices.
This reciprocal update mechanism guarantees that both teacher
and student models remain synchronized and up-to-date in
real-time scenarios.

The major contributions are summarized as follows.

o Aggregated Compression: We develop an integrated ap-
proach that combines cloud-based data aggregation with
ensemble pruning strategies to address both data quality
constraints and computational limitations in edge envi-
ronments, enabling effective model compression while
preserving essential temporal patterns.

« Knowledge Refinement: We propose a two-phase knowl-
edge transfer process that combines unified model dis-
tillation with personalized adaptation. By balancing re-
construction learning with teacher guidance through an
optimized distillation loss function, our approach enables
edge models to maintain reliable detection capabilities
despite high compression ratios.

¢ Reciprocal Edge-Cloud Updating: We propose a dynamic
learning mechanism that maintains continuous synchro-
nization between cloud and edge models through recip-
rocal updates, enabling real-time adaptation to evolving
data patterns while preserving model performance across
distributed environments.

o Empirical Validation: Our framework demonstrates su-
perior performance and strong generalization capabilities
across multiple real-world datasets and diverse model
architectures. The experiments validate that our approach
works effectively with both reconstruction-based and
forecasting-based models. The compressed edge models
consistently outperform baseline methods while achiev-
ing significant parameter reduction compared to teacher
models.

In summary, these contributions collectively address the fun-
damental challenges of deploying effective anomaly detection
in resource-constrained edge environments while maintaining
the computational advantages of cloud infrastructure. Our
framework provides a practical solution that balances detection
accuracy, computational efficiency, and real-time responsive-
ness for edge-cloud collaborative systems.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work in the field. Section III intro-
duces preliminary concepts and defines the problem space.
Section IV details the proposed methodologies, followed by
the experimental results in Section V. Section VI discusses the
limitations of the current framework and outlines promising
directions for future research. Finally, Section VII concludes
the paper.

II. RELATED WORK

Time Series Anomaly Detection (TSAD) has emerged as a
critical research area with widespread applications in industrial



monitoring, healthcare, and finance. This section reviews key
developments in TSAD methods, model compression tech-
niques, and edge-cloud collaborative approaches.

A. TSAD Methods

The evolution of TSAD methods spans from traditional
statistical approaches to advanced deep learning models.
Classical methods include ARIMA [13], EWMA [14], and
clustering-based approaches [15]. While these methods offer
computational efficiency and interpretability, they often strug-
gle with complex temporal patterns and high-dimensional data.

Deep learning approaches have significantly advanced
TSAD through both forecasting-based and reconstruction-
based paradigms. Forecasting models predict future values to
detect anomalies by measuring deviations between predicted
and observed values. Recent Transformer-based architectures
have improved the modeling of complex temporal dependen-
cies, with models like CrossFormer [16] and iTransformer [17]
demonstrating superior performance in multivariate time series
analysis.

Reconstruction methods such as autoencoders [18],
VAEs [19], and GANs [20] learn normal data representations
to identify anomalies through reconstruction errors. While
both paradigms achieve superior detection performance, they
often require substantial computational resources, limiting
their deployment on edge devices.

Recent time series foundation models like Timer [6] and
Moirai [21] have shown promising capabilities in anomaly
detection through large-scale pre-training. However, deploying
these large models on edge devices would require extreme
compression ratios, likely leading to significant performance
degradation.

B. Model Compression Techniques

Various compression techniques have been developed to
address the computational demands of deep neural networks in
resource-constrained environments. Parameter pruning reduces
model size by removing unimportant weights [22], while
quantization techniques reduce precision requirements [23].
Knowledge distillation transfers expertise from larger teacher
models to compact student models, and low-rank factoriza-
tion [24] approximates weight matrices through techniques
like SVD. However, achieving high compression ratios often
results in significant performance degradation, particularly for
complex tasks like anomaly detection.

C. Edge-Cloud Collaborative Methods

Edge-cloud collaboration frameworks leverage both cloud
computing’s computational power and edge computing’s low-
latency capabilities. Task-based frameworks [25] distribute
computational loads based on resource requirements, while
data-centric approaches [26] optimize data transfer through
techniques like federated learning. Dynamic frameworks [10]
adapt collaboration strategies to changing operational con-
ditions through end-edge-cloud learning systems. These ap-
proaches demonstrate promising results in balancing compu-
tational efficiency with model performance, though challenges

remain in optimizing resource utilization and maintaining
detection accuracy across diverse operational conditions.

III. PRELIMINARIES

TSAD aims to identify patterns that significantly deviate
from expected behavior in temporal data. According to the
comprehensive survey [27], anomalies are defined as observa-
tions that do not follow the expected behavior. For multivariate
time series, this involves detecting unusual patterns across
multiple interdependent variables, where anomalies may man-
ifest as deviations in individual metrics or as abnormal re-
lationships between different metrics, distinct from routine
variations. These anomalous patterns often indicate important
events or system failures that require immediate attention. The
primary objective is to develop a computationally efficient
model that identifies these anomalies in real time while
operating within the resource constraints of edge computing
environments.

Our framework employs a reconstruction-based teacher
model as the primary implementation that learns to re-
construct input data, where the reconstruction error serves
as the anomaly score. Compared to forecasting-based mod-
els, reconstruction-based models can leverage both past and
present information, which has been shown to lead to more ac-
curate anomaly detection performance in time series tasks [28].
Therefore, we adopt this type of model as the base teacher in
our primary implementation.

However, we emphasize that our framework is model-
agnostic and can effectively be applied to both reconstruction-
based and forecasting-based models. Our Framework Gen-
eralization Results (Section V-F) provide concrete empirical
evidence demonstrating the successful application of our edge-
cloud collaborative framework to forecasting-based models.

In the context of reconstruction-based time series anomaly
detection, “knowledge” refers to what the model has learned
about the predominant behavior present in the training
data—temporal dependencies, seasonal cycles, and typical
value ranges—that enables it to reconstruct such behavior
well [29]. Inputs that are consistent with this predominant
behavior are reconstructed with small error; inputs that deviate
from it exhibit larger reconstruction gaps (i.e., the difference
between the input and its reconstruction).

Separately, it is widely observed in practice that datasets
collected from routine operations are dominated by normal
samples. [28], [29]. Training on such data consequently equips
the model with a solid understanding of normal behavior;
deviations from that behavior naturally appear as larger re-
construction gaps and are flagged as anomalies.

Consider web-service telemetry (CPU, memory, disk 1/O,
request rate). Under routine load, CPU and request rate
rise and fall together, with predictable overnight dips and
brief backup-related I/O spikes. After training, the model
reconstructs such sequences closely; a CPU spike without
a matching request-rate increase, or sustained I/O outside
backup windows, produces large reconstruction gaps and is
flagged as anomalous.
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Fig. 1. Overview of RefinedEdge with N edge devices. Solid arrows represent model transformations, while dashed arrows (KD) indicate knowledge distillation

guidance.

IV. METHODOLOGY

A. Framework Overview

Our proposed framework operates through a systematic
cloud-edge collaboration mechanism for time series anomaly
detection.

Fig. 1 illustrates the comprehensive framework of Re-
finedEdge, which uses an anomaly detection model as the
foundation. The framework is composed of three modules,
namely Aggregated Compression, Knowledge Refinement, and
Reciprocal Edge-Cloud Updating, represented by black, blue,
and red colors respectively.

Aggregated Compression. To resolve the data sparsity
within a single edge device and enhance the training dataset,
RefinedEdge first aggregates the data from multiple edge
devices in the cloud. Subsequently, these aggregated data are
utilized to train a model with strong generalization ability,
which is called the “teacher model”. To reduce the complexity
of the teacher model, enhance computational efficiency, and
make it suitable for edge devices with limited resources,
RefinedEdge then adopts multiple pruning strategies to obtain
the “pruned model”.

Knowledge Refinement. To construct lightweight models
that can be utilized on edge devices, RefinedEdge distill a
unified student model from the teacher model by using the
aggregated data in the cloud. Subsequently, this student model
is fine-tuned with the local data on each edge device, thereby
generating personalized models to meet the needs of different
devices. These personalized models will detect anomalies
efficiently and accurately.

Reciprocal Edge-Cloud Updating. To ensure the models
remain effective and up-to-date, RefinedEdge regularly updates
the teacher and student models. As the data patterns and oper-
ational conditions change at each edge device, the capabilities

of personalized models need to be continuously developed.
We utilize the updated cloud-based teacher model to guide the
retraining of the unified and personalized student models. This
cyclical process ensures that each edge device can effectively
compute anomaly scores and maintain system reliability.

B. Aggregated Compression

1) Data aggregation: As shown in Fig. 1, Edge 1 to Edge
N constitute n edge devices. To ensure the stability of each
edge device, a series of monitoring metrics are continuously
collected. Each metric can be represented as:

52{517527"'7£T} (1)

where 7' is the length of the metric and & € R denotes the
observation at time ¢. These metrics then form a multivariate
time series dataset X; € RT*™ where T is the length of
each time series and m is the number of metrics. RefinedEdge
aggregate these datasets into a comprehensive training set:

Xagg = {XlaX27-~-7Xn} (2)
After that, a sliding window is employed on X, 4,:
Xfuindow = {XZ;;H—la (23} szgg} (3)

where w is the window size determining the temporal scope of
historical data used for model training and subsequent updates.

2) Teacher Model Training: RefinedEdge employs
a  reconstruction-based  anomaly  detection  model
(TimesNet [30]) as the teacher model M. The model is
trained to reconstruct the input data, where the reconstruction
error serves as an indicator of anomalies. Using the
aggregated data, the teacher model is trained to minimize the
reconstruction loss:
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The choice of mean squared error (MSE) as the reconstruction
loss is well-established in time series anomaly detection liter-
ature [31]. We use it in this paper as it effectively measures
the reconstruction quality of normal patterns while being sen-
sitive to anomalous deviations. When the model is trained on
predominantly normal data, it learns to accurately reconstruct
normal patterns while producing higher reconstruction errors
for anomalous samples. This property makes reconstruction-
based loss functions particularly suitable for unsupervised
anomaly detection, where labeled anomaly samples are scarce
or unavailable during training.

3) Multi-Strategy Model Compression: Pruning method in-
tegration can be approached through various strategies: apply-
ing different methods to specific model components, optimiz-
ing strategy selection through search algorithms, or combining
multiple strategies through unified scoring mechanisms [32].
Among these approaches, unified evaluation and scoring offers
superior generalizability across model architectures, compu-
tational efficiency without iterative optimization overhead,
and comprehensive assessment by leveraging diverse pruning
perspectives.

Building on this rationale, RefinedEdge employs a system-
atic compression approach utilizing multiple pruning strate-
gies. Different strategies focus on different aspects of model
compression, reducing the risk of sub-optimal pruning deci-
sions that may arise when relying on a single strategy.

The pruning process can be formalized as:

Mpruned = P(MT; 12 S) (5)

where P represents the pruning operation, p is the target
pruning ratio, and S denotes the pruning strategy. We integrate
four complementary pruning strategies from the TorchPruning
library [33]. These strategies provide different perspectives on
parameter importance:

Random-Magnitude Strategy. This strategy provides ex-
ploration. It combines random importance scoring with
magnitude-based channel pruning:

wrand(g) = Z/{(O, ]-) (6)

The random scoring helps explore diverse pruning patterns
while magnitude-based channel pruning ensures structural
efficiency.

Magnitude-Magnitude Strategy. This strategy ensures sta-
bility [34]. It employs a dual magnitude-based approach where
both importance scoring and channel pruning are based on
parameter magnitudes:

Wmag () = 10| %)

This simple yet effective approach identifies and removes pa-
rameters with small absolute values while maintaining network
structure.

Taylor-Magnitude Strategy. This hybrid approach consid-
ers gradient information [35]. It combines Taylor expansion-
based importance scoring with magnitude-based channel prun-
ing. The Taylor criterion evaluates parameter importance
through first-order gradient information:

oL
wtaylor(e) = ‘0 : %‘ (8)

This is complemented by magnitude-based channel selection
to ensure structured sparsity.

BN-Scale Group Strategy. This strategy maintains struc-
tural efficiency [36]. It leverages batch normalization scale
factors for group-wise structured pruning:

wpn (0) = |7 ©)

where 7 represents the batch normalization scale parame-
ter. This approach maintains the computational efficiency of
grouped convolutions.

RefinedEdge implements an automated multi-strategy prun-
ing process that integrates these strategies through a unified
interface. The pruning ratio is gradually increased according
to:
i€ [l,v]

pi = po + (1 — po) (10

)

v

where p; is the pruning ratio at iteration ¢, po is the initial
ratio, and v is the total number of iterations.

This gradual pruning strategy is designed to avoid the abrupt
removal of a large number of parameters, which could lead to
significant performance degradation. Instead, by incrementally
increasing the pruning ratio, the model is allowed to adapt its
internal representations and fine-tune the remaining parameters
at each step. This controlled reduction helps to maintain model
stability and accuracy while progressively eliminating redun-
dancy, resulting in a more efficient and robust model [33].

RefinedEdge leverages these strategies through a weighted
ensemble approach. The importance scores from each strategy
are aggregated using a simple yet effective averaging method:

(11

Wensemble (9) = Tar

where S represents the set of pruning strategies and wg(6) is
the normalized importance score from strategy s. This ensem-
ble approach helps mitigate potential biases from individual
strategies while maintaining computational efficiency.

The multi-strategy ensemble pruning process is detailed
in Algorithm 1, which integrates multiple pruning strategies
to achieve efficient model compression while maintaining
performance. The algorithm takes a teacher model M, an
initial pruning ratio pg, and the total number of iterations v
as inputs. In each iteration, the pruning ratio p; is gradually
increased (Line 5), allowing for progressive model compres-
sion. For each layer, importance scores are computed using
different strategies (Lines 7-10) and then aggregated (Line 11)
to determine which channels to prune (Line 12). After pruning
all layers, the model architecture is updated to reflect the
removed channels (Line 14). This iterative process continues



Algorithm 1 Multi-Strategy Ensemble Pruning.
Input: Teacher model M,
1: initial pruning ratio po,
2: total iterations v
Output: Pruned model M, yneq
Initialize strategies S =

w

{Random-Magnitude, Magnitude-Magnitude,

Taylor-Magnitude, BN-Scale Group}
4: for i =1 to v do
5 p2<—p0+(1—p0)z/u
6: for each layer [ in M+ do
7 scores < {}
8 for strategy s in S do
9: scores[s] < compute_importance_scores(l, s)
10: end for

11: ensemble_scores <— aggregate_scores(scores)
12: prune_channels(/, ensemble_scores, p;)

13: end for

14: update_model_architecture(M 1)

15: end for

16: return M, yneq

*The detailed implementations of compute_importance_scores and
aggregate_scores functions are provided in (6)-(9) and (11) respectively.

until the desired compression is achieved, ultimately producing
a pruned model M ,;.,neq that maintains the essential features
for anomaly detection while significantly reducing computa-
tional complexity.

This ensemble approach automatically adapts the network
architecture while maintaining the model’s anomaly detection
capabilities. The pruning process is fully automated, requiring
only the specification of the target compression ratio and the
model architecture, making it easily applicable to different
anomaly detection models.

C. Knowledge Refinement Process

The Knowledge Refinement Process design addresses a fun-
damental challenge in edge environments. Aggressive model
compression often fails to preserve critical temporal patterns.
Early experiments revealed that traditional knowledge dis-
tillation approaches underperformed when applied to time
series anomaly detection models. This limitation stems from
inadequate transfer of complex temporal dependencies inher-
ent in time series data. Simply mimicking teacher outputs
proves insufficient for time series anomaly detection. The
student model must internalize underlying temporal modeling
capabilities to maintain detection accuracy under resource
constraints. The key insight drives the design of a weighted
loss function. This function explicitly encourages the student
model to develop both knowledge transfer and independent re-
construction abilities, ensuring robust performance even when
deployed independently on edge devices.

Unified Student Model Distillation. The unified student
model distillation process employs a knowledge distillation
(KD) framework that balances reconstruction learning and
teacher guidance through a hyperparameter Agq. The distil-
lation coefficient A\;4 plays a crucial role in balancing self-

learning and teacher guidance. Empirical studies show that
setting A4 within 0.4 to 0.7 achieves an effective equilibrium
between self-learning and teacher guidance, with detailed
analysis provided in Section V-C.

Given the pruned model as the unified student model Mg
and the original teacher model M, the distillation objective
is formulated as:

Etotal == )\kdﬁrecon + (]- - Akd)ﬁkd

where Apq is the distillation coefficient that balances the two
learning objectives:

12)

Erecon = ||MS(X) - X”% (13)

Lia = [|[Ms(x) = M7(x)l3 (14)

To ensure the unified student model captures general patterns
across all edge devices, the knowledge distillation process is
conducted on the aggregated dataset X 4,. This unified model
serves as the foundation for subsequent personalization and
provides a quick initialization for new edge devices joining
the system.

Personalized Model Adaptation. Following the unified
student model distillation, RefinedEdge implements a person-
alized adaptation mechanism for each edge device. For each
device i, we fine-tune the unified student model using its local
dataset X;. The personalization process focuses on adapting
the model to local data characteristics through reconstruction
learning. This local adaptation process allows each edge
device to specialize the unified student model according to
its specific data patterns while maintaining the basic structure
and knowledge inherited from the unified model.

D. Reciprocal Edge-Cloud Updating

The Reciprocal Edge-Cloud Updating module establishes
a continuous learning cycle between cloud and edge devices
to maintain model effectiveness in dynamic operational envi-
ronments. This module consists of three primary components:
(1) edge data aggregation, (2) cloud-based teacher model
updating, and (3) unified and personalized model updating.

1) Edge Data Aggregation: Following the data aggregation
mechanism established in Section IV-B1, we continuously
collect and synchronize data from edge devices using the
sliding window approach. This ensures that model updates
are based on recent operational patterns while maintaining
sufficient historical context for effective learning.

2) Cloud-based Teacher Model Updating: This process
utilizes Reverse Knowledge Distillation, where personalized
student models at the edge guide the update of the cloud-
based teacher model. This approach ensures that the teacher
model incorporates localized knowledge while maintaining its
generalization capability. The update objective is formulated
as:

‘C'Lj;pdate = ZﬁZHM51 (X) - MT(X>||§
i=1 (15)

+ (1= B) [Mr(x) —x|3



where [; is the importance weight for device i. When F1-
scores from edge devices are available, the importance weights
are dynamically adjusted to give higher priority to better-
performing devices. Otherwise, equal weights are assigned to
ensure balanced contribution from all devices:

exp(vFi)
B; = {Z?’l exp(7F;)
v 1

n

if Fl-scores available
(16)

otherwise
where F; is the Fl-score of device ¢ (if available), v is a tem-
perature parameter controlling the weight distribution, and n is
the total number of edge devices. This weighting mechanism
ensures that when performance metrics are available, devices
with higher Fl-scores contribute more significantly to the
teacher model updating, while maintaining fair contribution
when such metrics cannot be obtained.

3) Student Model Updating: The updating process consists
of two stages:

a) Unified Student Model Update: The unified student model
is updated using the new teacher model through a balanced
objective:

‘Cgpdate :Akd”MS(X) - X”%
+ (1= Apa) [Ms(x) = Mg, (x)]I3

where M, . is the updated teacher model.

b) Personalized Student Model Update: Each edge device’s
personalized model is updated using a device-specific objec-
tive:

a7)

£5;date :a’bllMSL (x) — XH% (18)
+ (1= ay)||Ms, (x) = M, (%)]3
and the adaptation coefficient «; is learned through:

where ¢; is a trainable parameter and o is the sigmoid
function.

The update process can be configured with a temporal
schedule, typically set to 24 hours for daily updates to balance
model freshness with computational efficiency.

This reciprocal learning module ensures continuous model
improvement while maintaining computational efficiency and
adaptation to local operational conditions. The two-stage up-
date strategy balances global knowledge sharing with local
specialization, enabling effective anomaly detection across
diverse edge environments.

From a temporal perspective, the framework operates
through a complete workflow involving four key cloud-edge
transitions: (1) Edge data accumulation and cloud aggre-
gation: Edge devices accumulate local data over time, which
is then aggregated by the cloud for centralized processing. (2)
Cloud training and edge deployment: The cloud completes
teacher model training, pruning, knowledge distillation, and
student model personalization, then transitions to edge devices
for real-time detection. (3) Edge feedback collection: After
operating for a predefined period (e.g., 24 hours), edge devices
send new data and detection feedback to the cloud. (4) Cloud
model update and edge redeployment: The cloud updates

both teacher and student models based on the feedback, then
redeploys the updated student models to edge devices for
continued operation.

V. EVALUATION
In this section, we address the following research questions:

o RQ1: How well does RefinedEdge perform in multivari-
ate time series anomaly detection?

e RQ2: How do hyperparameters influence the perfor-
mance of RefinedEdge?

« RQ3: How different update strategies influence the per-
formance of RefinedEdge?

e« RQ4: How effectively does the knowledge distillation
preserve temporal dependency structures?

o RQS5: How is the generalization ability of RefinedEdge?

A. Experimental Setup

1) Dataset: We evaluate RefinedEdge on four real-world
multivariate time series datasets: EdgeNode, Server Machine
Dataset (SMD) [29], Mars Science Laboratory (MSL) [37],
and Soil Moisture Active Passive (SMAP) [37].

The EdgeNode dataset, collected from a leading edge
computing service provider, contains system monitoring data
from 200 edge nodes, each collecting 25 system metrics.
This industrial dataset represents our target application sce-
nario, demonstrating the framework’s effectiveness in real-
world edge computing environments. The dataset encompasses
diverse anomaly patterns that reflect real-world operational
challenges in edge computing environments. These include
transient system faults (point anomalies), performance degra-
dation under varying workloads (contextual anomalies), and
sustained resource contention scenarios (collective anomalies).
The feature values exhibit a heavy-tailed, right-skewed dis-
tribution with significant positive skewness (2.68) and high
kurtosis (9.49), indicating the presence of outliers and extreme
values characteristic of real-world system monitoring data. The
noise characteristics reveal an average signal-to-noise ratio
of approximately 10-15 dB, corresponding to moderate noise
levels typical of industrial monitoring systems. This noise
profile originates from measurement uncertainties, network
fluctuations, and environmental interference, ensuring that our
evaluation results reflect realistic deployment conditions rather
than idealized laboratory scenarios. Due to the non-disclosure
agreement, we cannot make this dataset publicly available.

To ensure reproducibility and validate the framework’s
generalizability, we also evaluate our method on three public
datasets: SMD, MSL, and SMAP. SMD consists of telemetry
data from 28 server machines, each monitoring 38 system
metrics including CPU usage, memory utilization, and network
traffic. MSL contains 55 metrics from the Curiosity rover’s
sensors and onboard equipment during its mission on Mars.
SMAP contains 25 metrics from the Soil Moisture Active
Passive satellite’s telemetry data, providing another space-
craft system perspective for evaluation. These diverse public
datasets, covering different domains and data characteristics,
help demonstrate RefinedEdge’s broad applicability beyond
edge computing scenarios.



TABLE I
DATASET STATISTICS AND PREPROCESSING DETAILS

EdgeNode SMD MSL SMAP
Entity type Edge computing device  Server machine  Spacecraft system  Spacecraft system
Number of entities 200 28 27 55
Number of metrics 25 38 55 25
Data interval 15 min 1 min 1 min 1 min
Anomaly proportion 5.18% 4.16% 10.72% 13.13%
Original train set (average) 7d 17d 1.5d 1.7d
Processed train set 5d 1d 1d 1d
Train size per entity (480, 25) (1440, 38) (1440, 55) (1440, 25)
Test set (average) 7d 17d 1.9d 5.4d

Table I presents the detailed statistics and preprocessing de-
tails of these datasets. To better simulate data-limited scenarios
commonly encountered in edge computing environments, we
processed the training durations across datasets. Specifically,
we restricted the training sets of SMD, MSL, and SMAP to the
last 1 day (1440 samples per entity), and EdgeNode to the last
5 days (480 samples per entity) due to its 15-minute sampling
interval. This preprocessing better demonstrates the quick-start
capability of our framework in data-limited scenarios.

The anomaly proportion varies significantly across datasets:
SMAP shows the highest at 13.13%, followed by MSL at
10.72%, EdgeNode at 5.18%, and SMD at 4.16%. These
variations reflect the distinct operational characteristics and
anomaly patterns inherent to each domain.

2) Baselines: We compare RefinedEdge against several
baselines:

e Cloud-Train (7M): A large TimesNet [30] model de-
ployed centrally in the cloud.

e Edge-Train (0.12M): Compressed TimesNet models
trained from scratch for each edge device.

« EWMA [38]: Exponentially Weighted Moving Average,
a statistical method that detects anomalies by tracking
weighted averages of historical values.

e SVM [39]: A support vector machine model that learns
decision boundaries for anomaly detection.

o« AE [40]: An unsupervised learning algorithm based
on neural networks that aims to reconstruct input data
through an encoder-decoder structure.

e OmniAnomaly [29]: A stochastic recurrent neural net-
work designed for multivariate time-series anomaly de-
tection that explicitly models both temporal dependencies
and stochasticity in data.

o USAD [41]: An unsupervised anomaly detection model
based on adversarial training and autoencoders.

3) Implementation Details: All experiments were cork.
The cloud environment utilizes an NVIDIA GeForce RTX
4090 24GB GPU for model training and updates, while edge
devices are simulated using a 2.6 GHz 6-Core Intel Core i7-
9750H CPU. For Cloud-Train baselines, we use the PyTorch
framework with recommended hyperparameters if available,
or optimal configurations determined through hyperparameter
search. The models are trained on aggregated data from all
edge devices and evaluated on each edge device’s test set. For
TimesNet, the configuration includes a sequence length of 96,

input dimensions determined by the metric dimensions of each
dataset, model dimensions of 64, 8 attention heads, 3 encoder
layers, and 1 decoder layer. Similar optimal configurations
are used for CrossFormer and iTransformer in their respective
experiments.

4) Evaluation Metrics: We employ the widely-used point-
adjusted F1-score [42] as our primary evaluation metric. This
metric introduces an adjustment mechanism: if any point
within a true anomaly sequence is detected as anomalous (i.e.,
the predicted anomaly score exceeds a threshold), all points
in that sequence are considered correctly detected. Meanwhile,
points outside the anomaly sequences are evaluated normally.
Based on this mechanism, we define the detection outcomes
as follows:

o True Positive (TP): A point within a true anomaly se-
quence where any point in that sequence is detected as
anomalous

« False Positive (FP): A point predicted as anomalous that
does not fall within any true anomaly sequence

o False Negative (FN): A point within a true anomaly
sequence where no point in that sequence is detected as
anomalous

Based on these definitions, we calculate precision and recall
as:

TP peeatl = — 1
TP+ FP TP+ FN

The Fl-score, which balances precision and recall, is then
computed as:

Precision = (20)

Pl 2 x Precision x Recall

21
Precision + Recall 21

The Fl-score is calculated at the entity level, where the
anomaly threshold is optimized independently for each entity
to achieve its best detection performance. This entity-level best
F1-score reflects the theoretical best detection capability of the
model. Unless otherwise specified, all Fl-scores reported in
this paper refer to this entity-level best Fl-score.

Additionally, we measure model training time and inference
latency to evaluate the computational efficiency of Refined-
Edge.

B. RQI: Performance of RefinedEdge

1) Model Performance without Updates: We evaluated two
baseline training strategies: One for all (single model trained
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Fig. 2. F1-Score Comparison Across Methods and Datasets.

on aggregated data) and One for one (separate models per edge
device). Since One for one consistently outperformed One for
all across all methods and datasets in our experiments, we
report only One for one results for fair comparison.

Fig. 2 presents the comprehensive Fl-score comparison
across different methods and datasets, where all methods are
evaluated without additional update steps for fair comparison
with baselines.

Our personalized student model (0.12M parameters)
achieves superior performance across all datasets: Fl-scores
of 0.9588, 0.9274, 0.8827, and 0.8580 on EdgeNode, SMD,
MSL, and SMAP respectively, significantly outperforming
edge-train baselines (0.5534, 0.8591, 0.8291, and 0.6480).
Notably, on SMD, it even exceeds the large cloud-train model
(7M parameters) while using only 1.7% of its parameters.
Note that while the figure includes the cloud-train model
for reference, its large size renders it unsuitable for edge
deployment. When considering only edge-compatible models,
RefinedEdge consistently outperforms all baselines. The abla-
tion of personalization shows a consistent but modest decrease
in performance, highlighting the importance of personalization
in edge deployment scenarios.

2) Efficiency Comparison: Table Il summarizes the train-
ing and inference times using 96-point windows. While our
student model’s training involves knowledge distillation over-
head, it achieves efficient cloud-side processing (16-25 ms per
window) and acceptable edge inference times (220-310 ms per
window). In contrast, edge-train requires significantly longer
training times (2013-2701 ms per window), highlighting the
advantage of our cloud-assisted approach.

3) Complexity Analysis: We provide a complexity analysis
of RefinedEdge framework across cloud and edge environ-
ments. Let IV denote the number of edge devices, Pr, and
Pg represent the parameters of the teacher and student models
respectively, and D represents the data size per training batch.

I Personalized Student Model B Edge-Train N AE

[ Unified Student Model A EWMA B Omni

[ Cloud-Train 7 sVM K3 USAD
SMAP

Dataset

Computational Complexity: The cloud-side complexity is
O(Pr+ N - Pg) per iteration, significantly reduced from O(N -
Pr) for independent training. Edge-side complexity is O(Ps)
for inference. With compression ratio Ps/Pr =~ 0.017, both
loads remain manageable.

Communication Complexity: Edge models operate inde-
pendently for real-time detection, requiring communication
only during periodic updates (every 24 hours). The over-
head includes data aggregation O(N - D), model deployment
O(N - Ps), and periodic updates O(NN - Dypdqte +N - Ps). This
minimal communication burden ensures real-time performance
while enabling cloud-assisted optimization. For scenarios with
high-frequency sampling that may strain bandwidth, the frame-
work can incorporate downsampling techniques or data com-
pression methods to reduce transmission requirements while
preserving essential temporal patterns.

C. RQ2: Hyperparameter Sensitivity

To investigate the effect of knowledge distillation weight
(Axp) on model performance, we conduct experiments with
different Ax p values ranging from O to 1.0 on the EdgeNode
dataset.

Fig. 3 reveals several key findings:

e The performance curve exhibits a bell-shaped pattern,
with optimal performance achieved in the middle range
of Agp values.

o The personalized student model reaches its peak perfor-
mance (F1-score of 0.9588) at Axp = 0.6.

o Performance degradation is observed at both extremely
low (Axkp < 0.2) and high (A\xp > 0.8) values,
suggesting that either insufficient or excessive reliance
on teacher guidance can be detrimental.

e When Axp — 0, the student model primarily mim-
ics the teacher’s outputs without sufficient emphasis on



TABLE II
TRAINING AND INFERENCE TIME COMPARISON

Training Time (ms/window)

Inference Time (ms/window)

Method

EdgeNode  SMD MSL SMAP EdgeNode SMD MSL SMAP
Personalized Student Model (0.12 M) 24.88 16.35 19.59 23.96 309.00 22628 223.64 301.53
Unified Student Model (0.12 M) 21.95 14.10 17.69 22.74 306.78 227.83  223.15 308.21
Cloud-Train (7 M) 2.73 1.15 1.80 2.78 18.00 12.48  14.52 17.49
Edge-Train (0.12M) 2185.16 2643.08 2701.55 2013.93 175.81 22125 22615 159.16
EWMA N/AT N/AT N/AT N/AT 9.20 14.02 25.95 9.83
SVM 0.16 15.76 1.72 0.51 0.20 8.71 1.50 0.32
AE 18.04 15.61 15.12 17.89 1.62 1.21 1.03 1.09
Omni 69.62 64.43 66.28 63.49 16.02 17.48 15.21 12.77
USAD 36.96 40.60 41.38 37.40 0.34 0.34 0.45 0.32

TEWMA does not require training.

Underlined italic values indicate experiments involving large models executed in a cloud environment (GPU),
while other values were obtained from edge environment (CPU) as described in Section V-A3.
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Fig. 3. Best Fl-score vs A p for Personalized Student Model on EdgeNode
dataset.

developing its own reconstruction capabilities, limiting
personalization potential.

e When Agp — 1, the student model focuses exces-
sively on reconstruction learning, potentially compromis-
ing knowledge transfer from the teacher model.

From an information-theoretic perspective, the observed
bell-shaped performance curve can be understood through the
information bottleneck principle [43]. The parameter i p
essentially controls the trade-off between information com-
pression and detection accuracy. When A g p approaches 1, the
student model emphasizes reconstruction learning, potentially
retaining excessive input details including noise, which may
violate the compression requirement of the information bottle-
neck. Conversely, when i p approaches 0, the student model
over-relies on teacher guidance, potentially losing sensitivity
to local patterns and reducing detection accuracy. The optimal
range of Axp (0.4-0.7) observed in our experiments suggests
a balance where the student model effectively compresses
teacher knowledge while maintaining detection capability for
anomaly detection tasks, which aligns with the compression-
prediction trade-off principle in information bottleneck theory.

TABLE III
COMPARISON OF UPDATE STRATEGIES

Dataset Reciprocal No Edge Cloud

Update Update Update Update
EdgeNode 0.9683 0.9588 0.9327 0.9604
SMD 0.9564 0.9274  0.8970  0.9316
SMAP 0.8993 0.8580  0.8385 0.8597

D. RQ3: Different Update Strategies

Table III compares different update strategies for handling
evolving data patterns. All experiments were conducted with
a strict 24-hour update cycle. Note that the MSL dataset was
excluded from this experiment due to its short test duration.
The results reveal several interesting findings:

o Edge-update strategy consistently shows degraded perfor-
mance across all datasets. This degradation is particularly
pronounced in SMD and SMAP, where F1-scores drop to
0.8970 and 0.8385 respectively. This underperformance
can be attributed to the limited learning capacity of edge
models and insufficient data at individual edge nodes.

o Cloud-update strategy shows better performance than
edge-update strategy but still falls short of our reciprocal
strategy, highlighting the benefits of combining both
cloud and edge knowledge in the update process.

o For the EdgeNode dataset, update strategies show similar
performance to no updating. Based on our analysis,
this is because the EdgeNode dataset exhibits minimal
pattern changes throughout the evaluation period, with
no significant concept drift in the test set.

o For SMD and SMAP datasets, which contain concept
drift and temporal variations in their test sets according to
recent work [44], our reciprocal update strategy demon-
strates substantial improvements. It achieves F1-scores of
0.9564 and 0.8993 respectively, outperforming both no
updating and other update strategies. This demonstrates
the effectiveness of our reciprocal updating mechanism
in handling evolving data patterns.
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TABLE IV
FRAMEWORK GENERALIZATION RESULTS

Dataset CrossFormer iTransformer

Personalized Student Model Edge-Train  Cloud-Train  Personalized Student Model Edge-Train  Cloud-Train
EdgeNode 0.8571 0.4354 0.8607 0.8061 0.4046 0.8344
SMD 0.8625 0.8263 0.8607 0.8413 0.8274 0.8367
MSL 0.8428 0.7902 0.8288 0.8342 0.8076 0.8297
SMAP 0.8505 0.7473 0.8472 0.8344 0.7460 0.8420
Parameters 0.13M 0.13M 243M 0.11M 0.11M 0.33M

E. RQ4: Knowledge Distillation Effectiveness Analysis

Recent work shows that simple distributional alignment
is insufficient to preserve temporal dependency structures in
knowledge distillation [45]. Since TimesNet reshapes temporal
windows into period-phase 2D maps, we evaluate structural
preservation along both temporal axes.

We analyze the first TimesBlock (TimesNet’s core process-
ing unit) on the EdgeNode dataset using windows of length
w = 96 with dominant period 7" = 32. The dominant period
represents the most significant periodic component identified
by TimesNet’s FFT-based period detection mechanism. After
averaging across all channels and applying joint z-score nor-
malization, we obtain 2D maps Hp and Hg for teacher and
student models. We propose Period-Phase Consistency (PPC)
metrics:

R
1
PPCiya = = ; corr(Hry[r,:], Hg[r,:]), (22)
1 C
PPCiyter = ol ; corr(Hr[:, c], Hgl: ). (23)

where corr(-,-) denotes the Pearson correlation coefficient.
High PPCy, indicates preserved within-period (phase) de-
pendencies; high PPCjy indicates preserved cross-period
variation.

Fig. 4 visualizes representative teacher-student alignment.
Across all test windows in the EdgeNode dataset (at optimal
Axkp = 0.6), we obtain average PPCjp, = 0.9602 and
PPCiper = 0.9227, demonstrating effective preservation of
TimesNet’s temporal dependency structures.

F. RQ5: Framework Generalization

To validate the generalizability of RefinedEdge, we extend
the framework to diverse time series model architectures
and anomaly detection paradigms. Specifically, we test two
state-of-the-art Transformer-based forecasting models: Cross-
Former [16] and iTransformer [17]. These models represent
forecasting-based anomaly detection approaches where pre-
diction errors serve as anomaly scores, in contrast to our pri-
mary implementation using TimesNet’s reconstruction-based
approach.

Table IV shows the performance of RefinedEdge applied to
these forecasting-based models. The results demonstrate that
RefinedEdge consistently improves model performance across
different architectures and anomaly detection paradigms. Our
personalized student models achieve comparable performance
to cloud-train approaches while using significantly fewer
parameters. More importantly, the framework substantially
outperforms edge-train baselines across all datasets and model
architectures, highlighting the effectiveness of our cloud-edge
collaborative approach.

These results provide concrete empirical evidence that Re-
finedEdge is not limited to reconstruction-based CNN models
like TimesNet but can effectively generalize to forecasting-
based Transformer architectures. The framework demonstrates
significant improvements, particularly in maintaining high
accuracy with substantially reduced parameter counts. This
validates that our model compression, knowledge distilla-
tion, and reciprocal updating mechanisms are truly model-
agnostic and work effectively across different anomaly detec-
tion paradigms—whether using reconstruction errors or pre-
diction errors as anomaly scores. The consistent performance
gains across both CNN and Transformer architectures suggest



that the framework’s design principles could be extended to
various neural network architectures for time series anomaly
detection.

VI. LIMITATIONS AND FUTURE WORK

While RefinedEdge demonstrates promising results in edge-
cloud collaborative anomaly detection, several limitations war-
rant discussion and present opportunities for future research.

A. Limitations

Performance Under Extreme Data Noise: Our evalua-
tion demonstrates robustness across typical operational noise
levels, and theoretical analysis suggests the framework’s in-
herent resilience to extreme noise conditions. The knowledge
distillation process naturally provides denoising capabilities,
as the teacher model learns from aggregated data across
multiple edge devices, effectively averaging out device-specific
noise artifacts. Additionally, the personalization component
further enhances noise resilience by adapting to local signal
characteristics while maintaining global knowledge from the
teacher model.

Scalability to Large-Scale Edge Deployments: Our exper-
iments involve a maximum of 200 edge devices, which may
not represent the challenges of deployments with thousands of
devices. Scaling to very large numbers could introduce compu-
tational bottlenecks as the teacher model training complexity
scales with device numbers. However, these challenges can be
effectively addressed through hierarchical cloud-edge archi-
tectures and device clustering strategies to distribute computa-
tional loads. These approaches can be naturally integrated into
our existing framework without fundamental modifications.

Effect of Significant Data Heterogeneity: If local datasets
are highly heterogeneous, the effectiveness of reverse knowl-
edge distillation may weaken, as the cloud model struggles
to accommodate diverse local patterns. Our current experi-
ments use relatively homogeneous datasets, making reverse
distillation more effective. For highly heterogeneous scenarios,
grouping edge devices based on data similarity and assigning
different cloud models to different groups could better capture
diverse local characteristics.

B. Future Work

Based on the identified limitations, we envision several
promising research directions that can significantly advance
edge-cloud collaborative anomaly detection frameworks.

Enhanced Robustness and Scalability: To address the
challenges of extreme noise and large-scale deployments,
future work should develop intelligent adaptive mechanisms.
This includes implementing change detection algorithms that
trigger updates based on data drift, and creating robust distilla-
tion techniques that maintain effectiveness under varying noise
conditions. Furthermore, hierarchical cloud-edge architectures
with regional aggregation nodes could distribute computational
loads while enabling federated learning principles to reduce
communication overhead in thousand-device deployments.

Advanced Model Optimization: Building upon our en-
semble pruning approach, future research could explore more

sophisticated compression strategies through adaptive weight
assignment, where the importance of different pruning criteria
is dynamically learned based on specific architectures and
datasets. Comparative studies of various pruning integration
approaches would provide valuable insights for optimizing
edge deployment efficiency across diverse hardware config-
urations.

Privacy-Preserving Collaborative Learning: As edge
computing increasingly handles sensitive data, developing
privacy-preserving mechanisms becomes crucial. Future work
should explore differential privacy techniques for controlled
noise injection, secure aggregation protocols that enable cloud
learning without exposing individual device data, and fed-
erated learning adaptations where only model parameters
or gradients are shared. These advances would expand the
framework’s applicability to privacy-sensitive domains such as
healthcare monitoring and financial systems while preserving
the benefits of collaborative learning.

VII. CONCLUSION

The RefinedEdge framework effectively addresses the chal-
lenges of implementing multivariate time series anomaly de-
tection in resource-constrained edge computing environments.
By leveraging techniques such as model compression and
knowledge refinement, the framework maintains high detection
accuracy even with heavily compressed models. The reciprocal
updating between edge devices and cloud resources ensures
ongoing model relevance through continuous adaptation to
changing data patterns. The empirical results affirm the frame-
work’s capability to enhance operational efficiency in edge
scenarios, promising extensive applicability across various
domains requiring real-time data processing and anomaly
detection.
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