
ClusterRCA: Network Failure Diagnosis in HPC
Systems Using Multimodal Data

1st Yongqian Sun
Nankai University

sunyongqian@nankai.edu.cn

2nd Xijie Pan
Nankai University

panxijie@mail.nankai.edu.cn

3rd Xiao Xiong
Nankai University

xiongxiao@mail.nankai.edu.cn

4th Lei Tao
Nankai University

leitao@mail.nankai.edu.cn

5th Jiaju Wang
Nankai University

wangjiaju@mail.nankai.edu.cn

6th Shenglin Zhang
Nankai University

zhangsl@nankai.edu.cn

7th Yuan Yuan
National University of Defense Technology

yuanyuan@nudt.edu.cn

8th Yuqi Li
National University of Defense Technology

liyq@nscc-tj.cn

9th Kunlin Jian
Huawei

jiankunlin1@huawei.com

Abstract—Network failure diagnosis is challenging yet critical
for high-performance computing (HPC) systems. Existing meth-
ods cannot be directly applied to HPC scenarios due to data
heterogeneity and lack of accuracy. This paper proposes a novel
framework, called ClusterRCA, to localize culprit nodes and de-
termine failure types by leveraging multimodal data. ClusterRCA
extracts features from topologically connected network interface
controller (NIC) pairs to analyze the diverse, multimodal data in
HPC systems. To accurately localize culprit nodes and determine
failure types, ClusterRCA combines classifier-based and graph-
based approaches. A failure graph is constructed based on the
output of the state classifier, and then it performs a customized
random walk on the graph to localize the root cause. Experiments
on datasets collected by a top-tier global HPC device vendor show
ClusterRCA achieves high accuracy in diagnosing network failure
for HPC systems. ClusterRCA also maintains robust performance
across different application scenarios.

Index Terms—Network failure diagnosis, HPC system, Multi-
modal data, Random walk

I. INTRODUCTION

High-performance computing (HPC) systems are essen-
tial for large-scale applications across various domains like
weather forecasting, biological sciences, and fluid dynamics
simulation [1]. These systems, typically organized into net-
work clusters, facilitate complex computations and data pro-
cessing. However, the intricate network structures of HPC sys-
tems make them susceptible to issues like network congestion
and interconnect failures [2]. Therefore in the domain of HPC,
accurate and efficient failure diagnosis is crucial for restoring
network performance and ensuring uninterrupted operation.
Failure diagnosis involves localization and classification [3],
where localization helps narrow down troubleshooting by
identifying the primary culprit node, and classification enables
prompt determination of mitigation measures based on the

Corresponding author: zhangsl@nankai.edu.cn

specific failure type. Therefore, network failure diagnosis,
including localization and classification, is critical for HPC
system maintenance.

When a task is observed to be faulty(e.g., running timeout),
the operator performs failure diagnosis on the components
involved in this task, including root cause localization and type
classification. Components in HPC systems typically include:
compute nodes, network switches, storage systems, control
nodes etc. Among these components, the compute nodes and
network switches are mainly responsible for performing the
tasks, while network failures mainly occur among them. In
contrast, failures on pure interconnected networks (i.e., spine
switches, without computing nodes) have been extensively
studied and are relatively mature [4] [5]. Therefore in this
work, we focus exclusively on network failures localization
and classification at computing nodes and connected network
switches(i.e., leaf switches). In addition, we use “node” to
refer to compute node and network switch later in the paper.

➢Flow Control Failures

➢NIC Failures

➢Link Bottlenecks

Leaf Switches

Compute Nodes

Spine Switches

HPC System

…

…

…

NIC

NIC

Multimodal Data Failure Type

Monitoring

metrics

Log

Topology

Fig. 1. Multimodal data and main types of network failure in an HPC system.

As shown in Fig 1, the HPC system has the following
characteristics:

1) The compute nodes and network switches are connected
via a network interface controller (NIC) in a precon-
figured topology. Synchronized communication between

1



TABLE I
DETAILED INFORMATION OF THE NETWORK FAILURES.

Category Failure Type Localization Metric Log

NIC failures Wrong packet Computing node rx crc errors phy ↑ CRC Error
PFC storm Computing node tx prio pause ↑ -

Link bottlenecks Switch port performance restricted Switch port rx prio pause ↑ -
Tx timeout Computing node - Tx Timeout

Flow control failures
PFC parameter unaligned Computing node and Switch port rx prio discards ↑ -

Switch PFC disabled Switch port rx discards phy ↑ -
Computing node PFC disabled Computing node tx discards phy ↑ -

computing nodes is extremely dependent on the intercon-
nection network; the presence of network switches as im-
portant intermediate network devices connecting them is
indispensable to the network composition. This topology
makes the occurrence of failures in both correlated.

2) In order to monitor the network performance of HPC
systems while ensuring that the systems deliver maximum
arithmetic performance, the monitoring systems typically
collect two types of monitoring data on the compute
nodes and network switches during the execution of
the application: logs and coarse-grained metrics (minute
level). Logs are semi-structured text that describes the
executing state of the devices, including state changes,
software, and hardware errors, etc. Metrics are multivari-
ate time series, including CPU utilization, network I/O
utilization, etc.

3) As listed in Table I, different data modalities reflect
various types of network failures. Analyzing data from
just one modality is insufficient for precise failure di-
agnosis, as some faults are only reflected in metrics or
logs. Besides metrics and logs, operators also document
the topology of these devices. For example, due to the
NIC sending queue of the computing node being full,
network packet transmission timeout occurs, resulting in
a large number of PFC messages. Or, the inability of
the switching port to adjust the outgoing packet rate of
the surrounding compute nodes results in the relevant
compute nodes constantly receiving packets that exceed
their processing capacity limits, at which point the metric
“rx discards phy”, which records the number of received
packets that are discarded, will rise significantly.

4) In our scenario, the monitoring data from compute nodes
and network switches is heterogeneous. For example, for
the network switch, we only need to record network
resource metrics, while for the compute node, we need
to record additional CPU resource metrics. Similarly, it
can be noted from Table I that network failures will only
occur on one of the components, except when the link
connecting the two fails (e.g., PFC parameter unaligned).

In recent years, failure localization and classification meth-
ods can be categorized into two types: classifier-based [6]–[9]
and graph-based [10]–[13]. Classifier-based methods attempt
to directly distinguish the root causes from others by analyzing

the features of monitoring data. However, the HPC system
oriented approach [6] is only for compute nodes and does
not consider the heterogeneous data on the network switches
and the correlation between the two. For other scenarios
(e.g., cloud and microservices) [7]–[9], only a single modality
of data is considered, which is limited in terms of the ac-
curacy of the final diagnostic results. Graph-based methods
aim to establish causal relationships (i.e., directed edges)
between nodes to diagnose the root cause. However, most
of these approaches focus on metrics, mining correlations
between nodes through network traffic data or known service
relationship information. In HPC scenarios, the collection of
network metrics is often limited to a coarse-grained level
in order to alleviate the computational resources occupied
by the monitoring system, which, coupled with the lack of
trace data that can directly represent dependencies, greatly
increases the difficulty of graphical modeling. Then later, some
multimodal methods [14]–[16] combine the two. After using
the classifier to unify the representation and feature extraction
of multimodal data, the graph is then given to perform accurate
root cause localization, which solves the problem of accuracy
as well as the problem of difficult modeling. Similarly, some
methods [15], [16] are applied in microservice scenarios, and
the construction of the graph still requires trace or service
relationship information. Other method [14] can only output
the category of the failure and cannot be localized directly to
a compute node or network switch.

In the context of HPC systems, since both classifier-based
and graph-based approaches have their own advantages, our
idea is to explore the combination of these two methods and
their application in HPC systems through multimodal data
to achieve more accurate failure diagnosis. However, in this
process, we face two major challenges:

1) Device and data heterogeneity. Because of the way
compute nodes and network switches are connected, it
is not possible to separate them independently for failure
diagnosis, which would ignore their correlation.

2) Combination of classifier and graph. Data from two
heterogeneous components make classifier-based meth-
ods struggle to extract data features. Moreover, graph
construction algorithms perform poorly on coarse-grained
data (e.g., PC algorithm [12], [13]) or lack logical de-
pendency data (e.g., trace data [16], [17], network traffic

2



data [10], [11]). Previous methods lack accuracy in single
diagnostic targets (i.e., localization and classification) in
HPC system scenarios, making it even more difficult to
combine the two targets.

To tackle the above challenges, we propose ClusterRCA,
which integrates multimodal data for analysis, localizing the
culprit node, and determining the failure type of network
failures in HPC systems. For the special structure of HPC
system, ClusterRCA first translates logs and metrics into events
through feature engineering, aggregating devices into NIC
pairs based on the topological structure for unified modeling.
To accurately localize culprit NIC pairs and determine failure
types, ClusterRCA proposes integrating classifier-based and
graph-based methods. First, it utilizes the output results of the
classifier to establish directed graphs. Then, it adopts graph-
based techniques for precise culprit NIC pairs localization
and failure type classification by a customized random walk
technique. Finally, based on the type of failure, it can de-
termine whether the failure originated from a compute node
or a network switch (or the link connecting them), so that
the operator can carry out the corresponding remediation
measures.

The primary contributions of our work can be summarized
as follows:

• To the best of our knowledge, ClusterRCA is a novel net-
work failure diagnosis method capable of simultaneously
localizing the culprit node and identifying the failure type
using multimodal data in HPC systems.

• We introduce a feature engineering technique based on
NIC pairs. Utilizing the NIC pairs in the network topol-
ogy directly connecting the compute nodes and the net-
work switches as the basic units, we unify the metric and
log data features from heterogeneous equipment devices
while taking into account the correlation between the two
components, to address the challenge of conducting joint
analysis posed by the complex structure of HPC systems.

• To precisely localize the culprit node and determine
the failure type, we propose a customized random walk
technique with the help of a random forest. We use
the classification results from random forest to guide
the transitions in random walk, addressing the accuracy
limitations inherent in standalone classifier-based and
graph-based methods.

• We conduct extensive experiments using data collected
by a top-tier global HPC device vendor, evidencing
ClusterRCA’s diagnostic ability.

II. BACKGROUND

A. HPC Systems and Monitor Data

The network interconnects high-performance computing
nodes and furnishes computing resources for HPC systems.
Specifically, when a user executes a computing application on
an HPC system, the application distributes the computing task
to computing nodes (i.e., clusters) and performs in parallel.
During execution, computing nodes frequently communicate

and synchronize through expeditious network messages with
others to coordinate, facilitating the orderly processing of the
computing task. This means network congestion or interrupts
will affect the computing task or preclude continued execution.
Consequently, HPC systems always equip network devices
in clusters with a congestion control mechanism (Typically,
Explicit Congestion Notification (ECN) [18]) to sustain a
fast and stable network. For clusters constructed on lossless
networks, HPC systems always configure a flow control mech-
anism on devices (Typically, PFC in RDMA over Converged
Ethernet v2 (RoCEv2) [19]) to avoid packet loss. The message
traffic engendered by these mechanisms, together with the
applied data traffic, is transmitted in vast quantities across
the cluster network, increasing the complexity of the network
environment.

Computing nodes and switches constitute the primary nodes
in the cluster, interconnecting via their NICs in a preconfigured
topology. During application operation, they generate logs to
record their network status, and their NICs record the type and
count of each traffic traversing node. For each application,
we collected three modal data (topology, metric, and log),
distributed as shown in Fig. 1. We describe their roles in
network failure diagnosis below.

Topology: When an HPC application executes, the com-
puting nodes participating in the application are selected, and
the topology information indicates their interconnection edges
within the cluster. Typically, a computing node first connects
to a switch port and then to other computing nodes. Computing
nodes have their own NIC, Switch nodes have multiple NICs
for each port, and NICs connect via a physical link. The
interconnection between NICs constitutes topology, enabling
operators to analyze the potential impact relationships between
nodes when network issues arise. Topology is recorded as
a dictionary, e.g., (“node”: “server1”, “nic”: “NIC1”, “link”:
“switch”, “link port”: “100GE/18”) indicating that the NIC
“NIC1” from the computing node “server1” interconnects with
the 18th 100GE port of the switch “switch1”. For each running
application, there is a corresponding topology dictionary.

Metric: Monitoring metrics refer to the aggregated values
of various packet types, including traffic packets e.g., unicast
and multicast packets, jumbo packets; loss or error packets
e.g., physical port discarded packets; traffic control packets
e.g., ECN packets received by the port; link quality packets
e.g., Cyclic Redundancy Check (CRC) error packets received
by the port, and packets dropped due to physical encod-
ing errors, etc. These metrics are collected from the NIC
registers on computing nodes and switches, separated into
receive and send, and stored as time series. Furthermore,
given that excessively frequent collection would occupy device
computing resources, monitoring metrics are limited to the
collection at large intervals (per minute in our scenario).
When a network failure occurs, the operator calculates the
difference between each count value and its previous value
for every metric, examining changes in network traffic. Metrics
intuitively reflect the congestion state of each node, enabling
operators to deduce the rationale for their poor performance.

3



Log: Logs are semi-structured with timestamps and levels
[20], recording software and hardware events from devices,
such as software and hardware errors from computing nodes,
the status of traffic control mechanisms and configuration
change events from switches, etc. Operators frequently use the
content and quantity information printed in logs to infer device
operations and status. To efficiently analyze the vast number of
logs generated by various devices, researchers have proposed
several methods to automatically parse log information and
extract it as templates and parameters [21]–[24].

B. Categories of Network Failures

Network congestion and interrupt significantly impact HPC
applications and remain an active area of research [2], [25],
[26]. A stable HPC system network depends on the perfor-
mance of cluster network devices, physical links, and flow
control protocols. NICs are virtual network devices in HPC
systems that analyze network traffic data. Proper NIC opera-
tion is crucial to cluster network performance. NIC failures
arise from software and hardware failures, frequently causing
incorrect parsing or message sending and inevitably affecting
node communication with interconnected nodes. Therefore,
NIC failure is one major category of root causes that lead
to network failures, characterized by a large volume of error
processing packets generated by the node’s NIC, e.g., improper
packet errors and packet loss. Secondly, as physical links
directly connect to nodes’ NICs, uncontrollable environmental
factors can cause link bottlenecks, preventing node traffic
from meeting expectations and triggering many flow control
mechanisms. Flow control failures refer to unsatisfactory
flow control mechanism performance on cluster nodes. Flow
control mechanisms are essential to maintain lossless network
performance, and failure causes unprocessed flow control
packets and packet loss due to excessive traffic. The types
of root causes for network issues that we focus on are listed
in Table I.

Even when originating at a single node in the cluster,
the failures above will propagate expeditiously at a time
far shorter than the collection interval of traffic monitoring
metrics. Failure symptoms (i.e., packet errors, packet loss,
and flow control messages) spread from the culprit node,
obscuring the impact of the culprit nodes and victim nodes
and generating complex failure patterns.

C. Problem Statement

When a network failure occurs, operators need to localize
the culprit node and determine the failure type to achieve
timely failure mitigation. For HPC systems, the first task is
a ranking problem: to rank the culprit node (computing node
or switch port) higher than other nodes. The second task is
a classification problem: to classify a network failure into a
well-defined set of failure types. In this paper, we only focus
on failures occurring between leaf switches and computing
nodes, as achievements have already been made by [4] [5] in
the failure localization work between switches.

III. METHODOLOGY

A. Design Overview

Feature 

Extraction

Feature 

Extraction

State 

Classifier

Classifier Training

Metrics

Logs

Metrics

Logs

Network Switch

Computing Node

Switch

Features

Computing

Features

Feature

Fusion

NIC Pair 

Feature Vectors

State 

Probability 

Computing

Feature Engineering

Failure Diagnosis

Transition 

Probability 

Matrix

Diagnosis 

Result

NIC Pair 

States Matrix

Customized

Random Walk 

Topology

Fig. 2. The overview of ClusterRCA. Solid lines denote processes that
contain offline training and online diagnosis, and dash lines denote only online
diagnosis processes.

In this paper, we propose a novel framework for localizing
culprit nodes and determining failure types upon network
failure in HPC systems. As shown in Fig. 2, ClusterRCA
comprises two phases: the offline training phase and the online
diagnosis phase. The offline training phase will use historical
metrics and logs to train feature extraction models and perform
feature fusion based on historical topology to obtain the NIC
pair feature vectors. In this way, we can represent multimodal
data uniformly while ensuring information integrity. Then,
the NIC pair feature vectors labeled as culprit, victim, or
normal by the operator are input into the state classifier for
training with corresponding labels. In this process, the state
classifier learns various types of vector patterns in order to
gain the ability to discriminate the data. In the online diagnosis
phase, real-time metrics, logs, and topology data are used to
generate NIC pair feature vectors, which are fed into a trained
classifier to obtain the state, and then a state transfer matrix is
constructed, which is combined with a state-specific transition
strategy and a customized random walk algorithm to accurately
localize the culprit node and determine the type of fault.

B. Feature Engineering

In this subsection, we combine the NICs of the compute
nodes with those of the switch ports directly connected to
the compute nodes into NIC pairs. Then, we construct feature
vectors for each NIC pair based on the network topology.
Monitoring data for HPC applications is sliced into windows
of defined time length (e.g., 1 hour) and transformed into
feature values. Fig. 3 shows a typical situation: a NIC pair
connecting a compute node and the specific switch port
yields a feature vector after feature engineering. From the
trained pattern matcher model and log cluster model, we
extract pattern and level features from metrics and quantitative
features from logs. All features are combined into a feature
vector representing NIC pair characteristics for that window.
After the feature engineering, the multimodal and scattered
monitoring data in switches and compute nodes can be unified

4



into a single NIC pair feature vector. We define the root cause
candidate unit as a NIC pair feature vector with its failure
type, thus solving the challenge of data diversity and device
heterogeneity.

Computing 

node
Switch

Metrics Log

Log

cluster

Pattern

matcher

Pattern and level Quantitative feature

NIC NIC

Topology

Feature vector

Fig. 3. The feature extration and fusion for a NIC pair.

1) Pattern matcher: Metric monitoring of HPC systems
often has coarse time granularity to reduce resource consump-
tion, which prevents millisecond-level traffic direction track-
ing [27]. Therefore, useful information primarily comprises
metric change patterns and value levels. PatternMatcher [28]
uses a trained neural network model to classify interesting
metric change patterns, capturing changes upon congestion
or interruption. Fig. 4 (upper) shows the pattern matcher
metric pattern extraction process. Inputs to 1D convolution
and fully connected networks are normalized time-windowed
metric slices. Outputs indicate pattern types. During offline
training, operators label historical metric slices with patterns
to train the neural networks. We asked an operator to label
1,000 metric slices in 6 hours. To reflect metric mean value
levels, as shown in Fig. 4 (lower), we compute the mean of
the same metrics across devices at the same time and use box
plots [29] to determine levels and mark them with symbols.

Normalize

Metrics Pattern

Spike

1-D Convolution Full ConnectionMetrics Slice

Sliding 

Window

Mean Value

Statistics

High Low

Analysis

High

Level

Fig. 4. The feature extraction of metrics.

2) Log cluster: Some network failures also cause anomaly
logs on the culprit and victim nodes. Anomaly log types
and counts are critical features to distinguish the root causes.
Firstly, we parse semi-structured logs into log templates. Then,
we apply hierarchical clustering on the vectors converted
from template2vector to obtain different types of log clusters.

Historical 
Log

Template 
Sequence

Templates
Extraction

Realtime 
Log

Template 
Sequence

Vector 
Sequence

Template2
Vec

Vector
Cluster

Vector 
Sequence

Cluster
Sequence

Cluster
Sequence

Quantitative
Feature

Quantitative
Feature

Statistical 
Analysis

Offline 
Training

Online
Diagnosis

Fig. 5. The feature extraction of logs.

Finally, we analyze their numbers under normal conditions by
computing cluster means and variances and using the 3-sigma
principle to represent NIC pair log cluster quantitative features.
During offline training, we retain the extracted log template,
template2vector model, clustering details, cluster means, and
cluster variances as model information for online detection.
The log feature extraction process is shown in Fig. 5.

C. Failure Diagnosis

In this subsection, we introduce the process of combining
classifier-based and graph-based approaches, addressing the
problem of failing to accurately identify the culprit nodes and
classify the failure types using either the classifier or the graph
approach alone. Specifically, we first use a state classifier
(i.e., random forest [30]) to initially analyze the state probabil-
ity of each NIC pair within the cluster belonging to the culprit,
victim, and normal, then compute the transition probability
between NIC pairs based on a specific transition strategy, and
finally derive the diagnosis results through customized random
wandering localization.

1) State classifier: Classifier-based diagnosis methods dis-
tinguish root causes from other states by using well-trained
classifiers, which is also useful in our approach. We previously
extracted node metrics and logs as features, but the combina-
tions were too complex for effective classification. Therefore,
we first apply anomaly detection for feature compression.
As observed, nodes with similar traffic patterns tend to have
similar characteristics, but anomalies alter a few. We compare
features to normal nodes, capture anomalies, and use anomaly
vectors to train the classifier. For feature vectors to classify, we
evaluate the similarity between the vector and normal samples
using Formula 1, where Va is node a’s feature vector and M
is the dimension.

similarity (Va, VNormal) =

∑i=1
M I (Va [i] = VNormal [i])

M
(1)

Since most features of the most similar normal sample
match the sample, they can be considered in a very similar
state. Features that differ between the sample and normal
sample are labeled anomalies (1). Matching features are nor-
mal (0). We transform the discrete feature vector into a 0-1
vector, simplifying the multi-dimensional feature space into a

5



compressed representation of the anomalies that differentiate
the sample from normal.

…

Historical anomaly vector States 

labels

Train

State classifier

…

Real time anomaly vector

Predict

0.40,0.10, … , 0.10,0.12

States probability matrix

Anomaly feature

Label of normal node

Label of victim node

Label of culprit node (different faulty types) 

…

Fig. 6. The training and predicting of state classifier.

As Fig. 6 shows, we train a status classifier on historical
NIC pair feature vectors and operator-provided labels (nodes
with various types of labels in Figure reffig:classifier are all
NIC pairs). Operators label only the culprit node and failure
type for each historical failure. Other nodes are automatically
labeled as victims. Each labeling provides one culprit node and
multiple victim nodes. The well-trained classifier predicts a
state probability matrix for a realtime feature vector, specifying
the probabilities of nodes being the culprit of various failure
types, victim, or normal. The multi-classifier used in this paper
is the random forest [30], which has been proven to outperform
other classifiers in failure diagnosis for HPC system [6].
However, the classifier’s accuracy still needs to be improved
to determine the precise failure type conclusively or identify
the culprit node uniquely, as there are typically multiple nodes
exhibiting high probabilities of different failure types.

2) Customized Random Walk: Random walk is commonly
used for failure diagnosis in cluster or cloud environments,
as referenced in [12], [31], [32]. However, these studies
must first construct directional relationships between NIC
pairs to develop transition strategies. Some studies on the
application of the random walk method indicate that it can
be used to improve the accuracy of the classifier by com-
bining it with the classifier’s results through special settings
[33], [34]. Motivated by these studies, we propose a novel
customized random walk with the help of the state classifier.
Specifically, we utilize the classifier’s probability matrix to
formulate a state-specific transition strategy to initiate the
random walk and then employ the random walk results to
localize the culprit node that the classifier cannot conclu-
sively determine. Specifically, the state classifier provides the
probability matrix S = [PN1, PN2, ..., PNn], where PNi =
[F1, F2, ..., Fk, V ictim,Normal], Fk signifies the probability
of NIC pair Ni being the culprit node with kth failure type.
V ictim and Normal denote the probabilities of being the
victim and normal nodes, respectively. Based on the above
three types of probabilities, we define three states of the nodes
and the corresponding transition tendencies as follows:

• Culprit state: Node Ni is in the culprit state with
probability PFNi = PNi[F1] + PNi[F2] + ...+ PNi[Fk].

If the walker is at the culprit node, it should remain as
this is the root cause.

• Victim state: When the walker reaches a victim node,
it should proceed to the neighbor most likely to be the
culprit. We set the probability of moving to neighbor Nj

to PNi[V ictim]∗PFNj/
∑

k∈BNi
PFNk, where BNi de-

notes Ni’s neighbors. Note that since any two computing
nodes of the HPC system can communicate, we fully
connect all nodes (NIC pairs).

• Normal state: Nodes in normal states show little anoma-
lies, but the network may not be healthy. We want the
walker to quickly leave these nodes, randomly select-
ing neighbors. The probability is PNi[Normal]/|BNi|,
where |BNi| signifies the number of Ni neighbors.

Based on the above three states, we define the transition
probability matrix Q. Specifically, the probability of the
current node Ni transitioning to adjacent node Nj can be
calculated as follows:

Qij =



PFi, if j = i
PNi[V ictim] ×

PFNj∑
k∈BNi

PFNk

+
PNi[Normal]

|BNi|

 ,if j ̸= i and Nj ∈ BNi

(2)

We then normalize each row of Qij to obtain the final
transition probability matrix. Each row of the matrix represents
the probability of the walker transitioning from one node to
other nodes in the graph, with the sum of these probabilities
equaling 1. We can perform the rapid random walk with the
transition probability matrix, as shown in Algorithm 1.

Algorithm 1: Customized random walk with states
probability

input : number of results: M , number of walking steps:
STEPS, list of states probability matrix: S,
number of nodes: N

output: A ordered list of root cause: result

1 Initialize result← [], start node V ← RandomInt(N);
2 Initialize list of passed times COUNTS ← [0] ∗N ;
3 Initialize transition probability matrix Q←

GetTransitionProbabilityMatrix(S);
4 for i← 1 to M do
5 for j ← 1 to STEPS do
6 V ← ProbabilityBasedRandomChoose(N ,

Q[V ]);
7 COUNTS [V ] ← COUNTS [V ] + 1;
8 end
9 nodeId← index of Max(COUNTS);

10 faultId← index of Max(S[nodeId][F0 : Fk]);
11 add (nodeId, faultId) to result;
12 S[nodeId][victim]←

S[nodeId][victim] + S[nodeId][faultId];
13 S[nodeId][faultId]← 0;
14 Q← GetTransitionProbabilityMatrix(S);
15 COUNTS ← [0] ∗N ;
16 end
17 return result;

6



The algorithm initiates a random walk from an arbitrarily
chosen initial node, traversing between nodes according to
the transition probability matrix. It then determines the culprit
node by checking the number of visits to each node. When
the number of transitions exceeds the specified count STEP ,
the most visited node is the diagnostic culprit node. Its failure
type with the highest state probability is the diagnostic failure
type. The diagnostic result, which identifies the culprit node
and failure type, is added to result. The algorithm converts
the probability of the corresponding failure type for the last
diagnostic culprit node to its victim state probability to obtain
more combinations of culprit nodes and failure types. It then
updates the transition probability matrix for the next iteration.
After M iterations, the algorithm returns an ordered list of M
root causes, each specifying the culprit node and associated
failure type. The approach uses a random walk algorithm to
find the most likely culprit node when classification alone
cannot provide a definitive conclusion due to limited accuracy.

IV. EVALUATION

Our evaluation answers the following research questions
(RQs):
RQ1: How effective is ClusterRCA in network failure diagno-
sis?
RQ2: How robust is ClusterRCA in maintaining its diagnostic
efficacy across diverse HPC application scenarios?
RQ3: Does each component of ClusterRCA have significant
contributions to ClusterRCA’s performance?
RQ4: How scalable is ClusterRCAin maintaining good perfor-
mance on larger clusters?

A. Experimental Setup

1) Dataset: To evaluate the performance of ClusterRCA,
we establish a small-scale HPC computing cluster environment
in a top-tier global HPC device vendor (A company)’s labora-
tory. The environment comprises four TaiShan server comput-
ing nodes and one network switch node. Each computing node
connects to the switch node through a high-speed 100Gbps
network. We deploy multiple HPC applications within this
experimental setup and simulate network failures using script
injection. Throughout the execution of the HPC applications,
we continuously collect monitoring data, including metrics,
logs, and topology information from the computing and switch
nodes.

As listed in Table II, we execute a total of six HPC
applications spanning different domains:

1) WRF [35]: an HPC application developed by the National
Center for Atmospheric Research in the United States for
weather forecasting and climate research.

2) Grapes [36]: a weather forecasting HPC application
developed by the Chinese Academy of Meteorological
Sciences since 2000.

3) QE [37]: an HPC application developed by the Italian
National Research Council for quantum chemistry calcu-
lations.

4) GROMACS [38]: an HPC application for molecular sim-
ulations developed in collaboration with Uppsala Univer-
sity in Sweden.

5) LAMMPS [39]: an HPC application for molecular dy-
namics simulations developed by Sandia National Labo-
ratories in the United States.

6) OpenFOAM [40]: a C++ library for computational fluid
dynamics developed by the University of Birmingham in
the United Kingdom.

Based on these HPC applications, we collect six datasets, in-
cluding 739 network failure samples and 117 normal samples.
We collect 176 network interface metrics and 38 computing
resource metrics for each computing node and connected
switch node port for each sample. The total number of log
entries is 105,095. Each dataset contains samples of the failure
types mentioned in Section II, namely F1: wrong packet,
F2: PFC storm, F3: switch port performance restricted, F4:
Tx timeout, F5: PFC parameter unaligned, F6: switch PFC
disabled and F7: computing node PFC disabled. The samples
for various failure types in the datasets are listed in Table II.
It is worth noting that due to the unique traffic characteristics
of LAMMPS, it is almost unaffected by certain flow control
error-related failures (no network congestion occurred). Con-
sequently, we cannot collect valid samples for such failures
in this application scenario. Furthermore, since the training
process of ClusterRCA requires normal NIC-pair samples, we
further divided the samples from the WRF [35] application
into WRF A and WRF B. WRF A contains all normal NIC-
pair samples and approximately half of the failure NIC-pair
samples used for training ClusterRCA, while WRF B is used
to evaluate the failure diagnosis performance of ClusterRCA.

TABLE II
SAMPLE STATISTICS IN THE DATA SET.

Dataset
NIC

failures
Link

bottlenecks
Flow control

failures Normal Total

F1 F2 F3 F4 F5 F6 F7

WRF [35] 41 41 30 25 32 27 24 67 287
Grapes [36] 24 19 24 19 23 24 24 10 167

QE [37] 31 18 22 11 29 16 25 10 162
GROMACS [38] 14 13 13 12 13 14 10 10 99
LAMMPS [39] 10 10 10 11 - 7 - 10 58

OpenFOAM [40] 13 14 14 14 9 4 5 10 83

2) Baseline methods: We will discuss five representative
baseline methods for comparison. Among them, AutoMAP
[12] and Cloud19 [7] can only localize the culprit node; Log-
Cluster [9] and CloudRCA [14] can only determine the failure
type; OnlineDiagnosis [6] can identify both the culprit node
and the failure type. More details regarding these methods can
be found in Section VI.

Due to the different formats of the analysis results of these
methods, we only discuss whether their results are accurate
during the experiment. Specifically, for AutoMAP [12] and
Cloud19 [7], we only access the accuracy of their culprit
node localization. Conversely, the evaluation of LogCluster
[9] and CloudRCA [14] concentrates on determining the

7



accuracy of failure type identification. For ClusterRCA and
OnlineDiagnosis [6], our evaluation encompasses accurately
assessing identified culprit nodes and failure types.

3) Evaluation metrics: In the ordered failure diagnosis
result list given by a diagnosis method, the higher the correct
result ranks, the better the system effects. Therefore, we use
top-k accuracy rate (AC@k) and top-k average accuracy rate
(Avg@k) as evaluation metrics.
AC@k calculates the proportion of the actual root cause

test cases in the top k of the ordered diagnosis result list. The
higher AC@k is, the more accurate the method is. Given a
test set A, the calculation formula of AC@k is shown in the
Formula 3:

AC@k =
1

|A|
∑
a∈A

I(RCia ∈ RCsak) (3)

RCia is the actual root cause of test case a (culprit node
or failure type or both), and RCsak is the failure diagnosis
result list of the diagnosis method.

Avg@k is another evaluation metric that evaluates a
method’s overall capability of failure diagnosis, and the cal-
culation is shown in Formula 4.

Avg@k =
1

k

k∑
i=1

AC@i (4)

Generally, operators only consult the first five failure di-
agnosis results, so we use Avg@5 to evaluate the average
accuracy.

4) Implementation: All experiments are conducted on a
Ubuntu machine server with Intel(R) Xeon(R) Gold 6138T
Processor 2GHz CPU and 256GB memory.

B. Overall Performance (RQ1)

We first use WRF A as the training set and WRF B as the
testing set to evaluate the overall performance of ClusterRCA
and baselines. The two sets were collected when the same
HPC application (WRF [35]) was running. The accuracy of
ClusterRCA and the baseline methods are listed in Table III.
Notably, the failure diagnosis capability of ClusterRCA signif-
icantly surpasses other methods, achieving a top-1 accuracy
rate of 0.98. Cloud19 [7], limited by its search space, can
only enumerate four root causes, resulting in a considerably
lower AC@1 compared to ClusterRCA. LogCluster [9] solely
considers log data, its AC@1 is limited to 0.20. In contrast,
CloudRCA [14] integrates information from logs and met-
rics data and achieves higher accuracy. OnlineDiagnosis [6]
achieves considerable effectiveness (Avg@5 > 0.95) because
the statistical features extracted by OnlineDiagnosis accurately
distinguish nodes’ various network flow sizes. However, its
accuracy will significantly decrease when the HPC application
scenarios are inconsistent in the training and test sets.
C. Robustness Evaluation (RQ2)

In practice, the applications running on HPC systems are
diverse and constantly evolving, and the failure pattern caused
by network failures also changes accordingly. For system

TABLE III
PERFORMANCE OF FAILURE DIAGNOSIS.

Method AC@1 AC@3 AC@5 Avg@5 Time

ClusterRCA 0.9811 1.0 1.0 0.9962 0.311s
AutoMAP [12] 0.2033 0.4390 0.6911 0.4488 0.355s

Cloud19 [7] 0.5094 0.9245 - - 0.106s
LogCluster [9] 0.2075 0.4253 0.4253 0.3817 0.033s

CloudRCA [14] 0.2830 0.7264 1.0 0.6887 0.669s
OnlineDiagnosis [6] 0.8699 0.9756 1.0 0.9545 0.696s

administrators, running HPC applications is an uncontrollable
user behavior. Therefore, we will analyze how ClusterRCA
maintains performance across different HPC applications to
determine whether it can adapt to the real network environ-
ment. Specifically, we use the WRF A to train ClusterRCA
and baseline methods. Then, we use test case sets of other
applications except WRF [35] to test these methods’ failure
diagnosis accuracy under different HPC applications. Cloud19
[7], offering only four root cause candidates, is excluded from
this evaluation due to the unavailability of Avg@5 calculation.
The test case sets used for testing include Grapes [36], QE
[37], GROMACS [38], LAMMPS [39], and OpenFOAM [40],
and the results are shown in Fig 7.

The first five subgraphs show that ClusterRCA can achieve
AC@1 above 0.9 in five HPC applications, which is extremely
higher than the baseline methods. The subgraph of Avg@5
shows that ClusterRCA has a significant failure diagnosis
accuracy as well. Although OnlineDiagnosis [6] achieves an
Avg@5 of 0.95 in the overall performance experiment, due to
the fact that the data feature extraction effect of OnlineDiagno-
sis [6] is more linked to the application data, under different
HPC applications, its Avg@5 is only at most 0.73. Also, it
can be observed that CloudRCA [14] can reach the level
of ClusterRCA in terms of Top5 accuracy because of more
data features considered, but the results of the top root cause
ranking are very bad. Both AutoMAP [12] and LogCluster [9],
on the other hand, are limited in their accuracy due to the fact
that they only consider one data modality (metric or log data).

In summary, ClusterRCA can effectively determine the cul-
prit node, clarify failure type across diverse HPC applications,
and maintain a high accuracy to meet the needs of system
administrators for network failure diagnosis.

D. Ablation Study (RQ3)

In the ablation experiments, this work systematically re-
moved some components of ClusterRCA and evaluated the
performance of the remaining parts. By comparing the per-
formance of the complete method and the ablation schemes,
we can better understand the contribution of each component
to ClusterRCA. First, we individually eliminated the features
and data in the feature engineering part. Among them, we
extracted two types of features for the metrics data: pattern
features and level features. We deleted one of them respec-
tively and consequently obtained two variants of ClusterRCA.
C1: Remove metrics pattern features; C2: Remove metrics
mean level features. Then, we eliminated the input data. C3:

8



 Top1 Top2 Top3 Top4 Top5
0.00

0.25

0.50

0.75

1.00

0.93

AC@k(Grapes)

 Top1 Top2 Top3 Top4 Top5
0.00

0.25

0.50

0.75

1.00

0.95

AC@k(QE)

 Top1 Top2 Top3 Top4 Top5
0.00

0.25

0.50

0.75

1.00

0.96

AC@k(OpenFOAM)

 Top1 Top2 Top3 Top4 Top5
0.00

0.25

0.50

0.75

1.00
1.00

AC@k(LAMMPS)

 Top1 Top2 Top3 Top4 Top5
0.00

0.25

0.50

0.75

1.00

0.91

AC@k(GRAOMACS)

Grapes QE OpenFOAM LAMMPS GRAOMACS
0.00

0.25

0.50

0.75

1.00 0.99

0.40
0.34

0.69

0.29

0.99

0.48

0.31

0.71
0.61

0.99

0.360.35

0.73

0.49

1.00

0.450.45

0.69
0.58

0.95

0.320.31

0.70
0.60

Avg@5

ClusterRCA
AutoMap
LogCluster

CloudRCA
OnlineDiagnosis
ClusterRCA

AutoMap
LogCluster

CloudRCA
OnlineDiagnosis

Fig. 7. Result of robustness test.

Remove metric data input; C4: Remove log data input. Finally,
we consider the random walk components. C5: Remove the
random walk component. Deleting the entire state classifier
component would cause the system to be unable to yield the
failure diagnosis result list, which has not yet been tested.

Fig 8 shows the experimental results of ClusterRCA and
its variants, using the samples of WRF A for training and all
our HPC applications for testing. ClusterRCA outperforms all
variants in these tests. From subgraph Avg@5 (WRF B), it is
apparent that the lack of input data (C3 & C4) significantly
reduces the learning ability of the system, resulting in Avg@5
during training and testing on the same application (WRF [35])
is much lower than that of ClusterRCA and other variants. The
subgraph of Avg@5 (Others) shows the distribution of Avg@5
of ClusterRCA and variants across non-training application
sample sets and marks the mean of Avg@5. Among them,
the removal of some metrics feature types (C1 & C2) has a
lower Avg@5 (0.90 & 0.96) in other HPC applications than
ClusterRCA (0.98), but not as obvious as directly removing the
metrics data (C3, 0.66). It indicates that sufficient data types
are more important for ClusterRCA than abundant feature

types. Comparing the average Avg@5 of ClusterRCA (0.98)
and C5 (0.90), it is evident that combining the random walk
can achieve better diagnostic effectiveness than using the
classifier alone.

Overall, each component contributes positively to the final
diagnostic performance, and together they enable ClusterRCA
to achieve the best possible results. Input data (metric and
log data) are the foundation of the model’s ability to learn
system behavioral patterns; removing either data causes the
model to lose the ability to sense important information,
especially metrics data, which is a direct reflection of the
system’s performance and health. Feature engineering, helps
the model capture failure-related patterns more effectively by
distilling key information from the raw data; removing some
feature types will affect the integrity of the information. The
random walk component captures dynamic correlations or
shifting patterns between different data sources thus improving
diagnostic accuracy.

9



 Top1 Top2 Top3 Top4 Top5
0.4

0.6

0.8

1.0

AC@k(WRF_B)

 Top1 Top2 Top3 Top4 Top5
0.4

0.6

0.8

1.0

AC@k(Grapes)

 Top1 Top2 Top3 Top4 Top5
0.4

0.6

0.8

1.0

AC@k(QE)

 Top1 Top2 Top3 Top4 Top5
0.4

0.6

0.8

1.0

AC@k(OpenFOAM)

 Top1 Top2 Top3 Top4 Top5
0.4

0.6

0.8

1.0

AC@k(LAMMPS)

 Top1 Top2 Top3 Top4 Top5
0.4

0.6

0.8

1.0

AC@k(GRAOMACS)

C1 C2 C3 C4 C5      ClusterRCA
0.4

0.6

0.8

1.0 0.97 0.99

0.79

0.89

0.99 1.00
Avg@5(WRF_B)

C1 C2 C3 C4 C5      ClusterRCA
0.4

0.6

0.8

1.0

0.61
0.66

0.90
0.96
0.98

Avg@5(Others)

C1 C2 C3 C4 C5 ClusterRCA

Fig. 8. Contribution of components.

E. Evaluation on Scalability (RQ4)

In real HPC systems, the dynamic allocation of computing
resources by schedules determines the number and specific
nodes for each job of HPC applications. Therefore, the failure
diagnosis method must be feasible in practice and consider
the HPC cluster’s dynamic topology, ensuring that the trained
model exhibits robust scalability. Specifically, the failure di-
agnosis model trained on a small-scale cluster can also be
directly used for a larger-scale cluster failure diagnosis while
ensuring a certain accuracy. Due to the limitation of the experi-
mental environment, we simulate two datasets of 16 nodes and
32 nodes, respectively, namely 16RANK and 32RANK (A is
used for training, B is used for testing). As listed in Table
IV, we test ClusterRCA on 16RANK B and 32RANK B,
respectively, and use the small-scale data (16RANK A) to
train ClusterRCA and evaluate its failure diagnosis ability
on the larger-scale data (32RANK B). The results show that
ClusterRCA has Avg@5 greater than 0.93 on both scales. The
Avg@5 of ClusterRCA trained on 16RANK A is very close
to that of ClusterRCA trained on 32RANK A (0.93 & 0.94).

The experiment proves that ClusterRCA also has excellent
scalability.

TABLE IV
SCALABILITY OF ClusterRCA.

Training Testing AC@1 AC@3 AC@5 Avg@5

16RANK A 16RANK B 0.9733 0.9867 0.9867 0.9840
32RANK A 32RANK B 0.9419 0.9535 0.9535 0.9488
16RANK A 32RANK B 0.9069 0.9419 0.9419 0.9349

V. DISCUSSION

A. Lessons Learned

Clock synchronization. When a failure occurs, it propa-
gates from the culprit node to other nodes, causing different
patterns of failure to appear on different types of nodes. If
the clock difference between different nodes is too large, it
may cause the key failure feature of this job to be lost. For
example, the clock of node A is relatively delayed by δ, and
the cluster starts to fail at ta (the time recorded by A at ta−δ),
while the time range for the diagnostic data is from tb to tc.

10



If ta − δ is earlier than tb, then the failure feature of node
A will be missed, and thus affect the subsequent construction
of the failure propagation graph and inference. Therefore, the
computing nodes and switch nodes in the cluster need to use
clock synchronization algorithms to ensure that the monitoring
data are aligned as much as possible.

Failure injection. In our experiment, we inject failure
by running scripts, and then construct corresponding failure
labels (culprit node and failure type) for final performance
evaluation. Then, due to some unknown reasons, sometimes
failure injection may fail, without causing HPC performance
degradation. In this case, the failure labels are incorrect. To
ensure the accuracy of evaluation results, we will filter out
the samples of incorrect failure injection according to certain
rules and human verification.

B. Threat to Validity

Data set limitations. Compared to complex HPC systems,
our cluster size is relatively small. Due to signing a confiden-
tiality agreement with A company, we cannot open-source the
original data of the experiment. Although we also tried to find
public network failure data sets related to HPC, we failed in
the end due to the scarcity of HPC failure diagnosis research
work. However, according to our experiment, ClusterRCA is
effective and robust. It can also be applied effectively to larger
HPC systems and more complex failure situations, which is
very promising.

Data modalities limitations. Our work involves the use
of three multimodal monitoring data (metric, log, topology),
while some HPC systems may lack metric or log collection.
Since the feature extraction of metrics and logs are in a loose
coupling way, ClusterRCA can still work normally in a data
modality missing.

VI. RELATED WORK

Classifier-based diagnostic methods. Some methods rely
on accurate classifiers trained on historical failures to discern
culprit nodes and failure types. For example, PatternMatcher
[28] identifies metrics that trigger failures. It filters normal
metrics, builds a pattern classifier to classify and filter unim-
portant metrics, and ranks the residuals by anomaly scores.
OnlineDiagnosis [6] extracts statistics features from metrics,
trains a random forest classifier to classify nodes in real-time
failures, and ranks nodes by classification probability. Aside
from metrics, Cloud19 [7] and LogCluster [9] analyze log data.
Cloud19 associates ERROR logs with nodes, uses Word2Vec
to represent log entries, and trains a binary classifier to find
the culprit node. LogCluster clusters logs by severity, trains a
classifier to predict normal behavior, compares predictions and
actual behavior to find the culprit node, and matches nodes
to similar clusters. These methods use classifiers trained on
metrics or logs, but single modal features cannot support accu-
racy, and excessive feature extraction (e.g., OnlineDiagnosis’s
statistics features) leads to overfitting.

Graph-based diagnostic methods. Graph-based diagnostic
methods establish directed relationships between cluster nodes

based on topology or system flow data. They then use random
walks or causal inference to find culprit nodes. For example,
MicroCause [13] builds a directed acyclic graph showing
metric dependencies using the PC algorithm and localizes
the culprit node with an improved random walk. Similar
methods is AutoMap [12]. However, the PC algorithm must be
improved to find cross-node metric propagation with multiple
similar nodes. Sieve [10] uses clustering to extract represen-
tative metrics for each node, combines business relationships
into node dependency graphs, and makes causal inferences to
determine the culprit node. However, HPC nodes lack business
relationships. CauseInfer [11] automatically builds node de-
pendency graphs from network traffic data between monitored
nodes and uses the PC algorithm for metric causal graphs
within nodes. It then makes a two-layer causal inference
to identify the culprit metric. Nonetheless, due to the high-
performance computing demands, monitoring HPC network
traffic at a fine granularity is not feasible.

Combined Classifier and Graph diagnostic methods.
CloudRCA [14] from Alibaba combines metrics and logs.
It uses the PC algorithm to associate cluster features with
failure types and a hierarchical Bayesian model to classify
failure types but not specific culprit nodes. ART [15] de-
signs a unified fault representation and automatically identifies
anomalies based on extreme value theory thresholds, which
is combined with cut-tree clustering to achieve unsupervised
fault type triage, and cosine similarity to accomplish root cause
localization. Eadro [16] jointly trains anomaly detection and
root cause localization models through shared representations,
and the loss function optimizes both tasks simultaneously,
effectively using shared knowledge to reduce the negative
impact of detection errors on localization.

In conclusion, classifier-based methods cannot achieve high
accuracy for diverse HPC applications and monitoring data,
and graph-based methods need help to construct accurate node
relationships. Applying either alone cannot diagnose HPC
network failures precisely.

VII. CONCLUSION

Network failure diagnosis is of great importance for sus-
taining HPC system operability. In this paper, based on
previous cluster failure diagnosis research, we first elucidate
the challenges of culprit node localization and failure type
identification from the heterogeneous data in HPC systems. We
then propose a network failure diagnosis system, ClusterRCA.
It leverages NIC-centered feature engineering to integrate met-
rics and logs from topologically adjacent HPC components,
addressing the challenge of data diversity and device hetero-
geneity. Its failure diagnosis algorithm amalgamates classifier-
based and graph-based methods so ClusterRCA can construct
a directed graph to localize the culprit nodes accurately and
establish a highly accurate classifier to determine failure types.
Finally, we evaluate ClusterRCA on experimental datasets col-
lected by a top-tier global HPC device vendor (A company).
All results demonstrate its robust diagnostic capabilities.

11



REFERENCES

[1] Sardar Usman, Rashid Mehmood, and Iyad Katib. Big data and
hpc convergence for smart infrastructures: A review and proposed
architecture. Smart Infrastructure and Applications: Foundations for
Smarter Cities and Societies, pages 561–586, 2020.

[2] Mohit Kumar, Saurabh Gupta, Tirthak Patel, Michael Wilder, Weisong
Shi, Song Fu, Christian Engelmann, and Devesh Tiwari. Understanding
and analyzing interconnect errors and network congestion on a large
scale hpc system. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 107–
114. IEEE, 2018.

[3] Shenglin Zhang, Sibo Xia, Wenzhao Fan, Binpeng Shi, Xiao Xiong,
Zhenyu Zhong, Minghua Ma, Yongqian Sun, and Dan Pei. Failure di-
agnosis in microservice systems: A comprehensive survey and analysis.
CoRR, abs/2407.01710, 2024.

[4] Chenhao Jia, Tian Pan, Zizheng Bian, Xingchen Lin, Enge Song, Cheng
Xu, Tao Huang, and Yunjie Liu. Rapid detection and localization of gray
failures in data centers via in-band network telemetry. In NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium,
pages 1–9, 2020.

[5] Angela M Vargas-Arcila, Juan Carlos Corrales, Araceli Sanchis, and
Álvaro Rendón Gallón. Peripheral diagnosis for propagated network
faults. Journal of Network and Systems Management, 29(2):14, 2021.

[6] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J
Leung, Manuel Egele, and Ayse K Coskun. Online diagnosis of
performance variation in hpc systems using machine learning. IEEE
Transactions on Parallel and Distributed Systems, 30(4):883–896, 2018.

[7] Yue Yuan, Wenchang Shi, Bin Liang, and Bo Qin. An approach to
cloud execution failure diagnosis based on exception logs in openstack.
In 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), pages 124–131. IEEE, 2019.

[8] Lei Tao, Shenglin Zhang, Zedong Jia, Jinrui Sun, Minghua Ma, Zheng-
dan Li, Yongqian Sun, Canqun Yang, Yuzhi Zhang, and Dan Pei. Giving
every modality a voice in microservice failure diagnosis via multimodal
adaptive optimization. In Proceedings of the 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’24, page
1107–1119, 2024.

[9] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei
Chen. Log clustering based problem identification for online service
systems. In Proceedings of the 38th International Conference on
Software Engineering Companion, pages 102–111, 2016.

[10] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bha-
totia, Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fet-
zer. Sieve: Actionable insights from monitored metrics in distributed
systems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, pages 14–27, 2017.

[11] Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. Causeinfer: Auto-
matic and distributed performance diagnosis with hierarchical causality
graph in large distributed systems. In IEEE INFOCOM 2014-IEEE
Conference on Computer Communications, pages 1887–1895. IEEE,
2014.

[12] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang,
and Ping Wang. Automap: Diagnose your microservice-based web
applications automatically. In Proceedings of The Web Conference 2020,
pages 246–258, 2020.

[13] Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu,
Yiyin Zhang, Chenyang Jia, Zhaogang Wang, and Dan Pei. Localizing
failure root causes in a microservice through causality inference. In
2020 IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS), pages 1–10. IEEE, 2020.

[14] Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu, Hengbo
Liu, Qingsong Wen, Liang Sun, Junwei Jiang, Lunting Fan, and Min
Ke. Cloudrca: A root cause analysis framework for cloud computing
platforms. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages 4373–4382, 2021.

[15] Yongqian Sun, Binpeng Shi, Mingyu Mao, Minghua Ma, Sibo Xia,
Shenglin Zhang, and Dan Pei. Art: A unified unsupervised framework
for incident management in microservice systems. In ASE, pages 1183–
1194, 2024.

[16] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R.
Lyu. Eadro: An end-to-end troubleshooting framework for microservices
on multi-source data. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pages 1750–1762, 2023.

[17] Jacopo Soldani and Antonio Brogi. Anomaly detection and failure root
cause analysis in (micro) service-based cloud applications: A survey.
ACM Computing Surveys (CSUR), 55(3):1–39, 2022.

[18] Kadangode Ramakrishnan, Sally Floyd, and David Black. The addition
of explicit congestion notification (ecn) to ip. Technical report, 2001.

[19] Niklas Schelten, Fritjof Steinert, Justin Knapheide, Anton Schulte, and
Benno Stabernack. A high-throughput, resource-efficient implementa-
tion of the rocev2 remote dma protocol and its application. ACM
Transactions on Reconfigurable Technology and Systems, 16(1):1–23,
2022.

[20] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and
Michael R Lyu. A survey on automated log analysis for reliability
engineering. ACM computing surveys (CSUR), 54(6):1–37, 2021.

[21] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain:
An online log parsing approach with fixed depth tree. In 2017 IEEE
international conference on web services (ICWS), pages 33–40. IEEE,
2017.

[22] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu, Dan
Pei, Jun Xu, Yu Chen, Hui Dong, Xianping Qu, et al. Syslog processing
for switch failure diagnosis and prediction in datacenter networks. In
2017 IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS), pages 1–10. IEEE, 2017.

[23] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R. Lyu. Towards
automated log parsing for large-scale log data analysis. IEEE Trans.
Dependable Secur. Comput., 15(6):931–944, 2018.

[24] Min Du and Feifei Li. Spell: Online streaming parsing of large
unstructured system logs. IEEE Trans. Knowl. Data Eng., 31(11):2213–
2227, 2019.

[25] Ramon Canal, Carles Hernandez, Rafa Tornero, Alessandro Cilardo,
Giuseppe Massari, Federico Reghenzani, William Fornaciari, Marina
Zapater, David Atienza, Ariel Oleksiak, et al. Predictive reliability and
fault management in exascale systems: State of the art and perspectives.
ACM Computing Surveys (CSUR), 53(5):1–32, 2020.

[26] Sudheer Chunduri, Taylor Groves, Peter Mendygral, Brian Austin, Jacob
Balma, Krishna Kandalla, Kalyan Kumaran, Glenn Lockwood, Scott
Parker, Steven Warren, et al. Gpcnet: Designing a benchmark suite for
inducing and measuring contention in hpc networks. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–33, 2019.

[27] Tirthak Patel, Suren Byna, Glenn K Lockwood, Nicholas J Wright,
Philip Carns, Robert Ross, and Devesh Tiwari. Uncovering access,
reuse, and sharing characteristics of {I/O-Intensive} files on {Large-
Scale} production {HPC} systems. In 18th USENIX Conference on
File and Storage Technologies (FAST 20), pages 91–101, 2020.

[28] Canhua Wu, Nengwen Zhao, Lixin Wang, Xiaoqin Yang, Shining Li,
Ming Zhang, Xing Jin, Xidao Wen, Xiaohui Nie, Wenchi Zhang, et al.
Identifying root-cause metrics for incident diagnosis in online service
systems. In 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE), pages 91–102. IEEE, 2021.

[29] Samir Brahim Belhaouari et al. Unsupervised outlier detection in
multidimensional data. Journal of Big Data, 8(1):1–27, 2021.

[30] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
[31] Jacopo Soldani and Antonio Brogi. Anomaly detection and failure root

cause analysis in (micro) service-based cloud applications: A survey.
ACM Computing Surveys (CSUR), 55(3):1–39, 2022.

[32] Jianping Weng, Jessie Hui Wang, Jiahai Yang, and Yang Yang. Root
cause analysis of anomalies of multitier services in public clouds.
IEEE/ACM Transactions on Networking, 26(4):1646–1659, 2018.

[33] Zhen-Wu Wang, Si-Kai Wang, Ben-Ting Wan, and William Wei Song.
A novel multi-label classification algorithm based on k-nearest neighbor
and random walk. International Journal of Distributed Sensor Networks,
16(3):1550147720911892, 2020.

[34] Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and
Xiangjie Kong. Random walks: A review of algorithms and applications.
IEEE Transactions on Emerging Topics in Computational Intelligence,
4(2):95–107, 2019.

[35] William C Skamarock, Joseph B Klemp, and Jimy Dudhia. Prototypes
for the wrf (weather research and forecasting) model. In Preprints,
Ninth Conf. Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort
Lauderdale, FL, 2001.

[36] Yan Wenxin, Jia Jinfang, Huang Jianqiang, and Wang Xiaoying. Re-
search of grapes numerical weather prediction model. In Proceedings
of the 2020 4th High Performance Computing and Cluster Technologies

12



Conference & 2020 3rd International Conference on Big Data and
Artificial Intelligence, pages 34–41, 2020.

[37] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra,
Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti,
Matteo Cococcioni, Ismaila Dabo, et al. Quantum espresso: a modular
and open-source software project for quantum simulations of materials.
Journal of physics: Condensed matter, 21(39):395502, 2009.

[38] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E
Mark, and Herman JC Berendsen. Gromacs: fast, flexible, and free.
Journal of computational chemistry, 26(16):1701–1718, 2005.

[39] Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolin-
tineanu, W Michael Brown, Paul S Crozier, Pieter J in’t Veld, Axel
Kohlmeyer, Stan G Moore, Trung Dac Nguyen, et al. Lammps-a flexible
simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales. Computer Physics Communications,
271:108171, 2022.

[40] Hrvoje Jasak. Openfoam: open source cfd in research and industry.
International Journal of Naval Architecture and Ocean Engineering,
1(2):89–94, 2009.

13


