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Abstract—Monitoring and fault detection in microservice sys-
tems is crucial for ensuring service stability. However, most
existing methods either rely heavily on labeled data or fail to
model complex spatial-temporal dependencies across services.
To address these limitations, we propose ChronoSage, a spatio-
temporal fault detection framework that integrates GraphSAGE
and Mamba for unified graph-stream-based modeling. Graph-
SAGE captures the evolving topological structures by aggregating
neighborhood features, while Mamba efficiently models long-
range temporal dependencies through a selective state-space
mechanism. We adopt a semi-supervised training strategy to
reduce label dependence and enhance generalization. Experi-
ments on two real-world datasets demonstrate that ChronoSage
achieves superior accuracy and efficiency compared to state-
of-art baselines, such as ART and Eadro. The results validate
ChronoSage’s ability to support system-level fault detection in
dynamic microservice environments, achieveing an F1-score of
0.872 on D1 and 0.972 on D2, surpassing all compared methods.

Index Terms—Microservice Systems; Fault Detection; Multi-
modal Monitoring Data; Spatio-Temporal Model

I. INTRODUCTION

With the development of modern software architecture, mi-
croservice systems have become the mainstream choice by sig-
nificantly improving the elasticity, scalability and development
efficiency of the system [1]. Microservice systems contain a
large number of instances and complex dependencies. Once
a fault occurs, it may degrade service performance, affect the
user experience, and even cause substantial losses. A typical
example occurred in June 2023, when Amazon Web Services
(AWS) experienced a significant outage in its US-EAST-1
region. The incident, lasting over two hours, was attributed
to a fault in the capacity management subsystem of AWS
Lambda, leading to elevated error rates and latencies across
more than 100 services, including API Gateway and the AWS
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Management Console. This disruption impacted numerous
organizations, such as news agencies, airlines, and government
services, highlighting the cascading effects of faults within
microservice architectures [2]. Therefore, timely and accurate
detection of system faults has become one of the key tasks for
maintaining service quality.

We make the following distinctions between anomalies and
faults in microservice systems. Anomalies refer to unexpected
patterns or behaviors in system data that deviate from the
norm [3]. Faults are actual defects or malfunctions within
the system that can cause service degradation or outages [4].
Although anomalies do not invariably precipitate faults, faults
are consistently accompanied by a series of anomalous events.
We adopt “anomaly” when discussing the detection of irregular
patterns in single-modal data and “fault” when referring to the
identification and diagnosis of system-level issues.

Many efforts [5]-[7] have been devoted to anomaly detec-
tion, dealing with only one type of monitor data. This limits
their accuracy and generalization in real-world scenarios.
Metric data can reflect resource usage, but lack contextual
information. Logs provide execution traces, but do not capture
service dependencies. Traces reveal invocation paths but miss
the contextual and performance details of the anomalies. For
example, as shown in Figure 1, under the fault injection of
CPU exhaustion, the trace-based latency remains stable and
does not exhibit obvious anomalous behaviors. In contrast, the
metrics (specifically CPU usage) show abrupt spikes and sus-
tained high usage, clearly reflecting the anomaly. Single-modal
monitoring data typically cannot provide a comprehensive and
accurate characterization of system behavior. Consequently,
relying solely on the anomalous behavior of a single type
of monitoring data is likely to lead to false alarms in fault
detection.
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(b) KPI captures resource anomaly clearly.

Fig. 1: Case Study: Trace fails to reflect CPU-related fault,
while KPI reveals it.

We aim to leverage multi-modal monitoring data to address
the problem of fault detection in microservice systems. Nu-
merous approaches have been proposed, which can be catego-
rized into supervised and unsupervised methods. Supervised
approaches rely on labeled data to learn mappings between
features and anomalies. Early approaches often used SVM or
random forests on statistical features of metrics, while more
recent methods like TimesNet [5] utilize deep models with
multi-scale convolutions to extract periodic patterns from time
series. However, these methods often ignore the rich contextual
information embedded in service call chains. Unsupervised
methods operate without labeled data. BARO [16] combines
multivariate Bayesian online change point detection with a
nonparametric statistical test, RobustScorer, enabling label-
free analysis of multivariate time-series metrics. Nevertheless,
it ignores logs and traces, may struggle with data exhibiting
strong parametric distributions, and lacks modeling of service
interaction patterns due to the absence of graph structures.
Hades [12] integrates metrics and logs and uses isolation
forests to identify outliers based on deviations from normal
data distributions. However, it cannot capture inter-service
dependencies, limiting its ability to detect global anomalies.

GNNs have gained attention for their natural ability to
model service invocation relationships. Eadro [10] uses Graph
Attention Networks (GATs) and multimodal data fusion for
system-level classification but depends on labeled data and
assumes a static graph structure. MSTGAD [15] uses GATs
to model spatial dependencies among microservices and as a
semi-supervised learning method, it leverages a small num-

ber of labeled traces. However, the spatial graph structure
remains static, based on predefined service dependencies, and
does not adapt to dynamic or evolving system behaviors.
This reliance on a fixed topology may limit the model’s
generalization capability in real-world environments where
service interactions are often incomplete, noisy, or subject to
change. TraceVAE [6] employs a variational autoencoder with
graph structures to jointly model traces and temporal features,
enhancing fault scoring. ART [14] unifies metrics, logs, and
traces into time series, constructs dynamic graphs per minute,
and combines Transformer, GRU [21], and GraphSAGE [29]
to capture spatio-temporal features. However, ART still strug-
gles with long sequence degradation and misses fine-grained
fault patterns. Nevertheless, GNN-based methods still face two
key challenges:

o Limited ability to model long-term temporal depen-
dencies. Monitoring data in microservices exhibit strong
spatio-temporal coupling, but most existing methods fo-
cus on snapshots of the system and fail to capture
temporal evolution

o Heavy reliance on labeled data. Many supervised meth-
ods require manually labeled anomalies, which are rare
and costly in real-world systems, hindering their practical
deployment.

To address the challenges of system-level fault detection in
microservices, we propose Chronosage (Spatio-temporal Fault
Detection model with Mamba and Dynamic Graphs), a novel
framework that integrates both spatial and temporal modeling
capabilities.

« Spatio-temporal integration for precise fault detection.
Chronosage leverages the spatial representation power
of GraphSAGE and the temporal modeling efficiency of
Mamba. Specifically, it performs embedding computation
on dynamic graphs using GraphSAGE to incorporate
evolving service interaction patterns into node features.
These graph embeddings are then processed by the
Mamba model, which captures temporal dependencies
through its state space mechanism, enabling accurate
analysis of long-range time-series data.

o Label-efficient learning to reduce annotation cost:
Chronosage adopts a self-supervised learning strategy
to automatically extract meaningful patterns from sys-
tem data features without requiring manual label. By
incorporating the temporal evolution of service interac-
tions and the spatial dependencies between microservices,
Chronosage significantly improves fault detection accu-
racy compared to traditional unsupervised methods.

Experimental results on two real-world microservice
datasets demonstrate the effectiveness of Chronosage in fault
detection. Chronosage achieves superior performance, reach-
ing an Fl-score of 0.872 on dataset D1 and 0.972 on dataset
D2. These results validate Chronosage’s ability to support
highly accurate system-level fault detection in dynamic mi-
croservice environments.
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Fig. 2: Multimodel Monitoring Data

II. BACKGROUND
A. Microservice Systems and Multimodal Monitoring Data

Microservice architectures decompose complex applications
into a collection of small, independently deployable services,
each dedicated to a specific business function [10]. The
modular design of microservice architectures empowers devel-
opment teams to work independently and in parallel, thereby
accelerating the overall development lifecycle. Communication
between services is achieved through lightweight and effi-
cient protocols such as HTTP/REST or gRPC. Microservice
architecture not only enhances development productivity but
also significantly improves system scalability, flexibility, and
maintainability.

Chronosage use the concept of a system instance to describe
the runtime entities within a microservice system. A system in-
stance may refer to a microservice instance or a host instance.
Together, these instances form the underlying infrastructure
that supports high availability, scalability, and fault tolerance
in the system.

In microservice systems, such monitoring data typically in-
cludes three primary modalities: metrics, logs, and traces [17],
as shown in Figure 2.

o Metrics. Metrics represent quantitative measurements of

system state over time, often collected at regular intervals
by monitoring agents such as Prometheus. Represented
as time series data, metrics provide real time insights
into service status. For instance, system-level metrics
such as CPU usage and memory utilization reflect re-
source consumption, while service-level metrics such as
request throughput and error rate serve as indicators of
microservice health. A spike in HTTP 5xx error rates,
for example, may suggest code-level bugs or faults in
dependent services.
Metrics anomaly detection in time series data is funda-
mental for identifying system faults, involving detecting
sudden spikes or drops, trend shifts, and level changes in
key performance indicators (KPIs) [30].

o Logs. Logs capture system states and behaviors through
fields such as timestamps, node identifiers, and messages
that combine predefined structures with values generated
during execution. These predefined structures, established

by developers, ensure consistency in event semantics
across the system. In contrast, the values generated during
execution reflect specific runtime information, including
execution duration, status codes, and output formats. For
instance, in Figure 2, the log entry ”S1—request finished
in 0.3097s 200 application” illustrates this composition.
Here, ”S1—request finished in” represents the standard-
ized structure indicating the completion of a request,
while 70.3097s,” 7200,” and “application” are runtime-
specific values denoting processing time, HTTP status
code, and response content type, respectively. In this
context, ”S1” refers to a particular microservice instance
within the system. This structured logging approach fa-
cilitates consistent formatting and efficient analysis of
system events.

Traditional log anomaly detection methods often rely
on keyword matching (e.g., "JERROR”, fail”), which
can lead to false positives due to network jitter or user
login faults, etc. Recent approaches adopt structured
pipelines, such as log parsing, feature extraction, and
anomaly detection, to more accurately identify abnormal
behaviors [31].

o Traces. Traces capture the end-to-end execution path of

a request as it traverses through multiple microservices.
A single user request may trigger a cascade of service
invocations. Figure 2 presents a concrete trace example,
where each node (S7-S7) denotes a microservice instance
involved in processing the request. The numeric labels
(e.g., 3097, 2490) represent the latency in milliseconds
associated with each inter-service call. The overall execu-
tion path starts from S/, proceeds through S2 and S3, and
then branches into multiple downstream services (S4, S5,
86, S7). The trace structure demonstrates both sequential
and parallel service invocations.
In microservice architectures, trace-based fault detec-
tion focuses on identifying anomalies in service call
sequences, such as sudden increases in response times
or abnormal call paths [32].

B. Mamba

Time series forecasting aims to predict future values based
on historical temporal dependencies and patterns. It plays a
critical role in domains such as industrial monitoring, en-
ergy management, financial analysis, and cloud operations.
Traditional deep learning approaches, such as RNNs [33],
LSTMs [34], 1D-CNNs [35], and Transformers [18], have
achieved notable success in time series forecasting field. How-
ever, they face significant challenges in modeling long-range
dependencies and scaling to long sequences. Unlike RNNs and
LSTMs, which suffer from vanishing gradients due to their
recursive nature [19], Transformers incur quadratic complexity
with respect to sequence length, limiting their efficiency when
handling very long time series [20].

To address these limitations, Chronosage adopt Mamba [36],
a recently proposed Selective State Space Model (SSM), as
our backbone for time series prediction. Mamba combines



high computational efficiency with strong long-range modeling
capability, making it well-suited for large-scale time-series
tasks.

Mamba achieves linear time complexity (O(N)) while
effectively modeling long-term dependencies. Its core inno-
vations include:

o Dynamic state transitions: Mamba replaces fixed state
matrices with learnable, input-conditioned transitions, en-
abling adaptive modeling across time steps.

o Hardware-aware parallelism: Through a convolutional
representation, Mamba supports parallel computation
while maintaining low memory usage even for long
sequences.

o Selective information retention: Mamba avoids the step-
by-step hidden state updates of RNNs, using a more
flexible mechanism to preserve important information
over time.

Formally, given input x; and hidden state h;_;, the Mamba
update is defined as:

hi = A(zt)hi—1 + B(xy)z: + C(xy) (D

where A(-),B(-),C(:) are learnable functions representing
state transitions, input weights, and bias terms, respectively.
The output is computed via g = D(h;), where D(-) maps
the hidden state to the prediction space.

Compared with alternative long-sequence models such as
GRU or Transformer, Mamba offers the following advantages
specific to our context:

« Efficiency for long sequences: Mamba scales linearly
with sequence length, allowing it to model 1-minute
resolution data over extended time windows without
incurring memory bottlenecks.

o Robustness to input noise and length variation: Mamba
does not rely on positional encodings, making it naturally
suited for handling variable-length and uneven monitor-
ing sequences.

o Better inductive bias for system dynamics: The state-
space formulation aligns well with evolving system be-
haviors in microservices, enabling the model to track
performance shifts and fault precursors over time.

These properties make Mamba particularly well-suited as
the temporal modeling module in Chronosage, allowing the
framework to capture system evolution patterns efficiently
and detect subtle deviations that precede faults in real-world
deployments.

C. SSL

Self-Supervised Learning (SSL) is a machine learning
paradigm that reduces reliance on manually labeled data by
learning from data itself. It involves designing pre-training
tasks that create pseudo labels using data’s inherent structures
or properties, enabling models to learn general feature rep-
resentations from unlabeled data [22]. These tasks generate
pseudo labels automatically, compelling the model to extract
meaningful features from the data to address the problem.

Common SSL tasks include reconstruction tasks [23], pre-
diction tasks (e.g., language modeling [24], image inpaint-
ing [25]), generative adversarial networks [26], and contrastive
learning [27]. Compared to traditional supervised learning,
SSL significantly lowers annotation costs. By employing di-
verse pre-training tasks, it extracts more generalizable features
from massive unlabeled data. These features possess strong
transferability, allowing rapid adaptation to various down-
stream tasks and providing robust initial models for them.

D. GraphSAGE

GraphSAGE is a graph neural network framework designed
to efficiently generate node embeddings, particularly in large-
scale and dynamic graph settings [28]. Unlike traditional meth-
ods that rely on the full graph structure, GraphSAGE learns
node representations by sampling and aggregating informa-
tion from a node’s local neighborhood, significantly reducing
computational complexity and enabling scalable training. Such
characteristics makes it especially well-suited for real-time
applications and evolving environments such as microservice
systems [29].

Compared to other popular graph neural networks, Graph-
SAGE offers greater flexibility and scalability. Graph Convo-
lutional Networks (GCNs) [37] rely on normalized Laplacian
matrices to perform weighted aggregation over all neighbors in
a static graph. While effective for small-scale and static graphs,
GCNs operate under a transductive learning setting and require
access to the entire graph structure, making them inefficient
and less adaptable to large or dynamic graphs, particularly
when new nodes are introduced. GATs [11], on the other hand,
incorporate an attention mechanism during neighborhood ag-
gregation, assigning different weights to different neighbors,
allowing GATSs to adapt to heterogeneous and highly dynamic
graph structures. However, the attention mechanism introduces
significant computational overhead, leading to higher training
costs on large-scale graphs.

In contrast, GraphSAGE supports inductive learning, en-
abling generalization to previously unseen nodes without re-
training the entire model. Its sampling-based design balances
expressiveness with efficiency, making it particularly advanta-
geous for fault detection and root cause analysis in large-scale,
evolving systems.

E. Problem Definition

Fault detection is crucial for preventing system faults and
ensuring stable operation, aiming to discover abnormal system
status.Anomalies often indicate potential system faults. In this
paper, we focus on system-level fault detection based on multi-
modal monitoring data collected at equal-space timestamps.
The problem is formally defined as follows.

As shown in Figure 2, metrics are multivariate time series
that monitor hardware, system, and various services. Logs
record system runtime behavior as semi-structured text. A
trace is made up of spans, each corresponding to an invocation.
In addition, traces come with duration, status code, and other
annotations. Chronosage transform them into time series as



detailed in section III-A, for every instance ¢ at time t, the
feature vector is extracted.

The goal of fault detection is to assess whether a given
feature vector F(*) corresponds to an abnormal state at times-
tamp t. For each time step ¢, our model computes an fault
score s; € [0,1], indicating the likelihood that the input F'(?
is anomalous. A dynamic threshold # is used for decision-
making: if s; > 6, system at the ¢ time point is classified
as an fault. The ground truth label vector y € R™ consists
of binary values, where 0 denotes a normal instance and 1
indicates an fault.

III. APPROACH

In this section, we introduce Chronosage, a multimodal
system-level fault detection framework with GraphSAGE and
Mamba. The framework aims to address the challenges men-
tioned above and is composed of four main components: (1)
multimodal feature extraction that preprocesses multimodal
data to form a comprehensive feature set for each service
instance(2)graph stream construction that builds the dynamic
graphs from the raw system data, (3) a multimodal spatio-
temporal representation learning model that captures structural
and temporal features, and (4) an fault scoring and detection
module that uses prediction error and a dual-threshold strat-
egy to determine abnormal nodes. The overall framework is
illustrated in Figure 3.

To construct the input for Chronosage, we extract and
integrate multiple sources of monitoring data. Metric data
(e.g., CPU usage, memory, I/O throughput) are resampled
to 1-minute granularity using nearest-neighbor interpolation.
Logs are parsed using the Drain algorithm to identify template
patterns, and the occurrence frequencies of high-variance
templates are computed per instance per minute. Trace data
is converted into statistical features, including the average la-
tency, request count, and proportions of different HTTP status
code classes (2xx, 4xx, 5xx). Each node in the system-level
graph represents a microservice instance and is associated with
a feature vector combining metric, log, and trace statistics. A
graph is constructed at every time step based on the service call
relationships observed in that minute, resulting in a dynamic
graph stream. A sequence of w = 60 such graphs is used as
the model input, forming the basis for capturing both spatial
and temporal dependencies.

A. Multimodal Feature Extraction

1) Multimodal Serialization: Chronosage utilize three types
of system monitoring data: trace, log, and metric. All three
modalities are organized into a time series at the granularity
of one minute, where each timestamp corresponds to a graph
snapshot. Each node in the graph represents the aggregation
of service instances deployed on the same machine.

For logs, Chronosage apply Drain [38] to parse unstructured
logs into structured event counts, representing the frequency
of each log key per service instance per minute. For metrics,
Chronosage use linear interpolation to fill in missing values
and align the data with the trace and log modalities. For trace

data, Chronosage extract statistical features such as mean,
max, min, and standard deviation of span latency, response
status code, and span count, and aggregate them by the callee
service instance at each time interval.

2) Feature Extraction: After serialization, each service
instance 7 is represented as a feature sequence H @ =
[hgz), hg'), vens h;f)]. For each modality, Chronosage apply slid-
ing window Z-score normalization as follows:

- Hygh g (1) = 1 (1)
H(Z) t) = modal w
Inodal( ) Ow (t)

where p,,(t) and o, (t) represent the mean and standard
deviation computed over a sliding window of length w ending
at time ¢.

Finally, Chronosage concatenate the normalized features
from all three modalities for each node:

PO — (F(i)

2

(@)
trace F‘log

Frggtric) (3)

This multimodal representation allows us to integrate het-
erogeneous monitoring signals into a unified feature space for
downstream modeling.

B. Graph Stream Construction

Given the multimodal time-series features of each node,
Chronosage construct a graph stream G = {Gy_ 11, ..., Gt}
where w is the window size. Each graph snapshot G; =
(V, Ey, F}) at time ¢ consists of a fixed node set V' (all service
instances), a dynamic edge set E;, and node features F; from
the previous step.

The edge set E; consists of two types of edges: (1) invo-
cation edges extracted from trace data that reflect runtime in-
teractions between service instances at time ¢, and (2) deploy-
ment topology edges, which represent fixed infrastructure-level
dependencies and remain unchanged across time. Combining
these two types edges ensures that the constructed graphs
capture both dynamic behavior and static system structure.

The graph stream models the evolving system behavior, en-
abling the detection of anomalies in both spatial and temporal
dimensions.

C. Spatio-Temporal Modeling

To model the evolving graph stream, Chronosage propose
a spatial-temporal representation learning module composed
of GraphSAGE and Mamba. GraphSAGE captures the spatial
structure in each snapshot by aggregating neighborhood fea-
tures, while Mamba learns temporal dependencies across the
dynamic graph sequence.

1) Spatial Modeling with GraphSAGE: Chronosage use
GraphSAGE [29] to learn structural representations from each
snapshot G;. For each node v € V, the embedding is updated
by aggregating its neighbors’ features. Chronosage adopt the
mean aggregator defined as:

hk) = & (W(k) - AGGREGATE®) ({hSﬁ*1>|u eN (v)})
4)
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Fig. 3: Overview of the Chronosage framework.

Here, hgk) is the k-th layer representation of node v,
N (v) denotes the neighbors of v, and W) is a trainable
weight matrix. Chronosage use two GraphSAGE layers and
apply layer normalization to stabilize training. The output is
a spatially encoded feature vector for each node at each time
step.

2) Temporal Modeling with Mamba: To effectively capture
long-range temporal dependencies across the evolving se-
quence of graph snapshots, Chronosage adopt Mamba [36], a
selective state space model (SSM) designed for efficient long-
sequence modeling with linear time and space complexity.
Specifically, for each node, Chronosage organize its spatial
embeddings over the past w time steps into a sequential input
{u1,ug, ..., Uy}, which is then fed into the Mamba module.

Mamba models the input sequence using a parameterized
state space model, formalized as:

d

%x(t) = Ax(t) + Bu(t), y(t)

where z(t) denotes the latent state, u(t) is the input, and y(¢)
is the output. After discretization, the update becomes:

= Cx(t) + Du(t), (5)

Tht1 = Al‘]f + Buk, Yk = C’xk + ﬁuk. (6)

In practice, Mamba efficiently computes the output using a
convolution-like operation:

L—-1
Yk = Z Ki]
1=0

where Ki] is a state-dependent kernel and A, = MLP (uy)
is a dynamic input gate learned from the input itself. This for-
mulation allows Mamba to selectively emphasize informative
patterns while preserving temporal alignment.

Chronosage organize the spatial embeddings of each node
over the past w time steps into a sequence and feed it into
Mamba, which outputs a prediction for the next time step:

“up—i +up © Ay, @)

EY = Mamba(F"), 1, ) (8)

The training objective is to minimize the prediction error
between the predicted and actual feature vectors using mean
squared error (MSE) loss:

|V| Z |7 -

Chronosage use early stopping and gradient clipping to
ensure stable convergence of the model.

Fi)

i ©

D. Fault Detection

In the online phase, the trained model is used to make
predictions for each node’s feature vector at the next time
step, and calculate the prediction error:

F(”)

F(U) Y

A(U) 1

B (10)

Chronosage then apply a two-stage thresholding strategy to
identify anomalous nodes.

First, Chronosage use the Interquartile Range (IQR) method
to filter out extreme outliers:

(Q1—k-IQR, Q3+ k- IQR) (11)

where IQR = @3 — 1, and k is a hyperparameter.

Second, Chronosage apply the Peaks Over Threshold (POT)
method based on Extreme Value Theory (EVT) [39] to fit the
tail of the error distribution and set an adaptive threshold. A
node is labeled as anomalous if its prediction error exceeds
the threshold.

The two-stage strategy allows us to filter out trivial fluctu-
ations and focus on significant anomalies while maintaining
robustness and adaptability to different systems.

IV. EVALUATION

In this section, we conduct a comprehensive evaluation
of Chronosage using two real-world datasets collected from
large-scale microservice systems. The goal is to validate the



model’s effectiveness, robustness, and efficiency in system-
level fault detection tasks. Our experimental study aims to
answer the following research questions (RQs):

o RQ1: How does Chronosage perform in terms of fault
detection accuracy compared to state-of-the-art methods?

o RQ2: How efficient is Chronosage in both offline training
and online detection, especially under real-time con-
straints?

o RQ3: What is the contribution of each core component
(GraphSAGE and Mamba) to the overall performance of
Chronosage?

« RQ4: How sensitive is Chronosage to different hyperpa-
rameter settings?

A. Experimental Setup

1) Dataset: We conduct experiments on two real-world
datasets to evaluate the effectiveness of the proposed
Chronosage framework. Since Chronosage adopts a SSL strat-
egy and performs time-series prediction, we partition each
dataset chronologically—using the earlier portion for training
and the latter portion for testing. Detailed statistics of the
datasets are summarized in Table I .

TABLE I: Detailed Statistics of Experimental Datasets

Dataset | #Inst. #Norm. #Fault| Type  Count
Traces 44,858,388
D1 46 3979 155 |Logs 66,648,685
Metrics 20,917,746
Traces 214,337,882
D2 18 12,805 281 |Logs 21,356,870
Metrics 12,871,809

o D1: This dataset is collected from a simulated e-
commerce system built on a microservice architecture.
The deployment environment fully replicates a real-world
cloud infrastructure used in production scenarios. The
system consists of 46 running instances, including 40
microservice components and 6 virtual machine (VM)
nodes. Each microservice instance is instrumented with
container-level monitoring probes, while VMs collect
system-level performance metrics in parallel. All faults
in the dataset originate from real incidents in production
environments and are reproduced via a controlled fault
replay mechanism. With the support of a professional
operations team, multiple rounds of fault injection exper-
iments were conducted in May 2022, and each fault was
annotated with root cause labels based on standardized
diagnostic procedures.

For DI, which includes complete trace logs, we di-
rectly construct dynamic interaction graphs by combin-
ing deployment topology with fine-grained service call
relationships extracted from trace data. These graphs
reflect both the static structure and dynamic interactions

among services, enabling more accurate spatio-temporal

modeling.

o D2: This dataset is sourced from the digital manage-

ment system of a leading commercial bank. The system
architecture consists of 18 core component instances,
including microservice clusters, web server clusters, ap-
plication servers, database clusters, and a Docker-based
resource pool. Fault events were extracted from system
logs recorded between January and June 2021. Two
senior site reliability engineers independently performed
root cause analysis and annotation using a double-blind
labeling protocol, followed by cross-validation to ensure
consistency and accuracy of the labels.
Unlike D1, D2 lacks conventional microservice-level
trace data. Its trace logs are more coarse-grained and
infrastructure-oriented, providing only partial call paths
among components (e.g., CMDB ID, span ID, parent ID,
trace ID, and timestamp) without a fully structured ser-
vice mesh. To address this limitation, we adopt a hybrid
graph construction strategy: within each time window, we
infer service interactions by identifying valid parent-child
links from the trace metadata and augment the resulting
structure with the deployment topology to compensate
for missing direct call information. This enables us to
generate approximate dynamic graphs even under par-
tial observability.While the resulting graphs in D2 are
less granular than those in D1, this self-constructed ap-
proach allows us to retain meaningful structural patterns
necessary for spatial representation. More importantly,
this strategy ensures the model can generalize across
heterogeneous systems with varying data completeness,
supporting consistent and fair evaluation across both
datasets.

2) Experimental Environment: The proposed method is
implemented using the PyTorch framework, and all experi-
ments are conducted on a Linux server equipped with the
following hardware configuration: dual Intel® Xeon® Gold
5218 processors (16 cores, 32 threads, base frequency 2.30
GHz), two NVIDIA® Tesla® V100S GPUs (each with 32 GB
memory), and 192 GB of DDR4 RAM (with approximately
187 GiB usable). The Python version used is 3.8.20, and key
dependencies include PyTorch 2.1.0, scikit-learn 1.3.2, and
DGL 2.1.0.

a) Evaluation Metrics: In fault detection, the prediction
outcomes can be categorized into four types: True Positive
(TP), False Positive (FP), True Negative (TN), and False
Negative (FN). Specifically, TP refers to samples that are truly
anomalous and correctly detected as anomalies; FP refers to
normal samples that are incorrectly predicted as anomalies;
TN denotes normal samples that are correctly identified as
normal; and FN refers to anomalous samples that are missed
by the model. Based on these outcomes, we compute two
key evaluation metrics: Precision and Recall. Precision mea-
sures the proportion of correctly predicted anomalies among
all samples predicted as anomalous, and a higher precision
indicates a lower false positive rate. Recall measures the



proportion of actual anomalies that are correctly identified,
and a higher recall indicates a lower false negative rate. To
balance the trade-off between precision and recall, we also
use the F1-score, which is the harmonic mean of the two and
serves as a comprehensive metric for evaluating fault detection
performance. The formulas are defined as follows:

TP
Precision = ————— 12
recision TP+ FP (12)
TP
Recall = —————= 13
T TPTFN (13)
2 x Precision x Recall
F1- = 14
seore Precision + Recall (14)
B. RQI: Overall Performance of Chronosage

To comprehensively evaluate the performance of

Chronosage on fault detection tasks, we compare it with
seven state-of-the-art methods across different modalities.
All baseline methods are implemented using their officially
reported best hyperparameter settings to ensure fairness and
result reliability. We conduct comparative experiments to
evaluate the accuracy of our proposed method against baseline
approaches on both D1 and D2 datasets. The accuracy results
are summarized in Table II.

TABLE II: Accuracy Comparison Of Different Anomaly De-
tection Methods On Public Datasets

method ‘ D1 ‘ D2
| Precision  Recall F1 | Precision  Recall Fl1

Chronosage 0.904 0.842  0.872 0.945 1.000 0972
ART 0.700 0.778 0.737 0.487 0.982 0.651
MSTGAD 0.562 0.336 0.421 0.416 0.684 0.517
Eadro 0.425 0.946 0.586 0.767 0.935 0.842
BARO 0.481 0.299 0.369 0.547 0.427 0.480
Hades 0.553 0.657 0.601 0.506 0.719 0.594
TimesNet 0.074 0.170 0.103 0.814 0.737 0.763
TraceVAE 0.706 0.534 0.609 0.378 1.000 0.549

The following analysis highlights the performance differ-
ences among the compared methods:

For the metric-based method TimesNet,it is more appro-
priate for tasks involving single-variable, periodic time series
with minimal structural complexity, but its effectiveness dimin-
ishes in environments with intricate microservice architectures.
TimesNet transforms time series data into 2D tensors to
capture periodic patterns, but fails to consider the graph-
structured dependencies among microservices, which are crit-
ical in modern distributed systems. This limitation explains
its significantly better performance on D2 compared to DI,
where D1 features richer interactions among microservices.
Moreover, since TimesNet relies solely on metrics, it lacks
contextual signals from other modalities, making it difficult to
determine system-level anomalies—it can only assess whether
a specific instance is abnormal at a particular time. BARO
shows inferior performance in complex scenarios due to its
limited data modality and modeling capacity. Its reliance
on metrics alone fails to capture the full system context,
while the lack of structural modeling overlooks dependencies

between services. Moreover, its nonparametric nature, though
flexible, may lead to suboptimal detection on data with clear
distributional assumptions.

For the trace-based method TraceVAE, it uses a graph
variational autoencoder to separately encode structural and
temporal features of service traces. However, it is limited by its
single-modality input and relies solely on reconstruction error,
which can be sensitive to the sparsity and high dimensionality
of trace data.

Among the multimodal methods, we compare against Eadro
MSTGAD and ART. Eadro shows significantly better perfor-
mance on D2 than single-modality baselines, underscoring the
value of leveraging heterogeneous data sources. It uses Dilated
Causal Convolution (DCC) to capture temporal dependencies
and Graph Attention Networks (GAT) to model service call
graphs. However, these two components are designed as inde-
pendent modules, lacking deeper integration between temporal
and structural modeling.

MSTGAD constructs a static spatial graph based on prede-
fined microservice dependencies, where each node represents
a service and edges capture fixed inter-service relationships.
Temporal dependencies are modeled using dynamic temporal
graphs across time windows. While trace data provides node-
level features, it is not utilized for dynamic graph construc-
tion—every trace shares the same static graph topology. This
limits the model’s adaptability to evolving or incomplete
system structures. Moreover, relying on GRU for temporal
modeling may hinder performance in long-range dependency
scenarios, and the fixed spatial graph restricts its generalization
to systems with unknown or frequently changing topologies.

ART also incorporates metrics, logs, and traces, and adopts
a similar architectural design as ours—using graph neural
networks followed by temporal sequence modeling. It per-
forms better on D1 due to the denser microservice interaction
patterns, but its system-level fault score is computed by
aggregating instance-level scores, which may obscure fine-
grained local anomalies. Furthermore, ART struggles with
long sequence prediction, and its performance tends to degrade
as the sequence length increases due to limited capability in
modeling long-range dependencies.

C. RQ2: Contribution of GraphSAGE and Mamba

To assess the contributions of the two core compo-
nents—GraphSAGE and Mamba—we construct four ablated
variants of our model under consistent preprocessing, training,
and evaluation settings. The variants are defined as follows:

1) Cl:Replaces GraphSAGE with GAT for spatial encod-

ing.

2) C2: Replaces GraphSAGE with GCN.

3) C3: Replaces Mamba with Transformer for temporal

modeling.

4) C4: Replaces Mamba with GRU.

The results, shown in Table III, demonstrate that the full
Chronosage model consistently outperforms all ablated ver-
sions on both D1 and D2 datasets. We analyze the performance
gaps as follows:



TABLE III: Variants Performance Comparison

Dataset Variants ‘ Precision Recall F1

Chronosage 0.904 0.842 0.872

Cl 0.826 0.554 0.667

D1 Cc2 0.837 0.482 0.611
C3 0.850 0.743 0.793

Cc4 0.802 0.791 0.797

Chronosage 0.945 1.000 0.972

C1 0.867 1.000 0.927

D2 Cc2 0.857 0.920 0.887
C3 0.886 1.000 0.939

Cc4 0.881 0.984 0.929

C1 (GAT instead of GraphSAGE): While GAT uses atten-
tion mechanisms to learn weighted neighbor contributions, it
suffers from higher computational complexity, especially on
large graphs. Its reliance on first-order neighbors limits its
ability to capture broader structural patterns, and the attention
weights can be sensitive to noise. In contrast, GraphSAGE
aggregates multi-hop neighbors via sampling, providing more
robust and scalable embeddings, particularly suited to com-
plex, dynamic service graphs.

C2 (GCN instead of GraphSAGE): GCN is a classic trans-
ductive model that requires access to the full graph during
training, making it less suitable for evolving graph structures.
It also depends on the graph Laplacian, which increases mem-
ory and computation costs for large-scale systems. Moreover,
GCN is prone to over-smoothing in deeper layers, causing
node representations to become indistinguishable. GraphSAGE
avoids these issues with its inductive design and hierarchical
neighborhood aggregation.

C3 (Transformer instead of Mamba): Transformer excels at
long-range modeling but has quadratic time complexity O(n?),
which becomes prohibitive for long sequences. It also requires
additional components like positional encoding to capture
temporal order. In contrast, Mamba is a state-space-based
model optimized for efficient long-sequence processing with
linear complexity. Its architecture enables better scalability,
robustness to short input lengths, and minimal preprocessing.

C4 (GRU instead of Mamba): GRU is effective in many se-
quence modeling tasks but struggles with long-term dependen-
cies due to vanishing or exploding gradients. It also performs
sequential updates, limiting parallelism. Mamba overcomes
these limitations by using continuous-time state space mod-
eling, which enhances long-range dependency capture and al-
lows faster, parallel computation. Furthermore, Mamba’s noise
filtering during state updates improves robustness compared to
GRU.

D. RQ3: Efficiency of Chronosage

We record and compare the runtime performance of all
methods, as shown in Table IV. For detection time, we
simulate an online detection scenario by calculating the time
required for each method to process one-minute intervals, in
order to analyze their computational complexity. The results

demonstrate that our method is capable of detecting anomalies
within a very short time window.

TABLE IV: Average offline training time (in seconds) and
detection time (in 10~! seconds) per anomaly detection run
for each method.

\ DI D2

Method | Offline Detection Offline Detection
Chronosage 436.783 0.414 368.732 0.698
ART 460.262 1.391 1085.767 0.454
MSTGAD 657.020 10.296 73.82 7.007
Eadro 510.570 0.887 795.416 0.337
Hades 1214.528 0.182 2073.041 0.086
TimesNet 6458.400 1.278 2538.678 0.105
TraceVAE 2577717.735 13.493 199.491 0.083

In addition, BARO is a purely mathematical approach and
does not follow the same modeling paradigm as the other
deep learning-based methods. Therefore, it is not directly
comparable in terms of performance metrics. The time values
reported in the table represent the average inference time spent
on each individual time series within the dataset. Specifically,
BARO’s inference times respectively on D1 and D2 are 483.99
and 1977.569 (in units of 10~! seconds). In comparison,
Chronosage requires less time for both offline training and
online detection than other multimodal baselines such as ART
and Eadro, and also significantly outperforms single-modality
methods. The exceptionally short runtime of TraceVAE on the
D2 dataset is attributed to the fact that it only relies on trace
data, and the trace structure in D2 is relatively simple.

This study investigates the impact of four key hyperparam-
eters on model performance. Figure4 illustrates how the F1-
score varies under different configurations.

State Dimension dgq¢e : This parameter controls the size of
the model’s internal representation space. A small state size
(e.g., 8) may limit the model’s capacity to capture complex
patterns, leading to underfitting. Conversely, larger values
(e.g., 32 or 64) may increase model expressiveness but also
raise the risk of overfitting and training instability. On our
datasets, a moderate setting of 16 strikes a good balance
between capacity and generalization.

Convolution Dimension d.,,,: This parameter affects the
model’s ability to extract local temporal features. While
smaller values (e.g., 3) may not capture sufficient context,
overly large ones (e.g., 5 or 6) can lead to overfitting due to
unnecessary complexity. Empirically, setting d.,y,=4 achieves
optimal performance in our experiments.

Sliding Window Size: This defines the length of the input
sequence used for prediction. Short windows (e.g., 20 or 40)
may not contain enough historical context, while excessively
long windows (e.g., 100 or 120) can introduce noise. No-
tably, performance remains strong even at window size 120,
demonstrating Mamba’s robustness in modeling long-range
dependencies.

Learning Rate: High learning rates (e.g., 0.05 or 0.07) can
cause unstable training or convergence to suboptimal solutions.
Lower learning rates (e.g., 0.001 or 0.005) enable more stable
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Fig. 4: Parameter Sensitivity Performance Comparison (F1-score)

updates and better convergence, although very small values
may slow training or lead to poor local minima. Overall,
0.001-0.005 offers a good trade-off between convergence
speed and final model quality.

E. Case Study

Our experimental results demonstrate that Chronosage ex-
cels at detecting a variety of subtle and low-signal faults that
are often missed by traditional fault detection methods. Among
the successfully detected cases, several types of anomalies
stand out:

e k&8s container write I/0O load
« node-level memory consumption
o k8s container CPU load

These fault types are particularly challenging due to their
limited visibility in individual monitoring modalities and their
tendency to manifest gradually over time.

Disk Write I/O Surge (emailservice-0)
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Fig. 5: Disk write I/O anomaly detection in
emailservice-0. Chronosage successfully identifies

the I/O surge nearly two minutes prior to observable system
degradation, despite no visible anomalies in CPU or memory
metrics.

For example, as shown in 5, in this case with dataset
D1, the emailservice-0 pod experienced a sudden surge in
disk write operations due to an unexpected batch job that
generated extensive logs. Traditional approaches failed to flag
this anomaly as no significant CPU or memory usage spikes
were observed. However, Chronosage successfully identified
the abnormal write I/O pattern through its multi-modal feature
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aggregation and dynamic modeling of system metrics. The
model issued an early alert nearly two minutes before the onset
of performance degradation, demonstrating its effectiveness
in detecting low-signal, single-modality anomalies. Another
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Fig. 6: Memory usage heatmap of services on node-4.
Chronosage detects a distributed anomaly by modeling spatial
dependencies across services, identifying collective memory
pressure even when individual service metrics remain within
normal bounds.

example such as 6. This anomaly involved a gradual increase
in memory usage across several services co-located on node-4.
From an individual service perspective, no single component
exhibited extreme values, making the fault hard to detect using
threshold-based methods. Chronosage leveraged the spatial
correlation across services captured by its GraphSAGE-based
dynamic graph, revealing an emerging pattern of abnormal
memory behavior. This case highlights the model’s strength in
identifying distributed and correlated anomalies by modeling
the system’s structural dependencies.

FE. Threat to Validity

Limited Experiment Scenario Coverage: The current ex-
perimental validation primarily relies on the AIOps Challenge



datasets (D1 and D2), which exhibit gaps in scale and com-
plexity compared to real-world production environments. Pro-
duction microservice systems typically involve larger scales,
more intricate interactions, and dynamic topologies (e.g., fre-
quent service scaling or architecture evolution). The method’s
generalization capability in such realistic scenarios remains
under-validated, potentially limiting its ability to address com-
plex fault patterns in large-scale distributed systems.

High Dependency on Multimodal Data: The approach
heavily depends on joint modeling of three modalities: met-
rics, logs, and traces. However, in practical scenarios, certain
modalities may be missing or of low quality (e.g., incomplete
logging configurations, noisy metric data). In cases where data
acquisition is constrained, the method’s robustness and appli-
cability could degrade, particularly when critical modalities
are unavailable or unreliable.

V. RELATED WORK

Anomaly detection methods have evolved from traditional
statistical models to data-driven approaches, with increasing
emphasis on deep learning and multimodal fusion. A num-
ber of recent works have explored different modalities and
model structures for fault detection in microservice systems.
As shown in Table V, our proposed method Chronosage is
fully self-supervised and supports dynamic graph construc-
tion based on real-time service interactions. Moreover, it
explicitly models both spatial dependencies (via GraphSAGE)
and temporal evolution (via Mamba), achieving fine-grained
instance-level fault detection. We present a detailed analysis
and summary of the related methods below.

TimesNet [5] is a deep time-series model that captures
multi-scale periodic patterns by transforming univariate metric
sequences into 2D tensors and applying multi-kernel convo-
Iutions. However, it operates solely on metric data and lacks
contextual information from logs or service traces. Hades [12]
combines metrics and logs using cross-modal attention to
generate global representations, but ignores trace-level depen-
dencies and inter-service interactions. TraceVAE [6] focuses
on trace data, encoding both structural and temporal features
via a graph variational autoencoder, but it is limited by its
single-modality input and vulnerability to noisy or sparse data.

In contrast, Eadro [10] and ART [14] incorporate metrics,
logs, and call traces to capture a more comprehensive view of
system behavior. Eadro processes each modality separately us-
ing Hawkes processes, causal convolutions, and attention, then
fuses the features through a gating mechanism and GAT to
model static service dependencies. ART serializes multimodal
data into time sequences, builds dynamic graphs from traces,
and applies Transformer, GRU, and GraphSAGE to jointly
learn spatio-temporal patterns. However, both methods rely
on supervised training, which limits scalability due to high
annotation cost, and they struggle with long-range temporal
modeling due to either static graph structures or recurrent
modules.

In summary, existing methods either lack full multimodal
integration (e.g., TimesNet, Hades, TraceVAE) or suffer from
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label dependence and weak long-sequence modeling (e.g.,
Eadro, ART). Our work addresses these gaps by proposing
a self-supervised, scalable framework that unifies spatial and
temporal learning across metrics, logs, and traces.

VI. DISCUSSION

The proposed framework, Chronosage, presents a novel
solution for system-level anomaly detection in microservice
environments by integrating graph neural networks with se-
lective state space modeling. By explicitly modeling both
spatial and temporal dependencies, Chronosage achieves high-
fidelity anomaly scoring even in highly dynamic and complex
cloud-native systems. Compared with prior methods such as
ART and Eadro, Chronosage reduces reliance on labeled data
through a self-supervised training strategy, thus offering better
applicability in real-world settings where manual annotation is
often costly or infeasible.

One of Chronosage’s notable advantages is its ability to
dynamically construct service interaction graphs based on
real-time call chain data. In contrast to approaches relying
on static topologies, Chronosage adapts to evolving system
structures, improving the robustness of spatial representation.
Additionally, the use of Mamba for temporal modeling enables
efficient processing of long sequences while mitigating the
inefficiencies and memory constraints commonly associated
with RNNs and Transformers.

Despite these strengths, Chronosage still encounters chal-
lenges in environments with incomplete or noisy telemetry.
For example, missing trace information or inconsistent logging
formats may degrade the accuracy of graph construction and
feature extraction. Future work may incorporate uncertainty
estimation or explore semi-supervised learning strategies to
mitigate the impact of partial supervision.

From a deployment perspective, Chronosage features a
modular architecture that allows seamless integration into
existing AIOps pipelines. Its lightweight design ensures low
inference latency, making it viable for real-time fault detection.
However, practical deployment may still require fine-tuning of
hyperparameters, such as window lengths and normalization
settings, to accommodate system-specific behaviors and data
characteristics.

Finally, while this work emphasizes technical performance,
future research should also explore operational aspects, includ-
ing interpretability and human-in-the-loop validation. Improv-
ing the explainability of model outputs is essential for fostering
operator trust and achieving broader adoption in production-
scale AIOps solutions.

VII. CONCLUSION

In this paper, we proposed Chronosage, a spatio-temporal
fault detection framework that integrates GraphSAGE and
Mamba for modeling dynamic graphs and long-range tem-
poral dependencies. By leveraging GraphSAGE’s inductive
neighborhood aggregation and Mamba’s efficient state-space
modeling, Chronosage enables end-to-end optimization over
multimodal monitoring data. Extensive experiments on two



TABLE V: Comparison of Key Characteristics Among Fault Detection Methods

Method / Reference  Multimodal  Supervised Spatio-Temporal Modeling Dynamic Graph Support
TimesNet [5] No Yes No No
Hades [12] Yes Yes No No
TraceVAE [6] No No Yes No
Eadro [10] Yes Yes Yes No
MSTGAD [15] Yes Yes Yes No
BARO [16] No No No No
ART [14] Yes Yes Yes Yes
Chronosage (Ours) Yes No Yes Yes

real-world microservice datasets demonstrate that Chronosage
outperforms state-of-the-art baselines in both detection accu-
racy and computational efficiency. Ablation studies confirm
the individual contributions of GraphSAGE and Mamba, and
hyperparameter analysis further validates the robustness of our
approach. Overall, Chronosage offers a scalable and effective
solution for real-time system-level fault detection in complex
microservice environments.
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