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Abstract
Log analysis is vital in Artificial Intelligence for IT Operations (AIOps) and
plays a crucial role in ensuring software reliability and system stability. How-
ever, challenges such as the absence of comprehensive evaluation standards,
inconsistencies in benchmarking practices, and limited exploration of Large Lan-
guage Models (LLMs) in log-related tasks persist. To address these issues, we
introduce LogEval, a comprehensive benchmark designed to systematically eval-
uate LLMs’ performance across four key log analysis tasks: log parsing, log
anomaly detection, log fault diagnosis, and log summarization. LogEval system-
atically tackles these challenges through the following aspects: (i) it incorporates
4,000 publicly available log entries, spanning diverse tasks and providing a
strong foundation for evaluating LLM performance; (ii) it utilizes standard-
ized prompts in both English and Chinese to ensure consistent and objective
evaluations, this benchmark covers two experimental paradigms: Naive question-
answering (Q&A) and self-consistency (SC) Q&A, under both zero-shot and
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few-shot settings, while also considering inference efficiency and average token
usage; (iii) it features an open-source, continuously updated platform (https:
//nkcs.iops.ai/LogEval/) that integrates new LLMs and user-uploaded produc-
tion data, fostering reproducibility and adaptability in performance comparisons.
The experimental results provide valuable insights into the varying strengths of
LLMs across different tasks, highlighting opportunities for further optimization
and innovation for LLMs in log analysis. Our code repository is available at
https://github.com/LinDuoming/LogEval.

Keywords: Log Analysis, Benchmark Suite, Large Language Models, Prompt
Engineering

1 Introduction
With the rapid advancement of information technology, software systems have become
essential to the operations of businesses and organizations [1]. These systems gen-
erate vast amounts of log data that capture operational behavior, status changes,
and potential failures [2]. As software systems grow in both scale and complexity,
the manual log analysis performed by experts is becoming increasingly difficult and
error-prone [3–6]. It is not only time-consuming but also inefficient, often leading to
delayed responses to critical system failures [7–9]. Consequently, there is an urgent
need for automated log analysis tools capable of quickly providing insights to ensure
the reliability and stability of modern large-scale systems [10].

To meet these needs, various automated log analysis tools have been developed,
focusing on four primary tasks: log parsing [11–18], log anomaly detection [19–25], log
fault diagnosis [3, 26–32], and log summarization [7, 33]. In recent years, deep learn-
ing (DL) methods have been widely applied in log analysis to address the limitations
of traditional approaches [10, 34]. Unlike traditional machine learning (ML) methods,
deep learning is more effective at handling large-scale and complex log data [8, 22, 24],
and can automatically extract features in an end-to-end manner, avoiding the con-
straints of manual feature engineering and fixed rule-based methods [35]. While deep
learning-based approaches offer significant improvements over traditional ML meth-
ods, they also come with certain challenges [36]. One major limitation is that deep
learning models, especially PLMs, require substantial computational resources and
large datasets for both pre-training and fine-tuning [8]. Additionally, these models
may struggle with domain-specific terminologies, such as the abbreviations commonly
found in logs, log events of the same type exhibit different semantics and different
log events share many similar words but exhibit opposite [37], which are not typically
present in general language corpora. Furthermore, the variability of logs across dif-
ferent systems poses another challenge, as DL models often need to be retrained or
fine-tuned frequently to effectively handle new log types.

To address the generalization challenge, data requirements, and retraining issues
of DL-based methods, researchers have begun to explore the use of Large Language
Models (LLMs) in log analysis tasks [6, 38], as LLMs have demonstrated outstanding
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performance in various natural language processing (NLP) tasks such as text genera-
tion, language translation, and sentiment analysis. LLMs like GPT-4 [39], LLaMA-2
2023, ChatGLM-4 [41], and Qwen-1.5 [42] have shown promising performance in these
tasks. Nevertheless, with the diversification of LLMs, their performance varies across
different tasks. As a result, selecting the most appropriate LLM for a given log analysis
task has become an important consideration in both research and practice. However,
in the field of log analysis, there is currently no comprehensive and systematic evalu-
ation standard or toolkit to help researchers and developers understand and compare
the performance of different LLMs across various log analysis tasks. The diverse archi-
tectures, model sizes, and applicability of LLMs make selecting the optimal model a
complex task that lacks scientific guidance. Therefore, there is an urgent need to con-
struct a unified benchmark that can scientifically assess the performance of different
LLMs and provide objective, comprehensive comparisons. To address this, we propose
and develop a comprehensive benchmark suite called LogEval, designed to evaluate
LLMs’ performance across various log analysis tasks. The main contributions of this
paper are as follows:
• Diverse Log Dataset Collection: LogEval incorporates log datasets from mul-

tiple sources, covering core tasks such as log parsing, log anomaly detection, log
fault diagnosis, and log summarization. This curated dataset provides a robust
foundation for evaluating LLM performance comprehensively.

• Unified and Reliable Evaluation: LogEval utilizes standardized English and
Chinese prompts to ensure consistent and objective assessments of LLMs. A unified
prompt design is introduced for all tasks, minimizing variations caused by differing
prompt styles and ensuring fair comparisons. The evaluation spans two paradigms:
Naive Q&A and Self-Consistency Q&A under zero-shot setting and few-shot setting,
while also considering inference efficiency and token usage.

• Dynamic Benchmarking Platform: LogEval features an open-source, continu-
ously updated online platform (https://nkcs.iops.ai/LogEval/) that allows dynamic
integration of new LLMs and user-uploaded production log data. This platform
promotes reproducibility, fairness, and adaptability in performance comparisons,
ensuring long-term relevance and scalability. Our code repository is available at
https://github.com/LinDuoming/LogEval.

2 Background
Automated log analysis typically involves four core tasks—log parsing, log anomaly
detection, log fault diagnosis, and log summarization. Each task addresses specific
challenges and plays a crucial role in transforming raw log sequences into actionable
insights. Fig. 1 illustrates the sequence of these tasks in the log analysis pipeline.
Below, we describe each task, the results depicted in the figure, and the evaluation
metrics used to measure their performance.
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Fig. 1: A demonstration of the log analysis tasks.

Log Parsing: Log parsing is the initial task in the log analysis pipeline. It involves
transforming raw log data into a structured format that can be processed by sub-
sequent tasks. The goal of log parsing is to extract relevant components (such as
interface states, error messages, or system events) from unstructured logs and rep-
resent them in a consistent format, often as key-value pairs or predefined templates.
In Fig. 1, the first section illustrates log entries such as interface state changes or
member port status updates, which are parsed and organized into templates (e.g.,
”Interface <*>, changed state to <*>”) in the following table. This structured output
enables the identification of recurring patterns or anomalies. Metrics and Formula:
The parsing performance is evaluated using two key metrics:
• Parsing Accuracy: The formula for parsing accuracy is given by

Accuracy = Correctly Parsed Entries
Total Entries × 100% (1)

where Correctly Parsed Entries refers to log lines that exactly match predefined
templates, and Total Entries refers to all log entries in the dataset.

• Edit Distance: The formula for edit distance is given by

Edit Distance = I + D + S (2)

where Insertions (I) is the number of characters added to match the template,
Deletions (D) is the number of characters removed to match the template, and
Substitutions (S) is the number of character replacements needed.

Log Anomaly Detection: Once logs are parsed, the next step is log anomaly
detection. This task aims to identify unusual log entries that may indicate potential
issues or system faults. Anomalies are detected based on patterns that deviate from
normal system behavior, such as unexpected state changes, errors, or performance
issues. In Fig. 1, the second section of the diagram shows the log anomaly detec-
tion task. After parsing, each log sequence is examined for anomalous behavior. For
example, an unexpected interface state change or an error message could be flagged
as anomalous. The detected anomalies are then passed on for further investigation in
the fault diagnosis stage. Metrics and Formula: The performance of anomaly detec-
tion is commonly assessed using the following metrics: - Precision (the proportion of
detected anomalies that are true positives):

Precision = True Positives
True Positives + False Positives (3)
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- Recall (the proportion of actual anomalies that are correctly detected):

Recall = True Positives
True Positives + False Negatives (4)

- F1-score (the harmonic mean of precision and recall):

F1-score = 2 × Precision × Recall
Precision + Recall (5)

Where True Positives (TP) are correctly identified anomalies, False Positives (FP) are
incorrectly flagged as anomalies, and False Negatives (FN) are missed anomalies.

Log Fault Diagnosis: The log fault diagnosis task aims to identify the root
cause of the detected anomalies by analyzing the correlations between log entries. This
step often involves mapping anomalies to known fault categories or failure modes. In
Fig. 1, the third section illustrates this task, where the system correlates parsed and
anomalous log entries to diagnose faults. For example, a change in interface state from
”up” to ”down” might correlate with hardware failure or misconfiguration. Metrics:
This task shares the same evaluation metrics with anomaly detection.

Log Summarization: Finally, log summarization condenses large volumes of log
data into a concise and interpretable format, highlighting key events that require
attention. The goal is to present a summary of the most critical log entries in a format
that is easy for system administrators to understand and act upon. In Fig. 1, the log
summarization task is shown in the final section, where the relevant log entries iden-
tified during the previous stages are summarized. For example, entries like ”interface
changed state to down” and ”member port became inactive” are distilled into a more
concise format that provides key insights for further analysis. Metrics and Formula:
The performance of summarization is commonly assessed using the following metrics:
• ROUGE-L F1: The formula for ROUGE-L is given by

ROUGE-L = |LCS(S, R)|
|R|

(Recall) (6)

and the formula for F1 is given by

F1 = 2 × ROUGE-L × PLCS
ROUGE-L + PLCS

(7)

where LCS refers to the Longest Common Subsequence between summary (S) and
reference (R), and P_LCS refers to the Precision of LCS, which is |LCS(S,R)|

|S| .
• Threshold Accuracy: The formula for threshold accuracy is given by

Accuracy =
∑n

i=1 I(ROUGE-Li ≥ θ)
n

× 100% (8)
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where θ is the similarity threshold (typically 0.7-0.9), and I is the indicator function
(1 if condition met, 0 otherwise).

In this study, we carefully selected evaluation metrics tailored to the nature of
each log analysis task to ensure a comprehensive, objective, and practically mean-
ingful assessment. For tasks such as log anomaly detection and log fault diagnosis,
we adopt Accuracy and F1-score as the primary evaluation metrics. Accuracy reflects
the overall correctness of predictions, especially when class distributions are relatively
balanced. In contrast, F1-score, which harmonizes precision and recall, is more suit-
able for scenarios with class imbalance, a common challenge in log analysis where
normal logs significantly outnumber anomalies . Although metrics like ROC-AUC [43]
and PR-AUC were considered, they were ultimately excluded due to their reliance
on probabilistic outputs and threshold variation, which are not directly applicable
to classification-style outputs generated by LLMs through prompt engineering. For
tasks such as log parsing and log summary, where multiple valid outputs may exist,
we use ROUGE-L [44] and Edit Distance to measure semantic and structural sim-
ilarity between the generated and reference texts. ROUGE-L evaluates the longest
common subsequence between two texts, capturing the structural overlap, which is
ideal for assessing key information extraction in templates or summaries. Edit Dis-
tance quantifies the number of character-level operations needed to transform the
generated output into the reference text, making it especially useful for tasks with
strict format constraints such as log parsing. We also considered BLEU [45], a com-
mon n-gram based metric, but it was not chosen due to its sensitivity to word order
and reduced robustness in tasks with high output variability like summarization and
parsing. To comprehensively assess the efficiency and usability of LLMs, we addition-
ally incorporate Average Number of Tokens and Inference Time. These two metrics are
critical for real-world applications—longer outputs often imply higher computational
and memory costs, and longer inference times directly affect system responsiveness.
While alternative system-level metrics were considered, they were excluded due to
cross-platform inconsistency and difficulty in reproducibility. Instead, token count and
time are universally measurable and meaningful across different LLMs and environ-
ments. The metrics and formulas presented above help evaluate the performance of
each task, ensuring that the system can quickly identify issues, diagnose faults, and
generate actionable summaries for system operators.

3 Related Work
In this section, we first discuss the existing evaluations of LLMs in general NLP
tasks, as our research also focuses on evaluating LLMs. These evaluations highlight
the broad applications of LLMs in NLP. However, there is currently no systematic
evaluation of LLMs specifically in the field of log analysis. Therefore, we also examine
the applications of LLMs in log analysis tasks, providing context for our research
and emphasizing the potential of LLMs in this area, as well as the current lack of
standardized evaluation frameworks.
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3.1 Evaluation of LLMs in General NLP Tasks
The evaluation of LLMs in general NLP tasks has diversified, as these models have
become capable of handling increasingly complex and varied tasks. Such evaluations
now not only measure basic linguistic understanding and generation, but also delve
into nuanced capabilities such as reasoning, adaptability to different tasks, and the use
of domain-specific knowledge. We categorize these evaluations into two main areas:
general domain evaluations and specialized domain evaluations.

Evaluations in General Domain: Comprehensive assessments are designed to
evaluate the broad capabilities of LLMs across multiple dimensions. For instance,
HELM [46] utilizes a diverse set of metrics to assess LLMs in 42 unique scenarios,
providing insights into their general linguistic abilities and reasoning skills. BIG-
bench [47] extends this by including tasks that challenge the models’ understanding
of common sense, logic, and even creativity.

Evaluations in Specialized Domains: These assessments focus on evaluating
LLMs’ performance in domains requiring specialized knowledge. For example, FinEval
[48] measures financial acumen, while MultiMedQA [49] tests medical knowledge
using datasets derived from professional exams and consultation records. Similarly,
Huatuo-26M [50] evaluates medical consultation capabilities, reflecting real-world
medical inquiry handling. NetOps [51] focuses on network operations, and tests LLMs
with tasks that mimic real-world challenges in network management. OpsEVAL [52]
assesses the ability of LLMs to manage IT operations, through a set of structured
tasks, in both Chinese and English. RepairBench [53] establishes an execution-based
leaderboard for program repair, evaluating LLMs on real-world Java bugs through
test-suite validation and syntactic analysis, providing standardized assessment for
AI-driven code repair.

3.2 Applications of LLMs in Log Analysis Tasks
With the growing application of LLMs in log analysis tasks, researchers are increas-
ingly exploring how these models can improve key processes such as log parsing and
anomaly detection.

Log Parsing: LILAC [54] leverages the in-context learning (ICL) capabilities of
LLMs by employing a hierarchical candidate sampling algorithm to select high-quality
examples for log template generation. It also introduces an adaptive parsing cache to
store and refine templates generated by LLMs, reducing query frequency and ensuring
template consistency. LogParser-LLM [6] combines the semantic understanding capa-
bilities of LLMs with a prefix tree clustering approach. It utilizes LLMs to process
the semantic information of logs and performs online log parsing without requir-
ing hyperparameter tuning or labeled data. DivLog [55] uses the ICL capabilities of
LLMs to select diverse offline log samples as candidate examples, it then constructs
prompts to generate log templates for target logs, enabling unsupervised log parsing.
ECLIPSE [56] integrates the semantic understanding capabilities of LLMs with data-
driven template matching algorithms to handle cross-lingual log parsing. LLMs are
used to extract semantic information from log keywords, improving parsing efficiency
in cross-lingual environments. LogPrompt [38] employs the zero-shot capabilities of
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LLMs and advanced prompt strategies to perform log parsing tasks, it enhances LLM
interpretability and flexibility, enabling log analysis without relying on training data.

Log Anomaly Detection: LogExpert [5]) integrates LLMs with domain knowl-
edge from technical forums such as Stack Overflow. LLMs are utilized to parse relevant
technical solutions and automatically generate recommended resolutions for anoma-
lous logs, reducing the need for manual intervention. SeaLog [57] employs LLMs, such
as ChatGPT, to provide expert-level feedback that enhances the accuracy of its Trie-
based Detection Agent (TDA) for real-time anomaly detection, allowing the system to
adapt to evolving log data more effectively. LogGPT [58] utilizes ChatGPT’s language
understanding and knowledge transfer capabilities through prompt-based techniques
for log anomaly detection, exploring the application of large-scale corpora knowledge
to the processing of complex log data. LogPrompt [38] everages the zero-shot capa-
bilities of LLMs through a set of advanced prompting strategies specifically designed
for log anomaly detection tasks. This approach enables LLMs to perform detection
without relying on training data, while also offering interpretability of the results.

Other Applications: In addition to log parsing and anomaly detection, LLMs
have potential applications in various aspects of log analysis. For example, Face It
Yourselves [59] introduces a two-stage, LLM-based framework for diagnosing con-
figuration errors through log analysis. This framework, called LogConfigLocalizer,
leverages LLMs to help end-users, particularly those without source code access, iden-
tify the root causes of configuration issues by analyzing logs. UniLog [60] employs
the ICL paradigm of LLMs to automatically generate appropriate log statements
without requiring any fine-tuning. By using prompts with a few demonstration exam-
ples, LLMs can determine log positions, verbosity levels, and generate log messages,
thus aiding in system maintenance and troubleshooting. LLM4Sec [61] utilizes various
LLM architectures, such as BERT, RoBERTa, and GPT-2 [62], to analyze log files for
cybersecurity purposes. These LLMs are fine-tuned for specific log types to enhance
security log analysis. Summary Cycles [63] applies LLMs, specifically ChatGPT, to
summarize interaction logs in collaborative intelligence analysis. LLMs are used iter-
atively with recursive summarization techniques to extract key entities, topics, and
summaries from user interaction sequences.

However, currently there is no dedicated benchmark for evaluating the performance
of different LLMs in various log analysis tasks. This work bridges this gap and proposes
an evaluation framework for LLMs in log analysis. Our evaluation efforts intend to
understand the strengths and limitations of different LLMs in various log analysis
tasks, while providing valuable resources and guidance for the log analysis domain,
promoting the effective application of LLMs in real-world scenarios.

4 LogEval Benchmark
In this section, we first introduce the platform architecture and the technical stack
behind LogEval, which provide the foundation for its operation and scalability. The
architecture is designed to ensure flexibility and extensibility, supporting a wide range
of log analysis tasks. Following this, we describe the key components of our benchmark
and its specific evaluation process.
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4.1 Platform Architecture and Technology Stack
The design and implementation of the LogEval platform rely on a powerful and flexible
technology stack that ensures high scalability, efficient processing, and easy exten-
sibility. Below, we highlight the core aspects of the platform’s architecture and the
tools chosen for log analysis.

4.1.1 Platform Architecture
The LogEval platform is primarily developed using Python 3.9.6 and runs on Amazon
EC2 servers. Flask 3.0.3 is used for building API interfaces, enabling the platform to
handle concurrent requests efficiently. The modular architecture allows components to
be updated or replaced without disrupting the entire system, ensuring the platform’s
scalability. Key features of the architecture include:
• Multilingual Support: Integration of Flask-Babel 4.0.0 enables bilingual support

(Chinese and English).
• Flexible Data Access: The platform uses the json 2.0.9 package for managing

data in JSON format and Pandas 2.2.2 for data processing. These tools are chosen
for their robustness and ability to handle large-scale data efficiently.

4.1.2 Extensibility and Scalability Design
To ensure flexibility, the LogEval platform is designed to scale and integrate with new
features. The following mechanisms support its extensibility:
• Plugin Mechanism: Users can easily integrate new LLM models or log processing

techniques by adding custom plugins. This allows for seamless adaptation to future
requirements.

• Modular Architecture: The platform’s core functionalities, such as log parsing
and fault diagnosis, are designed as independent modules. New modules can be
added as needed without modifying the underlying system.

• API Interfaces: The platform provides open API interfaces to enable users to
integrate with external systems and extend functionality. For example, new LLM
models can be integrated via simple API calls, allowing users to switch models
based on task requirements.

• Hardware Configurations for Performance Testing: The platform’s per-
formance across various tasks may be influenced by the underlying hardware
configurations. For local deployments, the platform uses a high-performance setup,
including 8 NVIDIA A6000 GPUs, each equipped with 48GB of memory, and Intel
Xeon processors. For external API calls, the platform uses the official recommended
API interfaces provided by the API provider, ensuring consistency and fairness in
performance evaluations.

This scalable and modular design ensures that LogEval can adapt to future needs,
whether it involves adding new features, models, or data sources.
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4.2 Evaluation Benchmark
In this section, we introduce the evaluation benchmark LogEval, which is designed to
assess the performance of various LLMs in performing log analysis tasks. As shown
in Fig. 2.

Fig. 2: The framework of LogEval

4.2.1 Data Collection
Data Collection is the foundational step that supports the entire evaluation process. To
ensure comprehensive assessment, we curated datasets from diverse sources and tasks,
covering a wide range of log processing needs. We designed four core tasks to evaluate
LLM capabilities across different log analysis scenarios. In addition, we integrated
multi-source datasets to enhance the framework’s adaptability and generalizability:
• Aliyun: The dataset contains a total of 299,817 logs, which are grouped by serial

number and sorted chronologically. The dataset captures three main fault cate-
gories, and their root causes, as flagged by operation and maintenance staff, include
issues such as high CPU temperature, memory leaks, and hardware crashes. The
dataset provides a real-world perspective on server failures, enhancing its value for
anomaly detection and fault diagnosis tasks.

• CMCC: The dataset consists of 482,515 logs collected from OpenStack’s [64] Open-
VSwitch services, distributed across 493 nodes in a high-performance computing
cluster. This dataset spans six fault categories, with root causes ranging from
software bugs to resource underprovisioning and unexpected process restarts. The
dataset’s scale and complexity, derived from an industrial OpenStack environment,
make it an excellent benchmark for evaluating anomaly detection methods.

• LogHub: [65] This open-source repository contains large-scale logs from multiple
open-source projects, covering real-world scenarios in industries such as server man-
agement and cloud computing. These datasets not only feature extensive diversity
but also include detailed annotations, providing a reliable foundation for evaluating
the performance of LLMs in log processing tasks.

By combining multi-task and multi-source datasets, the LogEval framework
simulates real-world production environments, providing a solid foundation for
comprehensive evaluation of LLM performance in log processing.
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4.2.2 Task Formalization
The purpose of this step is to structure the log analysis tasks to match the input
requirements of LLMs, thereby achieving effective LLM evaluation and comparison.
Task classification is a core step in the formalization process. Based on the nature of
task evaluation, we categorize log analysis tasks into two main types:
• Subjective Tasks: These include Log Parsing and Log Summary. These tasks do

not have a unique correct answer and rely on semantic understanding and content
generation for assessment.

• Objective Tasks: These include Log Anomaly Detection and Log Fault Diag-
nosis. These tasks have definite answers, allowing for straightforward quantitative
evaluation.

Prompt design is another key aspect to ensure that LLMs can understand and
effectively complete each task, each prompt consists of the following four elements:
• Task: Clearly specifies the log analysis task to be evaluated, such as Parsing (Log

Parsing), Detection (Log Anomaly Detection), Diagnosis (Log Fault Diagnosis), and
Summary (Log Summary).

• Instruction: Thoroughly describes the task requirements, guiding the LLM’s
behavior, for example, instructing the LLM on how to transform a log entry into a
structured format.

• Input: Provides the log entry or sequence to be analyzed, presented in a uniform
format, prefixed with explicit labels like “log entry:” or “log sequence:”.

• Output: Defines the format of the response to ensure that the LLM’s output meets
the expected standards.

To evaluate LLMs’ performance across different languages, we have prepared
prompts in both Chinese and English for each task. Additionally, we provide each
task with 15 different prompts to minimize the influence of prompt variations. Table 1
gives three different English prompts for each task.

4.2.3 LLM Evaluation
This section evaluates LLMs’ capabilities in log analysis through systematic bench-
marking. We first introduce the evaluation strategies, then detail the selected models.
Our benchmarking framework combines two evaluation strategy:

Inference Strategy
We employ two different inference strategies to process and interpret the responses
generated by LLMs: Naive Q&A and Self-Consistency Q&A. These strategies aim to
investigate the stability of LLM outputs.
• Naive Q&A: This strategy involves a single model invocation per query, and the

generated answer is directly treated as the final prediction. Naive Q&A is simple
and efficient, and it is especially suitable for tasks with subjective nature and diverse
valid answers, such as log parsing and summarization.
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Table 1: Three Different English Prompts for Each Task

• Self-Consistency Q&A: To enhance the stability and accuracy of model outputs,
Self-Consistency Q&A performs multiple model invocations on the same query
(set to 5 times in our study), generating multiple answers. The most frequent
answer among these is selected as the final result through a voting mechanism. This
approach effectively reduces the randomness of single-shot outputs and is particu-
larly well-suited for tasks with objective ground truth, such as log anomaly detection
and fault diagnosis.

Prompting Technique
We use various settings to evaluate LLMs on LogEval to get a comprehensive overview
of their performance. We evaluate LLMs in zero-shot and few-shot (5-shot) settings.
• Zero-shot setting: This technique involves presenting the LLM with a task with-

out prior examples, thereby testing its ability to adapt to new situations based on
its pre-existing knowledge. It is a measure of the LLM’s capacity to generalize from
its training data to unseen tasks. The examples for the zero-shot setting can be
found in Table 2.

• Few-shot setting: The LLM is provided with a limited number of exemplars before
being asked to perform the task. Few-shot prompting helps the model better capture
task-specific patterns or structures within the log data, often leading to improved
performance compared to zero-shot. The examples for the few-shot setting can be
found in Table 3.

We select 12 state-of-the-art LLMs covering diverse architectures and accessibility
modes, as summarized in Table 4.
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Table 2: Zero-shot prompts for the four log analysis tasks.

Table 3: Few-shot prompts for the four log analysis tasks.

Table 4: LLMs Chosen for Evaluation

Model Creator Size Access
GPT-4 [39] OpenAI undisclosed Commercial
GPT-3.5 [66] OpenAI undisclosed Commercial
Claude-3-Sonnet [67] Anthropic undisclosed Commercial
Gemini-Pro [68] Google undisclosed Commercial
Mistral [69] Mistral 7B Open-source
InternLM2-Chat [70] Shanghai AI Laboratory 7B/20B Open-source
DevOps-Model-Chat [71] CodeFuse 7B/14B Open-source
AquilaChat [72] BAAI 7B Open-source
ChatGLM-4 [41] Tsinghua undisclosed Commercial
LLaMA-2 [40] Meta 7/13/70B Open-source
Qwen-1.5-Chat [42]) Alibaba Cloud 7/14/72B Open-source
Baichuan2-Chat [73] Baichuan Intelligence 13B Open-source

5 Evaluation Results
In this section, we aim to explore the following key aspects of LLMs’ performance in
log analysis tasks:
• RQ1: What is the overall performance of different LLMs when applied to various

log analysis tasks?
• RQ2: How do LLMs perform under Naive Q&A settings across different log analysis

tasks?
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• RQ3: How do LLMs perform under Self-Consistency Q&A settings in the context
of log analysis tasks?

• RQ4: What is the impact of inference time and the average number of tokens on
the performance of LLMs?

• RQ5: How do factors such as parameter size and language choice influence the
performance of LLMs in log analysis tasks?

5.1 RQ1: Overall Performance
To evaluate the performance of various LLMs on different log analysis tasks, we con-
ducted a comparative analysis of their Naive Q&A accuracy under both zero-shot and
few-shot settings. The results are shown in Fig. 3 and Fig. 4, respectively. For the sake
of simplicity, we use the abbreviation of each task in these two and subsequent figures,
i.e., we use “Parsing” instead of “Log Parsing”, “Detection” instead of “Log Anomaly
Detection”, “Diagnosis” instead of “Log Fault Diagnosis”, and “Summary” instead of
“Log Summary”. From Fig. 3 and Fig. 4, we have the following findings for each task:

Parsing Detection Diagnosis Summary
Claude3 Sonnet

GPT-4
Gemini Pro
ChatGLM-4

GPT-3.5
Qwen1.5-7b

Qwen1.5-14b
Qwen1.5-72b
LLaMA2-7B

LLaMA2-13B
LLaMA2-70B

DeVops-7B
DeVops-14B

InternLM2-7B
InternLM2-20B
AquilaChat-7B

Mistral-7B
Baichuan2-13B

0.43 0.35 0.37 0.59
0.58 0.33 0.34 0.46
0.26 0.49 0.34 0.46
0.23 0.42 0.38 0.36
0.23 0.26 0.35 0.45

5.86 · 10−2 0.52 0.33 0.38
8.29 · 10−2 0.27 0.27 0.32

0.26 0.29 0.28 0.4
4.76 · 10−2 0.57 0.33 0.36
7.18 · 10−2 0.54 0.23 0.35
7.2 · 10−2 0.63 0.16 0.36

7.75 · 10−2 0.15 0.3 0.61
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Fig. 3: Accuracy in zero-shot Naive Q&A across four tasks.

• Log Parsing: For log parsing, GPT-4 and Claude3 Sonnet demonstrate outstand-
ing performance in both zero-shot and few-shot settings, with GPT-4 achieving
the highest parsing accuracy under the few-shot condition, showcasing its excep-
tional parsing capabilities. Gemini Pro also exhibits strong adaptability in the
few-shot setting, achieving a high level of parsing accuracy, which positions it as a
competitive and promising LLM for this task.
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Parsing Detection Diagnosis Summary
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Fig. 4: Accuracy in few-shot Naive Q&A across four tasks

• Log Anomaly Detection: In the log anomaly detection task, LLaMA2-70B per-
forms better than other LLMs in the zero-shot setting, but it still lags slightly
behind GPT-4 and Claude3 Sonnet in overall performance. In the few-shot set-
ting, Mistral-7B shows a significant improvement, demonstrating strong contextual
learning abilities, making it the standout LLM in this task. Gemini Pro also per-
forms well in the few-shot setting, showcasing its adaptability to different prompt
conditions, making it suitable for applications in dynamic data environments.

• Log Fault Diagnosis: In the log fault diagnosis task, performance differences
among LLMs in the zero-shot setting are relatively small; however, Baichuan2-13B
and the LLaMA2 series LLMs show relatively weaker performance in this task. In
the few-shot setting, GPT-4 shows a marked improvement, establishing itself as the
best choice for this task, while Gemini Pro and Qwen1.5-72B also exhibit excellent
diagnostic capabilities. These results suggest that GPT-4 can effectively enhance
fault diagnosis accuracy under few-shot conditions, making it an ideal LLM for
complex diagnostic tasks.

• Log Summary: In the log summarization task, the DeVops series LLMs perform
well in both zero-shot and few-shot settings, showing their advantage in summary
generation. In the few-shot setting, Mistral-7B and Qwen1.5-72B show significant
improvement, demonstrating the ability to generate high-quality log summaries
with limited prompts. These LLMs have application potential in scenarios requiring
high-quality log summarization, especially where limited data is available.

We further compare the accuracy of Commercial and Open-source LLMs, in accor-
dance with the access types listed in the “Access” column of Table 4. The results are
shown in Fig. 5 and Fig. 6, from which we can draw the following key findings:
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Fig. 5: Overall Performance in zero-shot Naive Q&A

Fig. 6: Overall Performance in few-shot Naive Q&A

• Zero-shot Setting Analysis: In zero-shot scenarios, weight-based LLMs generally
outperform API-based LLMs, with InternLM2-20B and Mistral-7B standing out
for their high accuracy, demonstrating the stability and superior performance of
weight-based LLMs in local runtime environments. Among the API-based LLMs,
Claude3 Sonnet and GPT-4 show relatively stable performance, indicating that in
multi-task scenarios, these LLMs can deliver reliable performance under zero-shot
conditions, making them suitable for generic task applications that do not require
fine-tuning.
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• Few-shot Setting Analysis: In few-shot settings, weight-based LLMs show signif-
icant performance improvements, with InternLM2-20B and Mistral-7B exhibiting
high adaptability with few-shot prompts. API-based LLMs also see noticeable
improvement in the few-shot setting, especially with Gemini Pro and GPT-4
achieving high few-shot accuracy, demonstrating strong adaptability. However,
weight-based LLMs demonstrate a more pronounced capacity for adaptation in
few-shot learning, making them well-suited for complex task scenarios requiring
frequent updates and optimizations. In contrast, API-based LLMs, with limited
fine-tuning flexibility, are better suited for applications requiring stability and
immediate responsiveness.

5.2 RQ2: Naive Q&A Performance
To investigate the performance of various LLMs in Naive Q&A across different log
analysis tasks, we conducted a comparative analysis of their performance under both
zero-shot and few-shot settings. This section examines the results for each task, high-
lights the strengths and weaknesses of different models, and explores the potential
factors influencing their performance,we present the following findings for each task.

5.2.1 Naive Q&A results on Log Parsing
We evaluated the performance of various LLMs on Naive Q&A log parsing task in
both zero-shot and few-shot settings. The following conclusions can be drawn:
• Few-shot learning consistently boosts LLM accuracy: Across most LLMs,

few-shot learning substantially improves accuracy compared to zero-shot settings.
This improvement is particularly notable in high-performing LLMs such as GPT-4
and Claude3-Sonnet, indicating that few-shot learning can effectively enhance LLM
adaptability to complex log parsing tasks.

• GPT-4 and Claude3-Sonnet excel in multiple parsing tasks: Among the
evaluated LLMs, GPT-4 and Claude3-Sonnet consistently deliver high performance
across both Chinese and English log parsing tasks in zero-shot and few-shot settings.
Their robust accuracy and low Edit Distance suggest strong generalization and
adaptability across languages and parsing scenarios.

• LLM performance scales with LLM size and architecture: The performance
data reveals that larger, more sophisticated LLMs, such as GPT-4 and Claude
3-Sonnet, consistently outperform smaller LLMs, including BaiChuan2-13B and
AquilaChat-7B. This scaling effect underscores the advantage of larger LLMs with
advanced architectures in capturing complex patterns in log parsing tasks, while
smaller LLMs struggle to generalize and adapt effectively.

5.2.2 Naive Q&A results on Log Anomaly Detection
We evaluated the performance of various LLMs on Naive Q&A log anomaly detection
task in both zero-shot and few-shot settings. The following conclusions can be drawn:
• Limited Impact of Few-shot Learning: In both Chinese and English tasks, few-

shot learning does not significantly outperform zero-shot learning in log anomaly
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detection. This may be due to the LLMs’ tendency to reproduce the answers found
in the few-shot examples, thereby failing to effectively identify new anomaly cases.
Table 5 illustrates some specific examples of anomaly detection tasks where the LLM
repeats answers given in the samples, reflecting the LLM’s performance in real-world
applications. This indicates that simply increasing the number of samples may not
significantly enhance LLM performance, especially when dealing with imbalanced
datasets where anomaly classes are underrepresented.

• Sensitivity to Prompt Language: The differences in performance between Chi-
nese and English prompts are not substantial overall, but some LLMs do exhibit
varying performance levels depending on the prompt language. For example, certain
LLMs, such as LLaMA2-70B, show lower F1-Score under Chinese prompts, partic-
ularly in the few-shot setting, where an F1-Score of 0 was observed. This suggests
that these LLMs have limited generalization capabilities when processing Chinese
prompts, highlighting the sensitivity of the LLM to the prompt language.

• Challenges with Complex or Domain-Specific Questions: In zero-shot set-
tings, LLMs often struggle with addressing complex or domain-specific questions,
resulting in vague or uncertain outputs. As illustrated by the BaiChuan2-13B
model’s performance on log analysis tasks (Table 6), even high-performing mod-
els may fail to accurately classify log entries without sufficient domain knowledge.
Integrating domain-specific information into the training process can significantly
improve comprehension and response accuracy for specialized tasks like log analysis.

Table 5: Few error examples on Log Anomaly Detection

“Task”: Detection “Task”: Detection “Task”: Detection “Task”: Detection

“label”: “normal” “label”: “normal” “label”: “normal” “label”: “normal”

“predict”:
“log1: normal
log2: normal
log3: anomalous
4: anomalous
5: normal
6 anomalous”

“predict”: “normal
normal anomalous
normal”

“predict”: “‘nor-
mal’ ‘normal’
‘normal’ ‘abnormal’”

“predict”: “nor-
mal normal normal
abnorma anomalous”

5.2.3 Naive Q&A results on Log Fault Diagnosis
We evaluated the performance of various LLMs on Naive Q&A log fault diagnosis
task in both zero-shot and few-shot settings. The following conclusions can be drawn:
• Effectiveness of Few-shot Learning: Few-shot learning markedly enhances accu-

racy and F1-Score across most LLMs. High-performing LLMs, such as GPT-4 and
Qwen1.5-72B, show significant improvements in the few-shot setting, highlighting
the value of providing examples in fault diagnosis. However, some smaller LLMs,
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Table 6: A failed zero-shot example by BaiChuan2-13B

“Task”: “Detection” “Task”: “Detection”

“label”:“anomalous” “label”:“normal”

“predict”: “anomalous”

“predict”: “Based solely on the information provided in
the log entry, it is not possible to definitively classify it as
‘normal’ or ‘anomalous’. The log entry mentions “double-
hummer alignment exceptions”, but without additional
context or information about what this means within the
specific system or application being monitored, it is diffi-
cult to determine whether this is expected behavior or an
indication of a problem. Therefore, I would classify this
log entry as ‘unclear’ or ‘inconclusive’ rather than ‘nor-
mal’ or ‘anomalous’. It may be necessary to gather more
information or consult additional logs or documentation
in order to make a more accurate classification.”

like the LLaMA series, exhibit limited benefits from few-shot learning, indicating
their difficulty in adapting to complex tasks through minimal examples.

• Superiority of GPT in Complex Tasks: Among the evaluated LLMs, GPT-
3.5 and GPT-4 perform exceptionally well in few-shot log fault diagnosis, with
both LLMs achieving an F1-Score above 0.9. GPT-4’s superior performance in both
Chinese and English tasks suggests that it can effectively generalize in complex fault
diagnosis scenarios, making it ideal for critical applications requiring high accuracy.

• Limitations of Smaller LLMs: Smaller LLMs with fewer parameters exhibit
significant limitations in handling complex fault diagnosis tasks. Their reduced
capacity to capture diverse fault types, particularly in zero-shot settings, leads to
inaccurate predictions. Table 7 showcases several failure examples from 7B mod-
els. For instance, when tasked with diagnosing “Processor CPU Caterr,” the model
inaccurately predicts “Processor CPUR,” and for “Mirror does not specify output,”
the model erroneously outputs “Mirror specified output.” These issues demonstrate
that smaller models struggle to capture the deeper, intricate features of log data,
resulting in lower reliability of their fault diagnosis predictions.

5.2.4 Naive Q&A results on Log Summary
We evaluated the performance of various LLMs on Naive Q&A log summary task in
both zero-shot and few-shot settings. The following conclusions can be drawn:
• Effectiveness of Few-shot Learning: The majority of LLMs show significant

improvement in log summarization performance when transitioning from zero-shot
to few-shot settings. This suggests that few-shot learning enables LLMs to better
grasp and adapt to the summarization context, enhancing both accuracy and F1-
Score. However, certain LLMs, especially in the LLaMA series and AquilaChat-7B,
display a counterintuitive trend, with performance sometimes higher in zero-shot
than in few-shot settings, possibly due to noise introduced by few-shot examples.
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Table 7: Few error examples on Log Fault Diagnosis

“Task”: Diagnosis “Task”: Diagnosis “Task”: Diagnosis

“label”:“Processor CPU
Caterr”

“label”: “Mirror does not
specify output”

“label”: “Processor CPU
Caterr”

“predict”:
“answer:‘Processor
CPUR’;”

“predict”: “Mirror speci-
fied output”

“predict”: “1. Processor
CPU Cater 2. Memory
Throttled Uncorrectable
Error Correcting Code 3.
None 4. Hard Disk Drive
Control Error Computer
System Bus Short Circuit
Programmable Gate Array
Device Unknown”

• Strong Performance of DeVops: The DeVops-7B and DeVops-14B models
consistently outperform others across both zero-shot and few-shot settings. DeVops-
14B, in particular, demonstrates exceptional summarization capabilities, making it
well-suited for applications where accuracy and robustness in log summarization
are critical.

• Task-Specific LLM Performance Diversity: In different tasks and language
settings, specific LLMs exhibit notable performance variations, highlighting their
adaptability and limitations in particular tasks or languages. For example, Gem-
ini Pro performs exceptionally well in few-shot English tasks, demonstrating high
adaptability, but shows weaker performance in zero-shot Chinese tasks. Similar
trends are observed in LLMs like Claude 3-Sonnet. These results suggest that varia-
tions in LLM performance across tasks may reflect the impact of optimization focus
and training data.

5.3 RQ3: Self-Consistency Q&A Performance
To evaluate the capability of various LLMs in Self-Consistency Q&A for log anomaly
detection and log fault diagnosis, as well as self-consistency in LLM robustness perfor-
mance, we conducted experiments under zero-shot and few-shot settings, and provide
a corresponding analysis of these findings, we present the following findings for each
task.

5.3.1 Self-Consistency Q&A results on Log Anomaly Detection
From the overall performance results, we can draw the following scientifically
conclusions:
• Few-shot learning does not outperform zero-shot learning in log anomaly detection

tasks, highlighting its limitations in this context. In the Self-Consistency Q&A test,
which involves multiple inquiries to the LLM and taking the most frequent answer,
few-shot learning did not significantly surpass zero-shot learning. This outcome
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may be because the provided few-shot examples still do not sufficiently cover all
patterns, thus failing to improve LLM consistency. LLMs in this setup tend to
repeat examples rather than effectively learn new anomaly detection patterns from
limited samples.

• The BaiChuan model shows a significant improvement in the Self-Consistency
mode, indicating potential for more consistent responses, though its performance
remains volatile. Compared to the Naive Q&A test, the BaiChuan model improved
notably in the Self-Consistency Q&A test, suggesting a greater likelihood of gen-
erating consistent answers in repeated queries. However, it also shows considerable
variability in responses across rounds, revealing a lack of stability in multi-turn
interactions. Further optimization is needed to enhance the BaiChuan model’s
consistency and coherence in continuous query settings.

• The LLaMA2 series of models demonstrates poor performance and lack of stability
in Self-Consistency Q&A test, suggesting the need for further improvements and
optimizations. In multiple queries, the LLaMA2 models continue to produce low
and inconsistent performance, indicating deficiencies in generating stable responses.
This result may stem from limited generalization capabilities in handling complex
tasks or a lack of optimization for log anomaly detection tasks. Enhancing the
consistency of the LLaMA2 models in multi-turn Q&A may require architectural
improvements or additional fine-tuning on relevant data to improve robustness in
repeated queries.

5.3.2 Self-Consistency Q&A results on Log Fault Diagnosis
From the overall performance results, we find that the few-shot results are better than
zero-shot results, similar to the Naive Q&A results. This indicates stable output in
the log fault diagnosis task, with GPT-3.5 and GPT-4 showing far superior results.
The Baichuan model performs poorly under both Self-Consistency and Naive Q&A,
while other LLMs do not change much relative to the Naive Q&A results. The zero-
shot and few-shot performance of the LLMs are examined for English and Chinese
test sets by comparing the results of the Naive and Self-Consistency Q&A experiment.
The following conclusions can be drawn from the results:
• For most LLMs, performance does not change much from Naive Q&A to Self-

Consistency Q&A. In the anomaly detection task, the performance under few-shot
conditions is inferior to zero-shot. Conversely, in the fault diagnosis task, the
performance under few-shot conditions exceeds zero-shot scenarios.

• In these settings, Self-Consistency prompts relatively minor improvements to the
LLM. In repeated questions, the LLM’s answers were consistent.

5.4 RQ4: Performance on Inference Time and Average
Number of Tokens

To investigate the reasoning efficiency of LLMs and whether they are in generating
responses, we summarized the inference time for different LLMs and the average
number of tokens output per log. The inference time and Average Number of Tokens
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used for each task on the English dataset in the zero-shot case of the Naive Q&A are
shown below.

5.4.1 Inference Time
Fig. 7 presents the inference time of 18 mainstream LLMs across four log analysis
tasks, measured under the English dataset and zero-shot Naive Q&A setting. We first
analyze the inference performance by task and model, and then discuss their potential
in high-throughput scenarios.
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Fig. 7: The Inference Time in the Naive Q&A in log analysis

Task-wise Inference Time Comparison.
The log summarization task generally exhibits the longest inference time, with some
models reaching 5–7 seconds. This is primarily due to the longer input length and
the need for the model to integrate and rewrite information across multiple sen-
tences. Log fault diagnosis and log parsing tasks show moderate inference time (mostly
1–3 seconds), indicating a relatively structured reasoning path and lower computa-
tional demand. Log anomaly detection, the only real-time task, achieves the shortest
inference time. Lightweight models like DevOps-7B and InternLM2-7B maintain con-
sistent latency between 0.4–0.7 seconds, demonstrating their suitability for real-time
applications.

We also observe a clear correlation between model size and inference latency.
70B-scale models (e.g., LLaMA2-70B, Qwen1.5-72B) show significantly higher latency
and are more appropriate for offline tasks, while 7B/14B models provide excellent
responsiveness suitable for latency-sensitive deployments.
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Analysis of Scalability under High Log Volumes.
Inference time directly affects a model’s capacity to handle large-scale log streams.
Based on our measurements, we further analyze the models’ applicability in high-
throughput industrial scenarios. For example, typical production systems generate
approximately 100,000 logs/hour (28 logs/sec). Among the four tasks, only log
anomaly detection requires real-time processing. DevOps-7B, with an average latency
of 0.43s, can theoretically support over 2,000 logs/sec, exceeding real-world demands
and ensuring both low latency and system stability. The remaining three tasks can be
processed in offline batches, allowing for the use of larger models (e.g., Qwen1.5-72B)
that trade latency for improved accuracy. A practical solution involves a two-stage
architecture, Stage 1 (Light Filtering): Rule-based filters or lightweight LLMs remove
90% of normal logs. Stage 2 (LLM Analysis): The remaining 10% (2.8 logs/sec) are
processed by more capable LLMs.

Furthermore, LogGPT [58] and LogPrompt [74] have demonstrated the ability to
process log anomaly detection, further validating the scalability of LLM-based log
analysis pipelines. In summary, inference time serves as a practical indicator not only
for real-time responsiveness but also for guiding the architectural design of LLM-based
solutions to meet high-throughput industrial requirements.

5.4.2 Average Number of Tokens
Fig. 8 shows the Average Number of Tokens of the four classes of tasks on the English
data set with zero-shot setting for Naive Q&A.
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Fig. 8: The Average Number of Tokens in the Naive Q&A in log analysis

From the overall performance evaluation results, the log summary task outputs
the highest average number of tokens among the four tasks. This phenomenon is
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mainly determined by the nature of the task because the log summary task requires
the LLM to generate a concise summary, which usually requires more tokens to accu-
rately represent the main content of the log. However, our evaluation results show that
ChatGLM-4, GPT, and Mistral models output a lower average number of tokens, indi-
cating that their answers are more concise, without excessive redundant information,
and their outputs are cleaner. Conversely, LLaMA and Qwen models output more
tokens on average, meaning their answers contain more extraneous content. In prac-
tice, this can result in users spending more time and effort sifting useful information
from responses, which reduces efficiency.

5.5 RQ5: Performance on Different parameters and Language
To provide the impact of different parameter sizes on models, this section conducts
a comparative analysis of the performance of LLaMA-2 and Qwen-1.5, each evalu-
ated with three different parameter sizes, offering insights into their adaptability and
potential use cases.

Fig. 9 shows the accuracy of LLaMA-2 and Qwen-1.5 with different parameter
sizes. We used a zero-shot Naive Q&A assessment on English prompts.
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Fig. 9: The Accuracy of LLaMA-2 and Qwen-1.5 in zero-shot English Naive Q&A

From the comparison of results, most LLMs achieve better performance with a
parameter size of 7B across the majority of tasks. This finding suggests that LLM size
is not a determining factor for log analysis tasks. While an increase in the number of
parameters generally means that the LLM can capture more features and patterns,
a large number of parameters can also cause the LLM to be too complex to process
log data quickly and accurately in real-world applications. Therefore, we can conclude
that for log analysis tasks, choosing the right number of parameters is crucial, not
simply “bigger is better.” Future research should focus on how to optimize the size of
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the LLM for a more efficient and cost-effective log analysis solution without sacrificing
performance.

To provide the impact of different language on models, this section conducts a com-
parative analysis , as illustrated in Fig. 10, reveals notable differences. LLMs such as
LLaMA series, GPT-4, ChatGLM4, and Claude3-Sonnet excel in English tasks, while
LLMs like Qwen and DevOps, trained with a substantial amount of Chinese data,
outperform in Chinese tasks. This performance disparity is attributable to the linguis-
tic distribution in the LLMs’ pretraining datasets. Therefore, task-specific language
requirements must guide LLM selection. For Chinese-focused applications, LLMs like
Qwen and DevOps are recommended, whereas English-dominant tasks may benefit
from the LLaMA series or GPT-4.This discussion outlines the specific performance of
LLMs in different languages.
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Fig. 10: The performance of LLMs under the “zero-shot” Naive Q&A in both Chinese
and English test sets

This section provides a comprehensive performance evaluation of several LLMs.
Through comparative analysis of these LLMs, we find significant differences in their
performance on log analysis tasks. These differences may be due to differences in
LLM design philosophy, training strategies, and LLM architecture. For example, some
LLMs may perform better in parsing, while others may show greater efficiency in
generating summaries or detecting anomalies. Additionally, the number of parameters
and training objectives of the LLM are also important factors affecting its performance
in the log analysis task. Our evaluation highlights the need to consider these factors
when selecting and customizing a log analysis LLM to ensure that the LLM effectively
meets the needs of real-world applications.
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6 Conclusion
In this study, we have addressed a significant gap in the field of log analysis, where a
standardized and systematic evaluation framework for assessing LLMs across multiple
tasks has been lacking. The heterogeneity in LLM architectures, varying parameter
sizes, and diverse applicability in log analysis complicate the decision-making pro-
cess for selecting the most suitable LLM. To overcome this challenge, we introduced
LogEval, a unified and comprehensive benchmarking suite designed to rigorously eval-
uate the performance of different LLMs across key log analysis tasks, including log
parsing, anomaly detection, fault diagnosis, and summarization.

LogEval provides a robust framework that facilitates consistent comparisons among
LLMs. The benchmark is complemented by a real-time, dynamically updating plat-
form, accessible at https://nkcs.iops.ai/LogEval/, which serves as a valuable resource
for both researchers and practitioners in the domain. This platform enables users
to stay up-to-date with the latest advancements in LLM technology and understand
how different LLMs perform in practical log analysis scenarios. Our code repository
is available at https://github.com/LinDuoming/LogEval. Our evaluation results have
highlighted the strengths and limitations of various LLMs, underscoring the impor-
tance of task-specific LLM selection and the impact of zero-shot versus few-shot
prompting techniques. LogEval not only offers a clear performance overview but also
provides insights that can guide the design and deployment of LLM-based log analysis
systems.
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