Too Many Cooks: Assessing the Need for
Multi-Source Data in Microservice Failure
Diagnosis

1% Shenglin Zhang 2" Xiaoyu Feng
Nankai University Nankai University
zhangsl@nankai.edu.cn 2120230765 @mail.nankai.edu.cn

5 Wenwei Gu
The Chinese University of Hong Kong
wwgu21 @cse.cuhk.edu.hk

9" Dan Pei
Tsinghua University
peidan @tsinghua.edu.cn

Abstract—Microservice systems, characterized by their dis-
tributed nature and dynamic environments, pose significant
challenges for failure diagnosis. Traditional failure diagnosis
methods based on a single source of observability data, such as
logs, metrics, or traces, fall short due to their inability to manage
the complexity of inter-service communications. Consequently, in
recent years, many methods based on multi-source observabil-
ity data have been proposed, which promise a comprehensive
analysis by integrating logs, metrics, traces. However, despite the
promising potential of multi-source methods, we find that existing
works often overlook a critical question: whether multi-source
data is truly necessary for failure diagnosis. To address this, we
conduct a systematic evaluation of eleven representative failure
diagnosis methods based on multi-source observability data,
using three public datasets and our own curated dataset. Our
experiments focus on multiple aspects of multi-source datasets
and methods. The results indicate that the quality of existing
open-source datasets is inconsistent, and not all studied methods
consistently perform well. Surprisingly, we find that adding more
data sources does not necessarily improve the performance of
microservice failure diagnosis in some cases.

Index Terms—Microservice systems, Multi-Source Data, Fail-
ure Diagnosis

I. INTRODUCTION

The microservices architecture [1] is a modern software
development approach that decomposes traditional monolithic
applications into a suite of small, loosely coupled services.
Each service can be independently developed, deployed, up-
graded, and scaled, thereby improving the overall flexibility
and maintainability of complex systems. This architecture
has seen widespread adoption in large-scale systems due
to its operational benefits. For instance, Tencent’s WeChat
system operates over 3,000 services on 20,000 machines [2],
while Alibaba’s e-commerce platform runs more than 30,000

*Corresponding author: sunyonggian @nankai.edu.cn

6™ Yonggian Sun”
Nankai University
sunyongqian @nankai.edu.cn

3™ Runzhou Wang
Nankai University

4™ Minghua Ma
Microsoft

1120240403 @mail.nankai.edu.cn minghuama@microsoft.com

8™ Jinrui Sun
Nankai University
2112360 @nankai.edu.cn

7™ Zedong Jia
Nankai University
2110703 @nankai.edu.cn

100

—— CPU Usage Rate
Memory Usage Rate
—— Disk I/O Rate
(AN L

i w" ‘l\ ” I]‘Nu V” I I Wll

33 b > & o < 51 ® X 0 N b %l & \el o
Q,_,Q “XS) Q,_,Q Q\'Q 0,\',0 “X'Q D’y“ c._,(! “X,Q Q‘\—:\ “y\ 0\;& Q‘\/\ Qy\ “.y\ D\’A

Time

Value
SLIPIA (¥)

TracelD: 467 SpanID: 1 Callee: S1 Annotations: {...}

TraceID: 467 SpanID:2 Callee: S2 Annotations: {...}

Hc;

-]

P E

TracelD: 467 SpanID:3 Callee: S3 Annotations: {...} R
________________________ v.........._______________________________
Spans: Events:

TracelD, SpanID, Callee, A Ti p, Duration, EventAnnotations

1. Sep 18 08:45:36 LabSZ sshd [24200] INFO Running task 1.0 in stage 0.0 (TID 0) -

2. Sep 18 08:45:37 LabSZ sshd [24200] INFO Started reading broadcast Variable 0 c

3. Sep 18 08:47:01 LabSZ sshd [24201] INFO Running task 2.0 in stage 0.0 (TID 0) E

4. Sep 18 08:47:22 LabSZ sshd [24265] DEBUG Partition rdd_2_1 not found, computing it

Fig. 1: An example of the multi-source data.

microservices [3[]. However, the inherent complexity and dy-
namism of microservice systems can cause a single-instance
failure to cascade, undermining system stability, harming user
experience, and incurring considerable financial losses. There-
fore, prompt and precise failure diagnosis in microservice
environments is critical to preventing widespread outages and
minimizing system-level damage.

Current research on failure diagnosis, including root cause

localization and failure classification, predominantly relies
on a single source of observability data. For instance, Mi-
croRCA [4] employs metric data, like Fig. (a); Trac-
eRCA [5] is based on trace data, like Fig. E} (b); and
LogCluster [6] utilizes log data, like Fig. [I] (c). However,
studies [7], [8] have indicated that relying solely on a sin-
gle data source is inadequate for accurate failure diagnosis.
Firstly, a single failure may impact multiple components of
a microservice system, leading to anomalous patterns across
various data sources. This implies that exclusive reliance on
a single data source may miss critical signals and reduce
diagnostic accuracy. Secondly, some failures may not manifest
in certain data modalities, rendering methods dependent on
them ineffective. Although these studies suggest that multi-
source data can improve diagnostic accuracy, others point
out that the use of multi-source data may also introduce
problems. First, methods based on multi-source data may
require offline training and online diagnosis times that are
dozens or even hundreds of times greater than those of single-
source methods [7]. Additionally, the integration of redundant,
noisy, or irrelevant signals can lead to misleading results
and incorrect diagnoses. For example, failures stemming from
network congestion may not be captured in log data, as they
typically occur at the network or infrastructure level, bypassing
application-level logging. Blindly integrating logs with other
data sources, however, can lead to incorrect failure diagnosis.
In recent years, extensive research has been conducted on
failure diagnosis in microservice systems using multi-source
data, resulting in numerous proposed methods [9], [10], [8],
(L1, (2], (130, (140, (70, (150, [(16], [17], [18], [19]. Although
these methods show promising results on their respective
datasets, a comprehensive evaluation on public, real-world
benchmark datasets is still lacking. Such validation is essential
to assess their generalizability across diverse scenarios. More-
over, existing methods often overlook the potential risks of
integrating multi-source data, assuming—often blindly—that
it will invariably enhance diagnostic accuracy.

To better comprehend the strengths and limitations of ex-
isting failure diagnosis studies based on multi-source data
and find out whether multi-source data is indispensable for
microservice failure diagnosis, we carefully select almost all
available multi-source datasets, curate and analyze them, and
subsequently conduct comprehensive empirical studies. Our
findings reveal that these studies commonly face two issues:

o Lack of well-curated and publicly usable multi-source
observability datasets: Public multi-source observability
datasets often suffer from issues that limit their practical
utility in real-world scenarios. One prominent problem is
the lack of standardized data organization, including data
loss and inconsistencies in collection formats. For instance,
the trace data in the Nezha dataset [13] exhibits significant
timestamp discrepancies. Moreover, sampling frequency,
format, and instrumentation often vary across data sources.
Such inconsistencies complicate the integration and unified
analysis of heterogeneous data, limiting the generalizability

and scalability of downstream diagnostic methods. Another
critical challenge arises from inaccurate ground truth an-
notations. In datasets such as AIOpleP_-] and AIOpsZZEl,
Even when failures do occur, their annotated start and end
times are often imprecise. This undermines the validity of
evaluation and impairs reproducibility in failure diagnosis
research. Finally, many failure types appear to be severely
underrepresented, resulting in a highly imbalanced class
distribution [7]. For example, in the GAIA (Generic AIOps
Atlas) datase most failure cases belong to the “Login
failure” type, which restricts the robustness and fairness of
models trained on such skewed data distributions.

« Blindly using multi-source data can lead to mislead-
ing results: While multi-source data theoretically offers a
more comprehensive view of system behaviors, improper
integration strategies can introduce redundancy, noise, or
misleading patterns. First, overlapping events across sources
can lead to feature redundancy (e.g., failures being reflected
both in logs and traces), which can lead to redundant
features. Without proper feature selection, models may
overfit to irrelevant correlations instead of capturing true
causal signals. Secondly, improper fusion of multi-source
data can dilute anomaly signals. For instance, a critical
failure may only manifest in logs, while metric or trace data
remain normal; when fused indiscriminately, such subtle
yet crucial failure logs may be overshadowed. Finally, in-
cluding unrelated or noisy data sources may degrade model
performance. Certain data modalities might be irrelevant to
the failure diagnosis task, and incorporating them without
discrimination can increase model complexity and reduce
generalization. For example, after excluding log data, the F1
score of Diagfusion [7] increases by 10% on the AIOps22
dataset. Additionally, after excluding metric data, the F1
score of CloudRCA [10] increases by 40% on the GAIA
dataset. These findings highlight the importance of thought-
ful data preprocessing, feature selection, and modality-aware
modeling in leveraging multi-source observability data.
The main contributions of this paper are summarized as

follows:

« To the best of our knowledge, this is the first empirical study
on microservice failure diagnosis methods based on multi-
source data. We evaluate eleven representative methods on
three public datasets and our own curated dataset. Addi-
tionally, we release the implementations of PDiagnose [8]],
CloudRCA [10], RMLAD [9], TrinityRCL [[L1], which were
not open-sourced, publicly accessible [*| to facilitate further
research.

o We construct a new publicly usable multi-source dataset
from a newly released microservice benchmark, Mi-
croServo [20]], including observability data from ten mi-
croservices. As information shown in [Table 1| [Table 11}

Repository: https://www.aiops.cn/gitlab/aiops-nankai/data/trace/aiops2021

ZRepository: https:/github.com/AIOps-Lab-NKU/UniDiag

3Repository: https://github.com/CloudWise-OpenSource/GAIA-DataSet

4Repository: https://anonymous.4open.science/r/Empirical-Study-on-Multi-
source-Failure-Diagnosis-49F(0

https://www.aiops.cn/gitlab/aiops-nankai/data/trace/aiops2021
https://github.com/AIOps-Lab-NKU/UniDiag
https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://anonymous.4open.science/r/Empirical-Study-on-Multi-source-Failure-Diagnosis-49F0
https://anonymous.4open.science/r/Empirical-Study-on-Multi-source-Failure-Diagnosis-49F0

and the dataset includes metric data collected at 1-
second intervals, a diverse range of logs, and trace records,
providing a thorough observability of the system. It features
a balanced injection of hundreds of failures across seven
different types, covering most failure scenarios without
data loss. More importantly, the ground truth is accurately
recorded. This dataset is now publicly accessible E] for
broader use.

« By conducting comprehensive experimental analysis across
different datasets, we find that the performance of the
above methods is not uniformly effective across different
types of failures. Additionally, failure classification often
achieves optimal performance with less training data than
root cause localization. Finally, we offer method selection
recommendations tailored to different real-world application
scenarios, enabling future engineers to reference and swiftly
choose the optimal solution that meets their specific needs.

II. BACKGROUND
A. Multi-Source Data

In microservice systems, observability fundamentally de-
pends on the collection and analysis of diverse data sources.
Specifically, metrics, traces, and logs constitute the three
pillars of system observability [7], each offering unique yet
complementary perspectives on system behaviors and failures.

As shown in Fig.[T}(a), metrics are numerical measurements
continuously collected at fixed intervals, forming time series
data that reflect microservice health and performance [18].
These encompass both system-level indicators (e.g., CPU
usage and memory consumption) and application-level metrics
(e.g., request latency and error rate). In microservice systems,
analyzing such metrics allows operators to monitor service
behavior trends, detect performance bottlenecks, and identify
underperforming or failed service instances.

Fig. [[}(b) illustrates traces, which capture the end-to-end
execution paths of user requests across distributed microser-
vices. A trace is typically represented as a tree structure, where
each node (called a span) records a single invocation between
services, including its start time, duration, and status [13]].
Traces reveal the causal relationships among microservices
and aid in pinpointing the exact service instance or interface
where failures or latency spikes occur. In microservice systems
where requests may span dozens of services, traces are crucial
for understanding execution dependencies and isolating failure
components.

As depicted in Fig. [T](c), logs are time-stamped textual
records generated by service instances to document discrete
events or state transitions. These include business transactions,
system state changes, and error messages. Logs are typically
semi-structured, containing a timestamp, severity level (e.g.,
INFO, WARN, ERROR), and a raw message [19]. Unlike
metrics and traces, logs offer fine-grained visibility into the
internal logic of each microservice and are often the most

SRepository: https://anonymous.4open.science/r/microservo

direct evidence available for root cause diagnosis. In microser-
vice systems where failures can propagate across components,
logs are indispensable for reconstructing the failure context
and locating the source of failure.

B. Tasks of Failure Diagnosis

Following DiagFusion’s [/] problem statement, we divide
failure diagnosis in large-scale microservice systems into
two primary tasks: root cause localization (RCL) and failure
classification (FC).

RCL In the context of Artificial Intelligence for IT Opera-
tions (AIOps), RCL refers to identifying potential root causes
of anomalies and assigning a probability to each. This crucial
process pinpoints the problematic microservice upon anomaly
detection. The objective is to assess the likelihood of each ser-
vice or instance as the root cause and rank them accordingly.
RCL can be performed at three levels: service-level, instance-
level, and component-level. Each level offers a different degree
of diagnostic precision, ranging from identifying the failure
service or instance to pinpointing the exact failed component.

FC FC aims to determine the specific failure type from a
predefined category set, enabling operators to take timely and
targeted recovery actions.

III. AN EVALUATION OF MULTI-SOURCE
DATASETS

A. Selected Datasets

Our research analyzes eight multi-source datasets, seven of
which are open-source (excluding AIOps23). The TT1 dataset
is sourced from Eadro [14]], and TT2 is from Nezha [13]].
Both originate from the Train-Ticket open-source project [21]]
and are collectively referred to as the TT datasets. The
AlOps21, AlOps22, and AIOps23 datasets are collected for
competition tasks on RCL and FC. The GAIA dataset is
primarily generated from the MicroSS microservice simulation
system developed by Cloud Wisdom, containing authorized
and rigorously anonymized user data. The features of the eight
datasets are presented in

TABLE I: Key features of eight datasets

Dataset Failure Instances Ground Truth Accuracy Data Loss
TT1 81 Yes No
TT2 45 No No
SN 36 Yes No

GAIA 17155 Yes Yes

AlOps21 159 No Yes

AlOps22 241 Yes No

AlOps23 11 Yes No

MicroServo 210 Yes No

Among the eight available datasets, four (TT1, SN,
AlOps23, and TT2) are excluded from further analysis due
to various limitations.

The TT1 and SN datasets, sourced from the paper by
Eadro [[14]], are excluded due to the relatively low number of
failure instances and an unusually high frequency of metric
data collection. Additionally, the failure instances in these
datasets persist for extended periods, often covering more
than two-thirds of the total duration, which deviates from the

https://anonymous.4open.science/r/microservo

typical distribution of normal and abnormal data found in most
datasets. The significant imbalance, where anomalous data far
exceeding normal data, hinders the model’s ability to learn the
patterns of normal data. As a result, unsupervised models may
misinterpret normal data as anomalies and vice versa.

The AIOps23 dataset is excluded due to the scarcity of
failure instances, which makes it difficult to split the data into
training and testing sets and limits its usefulness for model
evaluation, despite its comprehensive and precise multi-source
data.

The TT2 dataset, although providing detailed log data that
ensures traceability to specific traces, is excluded due to a
timestamp discrepancy within the trace data. We suspect this
issue arose from a mix-up between Greenwich Mean Time
and Asian Time during data collection, causing a 28,800-
second discrepancy between certain trace timestamps and their
corresponding log timestamps.

TABLE II: Detailed information of the selected datasets

AIOps21 AIOps22 GAIA MicroServo
Services 14 10 10 9
Time Span 240 h 120 h 708 h 72h
Metrics Types 349 296 681 68
Metric Data 12M 18M 217M 58M
Metric frequency 60 s 60 s 60/30 s Is
Log Templates 391 150 66 353
Log Data 2IM 26M 8™ 22M
Call Chains 214M 44M 28M 44M
Failure Types 6 15 6 7
Failure Instances 159 241 17,155 210
AlOps21 network packet loss Alops22 wiite 10 load

= read IO load
= CPU load
= network packet loss

= high CPU usage
= network latency
= high disk IO read uasge
high memory usage
= VM OOM Heap
JVM high CPU load
high disk space usage

= memory load

A Va

= network packet retransmission
network packet corruption
network latency

= process termination

4

MicroServo

A

GAIA cpu anomalics

pod anomaly

) # network loss
= memory anomalies

= http/grpe request absence
& normal memory freed label . ‘
‘memory overload
= login failure of the QR code expired u cpu anomaly
= file moving program #network delay
u access permission denied exception http/grpe request delay

/4

Fig. 2: Proportion of different failure types in the selected
datasets (“Failure Type” is the annotated information in the
ground truth)

In summary, adhering to the selection criteria mentioned
above, we select four (AIOps21, AlOps22, GAIA, and Mi-
croServo) multi-source datasets out of the eight available.
Detailed information regarding these four datasets is presented

in [Table TI} and [Fig. 2
IV. AN EMPIRICAL STUDY ON FAILURE
DIAGNOSIS FOR MULTI-SOURCE DATA
A. Task Classification

According to the task classification outlined in 2.2, the
methods selected for this study are categorized into two types:

RCL and FC. The features of selected methods are presented
in [Table III} In the “Data Used” column, “L”, “M”, and “T”
respectively stand for Log, Metric, and Trace data.

TABLE III: Detailed information of selected methods

Method Data Used Task Method Type Datasets Used Code & Dataset

RMLAD LM RCL Unsupervised TT No/No
CloudRCA L/M FC Unsupervised From Alibaba No/No
PDiagnose (3] L/M/T RCL Unsupervised AIOps20, AlOps21 No/No
TrinityRCL [11] L/M/T RCL Unsupervised From Meituan No/No
MicroCBR L/M/T FC Unsupervised OB, SS, TT Yes/No
Nezha L/M/T RCL Unsupervised OB, TT2 Yes/Yes
Eadro [14] L/M/T RCL Supervised SN, TT1 Yes/Yes
DiagFusion [7] L/M/T RCL/FC Supervised GAIA, AIOps21 Yes/Yes
ART [I7) L/M/T RCL/FC Selfsupervised GAIA, AlOps22 Yes/Yes
Medicine [18] L/M/T FC Unsupervised GAIA, OB, AlOps22s Yes/Yes
UniDiag {19) L/M/T FC Unsupervised GAIA, AlOps22 Yes/Yes

“Code & Dataset” indicates whether the method has open-source code or dataset. “Datasets Used” refers to datasets
reported in the original papers. “OB” = Online-Boutique [22§, “SS” = Sock-Shop [23] “TT” = Train-Ticket [21J],
“SN” = Social-Network [24]].

B. RQs On Failure Diagnosis For Multi-source Data

This study aims to evaluate the capabilities of microservice
failure diagnosis methods using multi-source data and explore
the impact of multi-source data on diagnosis tasks. We design
the following research questions:

RQ1: How do the selected methods perform on open-
source datasets? While these methods show promising results
in experiments, empirical research on their effectiveness with
public datasets is lacking. This question aims to validate
their performance in real-world scenarios, where open-source
datasets often contain noise and incomplete data.

In this RQ, we evaluate Eadro [14], CloudRCA [10],
Diagfusion [7], RMLAD [9], MicroCBR [12]], ART [17,
Medicine [18]], UniDiag [19], and PDiagnose [8] on the
AlOps21, AlOps22, GAIA, and MicroServo datasets to assess
their performance and applicability under diverse conditions.
Due to Nezha’s specific requirements for multi-source
data, it cannot be evaluated on the four selected multi-source
datasets. Thus, we only replicate its results on its original
open-source datasets: Online-Boutique and Train-ticket (TT2).
For TrinityRCL [11], we conduct experiments only on the
AlOps22 dataset, as it relies on KPI data for anomaly score
calculation, which is only available in this dataset.

RQ2: Does the use of multi-source data enhance perfor-
mance? It is commonly believed that integrating multi-source
data enriches the information set, leading to more accurate
diagnostics. However, this assumption lacks empirical valida-
tion. This question explores the actual impact of multi-source
data on failure diagnosis, providing experimental evidence to
support or challenge this belief.

In this RQ, we perform multi-source data ablation ex-
periments on Eadro [14], CloudRCA [10], Diagfusion [7],
ART [17], Medicine [18], UniDiag [19], and PDiagnose [8]
across the AIOps21, AIOps22, GAIA, and MicroServo
datasets. Ablation is not feasible for TrinityRCL and
RMLAD [9]] due to their reliance on interactions between data
sources. MicroCBR [12] is also excluded, as we do not employ
all three data types required for complete failure fingerprinting.

RQ3: What is the time efficiency of the selected meth-
ods? Time efficiency is crucial for real-time applications.

This question evaluates whether the methods can meet the
computational demands of real-time systems and operational
speed requirements.

In this RQ, we evaluate the time performance of
Eadro [14], CloudRCA [10], Diagfusion [7], RMLAD [9],
MicroCBR [12], ART [17], Medicine [[18], UniDiag [19], and
PDiagnose [[8] on the MicroServo dataset. For each method,
we measure the total runtime per failure instance, including
raw data preprocessing. For deep learning methods, we also
report the average training time on fixed training and validation
sets. Nezha [13]] and TrinityRCL [11] are excluded due to
incompatibility with this dataset.

RQ4: How effectively do the selected methods diagnose
different types of failures? Assessing the versatility of
diagnostic methods under various failure conditions is essential
to ensure their broad applicability across different operational
environments.

In this RQ, we evaluate the diagnostic performance
across different failure types using the MicroServo dataset,
where each type of failure is evenly distributed. To en-
sure fairness, we maintain equal class distributions in
both training and testing sets. We conduct experiments on
Eadro [14], CloudRCA [10], Diagfusion [7], RMLAD [9],
MicroCBR [12], ART [17], Medicine [18], UniDiag [19], and
PDiagnose [8]. Nezha [[13] and TrinityRCL [11] are excluded
due to dataset incompatibility.

RQS5: How do the selected deep learning methods per-
form under varying training volumes? Understanding how
training volume affects performance is crucial for optimizing
strategies, ensuring methods remain effective with limited data,
which is common in practical scenarios.

In this RQ, we evaluate model performance under varying
training data volumes on CloudRCA [10], Diagfusion [7],
Eadro [14], ART [17], Medicine [18], UniDiag [19], and
RMLAD [9]. To ensure fairness, we use a consistent test set
across all training scenarios, enabling uniform and equitable
comparison.

C. Evaluation Metrics

Our study on failure diagnosis in microservice systems
categorizes the task into two main areas: RCL and FC.

For RCL, we use the Accuracy@k (A@k) metric, which
measures the likelihood that the true root cause is within the
top-k predicted causes. This metric indicates better diagnostic
performance with higher values, with k set at 1, 3, and 5 to
reflect real-world diagnostic needs. It is defined as:

1 1, if V, € R,[k]
Alk = A ; { 0, otherwise

where A is the set of system failures, ais one failure in A;
V. is the real root cause of a; R,[k]is the predicted top-k set
of a; FC employs metrics from machine learning to assess
effectiveness, focusing on precision (Pre), recall (Rec), and
Fl-score (F1). These metrics help understand the method’s
accuracy in predicting different types of failures. Given true
positives (TP), false positives (FP), and false negatives (FN),

TP

Rec = 757w

they are defined as follows: Pre =

__ 2xPrexRec
Fl = (Pre+Rec) *

_Tp
TP+FP’

D. Experimental Setup

In the RCL task, we configure Eadro [14], Diagfusion [7],
ART [17], Medicine [18], UniDiag [19], and PDiagnose [8]]
to operate at the instance-level, while RMALD [9] and
TrinityRCL [11]] are configured at the service-level. Since
Nezha [[13] requires the incorporation of trace IDs into log
data, and the public datasets used in our experiments do not
meet this requirement, we are only able to replicate the exper-
iment using the dataset from the original paper. In addition,
TrinityRCL [11] requires KPI data. Our experiments maintain
a training and testing set ratio of 7:3. To reduce the impact of
randomness, each experiment is repeated five times, and we
report the average results. We conduct our experiments on a
Linux Server 20.04.1 LTS with two 48C48T Intel(R) Xeon(R)
CPU E5-2650 v4@ 2.20GHz, one NVIDIA(R) Tesla(R) M4,
and 125 GB RAM.

We build a new publicly usable multi-source dataset from
a newly released microservice benchmark, MicroServo [20].
It deploys the open-source Online-Boutique [22] provided by
GoogleCloudPlatform, uses three collectors to gather met-
rics, logs, and trace data, and applies chaos engineering
techniques [25] to simulate real failures. In practice, Mi-
croServo [20]] uses Prometheus [26] as the metric collector,
Filebeat [27] as the log collector, Elastic APM [28] as the
trace collector, and ChaosMesh [29]] to inject failures into the
microservice system.

We orchestrate seven types of failure injections, covering
most failure scenarios, into MicroServo [20], collecting data
over a three-day period. This dataset comprises metric data
collected at 1-second intervals, a diverse range of logs, and
trace records, providing comprehensive system observability.
Compared to other open-source multi-source datasets, this
dataset is free from data loss or timestamp discrepancy issues.
More importantly, its ground truth is completely accurate,
precisely recording failure instances, start times, and end
times. This relieves researchers from the tedious task of data
validation. Additionally, it features a balanced injection of
hundreds of failures across different types. This ensures that
deep learning methods receive fair training across each type
of failure.

E. Methodology Analysis

In this chapter, we analyze methodologies for microservice
failure diagnosis. We cover a range of methodologies from
statistical techniques to advanced machine learning methods,
tailored for modern microservice architectures.

1) Eadro: To address task disconnection, Eadro [14] uses
all three types of multi-source data for RCL by integrating
anomaly detection and root cause localization. It classifies
failure cases and treats failure-free cases as a separate class.
To better utilize monitoring data, it applies three specialized
fusion methods and combines them via a graph attention
network. Eadro [14] builds the system structure from trace data

and achieves convergence through dependency graph learning.
To ensure fair dataset distribution, failure cases are first split
into training and testing sets before sample generation, without
degrading performance.

2) Nezha: Nezha [13] tackles RCL using all three types
of multi-source data. It builds event graphs via statistical
methods to identify failures within pattern graphs and locate
root causes. To address the loss of context in isolated log
analysis, Nezha [13]] integrates trace IDs into logs and aligns
metric data using timestamps, enhancing multi-modal fusion.
It defines two pattern types: expected patterns, which occur
frequently during failure-free periods but rarely during fail-
ures, and actual patterns, which exhibit the opposite trend.
By correlating these patterns, Nezha [[13] identifies root cause
candidates, addressing the challenge of poor interpretability.
It further achieves inner-service-level RCL through failure
event patterns, overcoming the limitation of coarse-grained
localization seen in prior methods.

3) CloudRCA: CloudRCA [10] addresses FC using metric
data, log data, and module dependencies from the Configu-
ration Management Database (CMDB). To handle challenges
such as manual troubleshooting, real-time requirements, lim-
ited training samples, and cross-platform transferability, it
applies time-series anomaly detection and log clustering to
generate a unified feature matrix. This matrix, combined
with module dependencies, feeds into a Knowledge-Informed
Hierarchical Bayesian Network (KHBN) for real-time failure
inference. Data fusion relies on time windows: upon an alert,
metric and log data within the failure window are aligned and
input to the KHBN.

4) Diagfusion: Diagfusion [7] uses all three types of multi-
source data for FC and RCL, incorporating CMDB data for
propagation paths and characteristics. It extracts, serializes,
and converts events into vectors, then builds a dependency
graph for GNN training using traces and deployment data. A
neural network encodes events to learn their representation.
Finally, Diagfusion [7] uses a GNN to merge event represen-
tations and the system dependency graph for FC and RCL.

5) RMLAD: RMLAD [9] identifies root cause metrics
by correlating them with log anomaly scores. It uses
DeepLog [30] to detect anomalies in log templates and inter-
vals, then computes scores via polynomial functions. Mutual
Information (MI) quantifies the association between each
metric and anomaly scores to rank candidates. We modify the
method to map metrics to their services for consistent service-
level RCL evaluation.

6) TrinityRCL: TrinityRCL [11] uses all three types of
multi-source data for RCL at application, service, host, and
metric levels. It builds a graph from trace, host, and log
data, and merges them with telemetry from 30 minutes be-
fore anomalies. Anomaly scores are converted into transfer
probabilities and processed with Random Walk with Restart
(RWR). Results are ranked by node type and visit count to
address multi-level RCL.

7) MicroCBR: MicroCBR [12]] uses all three types of multi-
source data for FC, with command data to address data loss.

It employs failure fingerprints and spatio-temporal knowledge
graphs for data fusion, solving challenges of single-sample
failure and spatial-temporal diagnosis. Failure fingerprints are
extracted from four data sources and integrated with the
system topology. MicroCBR [12] performs anomaly detection,
constructs failure fingerprints from anomalies, and assigns
weights based on frequency and correlation. Its effectiveness
depends on the accuracy of failure fingerprints, which vary
across datasets.

8) PDiagnose: PDiagnose [8] uses all three types of multi-
source data for RCL. It performs anomaly detection on each
data type and builds an anomaly microservice queue. For
metric data, it uses Kernel Density Estimation (KDE) and
Weighted Moving Average (WMA). For call chain data, it
structures relationships as (Req, Caller,Callee, Duration)
and flags traces as anomalous if Duration exceeds a threshold.
For log data, suspicious fields are flagged as anomalies. A
voting system identifies the root cause.

9) ART: ART [17] unifies all three types of multi-source
data into time-series formats and employs self-supervised
learning to compute reconstruction errors for FC and RCL
tasks. It uses a Transformer encoder to capture channel
dependencies, GRU to capture temporal dependencies, and
GraphSAGE to capture call dependencies, thereby modeling
various system dependencies and predicting future system
states to support downstream tasks.

10) Medicine: Medicine [18] uses all three types of multi-
source data for FC, employing dedicated encoders to capture
complementary information and alleviate performance drops
caused by missing or low-quality data. It evaluates data sources
to distinguish high- and low-yield data sources, applying
gradient suppression to the former and feature enhancement
to the latter, dynamically adjusting training to reduce the
impact of convergence inconsistency and cross data source
interference.

11) UniDiag: UniDiag [19] uses temporal knowledge
graphs (TKGs) to integrate all three types of multi-source data
for FC. It models structural and temporal dependencies via
microservice-oriented graph embedding (MOGE). Offline, it
clusters embeddings to identify failure patterns, requiring only
cluster centers for labeling. Online, anomalies are matched to
existing clusters or used to create new ones [31].

F. Results And Findings

RQI1: How do the selected methods perform on open-
source datasets? The RCL experimental results are presented
in FC Experimental Results are presented in
Nezha [13]] and RMLAD [9] results are presented
in [Table V] and [Table VI TrinityRCL’s [11] results on the
AlIOps22 dataset are 6.30% @1, 27.8% @3, and 50.70% @5.

Only Medicine [18]] consistently performs well across all
datasets, demonstrating strong effectiveness and robustness.
Other methods exhibit varied performance patterns depending
on dataset characteristics. As microservice count and interac-
tion complexity increase, the size and intricacy of the gener-
ated graphs grow accordingly. This exacerbates the challenges

TABLE 1V: A@k (%) of different methods on different datasets in instance-level root cause localization

Dataset Experiment Type Eadro [14) Diagfusion [7] PDiagnose [8] ART [17]
@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5
Normal 16.52 4639 64.04 47.83 78.26 100.00 27.85 56.96 73.42 8.13 20.33 35.00
w/o Trace 17.20 3226 49.68 56.52 86.96 100.00 34.18 58.23 72.15 8.13 20.33 32.25
w/o Metric 14.04 37.05 47.12 3478 6522 100.00 5.06 31.65 48.10 0 0 0
AlIOps21 w/o Log 13.03 44.41 64.58 52.17 82.61 100.00 27.85 56.96 73.42 1224 27.85 47.78
Log Only 0 0 0 3478 78.26 86.96 2.53 2532 39.24 0 0 0
Metric Only 16.13 4129 54.62 69.57 95.65 95.65 34.18 5823 7215 10.01 24.23 30.17
Trace Only 14.97 31.23 45.05 52.17 7826 95.65 5.06 31.65 48.10 0 0 0
Normal 19.04 3729 53.01 50.00 81.40 88.37 17.78 51.11 57.78 11.12 20.33 25.00
w/o Trace 12.42 3257 47.84 3488 56.98 76.74 17.78 51.11 57.78 10.01 18.88 23.49
w/o Metric 0 0 0 47.67 70.93 79.07 0 17.78 33.33 0 0 18.88
AlIOps22 w/o Log 19.36 3796 5599 5698 93.02 97.67 17.78 51.11 57.78 15.67 26.64 34.27
Log Only 0 0 0 9.30 30.23 53.49 0 17.78 33.33 12.64 21.18 26.36
Metric Only 12.64 3199 49.88 3837 67.44 70.93 17.78 51.11 57.78 10.25 16.67 26.38
Trace Only 0 0 0 39.53 76.74 87.21 0 17.78 33.33 0 0 0
Normal 30.27 5648 61.17 60.70 89.56 100.00 29.70 5446 67.33 14.37 25.12 30.08
w/o Trace 27.38 42779 4943 58.89 85.41 100.00 29.70 5446 67.33 12.10 23.33 27.78
w/o Metric 0 0 0 58.57 82.64 100.00 6.93 18.81 52.48 0 12.10 14.37
GAIA w/o Log 2590 42.60 56.37 55.27 88.60 100.00 27.72 53.57 69.31 0 0 0
Log Only 0 0 0 57.93 78.49 100.00 6.93 18.81 5248 26.67 27.18 35.00
Metric Only 22.08 36.12 46.17 60.28 9244 100.00 27.72 53.47 69.31 12.10 21.11 29.70
Trace Only 0 0 0 51.86 77.21 100.00 6.93 16.83 47.52 0 0 0
Normal 18.68 24.92 3046 4375 65.63 81.25 24.05 56.96 59.49 9.11 13.17 28.00
w/o Trace 11.48 18.73 15.64 3750 71.88 87.50 24.05 5823 60.76 0 0 0
w/o Metric 0 0 0 3750 65.63 75.00 11.39 29.11 77.22 0 0 0
MicroServo w/o Log 19.81 27.62 35.11 37.50 68.75 78.13 24.05 56.96 59.49 9.81 18.63 45.00
Log Only 0 0 0 6.25 62.50 71.88 6.33 2532 5443 0 0 0
Metric Only 14.65 21.59 28.4l1 3438 78.13 87.50 24.05 5823 60.76 0 3.11 21.67
Trace Only 0 0 0 31.25 65.63 75.00 11.39 3038 77.22 0 3.62 23.33

Bold indicates the best score of a method on the current dataset, while underline highlights the best overall score among all methods for that dataset.

TABLE V: A@k(%) of Nezha [13] in root cause localization

Dataset Level @] @3 @5

service-level 92.86 96.43 96.43

Online-Boutique

inner-service-level 92.86 96.43 96.43
Train-ticket service-level 86.67 97.78 97.78
inner-service-level 86.67 97.78 97.78

TABLE VI: A@k(%) of RMLAD
cause localization

[9] in service-level root

Dataset @] @3 @5
AlOps22 26.09 4720 9643
AlOps21 20.09 4286 63.74

Gaia 23.19 4638 6522
MicroServo 12.31 29.69 47.75

in graph construction, traversal, and updating, leading to per-
formance degradation in graph-based methods like Eadro [14],
ART [17], UniDiag [19]], and Diagfusion [7], which perform
best on GAIA and worst on AIOps21.

Nezha [13]] replicates its original results successfully.
CloudRCA [10] suffers when its anomaly detection module
fails to capture patterns, particularly when wavelet decomposi-
tion is unsuitable due to lack of clear seasonality. RMLAD [9],
focusing solely on metrics rather than services, struggles to
generalize when log-indicated services are unclear or collec-

tion intervals vary. TrinityRCL [[L1]] relies on precisely labeled
entry-point anomalies, limiting its localization capability on
datasets like AIOps22 where such labels are missing. Mi-
croCBR [12] may misclassify when failure fingerprints are
ambiguous, though it performs well under ideal conditions.
PDiagnose [8] exhibits unstable performance due to its depen-
dence on expert-driven parameter tuning, which varies across
datasets.

Findingl: The performance of various methods across
different datasets is inconsistent, indicating a lack of broad
applicability. Their effectiveness largely depends on the
appropriateness of data fusion techniques and the quality
of multi-source datasets.

RQ2: Does the use of multi-source data enhance perfor-
mance? The ablation experiment results for the RCL method
are presented in The ablation experiment results for

the FC method are presented in

Ablation studies conducted across multiple datasets
(AIOps21, AlIOps22, MicroServo, and GAIA) reveal that
the effectiveness of multi-source data integration is highly
context-dependent. For example, Eadro [14] exhibits strong
performance on the AIOps21 dataset in the Normal setting,
highlighting the advantages of leveraging multi-source data.
However, its performance significantly deteriorates in Log

TABLE VII: Precision(%), Recall(%), F1-Score(%) of different methods on different datasets in

failure classification

Diagfusion [7] CloudRCA [10]

MicroCBR [12]

ART [17] Medicine [18] UniDiag [19]

Dataset Experiment Type
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
Normal 26.67 22.50 24.41 3514 27.83 24.56 35.65 40.00 37.56 11.67 9.28 10.33 67.69 62.50 63.30 20.21 18.50 19.31
w/o Trace 25.00 20.38 22.45 / / / / / / 10.01 833 9.09 40.76 43.33 3840 18.88 15.85 17.23
w/o Metric 15.00 11.25 1286 6.59 1491 9.14 / / / 0.56 4.17 098 17.02 19.24 18.00 10.11 850 9.24
AIOps21 w/o Log 26.67 23.33 24.89 22.82 26.21 23.78 / / / 12.33 15.00 13.53 51.75 45.27 41.54 22.50 21.33 21.90
Log Only 1833 12.22 14.67 / / / / / / 0 0 0 36.38 46.67 38.84 4.17 522 4.64
Metric Only 23.33 19.05 20.97 / / / / / / 933 7.1 8.07 6090 6940 63.28 19.88 16.67 18.14
Trace Only 11.67 933 10.37 / / / / / / 0 0 0 18.89 1633 16.87 924 8.11 8.64
Normal 42.88 39.88 41.13 14.76 13.62 8.74 39.05 46.67 40.00 18.87 16.67 17.70 90.05 82.14 80.40 38.13 35.33 36.64
w/o Trace 38.26 36.20 35.84 / / / / / / 19.98 17.12 18.45 49.27 42.86 4436 39.33 36.11 37.62
w/o Metric 30.07 30.12 29.81 8.01 9.28 7.70 / / / 4.00 20.00 6.67 20.83 25.33 21.19 20.09 18.88 19.45
AIOps22 w/o Log 53.15 49.39 49.18 15.60 14.35 13.49 / / / 21.07 18.87 19.89 7533 85.74 77.57 42.67 38.34 40.36
Log Only 29.33 33.57 29.67 / / / / / / 5.12 1525 7.66 3395 3350 3235 2334 20.07 21.56
Metric Only 34.88 36.09 35.09 / / / / / / 20.00 17.33 18.57 56.92 53.75 54.83 37.34 36.09 36.70
Trace Only 32.62 35.34 31.21 / / / / / / 0 0 0 3571 37.24 35.13 34.67 31.08 32.78
Normal 44.10 51.11 4630 11.25 33.33 1548 86.62 80.65 83.53 21.33 28.77 24.51 84.87 78.85 81.41 41.33 4537 43.26
w/o Trace 44.85 4447 44.62 / / / / / / 18.67 25.56 21.54 59.05 6230 60.58 43.47 45.11 44.34
w/o Metric 53.75 52.44 5298 55.48 58.33 55.34 / / / 10.11 13.33 11.50 61.17 60.92 60.90 56.61 53.21 54.86
GAIA w/o Log 28.61 29.84 27.53 8.85 25.00 12.50 / / / 0 0 0 4451 47.37 4480 36.67 38.67 37.64
Log Only 53.10 53.21 52.65 / / / / / / 20.25 27.12 2323 5825 61.45 59.11 53.75 50.11 52.00
Metric Only 26.29 26.65 25.56 / / / / / / 16.29 23.10 19.14 40.64 41.52 41.06 20.10 22.65 21.32
Trace Only 32.51 29.66 29.69 / / / / / / 0 0 0 2790 24.78 25.53 34.62 35.57 35.14
Normal 28.81 24.34 2529 31.51 2823 24.72 49.85 59.49 51.70 15.56 13.33 14.37 69.10 80.00 69.94 30.08 28.41 29.22
w/o Trace 2381 11.14 14.29 / / / / / / 13.11 10.01 11.35 5838 6222 57.61 2557 22.11 23.66
w/o Metric 2.86 3390 0.14 2441 18.17 15.62 / / / 0.33 1025 0.64 29.38 37.05 31.99 3.01 3034 546
MicroServo w/o Log 26.67 19.69 21.79 31.76 28.08 24.71 / / / 25.57 26.31 25.86 58.86 65.27 56.46 28.67 2621 2742
Log Only 3143 42.30 36.32 / / / / / / 0 0 0 42.61 41.67 40.70 20.09 1947 19.76
Metric Only 13.57 1032 11.39 / / / / / / 1556 11.39 13.12 64.88 66.67 65.17 25.57 2446 25.02
Trace Only 26.19 19.47 20.03 / / / / / / 0 0 0 12.33 17.33 13.49 26.19 2432 2522

Bold indicates the best score of a method on the current dataset, while underline highlights the best overall score among all methods for that dataset.

Only and other single data source settings, suggesting that
Eadro [[14] is highly reliant on comprehensive data integration.
Similarly, CloudRCA [[10] and Diagfusion [7] sometimes yield
better results when certain data source are excluded, indicating
that fusing heterogeneous data sources does not universally
improve diagnostic accuracy.

This trend is particularly evident in the AIOps22 dataset.
In the w/o Log setting, Eadro [14], CloudRCA [10]], and
Diagfusion [7] all outperform their respective results in the
Normal setting. In contrast, PDiagnose [8] produces identical
results across both settings. Upon further inspection of the
log data, we find that no actual failure-related information is
present in the logs for this dataset. As a result, large volumes of
large volumes of irrelevant logs introduces noise that misleads
most models. In contrast, PDiagnose [8], which exclusively
utilizes anomalous log data, avoids this issue and maintains
stable performance.

To further investigate, we conduct additional experiments
on Diagfusion [7] using the AIOps22 dataset, supplying only
the relevant data sources for each failure case. Specifically,
we remove all log data and selectively prune trace data for
certain cases. With this simplified data provisioning strategy,
Diagfusion [7] achieves an approximately 10% improvement
in @1 for RCL and a nearly 15% gain in F1 score for FC.
Additionally, Medicine [18] achieves the best results under
the Normal setting across all datasets, fully demonstrating the
effectiveness and robustness of its data fusion strategy.

These findings suggest that while multi-source data holds
significant potential to enhance failure diagnosis, its actual

utility hinges on well-designed data preprocessing and fusion
strategies tailored to the characteristics of the dataset and the
task. Blindly integrating multi-source data does not necessarily
lead to improved outcomes in failure diagnosis.

Finding2: The effectiveness of multi-source data integra-
tion relies on aligning data sources with methodological
capabilities. Dynamically adjusting data source utilization
based on their performance can enhance method accuracy.

RQ3: What is the time efficiency of the selected methods?
The results of the time performance experiment are presented
in [Table VIII

TABLE VIII: Efficiency of different methods

Training Time

Method Runtime
Per Epoch Total

Eadro [14] 33.83s 2266.45s 31.05s
Diagfusion [7] 14.18s 1300.17s 13.96s
CloudRCA [10] 1.82s 1.82s 0.31s
RMLAD [9] / / 1.19s
MicroCBR [12] / / 0.05s
PDiagnose [8] / / 80.21s
ART [17] 24.17 1208.40 1.25s
Medicine [18] 2.55 255.47 0.17s
UniDiag [19] 25.52 2041.53 0.32s

The results reveal significant disparities. Due to the uti-
lization of Graph Neural Networks (GNNs), Eadro [14],
UniDiag [19], and Diagfusion [7] requires considerably more
per epoch and total training time, than several tens of times or
even hundreds more compared to CloudRCA [10], presenting

a substantial overhead that may hinder practical deployment.
In contrast, PDiagnose [8] suffers from extended runtime due
to computationally intensive processes like Kernel Density
Estimation (KDE) and Weighted Moving Average (WMA). On
the other hand, MicroCBR [12] boasts the shortest runtime
at just 0.12 seconds, demonstrating exceptional efficiency.
CloudRCA [10] shows relatively low training and runtime
durations, indicating a balanced method between performance
and efficiency.

Finding3: Eadro [14], ART [[17], UniDiag [19], and Di-
agFusion [7]] suffer from prolonged training time. Most of
the methods exhibit runtimes of less than 30 seconds, with
notable exceptions being PDiagnose [8] and Eadro [14].

RQ4: How effectively do the selected methods diagnose
different types of failures? The different failure types exper-
iment results are presented in

The diagnostic capabilities of different methods across
datasets exhibit variability, particularly in their ability to
accurately identify specific types of failures. MicroCBR [12]
struggles with diagnosing Request Delay, Request Absence,
and Network Loss failures, resulting in zero diagnostic out-
comes due to its dependency on failure fingerprints. Similarly,
Diagfusion [7]], and Medicine [18]] face significant challenges
in distinguishing between failures in the MicroServo dataset,
which lacks network-related metrics and has low failure
distinguishability, preventing it from effectively learning the
characteristics of each failure type, thus significantly reducing
the FC effectiveness.

Finding4: Existing methods exhibit inconsistent perfor-
mance across different failure types. Future methods
should be optimized for a wide range of failure types to
ensure reliable performance in diverse failure cases.

RQS5: How do the selected deep learning methods perform
under varying training volumes?

The different data volumes experiment results are presented
in [Table TX] and

In the realm of RCL, RMLAD [9], ART [17], and Diagfu-
sion [[7]] achieve their optimal performance with full training
data. Conversely, Eadro [14] peaks at 80% training volume.
For FC, all methods reach their best performance with rela-
tively low training volumes; notably, CloudRCA [10] peaks at
just 20% training volume. However, post-peak, performance
trends for both methods demonstrate a decline followed by
a resurgence, indicating a non-linear response to increasing
training data.

This discrepancy in training data requirements suggests
that RCL tasks are inherently more data-intensive than FC.
One plausible explanation lies in the higher level of feature
redundancy and noise involved in root cause localization.
Since RCL models must evaluate a broader range of candidate
components or services, they inevitably process large volumes
of non-informative or misleading signals. Without sufficient
training data, the model is less capable of learning effective

TABLE IX: A@k (%) of Eadro [14], RMLAD [9], Diagfu-
sion [7], and ART [17] with varying training data size (com-
pared to the whole training dataset) in root cause localization

Method Training Data Size @1 @3 @5
5/5 38.90 52.45 56.43
4/5 43.52 60.07 64.70
Eadro [14] 3/5 26.70 32.19 33.52
2/5 24.54 41.23 48.41
1/5 2243 36.55 39.56
5/5 11.44 27.03 47.27
4/5 10.32 25.26 45.56
RMLAD [9] 3/5 11.25 25.53 47.73
2/5 10.01 26.19 43.14
1/5 10.21 24.51 46.61
5/5 43.75 65.63 84.38
4/5 28.13 68.75 81.25
Diagfusion [7] 3/5 21.88 43.75 65.63
2/5 31.25 46.88 75.00
1/5 25.00 46.86 62.50
5/5 9.11 13.17 28.00
4/5 7.13 9.33 24.54
ART [17] 3/5 3.11 6.18 13.88
2/5 0 1.28 8.67
1/5 0 0 0

TABLE X: Precisions (%), Recalls (%), F1-Scores (%) of
CloudRCA [10], Diagfusion [7], ART [17], Medicine [18],
and UniDiag [19] with varying training data size (compared
to the whole training dataset) in failure classification.

Method Training Data Size Pre Rec F1
5/5 3176 28.08 24.71
4/5 2875 2732 2453
CloudRCA [10] 3/5 29.97 3096 26.61
2/5 4525 3896 36.38
1/5 50.70 5437 49.38
5/5 2571 29.17 2327
4/5 24776 3448 2528
Diagfusion [7] 3/5 28.10 29.64 2573
2/5 30.00 2738 26.84
1/5 13.33 8.16 9.47
5/5 1556 1333 1437
4/5 8.15 9.85 8.90
ART [17] 3/5 1748 1456 1591
2/5 1998 1515 17.18
1/5 1012 1333 1147
515 69.10 80.00 69.94
4/5 7129 8250 7472
Medicine [18] 3/5 61.10 7333 63.26
2/5 77.14 85.00 80.91
1/5 3200 2833 2791
5/5 30.08 2841 2922
4/5 26776 27.18 26.96
UniDiag [19] 3/5 24.10 2644 2518
2/5 30.11 27.38 2870
1/5 33.33 31.67 3248

100 = B
80 |- g %
g g g
= 60 |- = B
g B H
g | g
2 Y AE H
L 11 mopn | £ el | Basnn

SSSNSS NSNS

gtiel| Difangnll | o (fanan

Network Delay Pod Anomaly Request Delay

Request Absence

CPU Anomaly Network Loss

Memory Overload

’ B [CloudRCA E B MicroCBR D 0 Diagfusion E B PDiagnose [ﬂ [Eadro E E RMLAD [l O ART HI [Medicine [l 0 UniDiag ‘

Fig. 3: Accuracy (%) of different methods with different failure types

filtering mechanisms, which impairs its ability to distinguish
between relevant and irrelevant information.

Another critical factor is the strong dependence of RCL
on contextual and structural system information. Unlike FC,
which often relies on globally discriminative patterns linked to
failure types, RCL requires the model to capture fine-grained
interactions across logs, metrics, and traces. Modeling such
complex interdependencies demands a richer training set to
support generalization across diverse and often subtle failure
scenarios.

Finding5: More training data does not necessarily lead to
better performance for RCL and FC. Notably, FC often
achieves optimal results with less data, underscoring the
need for adaptive learning systems that can dynamically
determine the optimal training size.

G. Summary:

Based on our experimental findings and analysis, it is clear
that, except for Medicine [18], no single method excels across
every dataset. Medicine [18] exhibit outstanding effectiveness
and robustness, other methods typically exhibit different limi-
tations. Importantly, the results of these methods on synthetic
datasets may not truly represent how they perform in actual
real-world systems. It is crucial to make assumptions about
the working environment based on prior knowledge and select
the algorithm most suitable for the current scenario. Based on
the experimental results, we provide several high-reliability
recommendations for SREs:

For the FC task: 1) Medicine [18] employs a dedicated
encoding mechanism for each data source and integrates an
adaptive optimization module to adjust the convergence speed
across multi-source data. This design effectively captures the
unique characteristics of individual data sources and their com-
plementary information, mitigating the performance degrada-
tion commonly caused by incomplete or low-quality multi-
source data. These strengths make Medicine [18] particularly
well-suited for real-world scenarios, where data heterogeneity,
noise, and missing data sources are common challenges. 2) In
scenarios requiring both high processing speed and diagnostic
effectiveness, MicroCBR [12] is a suitable choice, provided

10

that detailed representations of failure types are available. It
offers the shortest runtime among all methods, and, with high-
quality failure fingerprints, it can achieve outstanding diagnos-
tic performance. 3) When using deep learning methods, avoid
excessive training data, as models may actually perform better
with a smaller amount of training data.

For the RCL task: 1) Diagfusion [7] performs well in most
scenarios. More importantly, it incorporates data augmenta-
tion during training, effectively mitigating the issue of data
imbalance across different failure types. This feature makes
it especially suitable for real-world applications, where the
distribution of failure types is often highly skewed, some fail-
ures occur much less frequently than others. In microservice
systems, such imbalances are further exacerbated by failure-
tolerance mechanisms that mask or recover from certain
failures, making failure-related data even more challenging to
capture. 2) When using deep learning methods, more training
data generally leads to better results.

Furthermore, since the optimal amount of training data
varies significantly between the FC and RCL tasks, we do
not recommend adopting a multi-task learning approach that
trains a single model to handle both tasks simultaneously. This
discrepancy may lead to suboptimal convergence and degraded
performance in one or both tasks. Therefore, training separate
models tailored to the specific data and requirements of each
task is generally a more effective and reliable strategy.

For dataset: 1) If the dataset does not include complete
trace data, mathematical statistical methods that do not rely
on this data modality may significantly outperform learning
methods that depend on trace data as part of their structure.
2) For methods utilizing logs, the contribution of logs within
multimodal data heavily depends on the context. It is essential
to carefully assess whether the dataset provides high-quality
data before deciding whether to use models that rely on log
data. 3) The issue of misleading results from multi-source
data cannot be overlooked; blindly using multi-source data is
likely to degrade performance. To avoid misleading outcomes,
we recommend selecting methods that focus solely on failure-
relevant data source features. 4) If you are working with the
AlOps21 or AlOps22 datasets, we recommend omitting the
log data. These logs contain very little information useful for

failure diagnosis, so most methods actually perform better on
these two datasets when the log data is removed.

V. THREATS TO VALIDITY

During our study, we identify the following major threats
to the validity:

Limited methods: We evaluate only eight microservice
failure diagnosis methods based on multi-source data. This
limited selection may not fully represent the range of methods
that could be applied to this domain. In the future, we plan to
expand our evaluations to include a wider variety of methods
to better assess the domain’s capabilities.

Reimplementation: Among the eleven failure diagnosis
methods we evaluate, only seven have publicly available code.
We replicate the remaining methods based on their respective
papers’ descriptions, which may introduce discrepancies due
to potential undocumented details. We will engage with the
original authors to clarify ambiguous details and mitigate these
risks in future replications.

VI. RELATED WORK

Failure diagnosis. Previous studies of failure diagnosis
mostly rely on single source of data such as logs, metrics, and
traces [32], [331, 1340, [35], 1361, 1371, [38l, [39], [40], [411],
[42], [43], [44], [45], [46]. Among them, Amar et al. [32], He
et al. [33]], Ikeuchi et al. [34], Jia et al. [35] and Li et al. [36]
utilize log data; Lin et al. [37]], FluxRank [38], FacGraph [39],
MS-Rank [40] and Causelnfer [41] employs metric data; Zhou
et al. [42], Marwede et al. [43], Mi et al. [44], Li et al. [45]
and Pham et al. [46] are based on trace data. To overcome
the limitations of a single source of data, researchers have
proposed numerous methods based on multi-source data to
achieve more effective failure diagnosis [9], [10], [8], [1LL],
(2], [13], (140, (71, (190, (18], [17].

Empirical study in the failure management domain.
In recent years, there have been numerous empirical studies
focusing on failure management based on a single source
of data [47], [48], [49], 500, [S1, [52]. Among them, Li
et al. [47] conduct an empirical study on anomaly detection
methods using multivariate time series (MTS) data, providing
tailored model selection suggestions based on typical data
characteristics and anomaly types. Zhao et al. [S0] propose a
generic log anomaly detection system named LogAD, which
outperforms all baselines and represents the first in-depth
study of log anomaly detection in real-world settings. He
et al. [52] conduct a comprehensive survey study on log
analysis at Microsoft and uncovers the real needs of industrial
practitioners and the unnoticed yet significant gap between
industry and academia. Fu et al. [48] explore the impact of
log parsers on log-based anomaly detection methods. Their
experiments demonstrate that all anomaly detection methods
perform more effectively and efficiently when using heuristic-
based log parsers. Le et al. [49] analyze five state-of-the-art
deep learning models for log-based anomaly detection and
found that factors like training data selection and data noise
significantly impact performance, indicating that the problem

11

remains unsolved. Chuah et al. [51] propose a method for
diagnosing major page faults and evaluate the LASSO, Ridge,
and Elastic Net regression methods on real resource use data
and system logs.

VII. CONCLUSION

This empirical study provides a comprehensive analysis and
evaluation of eleven methods designed for microservice failure
diagnosis using multi-source data. Initially, we conduct an in-
depth evaluation of existing open-source multi-source datasets,
uncovering a significant gap in the availability of usable
datasets. As a result, we collect and construct a new multi-
source dataset, MicroServo, which addresses this limitation.
Subsequently, we carry out extensive experiments on the
eleven selected methods across three open-source datasets as
well as the newly developed MicroServo dataset.

Our findings lead to two pivotal conclusions regarding the
use of multi-source data in failure diagnosis tasks:

1) The integration of multi-source data does not always yield

positive outcomes.

2) For deep learning-based methods, a small amount of
training data is sufficient to achieve optimal performance
on the FC task, whereas the RCL task requires signif-
icantly more training data to reach comparable perfor-
mance levels.

Moreover, we summarize the experimental results and pro-
vide recommendations for method selection tailored to differ-
ent real-world application scenarios from three key perspec-
tives: RCL task, FC task, and dataset characteristics.

In conclusion, our work represents a pioneering empirical
study in this field, shedding light on both the potential and
limitations of multi-source data for failure diagnosis. The
critical insights gained from this research will serve as a
valuable foundation for future studies and innovations in this
area, providing guidance for the development of more effective
and robust methods. We hope that these findings will stimulate
further exploration and advancements in applying multi-source
data to complex, real-world diagnostic challenges.

REFERENCES
[11 J. Lewis and M. Fowler. Microservices a def-
inition of this newarchitectural term, 2014. [On-

line]. Available:http://martinfowler.com/articles/microservices.html.

Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. Overload control for scaling
wechat microservices. In Proceedings of the ACM Symposium on Cloud
Computing, pages 149-161, 2018.

Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang
Gong, Ziang Li, Jiayu Ou, and Zheshun Wu. Microhecl: High-efficient
root cause localization in large-scale microservice systems. In 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 338-347. IEEE,
2021.

Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. Microrca:
Root cause localization of performance issues in microservices. In
NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium, pages 1-9. IEEE, 2020.

Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei
Zhang, Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. Practical
root cause localization for microservice systems via trace analysis. In
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), pages 1-10. IEEE, 2021.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei
Chen. Log clustering based problem identification for online service
systems. In Proceedings of the 38th International Conference on
Software Engineering Companion, pages 102-111, 2016.

Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng
Zhang, Sibo Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin,
et al. Robust failure diagnosis of microservice system through multi-
modal data. IEEE Transactions on Services Computing, 2023.
Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. Diag-
nosing performance issues in microservices with heterogeneous data
source. In 2021 IEEE Intl Conf on Parallel & Distributed Pro-
cessing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pages 493-500. IEEE, 2021.
Lingzhi Wang, Nengwen Zhao, Junjie Chen, Pinnong Li, Wenchi Zhang,
and Kaixin Sui. Root-cause metric location for microservice systems via
log anomaly detection. In 2020 IEEE international conference on web
services (ICWS), pages 142-150. IEEE, 2020.

Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo
Liu, Qingsong Wen, Liang Sun, Junwei Jiang, Lunting Fan, and Min
Ke. Cloudrca: A root cause analysis framework for cloud computing
platforms. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages 4373-4382, 2021.
Shenghui Gu, Guoping Rong, Tian Ren, He Zhang, Haifeng Shen,
Yongda Yu, Xian Li, Jian Ouyang, and Chunan Chen. Trinityrcl: Multi-
granular and code-level root cause localization using multiple types of
telemetry data in microservice systems. /EEE Transactions on Software
Engineering, 2023.

Fengrui Liu, Yang Wang, Zhenyu Li, Rui Ren, Hongtao Guan, Xian Yu,
Xiaofan Chen, and Gaogang Xie. Microcbr: Case-based reasoning on
spatio-temporal fault knowledge graph for microservices troubleshoot-
ing. In International Conference on Case-Based Reasoning, pages 224—
239. Springer, 2022.

Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li,
and Zibin Zheng. Nezha: Interpretable fine-grained root causes analysis
for microservices on multi-modal observability data. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 553-565,
2023.

Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R
Lyu. Eadro: An end-to-end troubleshooting framework for microservices
on multi-source data. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pages 1750-1762. IEEE, 2023.
Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang,
Selcuk Koprii, and Tao Xie. Groot: An event-graph-based approach
for root cause analysis in industrial settings. 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 419-429, 2021.

Lecheng Zheng, Zhengzhang Chen, Jingrui He, and Haifeng Chen.
Mulan: Multi-modal causal structure learning and root cause analysis for
microservice systems. In Proceedings of the ACM on Web Conference
2024, pages 4107-4116, 2024.

Yonggian Sun, Binpeng Shi, Mingyu Mao, Minghua Ma, Sibo Xia,
Shenglin Zhang, and Dan Pei. Art: A unified unsupervised framework

for incident management in microservice systems. In Proceedings of

the 39th IEEE/ACM International Conference on Automated Software
Engineering, pages 1183-1194, 2024.

Lei Tao, Shenglin Zhang, Zedong Jia, Jinrui Sun, Minghua Ma, Zheng-
dan Li, Yongqgian Sun, Canqun Yang, Yuzhi Zhang, and Dan Pei. Giving
every modality a voice in microservice failure diagnosis via multimodal
adaptive optimization. In Proceedings of the 39th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 1107—
1119, 2024.

Shenglin Zhang, Yongxin Zhao, Sibo Xia, Shirui Wei, Yongqian Sun,
Chenyu Zhao, Shiyu Ma, Junhua Kuang, Bolin Zhu, Lemeng Pan, et al.
No more data silos: Unified microservice failure diagnosis with temporal
knowledge graph. IEEE Transactions on Services Computing, 2024.
https://anonymous.4open.science/r/microservo.
https://github.com/FudanSELab/serverless- trainticket.
https://github.com/GoogleCloudPlatform/microservices-demol
https://github.com/microservices-demo/microservices-demo.
https://github.com/delimitrou/DeathStarBench/tree/master/
socialNetwork.

https://principlesofchaos.org/.

12

[26]
[27]
(28]
[29]
(30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

https://github.com/prometheus/prometheus.
https://github.com/elastic/beats.

https://github.com/elastic/apm.
https://github.com/chaos-mesh/chaos-mesh.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS *17, page 1285-1298, New York,
NY, USA, 2017. Association for Computing Machinery.

Shenglin Zhang, Sibo Xia, Wenzhao Fan, Binpeng Shi, Xiao Xiong,
Zhenyu Zhong, Minghua Ma, Yonggian Sun, and Dan Pei. Failure di-
agnosis in microservice systems: A comprehensive survey and analysis.
ACM Transactions on Software Engineering and Methodology, 2024.
Anunay Amar and Peter C. Rigby. Mining historical test logs to predict
bugs and localize faults in the test logs. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 140—
151, 2019.

Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R.
Lyu, and Dongmei Zhang. Identifying impactful service system prob-
lems via log analysis. In Proceedings of the 2018 26th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2018, page 60-70,
New York, NY, USA, 2018. Association for Computing Machinery.
Hiroki Ikeuchi, Akio Watanabe, Takehiro Kawata, and Ryoichi Kawa-
hara. Root-cause diagnosis using logs generated by user actions. In
2018 IEEE Global Communications Conference (GLOBECOM), pages
1-7, 2018.

Tong Jia, Pengfei Chen, Lin Yang, Ying Li, Fanjing Meng, and Jingmin
Xu. An approach for anomaly diagnosis based on hybrid graph
model with logs for distributed services. In 2017 IEEE International
Conference on Web Services (ICWS), pages 25-32, 2017.

Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu.
Swisslog: Robust anomaly detection and localization for interleaved
unstructured logs. IEEE Transactions on Dependable and Secure
Computing, 20(4):2762-2780, 2023.

Jieyu Lin, Qi Zhang, Hadi Bannazadeh, and Alberto Leon-Garcia.
Automated anomaly detection and root cause analysis in virtualized
cloud infrastructures. In NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium, pages 550-556, 2016.

Ping Liu, Yu Chen, Xiaohui Nie, Jing Zhu, Shenglin Zhang, Kaixin Sui,
Ming Zhang, and Dan Pei. Fluxrank: A widely-deployable framework to
automatically localizing root cause machines for software service failure
mitigation. In 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), pages 35-46, 2019.

Weilan Lin, Meng Ma, Disheng Pan, and Ping Wang. Facgraph:
Frequent anomaly correlation graph mining for root cause diagnose in
micro-service architecture. 2018 IEEE 37th International Performance
Computing and Communications Conference (IPCCC), pages 1-8, 2018.
Meng Ma, Weilan Lin, Disheng Pan, and Ping Wang. Ms-rank:
Multi-metric and self-adaptive root cause diagnosis for microservice
applications. In 2019 IEEE International Conference on Web Services
(ICWS), pages 60-67, 2019.

Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. Causeinfer: Auto-
matic and distributed performance diagnosis with hierarchical causality
graph in large distributed systems. In IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications, pages 1887-1895, 2014.
Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin
Xiang, and Chuan He. Latent error prediction and fault localization
for microservice applications by learning from system trace logs. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 683-694, New York, NY, USA,
2019. Association for Computing Machinery.

Nina Marwede, Matthias Rohr, André van Hoorn, and Wilhelm Has-
selbring. Automatic failure diagnosis support in distributed large-scale
software systems based on timing behavior anomaly correlation. In 2009
13th European Conference on Software Maintenance and Reengineering,
pages 47-58, 2009.

Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-Tsong Lyu,
and Hua Cai. Toward fine-grained, unsupervised, scalable performance
diagnosis for production cloud computing systems. [EEE Transactions
on Parallel and Distributed Systems, 24(6):1245-1255, 2013.

Yufeng Li, Guangba Yu, Pengfei Chen, Chuanfu Zhang, and Zibin
Zheng. Microsketch: Lightweight and adaptive sketch based perfor-

https:// anonymous.4open.science/ r/ microservo
https:// github.com/ FudanSELab/ serverless-trainticket
https:// github.com/ GoogleCloudPlatform/ microservices-demo
https:// github.com/ microservices-demo/ microservices-demo
https:// github.com/ delimitrou/ DeathStarBench/ tree/ master/ socialNetwork
https:// github.com/ delimitrou/ DeathStarBench/ tree/ master/ socialNetwork
https:// principlesofchaos.org/
https:// github.com/ prometheus/ prometheus
https:// github.com/ elastic/ beats
https:// github.com/ elastic/ apm
https:// github.com/ chaos-mesh/ chaos-mesh

[46]

[47]

[48]

[49]

[50]

[51]

[52]

mance issue detection and localization in microservice systems. In
Service-Oriented Computing: 20th International Conference, ICSOC
2022, Seville, Spain, November 29 — December 2, 2022, Proceedings,
page 219-236, Berlin, Heidelberg, 2022. Springer-Verlag.

Cuong Pham, Long Wang, Byung Chul Tak, Salman Baset, Chunqgiang
Tang, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Failure diagnosis
for distributed systems using targeted fault injection. /EEE Transactions
on Parallel and Distributed Systems, 28(2):503-516, 2017.

D. Li, S. Zhang, Y. Sun, Y. Guo, Z. Che, S. Chen, Z. Zhong, M. Liang,
M. Shao, M. Li, S. Liu, Y. Zhang, and D. Pei. An empirical analysis of
anomaly detection methods for multivariate time series. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (IS-
SRE), pages 57-68, Los Alamitos, CA, USA, oct 2023. IEEE Computer
Society.

Ying Fu, Meng Yan, Zhou Xu, Xin Xia, Xiaohong Zhang, and Dan Yang.
An empirical study of the impact of log parsers on the performance of
log-based anomaly detection. Empirical Software Engineering, 28(1):6,
2023.

Van-Hoang Le and Hongyu Zhang. Log-based anomaly detection with
deep learning: How far are we? In Proceedings of the 44th international
conference on software engineering, pages 1356-1367, 2022.
Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu
Pan, Yong Wu, Zhen Feng, Xidao Wen, Wenchi Zhang, et al. An
empirical investigation of practical log anomaly detection for online
service systems. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1404-1415, 2021.
Edward Chuah, Arshad Jhumka, and Sai Narasimhamurthy. An empir-
ical study of major page faults for failure diagnosis in cluster systems.
The Journal of Supercomputing, 79(16):18445-18479, 2023.

Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li, Yu Kang, Minghua
Ma, Yining Wei, Yingnong Dang, Saravanakumar Rajmohan, et al. An
empirical study of log analysis at microsoft. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 1465-1476, 2022.

13

	INTRODUCTION
	BACKGROUND
	Multi-Source Data
	Tasks of Failure Diagnosis

	AN EVALUATION OF MULTI-SOURCE DATASETS
	Selected Datasets

	AN EMPIRICAL STUDY ON FAILURE DIAGNOSIS FOR MULTI-SOURCE DATA
	Task Classification
	RQs On Failure Diagnosis For Multi-source Data
	Evaluation Metrics
	Experimental Setup
	Methodology Analysis
	Eadro
	Nezha
	CloudRCA
	Diagfusion
	RMLAD
	TrinityRCL
	MicroCBR
	PDiagnose
	ART
	Medicine
	UniDiag

	Results And Findings
	Summary:

	THREATS TO VALIDITY
	RELATED WORK
	CONCLUSION
	References

