
AetherLog: Log-based Root Cause Analysis by
Integrating Large Language Models with

Knowledge Graphs
1st Tianyu Cui

Nankai University
Tianjin, China

cuitianyu@mail.nankai.edu.cn

2nd RuoWei Fu
Nankai University

Tianjin, China
furuowei@mail.nankai.edu.cn

3rd Changchang Liu
Nankai University

Tianjin, China
2113411@mail.nankai.edu.cn

4th Yuhe Ji
Nankai University

Tianjin, China
yuheji@mail.nankai.edu.cn

5th Wenwei Gu
The Chinese University Of

Hong Kong
Hong Kong, China

wwgu21@cse.cuhk.edu.hk

6th Shenglin Zhang
Nankai University

Tianjin, China
zhangsl@nankai.edu.cn

7th Yongqian Sun
Nankai University

Tianjin, China
sunyongqian@nankai.edu.cn

8th Dan Pei
Tsinghua University

Tianjin, China
peidan@tsinghua.edu.cn

Abstract—Log-based fault root cause analysis (RCA) is
paramount for ensuring the reliability of large-scale software
systems. While small language model (SLM)-based methods offer
efficiency and ease of deployment, their limited generalization
across diverse fault scenarios often hinders their effectiveness.
Conversely, large language model (LLM)-based methods demon-
strate strong semantic understanding but can suffer from in-
accuracies and hallucinations due to a lack of domain-specific
knowledge. To overcome these limitations, we present AetherLog,
a novel RCA framework synergistically integrating LLMs with
knowledge graphs (KGs). In an offline phase, AetherLog employs
LLMs to extract fault-relevant entities and relations, constructing
a compact and semantically aligned KG through embedding-
based clustering and normalization. During online analysis, the
framework leverages an LLM to summarize fault logs and extract
pertinent entities. Subsequently, it retrieves semantically similar
entities from the KG to enrich the context and formulates context-
enhanced prompts, leading to more accurate RCA. Extensive
experiments conducted on two real-world datasets demonstrate
that AetherLog consistently surpasses state-of-the-art baselines,
achieving impressive F1-scores of 0.93 and 0.97. These results
represent significant improvements of 6% and 8% over the
best existing methods, respectively, unequivocally showcasing
AetherLog’s effectiveness and generalizability in log-based fault
RCA.

Index Terms—Knowledge Graph, Large Language Model,
Root Cause Analysis

I. INTRODUCTION

In today’s large-scale software systems, increasing complex-
ity and intricate interdependencies among components have
made system faults more frequent and challenging to diag-
nose [1]. In this context, Root Cause Analysis (RCA) refers
to the process of analyzing and identifying the underlying
causes of system faults, enabling precise localization, effective
repair, and efficient system recovery [2]–[8]. System logs, as

Corresponding author: zhangsl@nankai.edu.cn

the most direct and granular record of system behavior, are
a critical data source for RCA. Modern systems continuously
generate vast amounts of logs, rich with temporal and semantic
information. Through careful analysis of these logs, it is
possible to reveal fault origins and dependencies [9]–[12].
Consequently, log-based RCA has become a central research
topic in both academia and industry.

Early approaches to log-based RCA can be broadly grouped
into two categories. (1) Rule-based methods employ hand-
crafted extraction rules to identify important events and causal
paths, as seen in Ladra [13] and LogRule [14]. (2) Ma-
chine learning-based methods utilize classifiers or regres-
sors to perform fault localization, such as Log3C [15] and
LogRCA [7]. However, both paradigms depend on shallow
features or manually crafted patterns, limiting their ability to
generalize to complex and ever-evolving log data. To address
these limitations, LogKG [16] introduces knowledge graphs
(KGs), providing a more structured and semantically rich rep-
resentation of entities and their relationships. However, KGs
that rely on fixed extraction rules face two main challenges:
(1) incomplete coverage, where previously unseen patterns or
log templates are ignored, and (2) high maintenance costs,
as frequent manual updates are required to keep pace with
changes in system behavior. Figure 1(a) illustrates log events
during a representative fault in a storage subsystem. The
fault sequence starts with an nvme timeout (the true root
cause), inducing severe I/O latency and triggering downstream
faults—first a block device I/O error, then a mount fault due to
the missing device. Despite an attempted recovery via journal
replay, the system’s condition deteriorates, culminating in a
watchdog crash and a soft lockup, together indicating a system
collapse. As shown in Figure 1(b), the KG-based RCA method
identifies events like “soft lockup” and “mount failed” by
matching them to KG entries and reconstructs a partial fault

1

Fig. 1: Comparison of using LLMs, KGs, and their combina-
tion for log-based fault RCA.

chain: “mount failed” → “journal replay” → “watchdog
crash” → “soft lockup”. However, this approach incorrectly
attributes “mount failed” as the root cause, overlooking the
actual trigger—“nvme timeout”—which is absent from the KG
due to incomplete rule coverage.

Recent advances have investigated the application of large
language models (LLMs) to a range of log analysis tasks,
including anomaly detection and log parsing [18], [19], [21]–
[28]. Approaches leveraging LLMs can be broadly catego-
rized into three representative paradigms: (1) Direct gener-
ation, where LLMs produce analysis results directly from
raw log sequences without requiring additional context or
fine-tuning, as seen in LogPrompt [25] and LogGPT [28];
(2) Fine-tuning, which specializes pre-trained LLMs on
system-specific log data through supervised training [18];
(3) Retrieval-Augmented Generation (RAG), which supple-
ments LLMs with external knowledge—such as historical logs
or structured information—during inference, as exemplified by
LogRAG [29]. While these paradigms demonstrate consider-
able promise, each faces inherent limitations: direct generation
methods may hallucinate plausible but incorrect outputs; fine-
tuning approaches require substantial labeled data; and RAG-

based techniques depend critically on the quality and relevance
of retrieved context. For instance, Figure 1(c) illustrates RCA
under the direct generation paradigm. Here, the LLM-based
approach correctly identifies recent log events (e.g., “soft
lockup”, “watchdog BUG”, “mount failed”) and infers a
symptom-level root cause such as “disk not ready.” However, it
fails to trace the fault chain back to the earlier “nvme timeout”
event, which is the actual root cause. This limitation arises
from the LLM’s restricted temporal focus—giving preference
to recent log entries—and its lack of explicit causal reasoning
capabilities, hindering comprehensive fault diagnosis.

These findings highlight the potential of integrating KGs
with LLMs for robust RCA. As demonstrated in Figure 1(d),
the combination of LLMs and KGs enables accurate and
explainable RCA. In this approach, the LLM first semanti-
cally parses raw logs to extract key fault-related events (e.g.,
“blk update request”, “mount failed”, “watchdog crash”),
which are then formulated as structured KG queries via prompt
engineering. These queries retrieve causal chains from the KG,
capturing the fault’s complete progression—from the initial
“nvme timeout” to the final “soft lockup”. Leveraging the
causal graph, the system accurately infers nvme timeout as the
root cause and produces a step-by-step rationale linking each
event. This synergy combines the adaptive event understanding
of LLMs with the structured and traceable reasoning of KGs,
thereby reducing hallucinations and improving explainability.
As summarized in Figure 2, this unified paradigm effectively
addresses the shortcomings of both KG-only and LLM-only
approaches. To this end, we propose a unified framework
that integrates KGs and LLMs for log-based RCA, aiming
to harness the semantic reasoning ability of LLMs alongside
the structured domain knowledge encapsulated in KGs.

Fig. 2: Enhancing Log-Based Fault RCA via LLM and KG

Despite the promise of LLM-KG integration, two key
challenges remain in practical deployment: (1) Semantic
redundancy among extracted entities: LLMs may identify
diverse surface expressions for the same underlying concept,
resulting in redundant nodes within the KG and undermining
effective reasoning; (2) Missing or irrelevant information
during unsupervised inference: Direct extraction can overlook
critical fault entities or introduce noise, diminishing analysis
quality.

Our main contributions are as follows:
• We propose a semantic entity aggregation mecha-

nism to address challenge (1). This approach combines
LLM-based extraction, domain-specific embeddings, and
density-based clustering to identify and merge semanti-
cally equivalent entities, reducing node redundancy and
enhancing KG consistency.

2

TABLE I: Summary of Representative Works

Proposal Objective Baseline Reason
SLM-Based Log Analysis

Log3C [15] Cascading clustering and corre-
lation analysis for RCA

✗ Relies on system-wide service metrics for correlation, which becomes infeasible
when such metrics are unavailable or unreliable.

LADRA [13] Log-based abnormal task detec-
tion and RCA in Spark

✗ Designed for Spark environments with only four fixed fault types; lacks
generalizability to more diverse root causes.

LogKG [16] Graph-based RCA using
knowledge graphs

✓ Utilizes KG structures for log-level fault reasoning, similar to our approach,
making it a suitable baseline.

LogRule [14] Rule-based log template mining
and RCA

✓ Produces interpretable rules through pattern mining, aligning with our goal of
explainable RCA.

LogRCA [7] Semi-supervised RCA using
PU learning and log ranking

✗ Focuses on log ranking with PU learning; outputs Top-n logs instead of root
cause categories, making it incompatible with our task.

LLM-Based Log Analysis
LLMParser [23] Few-shot log parsing with

LLMs
✗ Focuses on log parsing and structure extraction, not RCA.

UniLog [19] In-context learning for log gen-
eration and prompt creation

✗ Designed for development-time log generation rather than runtime RCA.

SelfLog [27] Self-evolving log parsing via
N-gram grouping

✗ Targets adaptive parsing without annotations; goal and output are unrelated to
RCA.

LogPrompt [25] Prompt-based zero-shot log
parsing and anomaly detection
with in-context learning

✓ Its prompt-based framework supports flexible adaptation to RCA tasks, making
it a suitable baseline through prompt modification.

LogGPT [28] Zero and few-shot anomaly de-
tection using ChatGPT

✗ Shares similar prompting techniques with LogPrompt, but lacks explicit CoT
reasoning. We choose LogPrompt as the representative baseline.

LogRAG [29] Retrieval-augmented anomaly
detection with LLMs

✓ Introduces semantic retrieval of historical logs as external context, consistent
with our KG-enhanced RCA strategy.

• We introduce a context-aware entity recall mechanism tar-
geting challenge (2). By integrating LLM-based summa-
rization, entity extraction, and embedding-based match-
ing, this mechanism retrieves the most relevant KG
nodes, significantly improving recall and boosting both
the coverage and accuracy of downstream RCA.

• We present AetherLog, the first framework to integrate
LLMs and KGs specifically for log analysis. We validate
its effectiveness with comprehensive experiments on two
large industrial datasets from Alibaba and China Mobile,
containing 2,671 and 93 fault cases, respectively. Aether-
Log achieves F1-scores of 0.93 and 0.97, outperforming
the best baselines by up to 6% and 8%.

The source code and datasets for AetherLog are publicly
available1.

II. RELATED WORK

To better understand recent progress in log-based RCA,
we categorize existing related works into two main research
lines: (1) SLM-Based Log Analysis and (2) LLM-Based Log
Analysis. Table I summarizes representative works in both
categories, highlighting their objectives, baseline selection, and
rationale.

SLM-Based Log Analysis has long been a core area in
system reliability and observability. In recent years, several
scholars have proposed various methods. Log3C [15] uses
cascading clustering and correlation analysis for RCA but
relies on system-wide service metrics for correlation. This
becomes less effective when service-level metrics are un-
available. LADRA [13] introduces a method to correlate log
sequences with fault types, excelling in anomaly detection
and diagnosis within Spark by focusing on four specific
root causes: CPU, memory, network, and disk issues. How-
ever, its support for only these four specific root causes

1https://github.com/ISSRE25-Submission-56/AetherLog

imposes significant limitations when dealing with other types
of faults. LogKG [16] utilizes KGs to capture relationships
between logs by integrating multi-field information through
KG structures for fault diagnosis. Given that our method
similarly employs KG-based techniques, LogKG serves as
an appropriate baseline for comparison. LogRule [14] applies
optimized association rule mining (ARM) on structured logs,
using item aggregation and disjunctive support to extract
frequent co-occurrence patterns. It generates interpretable rules
for efficient RCA. This method aligns well with our objective,
making it suitable for comparison. LogRCA [7] employs semi-
supervised positive-unlabeled (PU) learning with Transformer-
based embeddings to identify minimal sets of root-cause lines
from imbalanced datasets. It ranks log lines by fault relevance,
enabling tunable recall through top-n candidate selection.
However, since it outputs a ranked set of potentially relevant
log lines instead of an explicit root cause label or explanation,
it is not directly applicable to our case-level RCA task.

LLM-Based Log Analysis has recently emerged as a
promising direction for log-related tasks. LLMParser [23]
proposes a few-shot log parsing framework leveraging GPT-
style LLMs via in-context learning (ICL) [20]. It formulates
the task as a text-to-structure generation problem. Despite
achieving high parsing accuracy, it does not address RCA, and
thus falls beyond the scope of our study. UniLog [19] presents
an end-to-end automatic logging framework based on ICL with
LLMs. It predicts logging positions, verbosity levels, and log
messages in source code without fine-tuning. It focuses on
log instrumentation and thus falls outside the scope of our
RCA-oriented study. SelfLog [27] proposes a self-evolving
log parsing system based on a self-supervised, group-wise
learning framework. It employs N-gram [30] tokenization and
pattern matching to group semantically similar log lines, en-
abling template extraction without manual annotations. While
effective for adaptive parsing, it is not designed for RCA

3

https://github.com/ISSRE25-Submission-56/AetherLog

and thus unsuitable as a baseline. LogPrompt [25] advances
LLM-based log parsing and anomaly detection by introducing
three specialized prompting strategies—Self-prompt, Chain-
of-Thought (CoT) [31], and ICL—to facilitate zero-shot and
interpretable reasoning. Similarly, LogGPT [28] employs task-
specific prompts enhanced with human knowledge for anomaly
detection, and adopts structured JSON outputs to support
practical few-shot learning. While both approaches leverage
prompt engineering, LogPrompt explicitly integrates CoT rea-
soning to improve step-wise inference. Given its superior
interpretability, we adopt LogPrompt as our representative
LLM-based baseline. LogRAG [29] introduces a retrieval-
augmented generation (RAG) framework that enhances LLM-
based log anomaly detection. It retrieves semantically similar
historical log templates as external context and feeds them
into an LLM to refine anomaly detection decisions. This form
of external knowledge augmentation is conceptually aligned
with our KG-based entity injection strategy, making LogRAG
a suitable and comparable baseline.

Based on this analysis, we select the following methods
as baselines in our evaluation: LogKG [16], LogRule [14],
LogPrompt [25], and LogRAG [29].

III. DESIGN OF AETHERLOG

As shown in Figure 3, AetherLog consists of two main
pipelines: an offline pipeline that leverages LLMs to construct
and refine a domain-specific KG, and an online pipeline that
utilizes LLMs to retrieve and reason over the KG for accurate
RCA. In this section, we provide a detailed explanation of
each component with technical depth.

Fig. 3: The framework of AetherLog

A. Offline Pipeline: Semantic Entity Aggregation Mecha-
nism

To build a reliable and semantically coherent KG from raw
log data, our offline pipeline consists of five key steps: entity
and relation extraction via LLM, entity representation learn-
ing, entity clustering, entity normalization, and redundancy-
free KG construction. Each step is designed to progressively
refine the extracted knowledge, ensuring both accuracy and
compactness.

1) Step 1: Entity and Relation Extraction via LLM: In this
step, we extract fault-relevant entities and relations from raw
logs to improve the precision and relevance of the knowledge
used for subsequent KG construction.

We introduce a label-aware prompting technique, where root
cause labels function as weak supervision during the LLM
prompting process. For each root cause, we empirically set
the number of examples to case number = 3. A detailed
analysis of different values of case number and their impact
on performance can be found in Sec. IV-E5. We adopt three
distinct prompting strategies to enhance the robustness of
entity and relation extraction, as illustrated in Figure 4.

a) Zero-shot Prompting: In zero-shot prompting, the
LLM is directly instructed to extract entities and their semantic
relations based on the given log case and root cause label,
without any example guidance. This method relies on the
LLM’s prior knowledge and generalization capability.

b) Few-shot Prompting: Few-shot prompting augments
the input with a small number of annotated log–label pairs,
enabling the LLM to learn mapping patterns from raw logs
to structured triples. In our approach, for each root cause,
we provide a single representative fault case as the few-
shot example. This targeted strategy helps the model focus
on the most relevant components, operations, and conditions
associated with the root cause.

c) CoT Prompting: CoT prompting encourages the LLM
to perform step-by-step reasoning before producing structured
outputs. In our setting, each prompt explicitly instructs the
model to first analyze the causal logic within the log case and
then extract relevant entities and relations accordingly. This
approach improves both the interpretability of the extraction
process and the accuracy of the resulting structured knowl-
edge.

2) Step 2: Entity Representation Learning: In this step,
we embed the extracted entities into a semantically meaningful
vector space to facilitate downstream clustering and matching
tasks.

Each extracted entity ei is encoded into a dense semantic
embedding vi using a pre-trained model tailored for log data.
While general-purpose language models like BERT [32] excel
in feature extraction for various text analysis tasks, they may
not fully capture the domain-specific nuances inherent in log
data. Several studies have leveraged large-scale log data to
pre-train language models [10], [33]–[37]. Here, we utilize
BigLog [36], which has been specifically fine-tuned on large-
scale log datasets, to capture more accurate semantic repre-
sentations for log-related entities. Formally, the representation

4

Zero-shot Prompting

Instruction: The following log case is
associated with the root cause "[
RootCauseLabel]".

Extract key entities and their semantic
relations, including components, operations
, states, and critical parameters.

Log: [Log content here]
Output:
Entities: [Entity1, Entity2, ...]
Relations: [(EntityA, Relation, EntityB), ...]

Few-shot Prompting

Instruction: The following are annotated
examples for extracting entities and
semantic relations based on root cause
labels.

Example 1:
Root Cause: "Database Connection fault"
Log: "[17:22:03] Database connection failed due

to timeout. Application retries the
connection after 5 seconds."

Entities: [Database, connection, timeout,
application, retries]

Relations: [(Database, causes, connection fault
), (connection, blocked by, timeout), (
application, retries, connection)]

Example 2:
...

Now extract from the following:
Root Cause: "[NewRootCauseLabel]"
Log: [New log here]
Output:
Entities: [...]
Relations: [...]

CoT Prompting

Instruction: The following log case is
associated with the root cause "[
RootCauseLabel]".

First, reason through the fault step-by-step to
identify cause-effect relationships.

Then extract relevant entities and their
semantic relations accordingly.

Log: [Log content here]
Output:
Entities: [Entity1, Entity2, ...]
Relations: [(EntityA, Relation, EntityB), ...]
Reasoning: [Step-by-step explanation]

Fig. 4: Illustration of different prompting strategies.

is computed as vi = BigLog(ei), producing high-dimensional
vectors that reflect both linguistic structure and log-specific
characteristics. This enhances the effectiveness of subsequent
RCA tasks.

3) Step 3: Entity Clustering: In this step, we perform clus-
tering on semantically similar entities to reduce redundancy
and improve the quality of the KG.

Although KMeans [38] is a widely used clustering al-
gorithm, it assumes spherical cluster shapes and requires
the number of clusters to be specified in advance. These
assumptions do not hold in our task. In our setting, log-derived
entity embeddings often exhibit irregular distributions, and the
number of semantic groups is unknown beforehand. Therefore,
we adopt DBSCAN [39], a density-based clustering method

better suited to the characteristics of log data. DBSCAN does
not require the number of clusters to be predefined and can
identify clusters of arbitrary shapes. It relies on two key
parameters: ε (neighborhood radius) and MinPts (minimum
number of points required to form a dense region).

• MinPts: To determine the optimal value of MinPts, we
conducted a series of experiments over a range of values
(from 2 to 10), with ε held constant. We evaluated each
configuration using metrics such as intra-cluster density,
noise ratio, and silhouette score. Experimental results
showed that setting MinPts = 3 yielded the best trade-off
between identifying meaningful clusters and suppressing
noise. This ensures that only sufficiently dense regions are
considered valid clusters, while maintaining robustness to
outliers.

• ε: The neighborhood radius ε was determined using the
k-distance graph method. We computed the distance from
each point to its MinPts-th nearest neighbor, sorted these
distances in ascending order, and identified the “elbow”
point. Based on this analysis, we selected ε = 0.5,
which effectively captures dense semantic regions while
minimizing the impact of noise.

This density-based clustering strategy ensures accurate
grouping of fault-related entities, providing a solid foundation
for subsequent normalization and KG construction.

4) Step 4: Entity Normalization: In this step, we canoni-
calize clustered entities to eliminate semantic redundancy and
ensure consistent representations within the KG.

Given the clusters {c1, c2, . . . , cm} generated in the previ-
ous step, we select a representative canonical entity êj for each
cluster cj . Specifically, we adopt a centroid-based selection
strategy, where the entity closest to the geometric center of
the cluster in the embedding space is chosen:

êj = argmin
e∈cj

∥ve − µj∥2 , µj =
1

|cj |
∑
e∈cj

ve

This approach ensures that the selected entity is semanti-
cally central, preserving the representative meaning of each
cluster while eliminating duplication and surface-level varia-
tion. After normalization, all entity mentions within the same
cluster are mapped to their canonical form. This not only
reduces node-level redundancy but also improves log semantic
alignment and interpretability.

5) Step 5: Redundancy-Free KG Construction: In this
step, we construct a compact and semantically aligned KG by
integrating normalized entities and filtered semantic relations.
This graph serves as a foundational structure for downstream
RCA tasks.

Each canonical entity êj corresponds to a node in the
KG, and directed edges represent semantic relations (e.g.,
causes, involves, leads_to) extracted from logs us-
ing LLMs. To ensure semantic fidelity and structural clar-
ity, we remap each original relation triple (ei, r, ej) to its
normalized form (êi, r, êj), where êi and êj denote the
canonical forms of the original entities ei and ej , re-
spectively. Since multiple entities may be mapped to the

5

same canonical node, this projection process can lead to
duplicate or conflicting edges. To address this, we con-
solidate candidate edges by selecting the most frequently
occurring relation type among duplicates. In case of ties,
we retain the first-observed relation. For example, consider
two relations extracted from logs: (Serving Gateway,
causes, Timeout) appears three times, while (SGW,
triggers, Timeout) appears once. After normalization,
both Serving Gateway and SGW are mapped to the canon-
ical entity SGW. Since causes is the most frequent rela-
tion, the final consolidated edge becomes (SGW, causes,
Timeout). This scenario illustrates a common case where
synonymous entities and semantically overlapping relations
are unified to preserve semantic coherence and reduce am-
biguity in the KG structure.

To support efficient storage and querying, the constructed
KG is persisted in a graph database (Neo4j [40]), which
enables Cypher-based retrieval and allows for attaching rich
attributes to both nodes and edges. This storage backend not
only facilitates structured reasoning in downstream RCA tasks
but also provides a flexible interface for exploring the semantic
relations between fault-relevant entities.

B. Online Pipeline: Context-aware Entity Recall Mechanism
To support accurate and context-aware RCA, our online

pipeline consists of three key steps: log summary generation,
entity extraction and Top-K entity recall from KG, and RCA
via LLM prompting. Each step is designed to efficiently
process new fault cases by retrieving relevant context from
the KG and guiding the LLM to infer causes or expand the
graph if necessary.

1) Step 1: Log Summary Generation: In this step, we
compress noisy and verbose fault cases into concise summaries
that preserve causal signals for subsequent semantic matching.

In the online phase, the absence of label information makes
it challenging to directly identify key fault-related content. To
address this issue, we leverage the language understanding
capabilities of LLMs to condense and interpret raw log se-
quences into concise and informative summaries suitable for
downstream entity recall and RCA. We denote the semantic
summary as Si = fLLM(LogsFi

), where Fi is a given fault case
and fLLM is a summary function powered by GPT-4 [42].

Figure 5 illustrates the zero-shot prompt used for summary
generation. The LLM is instructed to extract root cause in-
dicators and relevant fault conditions from the log sequence,
while omitting irrelevant implementation details. In contrast
to the entity extraction stage, which involves multiple prompt
engineering strategies (see Figure 4), this summarization step
adopts a fixed zero-shot prompt. The objective here is not to
perform reasoning or classification, but to produce a concise
and structured abstraction of verbose logs that can serve as
input for entity extraction and recall.

2) Step 2: Entity Extraction and Top-K Entity Recall from
KG: In this step, we extract semantic entities from the fault
summary and match them to relevant nodes in the KG via
embedding similarity.

Instruction: The following log contains a
sequence of events related to a fault.
Please summarize the key fault information,
focusing on the root cause and any
relevant fault conditions, without
including unnecessary details.

Log: [Log content here]
Output:
Summary: [Concise description of the fault

cause and related events.]

Fig. 5: Log Summary Generation Prompt

After generating the semantic summary Si in Step 1, we
perform entity and relation extraction using the same LLM-
based prompting strategies as employed in the offline stage.
Let the extracted entity set from Si be ESi = {e1, e2, . . . }.
Each entity ek ∈ ESi

is encoded into a vector representation
vek using the same embedding model (BigLog).

To retrieve the most relevant entities from the KG, we
compute the cosine similarity between each extracted entity
vector vek and all KG entity vectors vj . The final recalled
entity set Etop consists of the top-K most similar KG entities
across all comparisons:

Etop = Top-Kej∈KG

(
max

ek∈ESi

Similarity(vek ,vj)

)
where similarity is defined as cosine similarity:

Similarity(va,vb) =
va · vb

∥va∥ · ∥vb∥
Through empirical validation, we found that K = 3 yields
the best recall performance. A detailed analysis of different
values of K and their impact on performance is provided in
Section IV-E5.

3) Step 3: RCA via LLM Prompting: In this step, we
construct a structured prompt that integrates the fault summary
and the retrieved entities to guide the LLM in performing RCA
and suggesting knowledge expansion.

Once the top-3 relevant entities are identified, we formulate
a prompt to query the LLM for RCA. The structure of the
RCA prompt is illustrated in Figure 6. It consists of two
key components: (1) the fault summary, which provides a
concise description of the current log case, and (2) the related
entities, which include the top-3 matched entities along with
their corresponding relations and cosine similarity scores from
the KG. The LLM is instructed to utilize these similarity
scores in its reasoning process: if one or more entities have
high similarity scores, the LLM should consider root causes
previously associated with them. If the similarity scores are
low, the LLM is prompted to infer a novel root cause by
reasoning over the fault context and inter-entity relationships.

This approach enables the model to generalize beyond pre-
viously seen patterns and facilitates dynamic KG expansion by
suggesting new entities and causal relationships. Specifically,
when a novel root cause is inferred, the LLM is further
prompted to extract structured triples in the form of (Head
Entity, Relation, Tail Entity), based on both
the inferred cause and contextual log semantics. These newly

6

Instruction: Based on the following fault case
and associated entities, identify the root
cause.

Fault Summary: [summary of new log]
Related Entities: [Top-3 entities]
Similarity Scores: [Cosine similarity scores of

the top-3 entities]
Guidance:
- If any entity has a high similarity score,

consider selecting its associated root
cause.

- If all scores are relatively low, reason
based on inter-entity relationships and
fault context to infer a new root cause.

- If a novel root cause is inferred, also
suggest a new entity and its potential
relationship to the existing KG.

- Then, extract key entities and relationships
in the form of (Head Entity, Relation, Tail
Entity) based on the inferred root cause

and fault context.
Output:
Root Cause: [Inferred or selected root cause]
Knowledge Triples:
(Head Entity 1, Relation 1, Tail Entity 1)
(Head Entity 2, Relation 2, Tail Entity 2)
...

Fig. 6: Prompt Construction for RCA

generated triples are validated and incorporated into the KG,
allowing the knowledge base to evolve continuously.

IV. EXPERIMENTS

In this section, we evaluate AetherLog by addressing the
following research questions (RQs):

• RQ1: How does AetherLog perform in log-based fault
RCA compared to state-of-the-art methods?

• RQ2: How do different LLMs affect AetherLog’s perfor-
mance on the RCA task?

• RQ3: How do different prompting strategies influence
AetherLog’s performance on the RCA task?

• RQ4: How does each component contribute to the overall
RCA performance of AetherLog?

• RQ5: How do key hyperparameters impact AetherLog’s
performance on the RCA task?

A. Datasets

We conduct experiments on two real-world datasets:
• Dataset 12: Sourced from Alibaba Cloud’s Tianchi plat-

form, which collects data from servers deployed in
production environments. The dataset comprises 2,671
fault cases recorded over several weeks. Each fault case
is mapped to one of the following three root causes:
Processor Internal fault, Memory Access Violation, and
Peripheral Hardware Fault.

• Dataset 23: Sourced from an OpenStack-based [41]
system deployed by China Mobile, which collects data
from a large-scale 4G/5G core network infrastructure.
The dataset comprises 93 fault cases recorded over 24
days. Each fault case is mapped to one of the following

2https://tianchi.aliyun.com/competition/entrance/531947/information
3https://github.com/SycIsDD/LogKG

six root causes: Message Queue Unavailability, Database
Connection fault, Compute Node Outage, Resource Con-
figuration Conflict, Linuxbridge Agent fault, and Con-
troller Service Disconnection.

B. Baseline Methods

As detailed in Table I, we compare AetherLog against
several representative baseline methods. Although some of
them were not originally designed for RCA tasks, we adapt
them accordingly to ensure a fair and meaningful comparison.
Below, we describe each baseline and explain how it is
modified or integrated into our experiments.

• LogKG [16]: A semi-supervised KG-based method de-
signed for log-based fault diagnosis. In our setup, we
reuse the KG constructed by AetherLog to ensure con-
sistency in both knowledge content and structure.

• LogRule [14]: An ARM method that generates inter-
pretable rules from structured logs for automated RCA.
We convert the offline KG into a structured log format
and use it as input to LogRule’s rule generation pipeline,
enabling both methods to operate on the same underlying
knowledge base.

• LogPrompt [25]: A prompt-based zero-shot anomaly
analysis method that leverages ICL and CoT prompting.
We adapt LogPrompt for RCA by modifying its prompts
to focus on root cause identification and by injecting top-
K retrieved KG entities and relations to enrich contextual
understanding.

• LogRAG [29]: A semi-supervised RAG-based framework
that improves LLM-based log analysis by retrieving rel-
evant historical logs as external context. To adapt it for
RCA, we replace its DeepSVDD module with a multi-
class classifier trained on LLM-generated log summaries.
We also substitute its retrieval source with our KG and
feed the top-K retrieved entities into a CoT-style prompt,
enabling the LLM to refine the root cause prediction.

For each baseline, we report the best-performing config-
uration across multiple runs. All methods are evaluated on
the same knowledge base to ensure a fair and consistent
comparison with AetherLog.

C. Evaluation Metrics

Given that each fault case in our dataset is annotated with
a definitive root cause from multiple possible classes, we
formulate the RCA task as a multi-class classification problem.
Accordingly, we adopt three widely used metrics—Precision,
Recall, and F1-Score (macro-averaged)—to evaluate predic-
tive performance. Additionally, we report Inference Time to
assess model efficiency and its suitability for online RCA
scenarios.

Precision (P) measures the proportion of correctly predicted
root causes among all predicted instances for each class,
calculated as Precision = 1

C

∑C
i=1

TPi

TPi+FPi
, where C is the

number of root cause classes, and TPi and FPi denote the
true positives and false positives for class i.

7

 https://tianchi.aliyun.com/competition/entrance/531947/information
https://github.com/SycIsDD/LogKG

Recall (R) measures the proportion of actual root cause
instances that are correctly identified by the model for each
class, defined as Recall = 1

C

∑C
i=1

TPi

TPi+FNi
, where FNi is

the number of false negatives for class i.
F1-Score (F) is the harmonic mean of precision and recall,

computed per class and then macro-averaged across all classes:
F1-Score = 1

C

∑C
i=1 2×

Precisioni·Recalli
Precisioni+Recalli

.
Inference Time (T) measures the average time (in seconds)

required by the model to complete RCA for a single fault case,
reflecting the model’s efficiency and applicability to online
RCA scenarios.

D. Implementation Details and Environment

AetherLog was implemented in Python 3.8 using the Py-
Torch framework for KG construction and related inference
tasks. All experiments were conducted on a server equipped
with 16 GB of RAM and 10 NVIDIA A6000 GPUs. For
the LLM component, we utilized a diverse set of pre-trained
models, including GPT-4 [42], DeepSeek-V3 [43], LLaMA
3 [44], and Mistral 7B [45]. GPT-4 and DeepSeek-V3 models
were accessed via API calls (GPT-4 through OpenAI’s API and
DeepSeek-V3 through the DeepSeek interface, while LLaMA
3 and Mistral 7B were run locally using model weights
downloaded from Hugging Face45.

E. Results and Analysis

1) RQ1: How does AetherLog perform in log-based fault
RCA compared to state-of-the-art methods?: To evaluate the
effectiveness of our proposed method, we compare Aether-
Log against four representative RCA baselines, as shown in
Table II. Among them, LogRule and LogKG are SLM-based
methods, while LogPrompt and LogRAG are LLM-based
methods.

TABLE II: Performance Comparison of Baseline Methods

Method Dataset 1 Dataset 2

P R F T P R F T

LogRule 0.33 0.30 0.31 0.02 0.26 0.22 0.23 0.02
LogKG 0.50 0.47 0.48 2.18 0.52 0.59 0.50 2.20
LogPrompt 0.84 0.88 0.85 3.64 0.77 0.78 0.77 3.35
LogRAG 0.89 0.86 0.87 4.42 0.90 0.89 0.89 4.45
AetherLog 0.94 0.93 0.93 4.91 0.97 0.96 0.97 4.83

Comparison with SLM-based methods. LogRule exhibits
the lowest overall performance, with precision scores of 0.33
and 0.26, recall scores of 0.30 and 0.22, and F1-scores of
0.31 and 0.23 on Dataset 1 and Dataset 2, respectively.
This underperformance is primarily due to its reliance on
manually defined, static rules. While LogRule demonstrates
high efficiency with an inference time of only 0.02s per
case, the substantial trade-off in accuracy limits its practical
applicability. LogKG achieves precision scores of 0.50 and
0.52, recall scores of 0.47 and 0.59, and F1-scores of 0.48 and
0.50, with inference times of 2.18s and 2.20s. The performance

4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

improvement is attributed to its use of structured knowledge
representations.

Comparison with LLM-based methods. LogPrompt
achieves precision scores of 0.84 and 0.77, recall scores of 0.88
and 0.78, and F1-scores of 0.85 and 0.77 on the two datasets,
with inference times of 3.64s and 3.35s, respectively. These
results highlight the LLM’s capability for semantic reasoning
and generalization. LogRAG further improves performance,
achieving precision scores of 0.89 and 0.90, recall scores of
0.86 and 0.89, and F1-scores of 0.87 and 0.89. However, these
gains are accompanied by longer inference times—4.42s and
4.45s—due to the additional retrieval stage.

AetherLog consistently outperforms all baseline methods.
It achieves the highest precision scores of 0.94 and 0.97, recall
scores of 0.93 and 0.96, and F1-scores of 0.93 and 0.97 on
the two datasets. Compared to LogRAG—the strongest base-
line—AetherLog improves the F1-score by 6% on Dataset 1
and 8% on Dataset 2, while incurring only a modest increase
in inference time (4.91s vs. 4.42s on Dataset 1, and 4.83s vs.
4.45s on Dataset 2).

2) RQ2: How do different LLMs affect AetherLog’s per-
formance on the RCA task?: To evaluate the effect of LLM
capacity on RCA performance, we compare AetherLog using
four representative models: GPT-4, DeepSeek-V3, LLaMA 3,
and Mistral 7B. As shown in Figure 7, we report precision,
recall, F1-score, and inference time on both datasets. These
models are categorized into two groups based on parameter
size: large-scale models (GPT-4 and DeepSeek-V3, with over
100B parameters) and lightweight models (LLaMA 3 and
Mistral 7B, with approximately 7–8B parameters).

GPT-4 DeepSeek-V3 LLaMA 3 Mistral 7B0.00

0.25

0.50

0.75

1.00 0.94 0.92
0.79

0.72

0.93 0.93
0.80 0.77

0.93 0.92
0.79 0.75

Dataset 1 - Performance Metrics

Precision Recall F1

GPT-4 DeepSeek-V3 LLaMA 3 Mistral 7B0.00

0.25

0.50

0.75

1.00 0.97
0.89

0.73 0.69

0.96
0.87

0.77 0.72

0.97
0.88

0.75 0.70

Dataset 2 - Performance Metrics

Precision Recall F1

GPT-4 DeepSeek-V3 LLaMA 3 Mistral 7B0

2

4

6

Ti
m

e
(s

)

4.91
4.20

2.80
2.30

4.83

4.00

2.70 2.60

Inference Time

Dataset 1 Time Dataset 2 Time

Fig. 7: Performance comparison of different LLMs.

Large-scale models. GPT-4 achieves precision scores of

8

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

0.94 and 0.97, recall scores of 0.93 and 0.96, and F1-scores
of 0.93 and 0.97 on the two datasets, with inference times
of 4.91s and 4.83s, respectively. These results demonstrate
GPT-4’s strong reasoning ability and superior performance.
DeepSeek-V3 achieves precision scores of 0.92 and 0.89,
recall scores of 0.93 and 0.87, and F1-scores of 0.92 and 0.88,
with shorter inference times of 4.2s and 4s. While it slightly
trails GPT-4 in accuracy, its reduced latency makes it a viable
alternative in time-sensitive deployments.

Lightweight models. LLaMA 3 achieves precision scores
of 0.79 and 0.73, recall scores of 0.80 and 0.77, and F1-
scores of 0.79 and 0.75, with inference times of 2.8s and
2.7s. These results indicate that LLaMA 3 offers a favorable
trade-off between accuracy and efficiency, making it suitable
for deployment in resource-constrained environments. Mistral
7B achieves precision scores of 0.72 and 0.69, recall scores
of 0.77 and 0.72, and F1-scores of 0.75 and 0.70, with
the shortest inference times of 2.3s and 2.6s. However, its
overall lower performance suggests that lightweight models
with smaller parameter counts may struggle to capture the
complex semantics required for accurate RCA compared to
large-scale models.

These results confirm AetherLog’s flexibility in integrating
LLMs of varying capacity based on task requirements. Given
its consistent superiority across all metrics, GPT-4 is chosen
as the default backbone in the following experiments.

3) RQ3: How do different prompting strategies influence
AetherLog’s performance on the RCA task?: To investigate the
impact of prompting strategies on AetherLog’s performance,
we evaluate three commonly used techniques: Zero-shot,
Few-shot, and CoT prompting. Table III summarizes the
results in terms of precision, recall, F1-score, and inference
time across both datasets.

TABLE III: Effect of Different Prompt Strategies

Prompt Type Dataset 1 Dataset 2

P R F T P R F T

Zero-shot Prompting 0.79 0.81 0.79 2.74 0.76 0.75 0.75 2.69
Few-shot Prompting 0.86 0.84 0.85 3.28 0.82 0.83 0.82 3.17
CoT Prompting 0.94 0.93 0.93 4.91 0.97 0.96 0.97 4.83

Zero-shot Prompting achieves precision scores of 0.79 and
0.76, recall scores of 0.81 and 0.75, and F1-scores of 0.79 and
0.75 on the two datasets, with inference times of 2.74s and
2.69s, respectively. These results suggest that, while zero-shot
prompting enables basic fault extraction without additional
examples, its lack of contextual guidance limits its ability to
capture complex or domain-specific patterns. The low latency,
however, makes it efficient for quick preliminary analysis.

Few-shot Prompting improves performance across all met-
rics, achieving precision scores of 0.86 and 0.82, recall scores
of 0.84 and 0.83, and F1-scores of 0.85 and 0.82, with
inference times of 3.28s and 3.17s. This demonstrates the
benefit of example-driven ICL, which helps the model better
generalize across diverse fault cases, though at a moderate
computational cost.

CoT Prompting yields the best overall performance, with
precision scores of 0.94 and 0.97, recall scores of 0.93 and
0.96, and F1-scores of 0.93 and 0.97. These gains come at
the cost of increased inference times—4.91s and 4.83s—due
to the additional reasoning steps. Nevertheless, the improved
accuracy clearly demonstrates the advantage of CoT prompting
in enabling deeper semantic understanding of complex fault
scenarios.

In summary, CoT prompting significantly outperforms other
prompting strategies in terms of accuracy, achieving the high-
est precision, recall, and F1-scores across both datasets. While
it introduces longer inference time, the overhead remains
within an acceptable range. This is because RCA is typically
conducted as an offline or near-real-time diagnostic task,
where accuracy and interpretability are prioritized over strict
latency constraints. Therefore, we adopt CoT prompting as the
default strategy in AetherLog.

4) RQ4: How does each component contribute to the over-
all RCA performance of AetherLog?: To evaluate the impor-
tance of individual components in AetherLog, we conduct
an ablation study by removing three key modules: (1) LLM-
based entity extraction, (2) embedding-based entity alignment,
and (3) LLM-based log summarization. For each variant, the
removed module is replaced with a simpler alternative. We
then evaluate model performance in terms of precision, recall,
F1-score, and online inference time. The results are shown in
Figure 8.

No Entity Extraction No Entity Alignment No Summary Extraction Full
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.71 0.69

0.43

0.94

0.76
0.70

0.41

0.93

0.74 0.70

0.41

0.93

Ablation Study on Dataset 1

Precision Recall F1-Score

No Entity Extraction No Entity Alignment No Summary Extraction Full
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.78
0.72

0.52

0.97

0.82
0.74

0.58

0.96

0.81
0.73

0.54

0.97

Ablation Study on Dataset 2

Precision Recall F1-Score

No Entity Extraction No Entity Alignment No Summary Extraction Full
0

2

4

6

8

10

Ti
m

e
(s

)

8.21

6.96

1.95

4.91

7.10 6.83

1.08

4.83

Inference Time Comparison

Dataset 1 Dataset 2

Fig. 8: Ablation Study of AetherLog’s Components

AetherLog (Full) achieves the best overall performance,
with precision scores of 0.94 and 0.97, recall scores of 0.93
and 0.96, and F1-scores of 0.93 and 0.97 on Dataset 1 and
Dataset 2, respectively. The average online inference time per
case is 4.91s and 4.83s, representing the cost of summary
generation, semantic matching, and RCA via LLM prompting.

9

No Entity Extraction. This variant replaces the LLM-based
entity extraction step with a rule-based pipeline combining
Stanford CoreNLP [46] and OpenIE [47]. Although this re-
duces reliance on LLMs, it causes performance to degrade
to precision scores of 0.71 and 0.78, recall scores of 0.76
and 0.82, and F1-scores of 0.74 and 0.81. Notably, the online
inference time increases significantly to 8.21s and 7.10s. This
is because rule-based extraction introduces many noisy or
redundant entities into the KG, enlarging the search space and
slowing down semantic matching.

No Entity Alignment. In this variant, the alignment step
that merges semantically similar entities via clustering is
removed, and all extracted entities are preserved in their raw
form. This leads to a moderate drop in performance, with
precision scores of 0.69 and 0.72, recall scores of 0.70 and
0.74, and F1-scores of 0.70 and 0.73. Online inference time
slightly increases to 6.96s and 6.83s, as the unaligned KG
becomes more redundant, resulting in longer entity recall
computations. These results highlight that entity alignment
plays a crucial role in enhancing both efficiency and reasoning
accuracy by reducing duplication in the KG.

No Summary Extraction. This variant removes the LLM-
based summarization module from the online pipeline. Instead,
the full raw log is fed directly into the entity extraction step.
This results in the most severe performance degradation, with
F1-scores dropping to 0.41 and 0.54 on the two datasets,
and precision scores of 0.43 and 0.52 and recall scores of
0.41 and 0.58. Interestingly, this variant exhibits the lowest
inference times—1.95s and 1.08s—since the summarization
step is omitted. However, bypassing summarization severely
reduces the quality of extracted entities and introduces noise,
thus undermining the RCA accuracy.

In summary, each component—LLM-based summarization,
entity extraction, and entity alignment—plays a vital role in
ensuring accurate and efficient RCA. Removing entity extrac-
tion or alignment leads to increased online latency due to KG
redundancy, while removing summarization reduces latency at
the cost of drastically lower accuracy. These findings strongly
support the modular design of AetherLog and highlight the
complementary contributions of each component.

5) RQ5: How do key hyperparameters impact AetherLog’s
performance on the RCA task?: To understand how different
design choices impact AetherLog’s effectiveness, we conduct
studies over two critical hyperparameters: (1) the number of
representative fault cases used to construct the KG (Case
Number), and (2) the number of candidate entities retrieved
during the semantic matching phase (Top-K). Table IV sum-
marizes the results in terms of precision, recall, and F1-score
across both datasets.

Impact of Case Number. When fixing the Top-K value
to K = 3, using 3 representative fault cases per root cause
consistently yields the best performance. AetherLog achieves
precision scores of 0.94 and 0.97, recall scores of 0.93 and
0.96, and F1-scores of 0.93 and 0.97 on Dataset 1 and
Dataset 2, respectively. Increasing the number of cases to 5
or 7 does not result in further improvements; for example,

TABLE IV: Performance of Different Hyperparameter Settings

Case No. K Dataset 1 Dataset 2

P R F P R F

1
1 0.50 0.55 0.52 0.58 0.53 0.55
3 0.72 0.70 0.71 0.71 0.69 0.70
5 0.71 0.69 0.70 0.70 0.68 0.69

3
1 0.69 0.66 0.67 0.65 0.63 0.64
3 0.94 0.93 0.93 0.97 0.96 0.97
5 0.95 0.93 0.93 0.95 0.96 0.96

5
1 0.61 0.68 0.65 0.68 0.66 0.67
3 0.88 0.87 0.87 0.87 0.86 0.86
5 0.87 0.86 0.86 0.86 0.85 0.85

7
1 0.63 0.60 0.61 0.60 0.68 0.64
3 0.84 0.83 0.83 0.87 0.86 0.87
5 0.83 0.82 0.82 0.86 0.85 0.85

with 5 cases, F1-scores drop slightly to 0.87 and 0.86, and
with 7 cases, to 0.83 and 0.87. In contrast, using only 1
case per root cause leads to significantly lower performance,
with F1-scores of 0.71 and 0.70. These results indicate that
using 3 well-chosen examples per class strikes a good balance
between accuracy and annotation cost, while larger case sets
may introduce redundancy or noise that limits gains.

Impact of Top-K. When fixing the number of cases per
root cause to 3, the Top-K setting has a clear impact on
performance. AetherLog achieves its best results with K = 3,
reaching F1-scores of 0.93 and 0.97 on the two datasets. Using
K = 1 significantly reduces performance, with F1-scores
of 0.67 and 0.64, due to insufficient candidate diversity for
reasoning. On the other hand, increasing to K = 5 yields no
additional benefits, with F1-scores of 0.93 and 0.96—compa-
rable to K = 3. These results suggest that Top-3 retrieval
provides the optimal trade-off between recall sufficiency and
entity relevance in RCA prompting.

Based on the observed results, we select three representative
fault cases per root cause and set the entity recall number to
Top-3 in all experiments.

V. CASE STUDY

In this case study, we analyze how AetherLog improves
RCA by addressing two fundamental challenges in log-based
reasoning:

• Type 1: Semantic Entity Aggregation. Logs may de-
scribe the same fault using inconsistent terminology.
AetherLog applies LLM-based entity extraction followed
by clustering-based alignment to unify these expressions,
thereby improving the compactness and semantic consis-
tency of the KG.

• Type 2: Context-Aware Entity Recall. Fault cases
often contain verbose, interleaved logs from multiple
components. AetherLog generates high-level summaries
to abstract causal information, then performs entity recall
based on the summary, enhancing both precision and
coverage.

10

A. Type 1: Redundant Entity Expressions

To illustrate the benefits of semantic entity aggregation, we
present two representative examples. As shown in Figure 9,
in Dataset 1, multiple logs describe thermal-related processor
faults using different terms: “Processor error”, “CPU fault”,
“Power cycle”, and “System shutdown”. AetherLog clusters
these into unified entities such as Processor error and Ther-
mal shutdown, enhancing semantic consistency. In Dataset 2,
messaging-related failures—e.g., “Message router”, “Messag-
ing dispatcher”, and “Message bus”—are consolidated into
a single representative entity: Message bus. This alignment
reduces redundancy and improves downstream reasoning. In
both cases, the number of distinct entities is reduced from
6–8 to 3. Table V further summarizes the global impact of
alignment, showing a reduction in KG entity count by 54.32%
in Dataset 1 and 57.38% in Dataset 2.

Fig. 9: Before and after entity alignment.

TABLE V: Entity Alignment Statistics

Dataset Original Aligned Reduction

Dataset 1 81 37 54.32%
Dataset 2 122 52 57.38%

B. Type 2: Context-Aware Entity Recall

To evaluate the effectiveness of AetherLog’s context-aware
entity recall mechanism, we present representative cases from
both datasets. As illustrated in Figure 10, logs from Dataset 1
span components such as MME, SGW, and S1AP. Key fault
indicators like tunnel creation timeout and invalid S1AP
message are scattered and difficult to extract line by line.

AetherLog summarizes the log sequence as: “Bearer allo-
cation failed due to SGW tunnel creation timeouts, caused
by missing tunnel information and invalid S1AP responses.
UE attachment process aborted.” From this summary, entities
such as SGW tunnel timeout and invalid S1AP response are
extracted—critical for accurate RCA but hard to obtain from
raw logs alone. In Dataset 2, the logs involve complex session
establishment failures linked to PGW context issues. The
summary—“Session context missing in PGW caused bearer
establishment failure for UE. Recovery attempts failed, leading
to UE detachment.”—enables accurate entity recall such as
PGW session missing and UE detachment. Table VI quantifies
the improvement: the number of recalled relevant entities
increased from 21 to 32 in Dataset 1 (52.38% improvement)
and from 32 to 47 in Dataset 2 (46.88% improvement).

Fig. 10: Before and after LLM-based summary extraction.

TABLE VI: Entity Recall Statistics

Dataset Before After Increase

Dataset 1 21 32 52.38%
Dataset 2 32 47 46.88%

VI. CONCLUSION AND FUTURE WORK

This paper presents AetherLog, a novel framework for RCA
that integrates the strengths of LLMs and KGs. AetherLog op-
erates in two phases: offline, it introduces a semantic entity ag-
gregation mechanism that constructs a clean and de-duplicated
KG through LLM-based entity extraction, semantic clustering,
and normalization; online, it introduces a context-aware entity
recall mechanism that leverages LLM-generated summaries to
retrieve relevant KG entities and construct informative prompts

11

for RCA. Experiments on two real-world datasets demonstrate
that AetherLog consistently outperforms state-of-the-art base-
lines. Ablation studies confirm the complementary strengths of
LLMs and KGs, while prompt engineering experiments reveal
that CoT reasoning significantly boosts RCA performance.

For future work, we plan to evaluate the performance of
different LLMs within the AetherLog framework and explore
more effective strategies for entity recall and prompt construc-
tion to further improve RCA accuracy. In addition, we will
investigate advanced reasoning techniques such as multi-hop
KG traversal and incorporate temporal dynamics from log data
to better capture the evolution of system faults over time and
across contexts.

REFERENCES

[1] Yu B, Yao J, Fu Q, et al. Deep learning or classical machine learning?
an empirical study on log-based anomaly detection[C]//Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering.
2024: 1-13.

[2] Lecheng Zheng, Zhengzhang Chen, Jingrui He, and Haifeng Chen.
2024. MULAN: Multi-modal Causal Structure Learning and Root Cause
Analysis for Microservice Systems. In Proceedings of the ACM Web
Conference 2024 (WWW ’24). Association for Computing Machinery,
New York, NY, USA, 4107–4116.

[3] Yu E, Dong H, Ren Y, et al. Hrca: A heterogeneous graph-based adaptive
root cause analysis framework[C]//2023 IEEE 34th International Sympo-
sium on Software Reliability Engineering Workshops (ISSREW). IEEE,
2023: 63-68.

[4] Zhang Y, Guan Z, Qian H, et al. CloudRCA: A root cause analysis
framework for cloud computing platforms[C]//Proceedings of the 30th
ACM International Conference on Information & Knowledge Manage-
ment. 2021: 4373-4382.

[5] Wang H, Wu Z, Jiang H, et al. Groot: An event-graph-based approach
for root cause analysis in industrial settings[C]//2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021: 419-429.

[6] Wu L, Tordsson J, Elmroth E, et al. Microrca: Root cause localization of
performance issues in microservices[C]//NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2020: 1-9.

[7] Wittkopp T, Wiesner P, Kao O. LogRCA: Log-based Root Cause
Analysis for Distributed Services[C]//European Conference on Parallel
Processing. Cham: Springer Nature Switzerland, 2024: 362-376.

[8] Zawawy H, Kontogiannis K, Mylopoulos J. Log filtering and interpreta-
tion for root cause analysis[C]//2010 IEEE International Conference on
Software Maintenance. IEEE, 2010: 1-5.

[9] He S, He P, Chen Z, et al. A survey on automated log analysis
for reliability engineering[J]. ACM computing surveys (CSUR), 2021,
54(6): 1-37.

[10] Le V H, Zhang H. PreLog: A Pre-trained Model for Log Analytics[J].
Proceedings of the ACM on Management of Data, 2024, 2(3): 1-28.

[11] X. Li, P. Chen, L. Jing, Z. He and G. Yu, ”SwissLog: Robust and Unified
Deep Learning Based Log Anomaly Detection for Diverse Faults,” 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE), Coimbra, Portugal, 2020, pp. 92-103.

[12] Zhang X, Xu Y, Qin S, et al. Onion: identifying incident-indicating
logs for cloud systems[C]//Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2021: 1253-1263.

[13] Lu S, Wei X, Rao B, et al. LADRA: Log-based abnormal task detection
and root-cause analysis in big data processing with Spark[J]. Future
Generation Computer Systems, 2019, 95: 392-403.

[14] Notaro P, Haeri S, Cardoso J, et al. Logrule: Efficient structured log
mining for root cause analysis[J]. IEEE Transactions on Network and
Service Management, 2023, 20(4): 4231-4243.

[15] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R.
Lyu, and Dongmei Zhang. 2018. Identifying impactful service system
problems via log analysis. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE 2018).
Association for Computing Machinery, New York, NY, USA, 60–70.

[16] Sui Y, Zhang Y, Sun J, et al. Logkg: Log failure diagnosis through
knowledge graph[J]. IEEE Transactions on Services Computing, 2023,
16(5): 3493-3507.

[17] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].
Advances in neural information processing systems, 2017, 30.

[18] Shuang Song, Yifei Zhang, and Neng Gao. 2025. Confront Insider
Threat: Precise Anomaly Detection in Behavior Logs Based on LLM
Fine-Tuning. In Proceedings of the 31st International Conference on
Computational Linguistics, pages 8589–8601, Abu Dhabi, UAE. Asso-
ciation for Computational Linguistics.

[19] Xu J, Cui Z, Zhao Y, et al. Unilog: Automatic logging via llm and
in-context learning[C]//Proceedings of the 46th ieee/acm international
conference on software engineering. 2024: 1-12.

[20] Dong Q, Li L, Dai D, et al. A survey on in-context learning[J]. arXiv
preprint arXiv:2301.00234, 2022.

[21] Zhong A, Mo D, Liu G, et al. Logparser-llm: Advancing efficient log
parsing with large language models[C]//Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2024:
4559-4570.

[22] He M, Jia T, Duan C, et al. LLMeLog: An Approach for Anomaly
Detection based on LLM-enriched Log Events[C]//2024 IEEE 35th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2024: 132-143.

[23] Ma Z, Chen A R, Kim D J, et al. Llmparser: An exploratory study
on using large language models for log parsing[C]//Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering.
2024: 1-13.

[24] Xu J, Yang R, Huo Y, et al. Divlog: Log parsing with prompt enhanced
in-context learning[C]//Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. 2024: 1-12.

[25] Liu Y, Tao S, Meng W, et al. Logprompt: Prompt engineering towards
zero-shot and interpretable log analysis[C]//Proceedings of the 2024
IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings. 2024: 364-365.

[26] Jiang Z, Liu J, Chen Z, et al. Lilac: Log parsing using llms with adaptive
parsing cache[J]. Proceedings of the ACM on Software Engineering,
2024, 1(FSE): 137-160.

[27] Pei C, Liu Z, Li J, et al. Self-Evolutionary Group-wise Log Parsing
Based on Large Language Model[C]//2024 IEEE 35th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2024:
49-60.

[28] Qi J, Huang S, Luan Z, et al. Loggpt: Exploring chatgpt for log-based
anomaly detection[C]//2023 IEEE International Conference on High
Performance Computing & Communications, Data Science & Systems,
Smart City & Dependability in Sensor, Cloud & Big Data Systems &
Application (HPCC/DSS/SmartCity/DependSys). IEEE, 2023: 273-280.

[29] Zhang W, Zhang Q, Yu E, et al. Leveraging RAG-Enhanced Large
Language Model for Semi-Supervised Log Anomaly Detection[C]//2024
IEEE 35th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2024: 168-179.

[30] Cavnar W B, Trenkle J M. N-gram-based text categoriza-
tion[C]//Proceedings of SDAIR-94, 3rd annual symposium on
document analysis and information retrieval. 1994, 161175: 14.

[31] Wei J, Wang X, Schuurmans D, et al. Chain-of-thought prompting elicits
reasoning in large language models[J]. Advances in neural information
processing systems, 2022, 35: 24824-24837.

[32] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding (2019).
https://arxiv.org/abs/1810.04805.

[33] Chen Z, Gao Q, Moss L S. NeuralLog: Natural language inference with
joint neural and logical reasoning[J]. arXiv preprint arXiv:2105.14167,
2021.

[34] Guo H, Yuan S, Wu X. Logbert: Log anomaly detection via
bert[C]//2021 international joint conference on neural networks
(IJCNN). IEEE, 2021: 1-8.

[35] Zhang M, Chen J, Liu J, et al. Logst: Log semi-supervised anomaly
detection based on sentence-bert[C]//2022 7th International Conference
on Signal and Image Processing (ICSIP). IEEE, 2022: 356-361.

[36] Tao S, Liu Y, Meng W, et al. Biglog: Unsupervised large-scale pre-
training for a unified log representation[C]//2023 IEEE/ACM 31st In-
ternational Symposium on Quality of Service (IWQoS). IEEE, 2023:
1-11.

12

[37] Huo Y, Lee C, Su Y, et al. Evlog: Identifying anomalous logs over
software evolution[C]//2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2023: 391-402.

[38] Steinley D. K-means clustering: a half-century synthesis[J]. British
Journal of Mathematical and Statistical Psychology, 2006, 59(1): 1-34.

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “Density-based spatial-
clustering of applications with noise,” in Int.Conf.KnowledgeDiscovery
and Data Mining,vol.240, 1996, p.6.

[40] D. Fernandes and J. Bernardino, “Graph databases compari-
son:Allegrograph, arangodb, infinitegraph, neo4j, and orientdb,” in
7thInternational Conference on Data Science, Technology and Appli-
cations,2018.

[41] Rosado T, Bernardino J. An overview of openstack architec-
ture[C]//Proceedings of the 18th international database engineering &
applications symposium. 2014: 366-367.

[42] Achiam J, Adler S, Agarwal S, et al. Gpt-4 technical report[J]. arXiv
preprint arXiv:2303.08774, 2023.

[43] Liu A, Feng B, Xue B, et al. Deepseek-v3 technical report[J]. arXiv
preprint arXiv:2412.19437, 2024.

[44] Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Let-
man, A., et al. (2024). The Llama 3 herd of models. arXiv preprint
arXiv:2407.21783. doi: 10.48550/arXiv.2407.21783

[45] Chaplot D S. Albert q. jiang, alexandre sablayrolles, arthur mensch,
chris bamford, devendra singh chaplot, diego de las casas, florian
bressand, gianna lengyel, guillaume lample, lucile saulnier, lélio renard
lavaud, marie-anne lachaux, pierre stock, teven le scao, thibaut lavril,
thomas wang, timothée lacroix, william el sayed[J]. arXiv preprint
arXiv:2310.06825, 2023.

[46] C.D.Manning, M.Surdeanu, J.Bauer, J.R.Finkel, S.Bethard, and
D.McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[47] G.Stanovsky, I.Dagan et al., “Openie as an intermediate structure for
semantic tasks,” in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers),
2015, pp. 303–308.

13

	Introduction
	Related Work
	Design Of AetherLog
	Offline Pipeline: Semantic Entity Aggregation Mechanism
	Step 1: Entity and Relation Extraction via LLM
	Step 2: Entity Representation Learning
	Step 3: Entity Clustering
	Step 4: Entity Normalization
	Step 5: Redundancy-Free KG Construction

	Online Pipeline: Context-aware Entity Recall Mechanism
	Step 1: Log Summary Generation
	Step 2: Entity Extraction and Top-K Entity Recall from KG
	Step 3: RCA via LLM Prompting

	Experiments
	Datasets
	Baseline Methods
	Evaluation Metrics
	Implementation Details and Environment
	Results and Analysis
	RQ1: How does AetherLog perform in log-based fault RCA compared to state-of-the-art methods?
	RQ2: How do different LLMs affect AetherLog's performance on the RCA task?
	RQ3: How do different prompting strategies influence AetherLog's performance on the RCA task?
	RQ4: How does each component contribute to the overall RCA performance of AetherLog?
	RQ5: How do key hyperparameters impact AetherLog's performance on the RCA task?

	Case Study
	Type 1: Redundant Entity Expressions
	Type 2: Context-Aware Entity Recall

	Conclusion and Future Work
	References

