
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Accurate and Interpretable Log-Based Fault
Diagnosis using Large Language Models

Yongqian Sun∗, Shiyu Ma∗, Tong Xiao†, Yongxin Zhao∗, Xuhui Cai‡, Wei Dong‡,
Yue Shen‡, Yao Zhao‡, Shenglin Zhang∗, Jing Han§ and Dan Pei†

∗Nankai University, †Tsinghua University, ‡China Mobile Communications Group Co.,Ltd., §ZTE Corporation

Abstract—Log-based fault diagnosis is essential for ensuring
system reliability and resilience. However, current methods
only provide fault diagnosis results without explanations, which
undermines their credibility. Large language models (LLMs)
have extensive pre-trained knowledge and show potential in log
analysis, yet they cannot be directly applied to log-based fault
diagnosis due to limited specialized capabilities and domain-
specific insights. Furthermore, LLMs have limitations in context
length and are too diverse to select a suitable one. To address
these issues, this paper presents LogInsight, a framework that
enables accurate and interpretable log-based fault diagnosis
using LLMs. We fine-tune a medium-sized, open-source LLM
to incorporate domain expertise and leverage its interpretive
capability. Additionally, we design a Fault-Oriented Log Sum-
mary (FOLS) module to extract essential information from log
sequences, mitigating LLMs’ context length limitation. Extensive
evaluations on two public datasets and a real-world production
dataset demonstrate LogInsight’s superiority over state-of-the-art
methods in both performance and interpretability.

Index Terms—log-based fault diagnosis, log analysis, large
language models, interpretability

I. INTRODUCTION

IN modern large-scale and complex online service systems,
faults can disrupt interdependent services, significantly

degrade system performance, and impact millions of users [1].
If these faults are not promptly mitigated, they can result in
severe consequences and substantial financial losses [2]. When
a fault occurs, the system generates extensive logs containing
vital information about the underlying issue [3]. Operations
and Maintenance (O&M) engineers analyze these logs to
diagnose the fault, a process that involves fault triage, which is
indispensable for prioritizing remediation efforts and assigning
the fault to the appropriate team for resolution [4]. Effective
fault diagnosis not only accelerates recovery times but also
minimizes the risk of cascading failures [5]. Consequently,
log-based fault diagnosis plays a critical role in ensuring the
reliability and stability of online services [6].

Manual log analysis is inherently time-consuming and labor-
intensive, posing significant challenges for O&M engineers
tasked with managing the massive and complex log data gen-
erated by large-scale systems [6]. To address these challenges,
automated log-based fault diagnosis leveraging machine learn-
ing and deep learning algorithms has emerged as a promising
solution [7]. Despite significant advancements in this field [8]–
[10], existing approaches often suffer from a critical limitation:
poor interpretability. Most approaches focus on producing
diagnostic results without providing clear explanations for

these outcomes, which can hinder O&M engineers’ ability to
trust and act on the recommendations effectively [11].

Interpretable fault diagnosis goes beyond merely triaging
faults; it provides the rationale behind the triage results, en-
abling O&M engineers to quickly and accurately assign faults
to the appropriate teams while fostering a better understanding
of the results and facilitating targeted mitigation measures. As
illustrated in Fig. 1, the transition from traditional fault diag-
nosis to interpretable methods fosters a more transparent and
informed approach, bolstering confidence in decision-making
and enhancing the overall reliability of fault management
systems.

Recently, large language models (LLMs) have demonstrated
promising capabilities across various natural language pro-
cessing (NLP) tasks [12], [13]. Trained on vast datasets
encompassing code [14] and log data [15], LLMs have the
potential to provide a more comprehensive and context-aware
understanding of logs. Several studies have explored the ap-
plication of LLMs in log analysis [11], [16], [17]. However,
leveraging LLMs for interpretable fault diagnosis faces the
following challenges:

1) LLMs’ lack of domain expertise. LLMs are not specif-
ically trained for fault diagnosis and often lack the
domain-specific skills and contextual understanding re-
quired to perform fault diagnosis effectively. Conse-
quently, directly applying LLMs to log-based fault di-
agnosis may result in poor performance.

2) LLMs’ limitations in context length. Fault diagnosis
typically requires analyzing extensive logs, yet LLMs
have limited context length, making it impractical to
input all logs at once. Although recent researche has
focused on extending the context length of LLMs [18],
[19], challenges persist due to the exponential increase in
computational demands and accuracy degradation [20].

To address the above challenges, we propose LogInsight, a
framework for accurate and interpretable log-based fault diag-
nosis using LLMs. Specifically, we fine-tune a medium-sized,
open-source LLM to incorporate domain-specific knowledge
and design a Fault-Oriented Log Summary (FOLS) module to
extract critical information from each log sequence, thereby
mitigating LLMs’ inherent context-length limitations.

We conduct comprehensive evaluations on two public
datasets and one production dataset. The results demonstrate
that LogInsight achieves the highest average F1 score in fault
diagnosis, outperforming state-of-the-art baseline methods by
36.9%, 12.8%, and 7.3%, respectively. Additionally, LogIn-
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Raw Log
2020-09-21 05:45:39 Processor CPU1 Status | Configuration Error | Asserted

2020-09-21 05:45:40 Processor CPU2 Status | Configuration Error | Asserted

2020-09-21 05:46:30 System ACPI Power State ACPI State | S4/S5: soft-off | Asserted

2020-09-21 05:46:31 Memory DIMM100 | Presence Detected | Deasserted

2020-09-21 05:46:31 Memory DIMM130 | Presence Detected | Deasserted

Traditional
Fault Diagnosis

Hardware Fault

Interpretable Fault Diagnosis

Which type

of fault?

The log indicates a critical hardware fault. Both CPUs encountered configuration

errors, leading the system to enter a soft-off state (S4/S5)...

Explanation

Hardware Fault

Which type

of fault?

Fig. 1. Comparison between Traditional Fault Diagnosis and Interpretable Fault Diagnosis.

sight enhances interpretability by providing justifications for
its diagnostic outcomes, supporting more informed decision-
making for O&M engineers.

In summary, the main contributions of this paper are as
follows:

• We propose a practical framework for log-based fault
diagnosis using LLMs that provides explanations for fault
triage results.

• We design a Fault-Oriented Log Summary (FOLS) mod-
ule to address LLMs’ context-length limitations, enabling
the processing of large log volumes essential for fault
diagnosis.

• We conduct extensive evaluations on three real-world
log datasets to validate the effectiveness of LogInsight,
particularly its ability to provide interpretable results
while achieving superior performance compared to ex-
isting state-of-the-art methods.

II. BACKGROUND

A. Log-Based Fault Diagnosis

When a fault occurs in a system, O&M engineers are re-
sponsible for performing triage, diagnosing the root cause, and
promptly implementing mitigation measures. Fault diagnosis,
which encompasses fault triage, generally involves analyzing
log data generated during the fault period—referred to as fault-
related log data—serving as the primary source of diagnostic
information [3]. However, the sheer volume of this data can
be overwhelming, making manual review both labor-intensive
and time-consuming and often delaying responses to critical
faults [6].

To reduce manual workload, O&M engineers often create
heuristic rules based on their experience to aid in log retrieval
and fault identification. While useful, these heuristics have
notable limitations. First, manually creating and updating
rules is labor-intensive, especially as system requirements
and configurations evolve. Second, heuristic-based diagnosis
is prone to errors, leading to misdiagnoses and ineffective
mitigation strategies [8]. As a result, automated log-based fault
diagnosis using machine learning and deep learning techniques
has gained significant attention [3], [7], [8], [21].

B. Large Language Models
In recent years, large language models (LLMs) have trans-

formed the field of natural language processing (NLP), draw-
ing significant interest from researchers and practitioners.
OpenAI’s introduction of GPT [22] demonstrated the potential
of models pre-trained on large datasets and fine-tuned for
specific tasks, paving the way for models like BERT [23],
T5 [24], and GPT-3 [25]. More recently, advancements such
as ChatGPT have broadened the application of LLMs, provid-
ing highly conversational interfaces with remarkable dialogue
capabilities. This trend has continued with OpenAI’s GPT-
4 [26], Meta AI’s LLaMA [27], and Google’s PaLM [28].

LLMs are predominantly built on the Transformer archi-
tecture [29] and are trained on extensive datasets using self-
supervised learning objectives. They generate text autoregres-
sively—predicting one token at a time—until a sequence is
complete [30]. At the core of the Transformer is the self-
attention mechanism, which allows models to capture de-
pendencies across sequences; however, its computational cost
is high, with memory and processing requirements growing
quadratically with input length. This constraint makes handling
long text inputs challenging, as information relevance can
diminish over extended contexts, leading to issues such as
attention dispersion.

Despite these challenges, LLMs’ extensive pre-training on
datasets that include code and log data makes them promising
candidates for log-based fault diagnosis. Effectively applying
LLMs to these tasks has become a research priority, with
fine-tuning task-specific datasets emerging as the dominant
approach.

C. Pre-training & Fine-tuning
The introduction of BERT [23] marked a pivotal shift in

NLP, establishing the pre-training and fine-tuning paradigm.
This paradigm involves first pre-training language models
on large, diverse datasets to capture general linguistic and
semantic patterns, then fine-tuning them on domain-specific
data to meet the specific needs of downstream tasks. While
general-purpose LLMs exhibit robust language understanding,
they may underperform in specialized domains, where fine-
tuning is essential for achieving optimal performance.
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Fine-tuning entails additional training of a pre-trained model
on domain-specific data, aligning the model more closely with
the nuances of a specific application. There are two primary
approaches to fine-tuning large models:

• Full Parameter Fine-Tuning: This approach involves up-
dating all parameters of the pre-trained model with task-
specific data, allowing comprehensive adaptation to the
new domain. While full parameter fine-tuning demands
substantial computational resources, it fully leverages the
model’s pre-trained features, enabling deep task-specific
customization.

• Parameter-Efficient Fine-Tuning (PEFT): PEFT selec-
tively updates a small subset of the model’s parameters
or adds a small number of parameters, thereby reducing
computational costs and training time. This is particu-
larly useful when resources are constrained, and includes
methods such as Prefix Tuning [31], Prompt Tuning [32],
Adapter Tuning [33]–[35], and LoRA [36], [37]. By
concentrating on updating specific components, PEFT
provides a resource-efficient method for model adaptation
without sacrificing effectiveness.

In summary, fine-tuning provides a critical mechanism for
adapting powerful language models to specialized domains,
significantly enhancing their applicability and efficacy in prac-
tical, domain-specific applications.

III. RELATED WORK

A. Log-Based Fault Diagnosis

With advances in machine learning and deep learning,
numerous approaches have been developed for automating log-
based fault diagnosis. These approaches can be categorized
into three main types:

Machine Learning-Based Methods: This type of method
typically converts log events into vector representations for
clustering and classification. For example, LogCluster [7]
employs TF-IDF to represent log sequences as weighted
vectors and utilizes hierarchical clustering, while Cloud19 [3]
leverages word2vec embeddings to capture semantic features
and classify faults. However, both approaches are challenged
by the presence of noise and redundant log data, which can
impact diagnostic accuracy.

Deep Learning-Based Methods: More recent deep learning-
based methods have enhanced fault diagnosis capabilities,
particularly for complex log patterns. MoniLog [38], for in-
stance, is a distributed, real-time anomaly detection framework
for large-scale systems that monitors structured log streams
to detect sequential and quantitative anomalies. It identi-
fies faults within log sequences and categorizes anomalies
based on severity. Another example, SwissLog [39], combines
semantic and temporal embeddings to diagnose faults that
involve changes in log sequence order or timing intervals.
Nevertheless, both methods may produce false positives or
fail to detect critical issues when log data is ambiguous or
complex.

Data Mining-Based Methods: Data mining-based methods
enhance diagnostic detail by extracting richer information
from logs. LogBASA [40] incorporates a pre-trained BERT

model to capture semantic relationships within log event
sequences, using system behavior analysis to improve diag-
nostic efficiency in response to anomalies. LogKG [8] takes
a different approach by constructing a knowledge graph of
entities and relationships extracted from logs. This graph,
combined with a fault-oriented log representation module,
leverages OPTICS clustering [41] to analyze fault patterns and
perform online fault diagnosis. While these methods perform
well with specific log formats, their applicability across varied
log structures remains limited.

In summary, these methods have some unique advantages,
but they all share a common shortcoming: lacking the ability to
provide interpretable explanations for fault diagnosis results.

B. LLM-Based Log Analysis
The prevalence of LLMs has attracted considerable interest

in applying them in log analysis tasks, particularly in log
parsing and log anomaly detection.

LLM-Based Log Parsing: Log parsing, the process of trans-
forming raw logs into structured data, serves as the foundation
of the typical log analysis workflow. Recent research has
explored using LLMs to improve log parsing. For instance,
DivLog [42] leverages the in-context learning (ICL) capabil-
ity of LLMs, using diverse log samples as guiding exam-
ples to achieve accurate parsing across varied log formats.
LILAC [43] enhances parsing precision and efficiency by
combining LLMs with an Adaptive Parsing Cache, which
stores refined templates for rapid retrieval and incorporates
hierarchical candidate sampling to further optimize ICL per-
formance.

LLM-Based Log Anomaly Detection: Detecting anomalies
within logs is essential for fault identification and early
warning. Recently, LLMs have emerged as valuable tools for
enhancing anomaly detection. For example, LogPrompt [11]
employs a prompting strategy tailored for log analysis, en-
abling zero-shot parsing and anomaly detection without exten-
sive model fine-tuning. LogGPT [16], based on the ChatGPT
framework, uses the interpretive capabilities of LLMs for
anomaly detection, although it does not explicitly classify
fault types. SeaLog [44] utilizes a Trie-based Detection Agent
for real-time anomaly detection, incorporating expert insights,
including those informed by LLMs, to enhance detection
accuracy. RAGLog [45] combines a Retrieval-Augmented
Generation (RAG) LLM with a vector database, enabling
effective handling of log volume, variety, and velocity in
anomaly detection scenarios.

Additionally, there is research exploring the use of LLMs
for log generation. UniLog [46] serves as an automatic logging
framework that exploits LLMs’ ICL abilities to autonomously
generate logging statements, offering a versatile and minimally
tuned solution that caters to diverse organizational and devel-
oper logging needs.

While these studies highlight the capabilities of LLMs
in log analysis tasks such as log parsing and log anomaly
detection, the application of LLMs specifically for log-based
fault diagnosis remains underexplored. This gap highlights the
need for approaches that address the distinct requirements of
interpretable fault diagnosis in log analysis.
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Fault Cases

Raw Logs

GPT 4
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Instruction: 
{ Fault Analysis }
{ Input Data }
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{ Reason: The fault is 
classified as a CPU type 
because ... }
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Manual 
Verification

Clustering-Based 
Content Aggregation

Fault-Oriented Log Summary (FOLS)

Knowledge Injection Supervised Fine-tuning

Log Content 
Sequence

Instruction
Dataset

Fault Summary

TF-IDF-Based 
Content Ranking

Log Preprocessing Fine-Tuned LLM
Fault Type Explanation

Offline stage

Online stage

Fine-tuning

Fig. 2. The overall framework of LogInsight.

IV. APPROACH

In this section, we introduce the details of LogInsight. Fig. 2
shows the overall framework of LogInsight, which consists of
four main components: Log Preprocessing, which organizes
raw log entries into structured log sequences; Fault-Oriented
Log Summary (FOLS), which extracts key information from
log sequences; Knowledge Injection, which generates an
explanation for each fault summary using GPT-4, followed by
manual verification of the explanation; and Supervised Fine-
tuning, which fine-tunes an LLM using an instruction dataset.
Next, we explain each component in detail.

Raw Logs

2024-01-01 10:05:14 INFO: Reading data from /home/user/file.txt
2024-01-01 10:05:14 DEBUG: Setting block size to 2020180
2024-01-01 10:05:14 ERROR: /home/user/file.txt does not exist

Date Time Level Content

2024-01-01 10:05:14 INFO Reading data from /home/user/file.txt

2024-01-01 10:05:14 DEBUG Setting block size to 2020180

2024-01-01 10:05:14 ERROR /home/user/file.txt does not exist

Structured Logs

Log Content Sequence

Reading data from /home/user/file.txt
Setting block size to 2020180
/home/user/file.txt does not exist

Fig. 3. The workflow of Log Preprocessing.

A. Log Preprocessing

This component preprocesses log data for subsequent anal-
ysis. Suppose a fault occurs at time t, we first collect raw
logs generated within the time frame [t−w : t] for this fault,
where w is determined according to the requirement of the
application scenario. We then transform these raw logs into a
log content sequence to facilitate analysis. Unlike traditional
log analysis methods, LogInsight does not require log parsing,
as it utilizes LLMs to understand the content of the raw logs.

Fig. 3 illustrates the log preprocessing process, where reg-
ular expressions are used to structure the raw logs and extract
the Content field from each log entry, forming a sequence
of log contents. This resulting sequence removes redundant
and irrelevant fields from the original logs, providing more
detailed information than the log template sequences typically
generated through log parsing.

B. Fault-Oriented Log Summary

To address Challenge 2: LLMs’ limitations in context length,
we design the Fault-Oriented Log Summary (FOLS) module.
Through an extensive analysis of fault cases, we observed
that logs generated during failure periods often contain a
large amount of redundant and noisy information while the
truly valuable diagnostic clues are sparse and rarely repeated.
Moreover, different types of faults are characterized by distinct
log patterns, making it challenging to identify key information
using simple heuristics. These insights motivated the develop-
ment of the FOLS module, which is specifically tailored to
identify and highlight meaningful and unique content within
large, repetitive datasets.

Given the substantial size of raw logs required for fault
diagnosis and the context-length constraints of LLMs, FOLS
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Clustering-Based
Content Aggregation

TF-IDF-Based
Content Ranking

Fig. 4. The workflow of the FOLS module, where different shapes represent log contents of different types.

aims to extract essential information while significantly re-
ducing input length. As illustrated in Fig. 4, this approach
makes the time and memory overhead of feeding logs into
LLMs manageable. Specifically, FOLS employs two opera-
tions: Clustering-Based Content Aggregation to group similar
log entries and reduce redundancy, and TF-IDF-Based Content
Ranking to prioritize log messages that are most informative
for fault diagnosis.

1) Clustering-Based Content Aggregation: The log data
for a fault case can exhibit complex correlations. To ensure
the diversity of summarized sequences and capture faults
from different perspectives, we group related logs together
by clustering. This allows subsequent analysis to focus on a
small subset of logs from each cluster rather than all logs.
This operation consists of three steps:

(i) Distance Measurement. Given N log contents to be
clustered, we create an N ×N distance matrix to record the
distance between each pair of log contents. We choose the
Jaccard distance, which can measure syntactic-level similarity
between two log contents [47]. The Jaccard distance is defined
based on the intersection and union of the token sets from two
log contents, effectively capturing their overlap and diversity.

Since each log content can be represented as a set of tokens,
the Jaccard distance between two log contents x and y is
defined as follows:

d(x, y) = 1− |X ∩ Y|
|X ∪ Y|

, (1)

where X and Y are the token sets of log content x and y,
respectively. It can be seen that the Jaccard distance is between
0 to 1.

(ii) Clustering. After obtaining the distance matrix, we
apply the DBSCAN [48] algorithm to cluster all log contents.
DBSCAN is a density-based spatial clustering algorithm that
partitions regions with sufficient density into clusters, capable
of discovering clusters of arbitrary shapes in a spatial database
with noise. Compared to other popular clustering algorithms,
such as k-means [49], DBSCAN does not require the number
of clusters to be specified in advance and can effectively
cluster dense datasets of varying shapes. DBSCAN has two
key parameters: ϵ, which describes the maximum neighbor-
hood distance for a point, and MinPts, which indicates the
minimum number of points required for a cluster. We set these
values as recommended in [48].

(iii) Representative Log Content Selection. After clustering,
the log contents within each cluster are similar, so analyzing
a single log content from each cluster can reveal the overall
pattern. Without loss of generality, we select the centroid of

each cluster as its representative log content and discard the
rest. For a cluster with n log contents, the centroid is the log
content that has the minimum average distance to all others
within the cluster, formulated as follows:

centroid = arg min
xi∈cluster

1

n

n∑
j=1

d (xi, xj) , (2)

where d(xi, xj) is the Jaccard distance between log contents
xi and xj .

2) TF-IDF-Based Content Ranking: Often, some logs unre-
lated to the fault may appear multiple times. To mitigate this is-
sue, we propose a TF-IDF-based ranking algorithm to evaluate
the importance of each log content and filter out the less signif-
icant ones. TF-IDF [50] is a widely used weighting technique
in information retrieval and data mining [7], comprising two
parts: Term Frequency (TF) and Inverse Document Frequency
(IDF). TF measures how frequently a term appears, while IDF
reduces the weight of common terms, assigning them a smaller
weight inversely proportional to their frequency.

Specifically, for a given log content, we first tokenize it into
a token list T = [t1, t2, ..., tn]. The TF of an arbitrary token
t is calculated as follows:

TF (t) =
nt

n
, (3)

where nt is the number of appearances of token t in T and n
is the total number of tokens in T. The IDF is calculated as:

IDF (t) = log
N

nt + 1
, (4)

where N is the total number of faults and nt is the number of
faults whose logs contain token t. After obtaining the TF and
IDF for each token, the score of a log content is calculated
as:

score =
∑

i
TF (ti)× IDF (ti). (5)

After ranking all log contents in descending order according
to their respective scores, those falling below a predefined
threshold are excluded. The remaining high-scoring log entries
are retained as the fault summary and are then reordered to
follow their original chronological order.

C. Knowledge Injection

To address Challenge 1: LLMs’ lack of domain expertise,
we introduce a knowledge injection step. General LLMs often
lack the specialized capabilities required for effective log-
based fault diagnosis. To address this gap, we inject domain
knowledge into LLMs through fine-tuning. The quality of the
training data is a crucial factor in determining the performance
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Instruction: Your task is to determine what type of fault a given set of log
information belongs to. Here are the possible fault types in our data 
scenario: {placeholder}. Please determine its fault type based on the log 
sequence I input and provide your explanation.
Input: Log sequence: [placeholder]
Output: Answer: 

Fig. 5. Example structure of a data item in LFDInstruction.

of LLMs [51]. To this end, we curated a high-quality dataset
called LFDInstruction, specifically designed for log-based
fault diagnosis.

We first enlisted O&M experts to collect log data for a
wide range of faults and then employed the Fault-Oriented Log
Summary (FOLS) module to generate concise summaries for
each fault. These summaries serve as inputs, while the correct
fault diagnoses and detailed analyses act as outputs. These
input-output pairs, along with carefully crafted instructions,
comprise the LFDInstruction dataset. Fig. 5 illustrates the
structure of a data item in this dataset.

To streamline the dataset creation process and reduce
manual labor, we initially utilized GPT-4 [26] to generate
preliminary outputs. This generation process was carefully
designed to ensure that the content was both contextually
relevant and diverse. However, recognizing the limitations of
automated content generation, we implemented a validation
approach: expert reviewers meticulously evaluate each output
sequence. This manual review process involves a comprehen-
sive assessment of the fault analyses in relation to the cor-
responding logs, allowing experts to correct any inaccuracies
or inconsistencies in the diagnoses. This combined strategy of
automated generation followed by expert validation not only
reduces labor costs but also significantly enhances the overall
quality of the data.

D. Supervised Fine-tuning

We employed LoRA [36] to conduct supervised fine-tuning.
As previously mentioned, for log-based fault diagnosis, we
developed the LFDInstruction dataset as our training corpus.
This dataset comprises a series of triplets {xi, yi, Ii}, where xi

represents the input sequence, yi denotes the output sequence,
and Ii is the corresponding instruction.

The primary objective of this process is to optimize an LLM
(denoted as M ), enabling it to generate the output sequence
by modeling the relationship yi = M(xi, Ii). To facilitate this,
we concatenate the instruction Ii and the input sequence xi

before feeding them into model M . The fine-tuning process
aims to minimize the error between the model’s output and
the actual diagnoses by minimizing a loss function L, defined
as:

θ∗ = argmin
θ

1

N

N∑
i=1

L (Mθ(xi, Ii), yi) (6)

where θ represents the model parameters, N is the number of
training samples, and Mθ(xi, Ii) denotes the model’s predicted
output given input xi and instruction Ii. Through iterative

TABLE I
DETAILS OF THE DATASETS FOR EVALUATION

Dataset Log Entries Log Templates Fault Types Fault Cases

Dataset 1 282,537 157 3 2,671

Dataset 2 1,461,006 727 6 93

Dataset 3 178,773 99 9 2,267

training, we aim to find the optimal parameters θ∗ that
minimize the average loss, thereby enhancing the model’s
accuracy in generating the correct diagnosis.

V. EVALUATION

In this section, we evaluate our approach, LogInsight, by
addressing the following research questions:

• RQ1: How effective is LogInsight in log-based fault
diagnosis compared to state-of-the-art methods?

• RQ2: Can LogInsight meet the efficiency requirement for
online deployment?

• RQ3: How does the FOLS module affect the performance
of LogInsight?

• RQ4: Can LogInsight provide useful and comprehensible
explanations for the results?

• RQ5: Is LogInsight compatible with different LLMs?

A. Datasets

We conduct experiments using two public log datasets and
a production log dataset from China Mobile Communications
Group Co., Ltd. (CMCC), a leading global Internet Service
Provider (ISP).

Table I summarizes key details of these three datasets,
including the number of log templates identified by the
Drain [52] algorithm.

Dataset 11: This dataset consists of logs from servers
in real-world business environments, including server serial
numbers (SN), server models (SM), fault times, and associated
message information for each fault. There are a total of 2,671
fault cases, which are categorized into three types: Processor
CPU Caterr, Memory Constraint Error, and Hardware Error. To
retrieve fault-related logs, we organized logs chronologically
by timestamp and extracted logs in the 12 hours preceding
each fault occurrence.

Dataset 22: Sourced from OpenStack, a widely adopted
open-source cloud computing platform [53], this dataset in-
cludes 1,461,006 log entries spanning 93 fault cases collected
over 24 days. The logs cover six fault types: AMQP Server Un-
reachable, MySQL Lost Connection, Computing Node Down,
Flavor Disk Too Small, Linuxbridge-agent Anomalies, and
Nova-conductor Lost Connection.

Dataset 3: This dataset contains network device logs from
CMCC’s production environment, which supports 4G/5G core
networks for a global user base. The dataset includes alarm

1Available at https://tianchi.aliyun.com/competition/entrance/531947/
information

2Avaialable at https://github.com/SycIsDD/LogKG
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TABLE II
EVALUATION OF BASE MODEL

LLM
Dataset 1 Dataset 2 Dataset 3

Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1

Mistral-7B 0.451 0.218 0.508 0.302 0.212 0.292 0.489 0.483 0.591
Qwen1.5-7B 0.431 0.175 0.351 0.209 0.057 0.088 0.218 0.173 0.232
LLaMA2-7B 0.187 0.063 0.189 0.139 0.068 0.098 0.044 0.039 0.055
Gemma-7B 0.151 0.050 0.166 0.069 0.053 0.082 0.056 0.046 0.056

logs collected from 322 switches over one year, totaling
178,773 log entries across nine fault types: Power Supply
Fault, Fan Fault, Optics Module Fault, Port Flapping Fault,
CRC Error, STP Fault, BFD Down, LACP Flapping, and OSPF
Neighbor Flapping.

For each dataset, we randomly select 50 fault cases to
construct the LFDInstruction dataset for fine-tuning, with
the remaining cases for testing. We manually verify that
the LFDInstruction dataset includes all fault types to ensure
comprehensive coverage during fine-tuning.

Prompt: Your task is to determine what type of fault a given set of log
information belongs to. Here are the possible fault types in our data 
scenario: {placeholder}. Please determine its fault type based on the log 
sequence I input and provide your explanation.

Fig. 6. The prompt used for log-based fault diagnosis.

B. Baseline Methods

We select three state-of-the-art log-based fault diagnosis
methods as baselines: an unsupervised method, LogCluster [7],
and two supervised methods, Cloud19 [3] and LogKG [8]. To
ensure fairness, we set the hyperparameters according to the
descriptions provided in the respective papers. Specifically,
LogCluster utilizes a hierarchical clustering algorithm with
a distance threshold of 0.5. For LogKG, we set the FOLR
model threshold to 0.5, and configure the OPTICS clustering
algorithm with a minimum of 10 samples per cluster.

To further demonstrate the importance and advantage of
fine-tuning, we compared LogInsight with GPT-4 using the
same prompt, as illustrated in Fig. 6

C. Evaluation Metrics

Fault diagnosis can be framed as a multi-class classifi-
cation problem. To evaluate the effectiveness of LogInsight,
we employ the following three metrics: Micro-Averaged F1-
score (Micro F1), Macro-Averaged F1-score (Macro F1), and
Weighted-Averaged F1-score (Weighted F1) [54].

Macro F1 calculates the F1 score for each class and then
averages these scores across all classes. This metric assigns
equal weight to each class, regardless of class size, providing
insight into performance across all classes. The formula is as
follows:

Macro F1 =
1

N

N∑
i=1

F1i (7)

where N is the total number of classes.
Micro F1 aggregates True Positives (TP), False Positives

(FP), and False Negatives (FN) across all classes to calculate
overall precision and recall. This metric is particularly suitable
for handling imbalanced class distributions, as it weights each
instance equally across classes. The formulas are as follows:

Precisionmicro =

∑
TP∑

TP +
∑

FP
(8)

Recallmicro =

∑
TP∑

TP +
∑

FN
(9)

F1micro =
2 · Precisionmicro · Recallmicro

Precisionmicro + Recallmicro
(10)

Weighted F1, meanwhile, computes a weighted average of
the F1 scores, factoring in the number of samples in each
class. This approach gives greater influence to larger classes,
ensuring that the metric reflects the overall distribution. The
formula for Weighted F1 is:

F1weighted =

N∑
i=1

wi · F1i (11)

where wi is the proportion of samples in class i.

D. Implementation Details

All experiments are conducted on an Ubuntu 18.04 LTS
server with two Intel(R) Xeon(R) Gold 6430 CPUs, each
offering 64 cores and 128 threads, and two NVIDIA A800-
80GB GPUs. In selecting the base model, we evaluated
several options. Given the constraints of memory and time,
we chose four open-source LLMs, each with approximately
7 billion parameters, as candidates: Mistral-7B, Qwen1.5-7B-
Chat, LLaMA2-7B, and Gemma-7B. As shown in Table II,
Mistral-7B demonstrated superior performance compared to
the other models, leading us to select Mistral-7B as our base
model.

For supervised fine-tuning, we configure the learning rate
to 10−4, the weight decay to 0.1, the batch size to 16, and
the maximum token limit to 4096. We utilize LoRA [36] for
parameter-efficient fine-tuning, setting the rank to 8 and the
alpha parameter to 32, with a dropout rate of 0.05 to prevent
overfitting.
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TABLE III
PERFORMANCE COMPARISON BETWEEN LogInsight AND THE BASELINES

Method
Dataset1 Dataset2 Dataset3

Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1

LogInsight 0.884 0.883 0.883 0.998 0.998 0.997 0.997 0.997 0.997
GPT-4 0.498 0.446 0.490 0.814 0.696 0.751 0.896 0.812 0.924

LogCluster 0.502 0.474 0.474 0.906 0.800 0.869 0.768 0.659 0.756
Cloud19 0.521 0.514 0.514 0.837 0.780 0.830 0.739 0.638 0.720
LogKG 0.446 0.377 0.377 0.739 0.664 0.677 0.676 0.478 0.557

TABLE IV
EFFICIENCY COMPARISON BETWEEN LogInsight AND THE BASELINES

Method
Dataset 1 Dataset 2 Dataset 3

Offline Online Offline Online Offline Online

LogInsight 1802.28s 2.707s 4052.58s 8.541s 1977.11s 2.819s
GPT-4 - 1.637s - 2.516s - 1.124s

LogCluster 29.20s <0.01s 9.41s <0.01s 8.42s <0.01s
Cloud19 52.79s <0.01s 228.52s <0.01s 15.721s <0.01s
LogKG 140.46s 0.56s 1662.78s 8.12s 137.64s 0.71s

E. Results and Analysis

1) RQ1: How effective is LogInsight in log-based fault
diagnosis compared to state-of-the-art methods?

Table III presents the overall performance comparison on
the three datasets, showing that LogInsight consistently out-
performs all baseline methods across all evaluation metrics.

Specifically, LogInsight achieves Weighted F1 scores of
0.883, 0.997, and 0.997 on the three datasets, representing
improvements of 36.9%, 12.8%, and 7.3% over the best-
performing baseline method, respectively. The performance
gains are especially pronounced on Dataset 1, likely due to the
dataset’s complex fault patterns, which challenge traditional
methods. In contrast, the simpler log patterns in Datasets 2
and 3 allow all methods to triage faults accurately, albeit
LogInsight still demonstrates superior performance.

Additionally, we observe that baseline methods consistently
produce lower Macro F1 scores compared to their Micro and
Weighted F1 scores, suggesting they struggle to handle imbal-
anced fault types effectively. LogInsight, however, maintains
high stability across all metrics, demonstrating adaptability
to varying data distributions. This advantage stems from
LogInsight’s utilization of an LLM, which effectively captures
the semantic content of log data, thereby facilitating more
accurate fault triage. In contrast, traditional methods cannot
fully exploit the rich semantic information inherent in log
messages.

Furthermore, when compared to GPT-4, LogInsight demon-
strates superior performance across all datasets. This improve-
ment is attributed to the model’s fine-tuning with domain-
specific data, which enhances its diagnostic performance and
enables it to outperform general-purpose LLMs in specialized
fault diagnosis tasks.

2) RQ2: Can LogInsight Meet the Efficiency Requirement
for Online Deployment?

To evaluate the efficiency of LogInsight, we measure the
time required to diagnose each fault case and calculate the
average diagnosis time on each dataset. The results are shown
in Table IV, from which we can see that LogInsight takes
2.7s, 8.5s, and 2.8s on average to diagnose a fault in the three
datasets, respectively.

LogInsight is built upon LLMs, which inherently involve
substantial computational overhead during both training and
inference due to their massive parameter sizes and complex
architectures. As a result, the time cost for model inference
is generally higher than that of traditional baseline methods.
Despite this, our results demonstrate that LogInsight can still
complete fault diagnosis within an average of 8.5 seconds
per case, which is well within the acceptable range for real-
time online deployment scenarios. This efficiency is sufficient
to significantly reduce the manual diagnosis workload while
meeting the latency requirements of practical applications.

3) RQ3: How Does the FOLS module Affect the Perfor-
mance of LogInsight?

We further investigate the effect of the Fault-Oriented Log
Summary (FOLS) module on LogInsight’s performance. To
this end, we remove the FOLS module and feed the log content
sequences directly into the fine-tuned LLM, constrained by a
maximum token limit of 8192 to include as much log data as
possible.

Additionally, to evaluate the effectiveness of clustering in
improving log summarization, we create several variants by
replacing the DBSCAN algorithm in the Clustering-Based
Content Aggregation module with different clustering and log
parsing techniques. These include K-means [49], Hierarchical
Agglomerative Clustering (HAC) [55], Drain [52], and two
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TABLE V
ABLATION STUDY OF THE FOLS MODULE

Method
Dataset 1 Dataset 2 Dataset 3

Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1

LogInsight 0.884 0.883 0.883 0.998 0.998 0.997 0.997 0.997 0.997
LogInsight w/o FOLS 0.773 0.626 0.767 0.470 0.326 0.382 0.806 0.505 0.838

LogInsight with K-means 0.821 0.814 0.819 0.837 0.833 0.833 0.918 0.879 0.934
LogInsight with HAC 0.814 0.789 0.806 0.874 0.873 0.873 0.917 0.878 0.933

LogInsight with Drain 0.811 0.813 0.813 0.814 0.551 0.784 0.908 0.718 0.918
LogInsight with DivLog 0.769 0.770 0.770 0.733 0.578 0.636 0.877 0.763 0.884
LogInsight with LILAC 0.810 0.817 0.816 0.818 0.603 0.783 0.907 0.794 0.917

TABLE VI
HUMAN SCORING CRITERIA FOR EVALUATING THE INTERPRETABILITY OF LogInsight.

Scores Usefulness Readability

1 No justification for the fault, only a simple
prediction label.

The text contains numerous unintelligible elements
or grammatical errors.

2 The justification is irrelevant or logically
inconsistent with the facts.

Most of the text is readable, but it may contain
grammar errors or unclear phrases.

3 The justification supports the prediction well,
but lacks clarity or sufficient detail.

The text has few grammar errors, though some
terms may need refinement.

4
The justification is specific, accurate, and relevant,
helping engineers to reduce false alarms and guide
further analysis.

The text is clear, grammatically correct, with only a
few technical terms that may require refinement.

5
The justification is detailed, relevant, and clear,
significantly aiding engineers in ruling out false
alarms and identifying the root cause.

The text is clear, detailed, grammatically flawless,
and professional for software engineering.

LLM-based parsing methods, DivLog [42] and LILAC [43].
Table V reveals a marked decrease in LogInsight’s diag-

nostic performance when the FOLS module is removed. This
decline can be attributed to two primary factors: (i) the raw log
sequences contain redundancy and noise, leading to reduced
information entropy; and (ii) the LLM’s input token limits
necessitate truncating log data, which risks omitting critical
information.

Furthermore, the results show that clustering methods gener-
ally outperform log parsing methods in terms of accuracy. This
is primarily due to the inherent parsing errors in these methods,
which negatively impact downstream processing. The use of
placeholders (e.g., ”*”) in parsed content can mislead the
LLM during fault analysis, thereby compromising diagnostic
performance.

In general, the findings underscore the importance of the
FOLS module in improving the robustness and effectiveness
of LogInsight, particularly in managing the complexities and
nuances of log data.

4) RQ4: Can LogInsight Provide Useful and Comprehen-
sible Explanations for the Results?

To evaluate the interpretability of LogInsight’s outputs, we
enlisted O&M experts from CMCC to assesses the quality of
explanations generated for 200 randomly selected fault cases
from Dataset 3. Figure 8 shows the diagnostic results for two
representative fault cases.

Following the evaluation methodology employed by Log-
Prompt [11], we assess LogInsight’s explanations along two
primary dimensions:

• Usefulness. Reviewers were asked to evaluate the extent
to which the explanations were detailed, specific, relevant,
logically sound, and practical for actual fault diagnosis.

• Readability. Reviewers were asked to assess how easily
a reader could understand the provided text. A text
was considered readable if it was grammatically correct,
meaningful, and professional.

For each evaluation dimension, we use a Likert scale
ranging from one to five, with Table VI providing the detailed
criteria for each level. The scoring system is as follows: 1
- Not Interpretable, 2 - Low Interpretability, 3 - Moderate
Interpretability, 4 - High Interpretability, and 5 - Very High
Interpretability.

Each reviewer independently evaluated all 200 model-
generated explanations, assigning scores for both usefulness
and readability by referencing the original log context from
the corresponding failure incident and adhering to predefined
criteria.

Two key metrics are reported: (1) Mean: the mean score as-
signed by reviewers across all samples; (2) High Interpretabil-
ity Percentage (HIP): the proportion of samples receiving a
score of four or higher.
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LogInsight with Mistral-7B LogInsight with Qwen1.5-7B LogInsight with LLaMA2-7B LogInsight with Gemma-7B
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Fig. 7. The performance of LogInsight with different LLMs as base models.

TABLE VII
INTERPRETABILITY OF LogInsight RATED BY EXPERTS.

Raters
Usefulness Readability

Mean HIP Mean HIP

R1 3.62 62.5% 4.02 87.5%
R2 3.90 85.5% 4.03 85.0%
R3 3.87 79.0% 4.08 87.5%

Avg. 3.80 75.7% 4.04 86.7%

The evaluation results are listed in Table VII. In terms of
usefulness, the average score is 3.80, with a HIP of 75.7%.
This indicates that a majority of the explanations provided
by LogInsight are effective in justifying the diagnosis and
aiding engineers in their analysis. Regarding readability, the
average score is 4.04, with a HIP of 86.7%, demonstrating
that the explanations are grammatically correct and highly
comprehensible. These results suggest that the explanations
generated by LogInsight hold significant potential for assist-
ing O&M engineers in validating fault diagnosis results and
guiding subsequent analyses.

5) RQ5: Is LogInsight Compatible with Different LLMs?
To ensure the long-term effectiveness of LogInsight, it

is essential to evaluate its compatibility with various LLM
architectures and versions. To this end, we test several open-
source models, including Qwen1.5-7B-Chat, LLaMA2-7B,
and Gemma-7B, as replacements for the original base model
used in LogInsight.

As illustrated in Fig.7, LogInsight achieves the highest
performance when utilizing its original base model. However,
it demonstrates comparable results with the alternative LLMs
tested, reflecting its adaptability across diverse architectures.
This compatibility highlights LogInsight’s flexibility and ro-
bustness, ensuring it can maintain satisfactory performance
regardless of the underlying LLM used.

VI. CASE STUDY

To ensure the case study is representative, we randomly
select two fault cases from the dataset and use them, as shown
in Fig. 8, to illustrate the workflow of LogInsight.

Case 1: Port Flapping Fault. For this case, 796 log entries
were retrieved from the 10-minute period leading up to the
fault event. The log entries were then preprocessed into a log
content sequence, filtering out irrelevant data using regular
expressions, after which the FOLS module extracted critical
fault-related information. Using Clustering-Based Content Ag-
gregation, the entries were reduced to 29 distinct logs. TF-IDF-
Based Content Ranking further refined this set, eliminating 11
entries less important and resulting in a distilled summary of
18 key log entries, with notable entries including “Port Down”
and “LACP”.

This summarized information was then combined with
crafted instruction and input into the fine-tuned LLM. As
shown in the upper part of Fig. 8, LogInsight accurately
diagnosed the fault, identifying the root cause as port-down
events triggered by Loss of Signal (LOS) alarms and state
changes in LACP and Smartgroup.

Case 2: Power Supply Fault. In this case, 365 log entries
related to the power supply issue were gathered. Following
preprocessing and summarization by the FOLS module, a fault
summary containing 23 significant log entries was created.

Based on this summary, LogInsight accurately identified the
fault type, as depicted in the lower part of Fig. 8. The output
described power anomalies and voltage irregularities, offering
O&M engineers detailed and actionable information about the
fault.

Overall, these case studies demonstrate the fault summa-
rization capabilities of the FOLS module and highlight LogIn-
sight’s effectiveness in providing interpretable fault diagnosis
results, which can significantly enhance operational decision-
making.

VII. DISCUSSION

A. Lessons Learned

LLM Context Limitations. To assess the impact of LLM
context length constraints, we analyzed the log lengths in our
datasets. As shown in Table VIII, we report the average and
maximum number of log entries, as well as the average log
length per fault case. While the average log length is moderate
for Dataset 1 and Dataset 3, the maximum log length in
many cases far exceeds the LLM’s context window of 4096
tokens. In fact, for the majority of fault cases, the raw log data
cannot fit within the model’s input limit. This is a common
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Port down reason  Interface XXX1 is down, due to Los
LACP protection status changed
Port down reason  Interface XXX2 is down, due to Los
LACP set the smartgroup protocol down
......

Power abnormal  Shelfnum =... groupid =... powerid =2 
Power malfunction alarm
Power input voltage error
Power output voltage error
......

Fault Type: Port Flapping Fault
Explanation: Based on the provided log sequence, the issues primarily involve port 
flapping faults caused by LOS alarms. The logs show multiple ports going down due 
to these alarms. Additionally, there are state changes and down statuses related to 
LACP and the Smartgroup protocol. Therefore, the primary fault type is identified as 
the Port Flapping Fault.

Fault Type: Power Supply Fault
Explanation: The logs explicitly mention "power abnormal" and "Power malfunction 
alarm," indicating an issue with the power system. Additionally, "Power input voltage 
error" and "Power output voltage error" point to the input and output voltages being 
out of the normal range. This information indicates that the fault is a Power Supply 
Fault.

Fault Summary Interpretable Fault Diagnosis

Fig. 8. Two fault cases from Dataset 3.

TABLE VIII
LOG LENGTH STATISTICS FOR EACH FAULT CASE

Dataset Avg. Log Length Avg. Log Entries Max. Log Entries

Dataset 1 7.84 127.88 4996

Dataset 2 5.67 16882.10 58056

Dataset 3 12.41 98.10 37600

challenge for LLM-based systems, as exceeding the token
limit can lead to incomplete or truncated analysis and loss of
critical diagnostic information. To address this, effective log
summarization is essential. Our FOLS module is specifically
designed to extract and condense the most informative log
content, ensuring robust and efficient fault diagnosis even
when log sequences are exceptionally long.

Advantages of Fine-Tuning. To justify our choice of a fine-
tune based approach, we compared prompt-based, RAG-based,
and fine-tuned LogInsight. For the prompt-based method, we
used the same prompts on the base LLM without fine-tuning.
For RAG, we retrieved the top 5 similar historical cases
using SentenceTransformer [56] and cosine similarity, and
provided them as in-context examples to the LLM. As shown
in Table IX, the fine-tuned method significantly outperforms
both alternatives. Fine-tuning enables the LLM to internalize
domain-specific knowledge and follow task instructions more
accurately, resulting in higher-quality and more structured
outputs. In contrast, the base LLM (with or without RAG)
often fails to follow instructions, generates irrelevant or un-
structured content, and struggles to produce outputs in the
required format. This demonstrates that, for specialized tasks
like log fault diagnosis, fine-tuning is essential for reliable and
actionable results.

B. Threats to Validity

Two potential threats may affect the validity of LogInsight:

Requirement for Labeled Data. LogInsight requires la-
beled fault cases for fine-tuning, which may raise concerns
regarding the cost and feasibility of data annotation. However,
our empirical results demonstrate that effective fine-tuning
can be achieved with a relatively small number of labeled
instances, provided that all major fault types are represented.
In our experiments, only 50 labeled fault cases per dataset
were used, with labels provided by experienced operations
engineers. For these experts, categorizing faults is a routine
task, and the labeling effort is minimal. Thus, while the need
for labeled data is a limitation, the burden of data collection
and annotation is relatively low, making the approach practical
for real-world deployment.

Manual Effort. To clarify the effort required for explana-
tion generation, LogInsight first uses GPT-4 to automatically
generate candidate explanations, which are then reviewed by
experts for accuracy. This process significantly reduces the
manual workload, as experts are not required to craft explana-
tions from scratch but merely assess and confirm the generated
outputs. In our experience, two engineers were able to review
50 cases in about one hour. Moreover, this review process is
a one-time effort associated with model training rather than
an ongoing requirement. As a result, the overall annotation
burden is limited and practical for real-world deployment and
future scaling.

C. Limitations

Based on the experimental results, we identify two key
limitations of LogInsight and try to suggest possible solutions:

Challenges of Similar Log Patterns. Some misclassified
cases arise from unclear boundaries between certain fault
types. For example, in Dataset 3, which consists of network
device log data, “Port Failure” and “LACP Flapping” often ex-
hibit highly similar log patterns. This similarity occurs because
a port failure can also lead to LACP instability, resulting in
overlapping log features for both fault types. Consequently, the
model struggles to accurately differentiate between these types
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TABLE IX
PERFORMANCE COMPARISON OF FINE-TUNING, PROMPT-BASED, AND RAG METHODS

LLM
Dataset 1 Dataset 2 Dataset 3

Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1 Micro F1 Macro F1 Weighted F1

LogInsight 0.884 0.883 0.883 0.998 0.998 0.997 0.997 0.997 0.997
Prompt-Based 0.451 0.218 0.508 0.302 0.212 0.292 0.489 0.483 0.591
RAG-Based 0.247 0.209 0.302 0.419 0.356 0.461 0.084 0.050 0.141

using log data alone. To address this limitation, future work
could explore the integration of additional data modalities,
such as system performance metrics or call traces, to provide
richer contextual information.

Challenges with Unknown Fault Types. In the current im-
plementation of LogInsight, the large language model (LLM)
is guided by a prompt that explicitly enumerates all known
fault types for a given use case, enabling it to classify faults
with high accuracy.However, in real-world industrial environ-
ments, previously unseen or unknown fault types frequently
emerge. To mitigate this issue, the prompt includes instructions
for the LLM to classify any unrecognized fault as an “unknown
type.” Despite these precautions, our experimental findings
reveal that the model often misclassifies unknown faults as
one of the predefined types, rather than correctly identifying
them as unknown. This limitation underscores the challenge
of deploying LogInsightin dynamic environments where new
fault types may appear over time. To enhance the robustness
of the system, future research will investigate alternative fine-
tuning strategies. For instance, incorporating external knowl-
edge bases or leveraging self-supervised learning approaches,
rather than relying solely on prompt engineering, may help the
model more effectively recognize and handle unknown fault
types. This could reduce its dependence on predefined types
and improve adaptability in evolving industrial settings.

VIII. CONCLUSION

In this paper, we present LogInsight, a novel framework
utilizing LLMs for effective and interpretable log-based fault
diagnosis. Through fine-tuning a medium-sized, open-source
LLM, we integrated domain-specific knowledge. Additionally,
we designed a Fault-Oriented Log Summary (FOLS) module
to extract essential information from log sequences, effectively
addressing LLMs’ limitations in handling long input contexts,
and thereby enhancing processing efficiency for long texts. Our
extensive experiments on two public datasets and one produc-
tion dataset validate LogInsight’s accuracy and interpretability.
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