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Abstract

Incident management remains a critical yet challenging task for
large-scale cloud services. Most cloud service providers abstract
troubleshooting into predefined workflows for different incidents,
offering step-by-step guidance. However, manually crafting work-
flows is resource-consuming and knowledge-intensive, hindering
large-scale deployment. Most automated techniques for workflow
orchestration rely on large language models (LLMs) to handle com-
plex tasks but overlook key aspects of troubleshooting, including
complex expertise, domain requirements, and the reliability of AI
feedback. These limitations undermine workflow quality. There-
fore, we propose FlowXpert, a novel framework for troubleshooting
workflow orchestration. Leveraging LLMs, it first builds a knowl-
edge base centered on incident-aware nodes to precisely depict
expertise. Then, fed into Al feedback and synthetic preference data,
reinforcement learning is applied to refine the workflow generator
and evaluator. To assess troubleshooting workflows, we introduce
OpsFlowBench based on Huawei Cloud’s datacenter switch oper-
ation documents. Benchmark tests under the tailored STEPScore
metric validate its effectiveness. Furthermore, during a 10-week
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deployment in Huawei Cloud’s datacenter network, FlowXpert pro-
vided valuable support to both on-call engineers and Al executors,
as evidenced by empirical data and case study.

CCS Concepts

- Software and its engineering — Software maintenance tools.

Keywords

Troubleshooting, Workflow Orchestration, Incident Management,
Large Language Model

ACM Reference Format:

Binpeng Shi, Yu Luo, Jingya Wang, Yongxin Zhao, Shenglin Zhang, Bowen
Hao, Chenyu Zhao, Yonggian Sun, Zhi Zhang, Ronghua Sun, Haihua Li,
Wei Song, Xiaolong Chen, Jingbo Miao, and Dan Pei. 2025. FlowXpert: Ex-
pertizing Troubleshooting Workflow Orchestration with Knowledge Base
and Multi-Agent Coevolution. In Proceedings of the 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.2 (KDD °25), Au-
gust 3-7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3711896.3737221

1 Introduction

Huawei Cloud’s datacenter network (DCN) hosts more than O(10°)
servers and O(10°) switches across 17 regions and 63 availability
zones worldwide. Each month, the system generates over 20,000
incident tickets, posing a significant threat to cloud service relia-
bility [3-5]. At such a large scale, effective and efficient incident
management becomes more and more essential. Nowadays, most
cloud service providers embrace process automation [6, 22, 40, 42],
abstracting troubleshooting into workflows for different incidents,
which follow a structured sequence of core steps. The primary
customer for workflows consists of on-call engineers (OCEs) and
Al executors (Executors). (1) For OCEs, workflows offer step-by-
step guidance, including operations, commands, and data queries,
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thereby reducing expertise demands and boosting efficiency. Ad-
ditionally, as standardized carriers of expertise, workflows facili-
tate knowledge sharing. When encountering novel incidents, past
workflows of similar cases could serve as valuable references. (2)
Moreover, Huawei Cloud engineers have transformed common
workflows into executable scripts, enabling automated incident
management and reducing the excessive burden on OCEs. Moving
forward, Executor, an Al agent equipped with tool invocation and
result analysis capabilities, is expected to streamline this process by
directly interpreting workflows, eliminating the need for manual
script conversion [42].

Traditionally, workflows are manually crafted, demanding sig-
nificant effort and deep expertise. This resource-consuming and
knowledge-intensive process struggles to keep pace with the grow-
ing number and complexity of incident scenarios, hindering large-
scale development and deployment of Al executors. Recent ad-
vancements in large language models (LLMs) demonstrate strong
potential in understanding natural language and handling com-
plex tasks across various domains [32, 44, 56], paving the way for
automatic high-quality workflow generation.
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Figure 1: From naive LLM to workflow generator

As depicted in Fig. 1, for the transformation of naive LLMs into
high-quality workflow generators, both domain knowledge and
application capabilities are indispensable [18, 21, 27, 29, 53].

(1) Support of domain knowledge. It ensures the knowledge
used in task-solving comes not from out-of-domain corpora but
rather from expertise accumulated within the domain. To prevent
hallucinations and noise, comprehensive and precise knowledge
must be provided, typically in three forms. The first is action space,
where application programming interfaces (APIs) define the exe-
cutable operations within a given domain [6, 16, 54]. These APIs,
developed and tested by experts, exhibit high accuracy and relia-
bility before being made available to LLMs. The other two forms
involve vector-based [25] and graph-based [14] retrieval of relevant
documents. Vector indexing enables efficient semantic matching
across large-scale texts, ensuring broad coverage of relevant infor-
mation. Graph indexing captures complex relationships, particu-
larly upstream and downstream dependencies between documents,
thereby enhancing retrieval depth.

(2) Alignment of application capability. It guides LLMs to
faithfully follow and fully explore domain knowledge, unlocking
their workflow orchestration capability. Supervised fine-tuning
(SFT) is a common approach [16]. It primarily relies on language
modeling fine-tuning like next-token or mask prediction yet often
lacks targeted optimization for workflow orchestration. In contrast,
reinforcement learning (RL) incorporates a feedback mechanism to
directly enhance task performance, allowing the model to iteratively
refine and improve its knowledge application [26, 45]. Moreover,
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some techniques [24, 45] utilize Al as a feedback source in RL,
further reducing the need for human intervention.

When equipped with domain knowledge support and aligned
knowledge application capability, LLMs specialize in workflow
orchestration. However, in troubleshooting, three domain-specific
challenges still exist:

C1: Complexity of troubleshooting expertise. Generally, OCEs
document operation experiences like incident indicators, root causes,
mitigation steps, etc. However, defining APIs based on these records
to provide domain knowledge is suboptimal, as the process is labor-
intensive. Furthermore, the constrained scope of API-defined spaces
cannot fully capture the complexity and variability of troubleshoot-
ing expertise, which restricts LLMs from orchestrating only simple,
small-scale workflows [16, 52]. Vector indexing also struggles to in-
tegrate distant textual information, limiting the depth of knowledge
extraction [14]. Meanwhile, graph indexing faces granularity issues
of entities and relationships, which often overlook the granularity
required for troubleshooting [27, 51]. These limitations make it
challenging to precisely depict complex troubleshooting expertise.

C2: Compliance of workflow orchestration with domain require-
ments. In troubleshooting, an effective workflow should comprehen-
sively recall all key steps. Some redundancy or minor imperfections
are acceptable and easily adjustable. Additionally, workflows must
meet specific requirements such as readability and executability.
That is, they should avoid confusion for OCEs and Executors while
successfully guiding troubleshooting procedures.

C3: Reliability of Al feedback. RL with Al feedback is a common
approach to improving workflow generation quality [26, 45]. In
production environments, given concerns about resource cost and
data privacy, customized open-source models are typically adopted
as Al evaluators. However, static open-source LLMs have limited ca-
pability for providing feedback, especially in knowledge-intensive
troubleshooting, where they may even produce incorrect feedback.
None of the existing techniques [24, 26, 45] have accounted for this
when leveraging Al evaluators.

In this work, we propose FlowXpert, a framework for automated
orchestration of troubleshooting workflows. Specifically, FlowX-
pert consists of two modules: (1) Knowledge Base Construction. We
convert operation documents into vector and graph databases to
offer comprehensive and deep domain knowledge support (C1). The
graph base is structured around a core of incident-aware nodes.
Assisted by LLMs, the construction process includes incident ex-
traction, node filling, merging, and refinement. (2) Multi-Agent
Coevolution. This module instantiates two LLM-driven agents, the
Planner and the Scorer, responsible for orchestrating and evaluating
troubleshooting workflows respectively. To align workflows with
domain requirements (C2), we fine-tune the Planner using Proxi-
mal Policy Optimization (PPO) [39], guided by multi-dimensional
scores from the Scorer. To improve Al feedback reliability (C3),
we synthesize preference data controlled by contextual richness,
then fine-tune the Scorer using Direct Preference Optimization
(DPO) [35]. The Planner and Scorer collaborate and coevolve to en-
sure precise application of domain knowledge, thereby producing
high-quality workflows.

Our contributions are summarized as follows:
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e We propose FlowXpert, a novel framework that orchestrates
troubleshooting workflows by integrating domain knowledge
support and aligned knowledge application.

For high-quality workflow generation, we (1) define a domain
ontology to guide the knowledge base construction, which con-
verts troubleshooting expertise into precise incident-aware nodes
(Sec. 4.1), (2) implement multi-agent coevolution through PPO
and DPO tuning (Sec. 4.3), (3) design a preference data synthe-
sis method controlled by contextual richness, improving the Al
evaluator’s discernment capability (Sec. 4.3).

o To evaluate models’ capability to orchestrate troubleshooting
workflows, we introduce STEPScore, a metric designed around
core characteristics of workflows, and conduct extensive bench-
mark tests based on real-world incidents from Huawei Cloud
datacenter switches (Sec. 5.1). The results demonstrate FlowX-
pert’s effectiveness (Sec. 5.2).

During a 10-week deployment in the Huawei Cloud’s DCN, our
framework contributed a lot to both OCEs (Sec. 6.1) and Executors
(Sec. 6.2), recorded through empirical data and case study.

2 Related Work

Support of domain knowledge. When adopting LLMs for domain-
specific tasks, comprehensive and in-depth knowledge support is
essential, typically encompassing three forms. (1) Action space. Re-
Act [52] reveals the integration of reasoning and acting to generate
task-solving trajectories. Building on this, ToolLLaMA [34] and T-
eval [10] demonstrate LLMs’ capability to employ tools for domain-
specific tasks. In production settings, the tools are virtualized as a set
of APIs, which are meticulously developed and rigorously tested to
equip LLMs with extensive domain knowledge. Several techniques
[6, 16, 54] enable LLMs to learn, select, and invoke APIs to generate
workflows and solve tasks. However, defining an API-based action
space to sketch expertise is labor-intensive and inherently limited
in scope. (2) Vector indexing. To provide comprehensive knowl-
edge, vector indexing enables retrieval based on semantic similarity.
Nevertheless, its linear structure hampers the establishment of long-
range associations between texts [23, 25, 41]. (3) Graph indexing.
In response, Graph RAG [14] constructs knowledge graphs by ex-
tracting entities and relationships, identifying communities, and
establishing knowledge links with a global perspective. Further
techniques enhance knowledge depth by extending graphs through
multi-hop connections [9], brain-inspired modeling [19], and topic-
aware retrieval [30, 51]. However, manual graph construction lacks
scalability, while automated methods often miss the optimal gran-
ularity for troubleshooting, leading to either excessive noise or
information loss. To harmonize the strengths of both approaches,
emerging techniques combine vector and graph bases to provide
domain knowledge [27, 38]. Yet, granularity issues in graph bases
still hinder the precise sketch of troubleshooting expertise. This is
the work of FlowXpert’s Module 1.

Alignment of knowledge application. Aligning LLMs with
domain knowledge applications is crucial for tailoring them for
specialized tasks. StateFlow [49] integrates finite state machines
to explicitly define workflows, enabling better control over com-
plex problem-solving. Certain techniques [26, 54] leverage LLMs’
in-context learning by incorporating human feedback into prompts
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to refine generated workflows. Although effective and straight-
forward, these techniques rely on human intervention, limiting
adaptability to diverse scenarios and restricting LLM adjustments.
In contrast, fine-tuning presents a more robust strategy for teaching
LLMs knowledge application patterns. SFT is commonly utilized to
align LLMs with desired outputs. For example, WorkflowLLM [16]
fine-tunes Llama with supervised learning on a large set of synthetic
standard workflows. However, SFT focuses on language modeling
rather than task-specific objectives. As a result, SFT tends to mem-
orize training data, whereas RL generalizes in out-of-distribution
data by directly optimizing for task performance [11]. AutoFlow
[26] and PEER [45] utilize RL to refine workflow generators. Specif-
ically, AutoFlow employs PPO based on workflow execution feed-
back, while PEER synthesizes preference data using Al feedback
and then applies DPO fine-tuning. For the latter solution, extensive
works [17, 24, 43, 48] have shown that Al feedback can match or
even surpass human annotations while reducing manual workload.
However, in automated troubleshooting, little attention has been
given to how RL enhances knowledge application or whether Al
feedback aligns with domain-specific requirements. This challenge
is precisely what FlowXpert’s Module 2 aims to address.

3 Motivation

This section explains our motivation in two aspects: usage and ac-
quisition. The former emphasizes the practical utility and unrealized
potential of workflows in production, while the latter outlines the
process, costs, and principles for acquiring workflows.

3.1 Workflow Usage

As illustrated on the right side of Fig. 1, workflows comprise a se-
quence of steps for incident resolution. These steps are recorded in
natural language, encompassing instructions, commands, queries,
code snippets, etc. Logically, they can be classified into three types
[26]: (1) Process step. It defines the action to be executed. (2) Deci-
sion step. It introduces a branch based on specific conditions. (3)
Terminal step. It marks the completion. We commonly use Mermaid
[1], a Markdown-like syntax, to represent structured workflows.

Workflows play a critical role in production. Since 2021, Huawei
Cloud’s OCEs have developed workflows for 189 distinct incident
types across domains such as network, hardware, interface, and
system. Among these, 79 high-frequency incidents have been auto-
mated into scripts. When these incidents occur, OCEs require no
manual intervention; the program automatically generates execu-
tion results and analysis conclusions step by step. For incidents not
equipped with scripts, OCEs receive workflow recommendations
of similar cases. This provides a reference for every operation, re-
ducing reliance on expertise and boosting efficiency. Notably, with
the aid of workflows and scripts, the average incident resolution
time has dropped from 24 minutes to 9 minutes, a 62.5% reduction.
Despite more incidents from expanded business, labor costs remain
unchanged.

3.2 Workflow Acquisition

The current workflow acquisition process primarily depends on
manual effort. At Huawei Cloud, OCEs routinely review operation
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documents from recent incident handling to derive workflows. De-
veloping a workflow for a single incident requires a team of seven
OCEs, including two experts, and takes approximately seven hours.
The process is as follows: (1) Summarization (two hours). Collecting
typical cases, analyzing root causes, and identifying key metrics. (2)
Formulation (two hours). Defining standard incident-handling steps
and assessing coverage and effectiveness. (3) Orchestration (three
hours). Designing and testing workflows. On one hand, this is a
resource-consuming and knowledge-intensive task. As the business
expands, manually updating and maintaining workflows struggle
to keep pace with the growing complexity and volume of incident
scenarios. On the other hand, a comprehensive survey on OCEs
reveals that factors like inconsistent standards, biased expertise,
unclear expressions, and redundant or omitted steps challenge the
quality of manually created workflows. These issues may mislead
OCEs or Executors, potentially causing errors and greater losses in
incident handling. In a word, OCEs call for an automated approach
to orchestrate workflows from operation documents.

Usually, a high-quality workflow adheres to the following prin-
ciples: fidelity to domain knowledge in operation documents, cov-
erage of key steps, and readability and executability for both OCEs
and Executors, etc. Despite these qualitative guidelines, there are
few dedicated metrics for quantifying workflow quality. Task suc-
cess rate is utilized as an indirect metric [6, 16, 26]. However, many
operations like physically cleaning fan dust, involve long execution
chains, making timely feedback impractical. Additionally, text gen-
eration metrics like BLEU [33] and ROUGE [28] fail to capture the
core characteristics of workflows, i.e., task-solving through multiple
key steps. The absence of a dedicated evaluation system hinders the
advancement of automated techniques for workflow generation.

INSIGHT: Workflows play a critical role in troubleshoot-
ing, which urgently needs to shift from manual creation
to automated orchestration. Additionally, a dedicated eval-
uation metric would be beneficial.

4 Methodology

As detailed in Fig. 2, the offline process of FlowXpert is dedicated
to transforming naive LLMs into high-quality workflow generators.
Specifically, Module 1, Knowledge Base Construction, builds vector
and graph bases by parsing operation documents that cover typical
cases, incident indicators, root causes, and mitigation steps, thereby
providing troubleshooting expertise for workflow orchestration.
Module 2, Multi-Agent Coevolution, focuses on fine-tuning two LLM-
driven agents: Planner and Scorer, responsible for generating work-
flows and assessing their quality, respectively. First, PPO tuning,
guided by multi-dimensional Al feedback from Scorer, enhances
the Planner. Second, we synthesize workflow pairs with prefer-
ences controlled by the richness of domain knowledge. DPO is then
employed to refine the Scorer’s judgment capability. These fine-
tuning strategies collectively enhance the application of domain
knowledge from Module 1. For online generation, when handling
an incident ticket, FlowXpert first retrieves contextual knowledge
from knowledge bases according to OCEs’ queries. Then the Plan-
ner and Scorer engage in sampling and generation, automatically
producing workflows for incident management.
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4.1 Knowledge Base Construction

This module systematically integrates contextual knowledge from
both vector and graph bases.

Construction. The vector indexing adheres to the standard
paradigm [25], where raw documents are segmented into chunks
due to the LLMs’ context size limitations. An encoder converts these
chunks into embeddings, which are then stored in a vector database.
The graph indexing is designed for this work. Specifically, it follows
four steps with the assistance of an LLM-enhanced knowledge
base builder: predefining incident-aware nodes, extracting incidents
from chunks, filling in nodes, and merging and refining them across
chunks, as shown in Fig. 3 and detailed below. All prompt templates
can be found in Fig. 7 of Appendix B.

Step 1: Predefining Incident-Aware Nodes. The key to constructing
a graph knowledge base (KG) lies in triplet extraction. However, ir-
relevant entities or relations with poor granularity introduce noise
or omit critical information. Instead, ontology offers a standardized
framework for knowledge representation through detailed concept
definitions and relation modeling at a higher level, thereby mitigat-
ing granularity issues in knowledge management while facilitating
knowledge sharing, updating, and expansion [7, 12, 15, 31, 47].

Therefore, FlowXpert constrains triplet extraction within a pre-
defined troubleshooting ontology, ensuring a knowledge graph
that remains highly focused on the operation domain. Specifically,
we abstract the key elements of incident management into five
concepts: Concepts = {Incident, Failure Descprition, Mitigation
Steps, Typical Cases, Additional Note}. Among them, Incident
serves as the central concept, while the others characterize its
attributes from various perspectives. Accordingly, we define the on-
tology relations: Relations = {(Incident, has attributes, Attrs)},
where Attrs = Concepts \ {Incident}. Leveraging the concepts
and relationships, we restructure the triples in KG into multiple

Incident-Aware Nodes: node; = {(incident;, has attributes, attrs;;j)}.

The incident; and attrs;; denote the instances of Incident and Attrs,
respectively. Thus, KG is conceptualized as a set of incident-aware
nodes, each node resembling a blank form to be filled, with the
incident name as the primary key and the other fields as incident’s
attributes tailored to OCEs’ interests and concerns. Consequently,
triplet extraction in KG construction is elevated to the level of
incident-aware node completion, providing proper granularity for
knowledge exploration in operation documents.

Step 2: Extracting Incidents from Chunks. Completing all contents
of a node at once remains challenging. So we start with the incident
name acquisition. Given the context length limitation of LLMs, we
split the raw document into K chunks and instruct LLMs to extract
all incident instances al.(k) , i.e., incident names, for each chunk k.

Step 3: Filling in Incident-Aware Nodes. With determined incident
names, this step identifies the remaining attributes of the nodes like

filling in forms. Specifically, LLMs extract other attributes from the
®
tably, chunking may disperse the information of the same incident
across multiple chunks. To mitigate the risk of missing or mismatch-
ing attributes due to absent incident instances, we fill the nodes
with the incidents extracted from the current and the most recent
previous chunk. The final node set is S(k):{nodeik), . .,nodenk },
where n denotes the node number extracted from chunk k.

chunk in a few-shot setting, i.e, attrs;;’ associated with al(k). No-
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Step 4: Merging and Refining Nodes across Chunks. In Step 3, incor-
porating incidents from the previous chunk mitigates information
loss but leads to notable node redundancy. To address this, we
merge and refine nodes of the same incident type. Utilizing the
strong semantic capability of LLMs, this step merges, restructures,
and refines node content. The final output is a knowledge graph
consisting of incident nodes, i.e., KG = {node; | i = 1,..., N}, where
N denotes the number of all incident types. Each node corresponds
to an incident type, consolidating all relevant information from the
source documents into four attributes: failure descriptions, mitiga-
tion steps, typical cases, and additional notes.

Retrieval. When an incident is triggered online, a query oM
is generated, typically including the incident name and description.
The semantic similarity is then calculated between 0T) and the
vector indices of each chunk, as well as the encoded incident name

of each node. Relevant domain knowledge is ranked by similarity

() odes® (T)

topK> topN topK and

scores, i.e., C(T)z{chunks }, where chunks

(T)
topN
nodes in natural language, respectively.

nodes represent the topK and topN most relevant chunks and

4.2 Agent Roles and Their Collaboration

We employ LLM-driven agents to simulate the workflow generator
and evaluator. Each agent specializes in a single task, collaborating
to drive high-quality workflow orchestration. All prompt templates
can be found in Fig. 8 of Appendix B.

Planner and Scorer. (1) The Planner agent orchestrates work-
flows using retrieved knowledge from the previous module, w() =
Planner(QM), (). (2) The Scorer agent evaluates how well the
generated workflows align with domain requirements. It assigns
multidimensional scores, covering Relevance (consistency with con-
textual knowledge), Coverage (completeness of necessary steps),
Accuracy (correctness of steps), Coherence (logical flow), and Con-
ciseness (clarity, brevity, and ease of execution). The overall work-
flow quality is quantified by averaging these five scores, S T =
Scorer(Q(T), M w(T)) The score S{T) is utilized for both offline
fine-tuning and online generation.

Best-of-N Sampling. During online generation, the Planner
orchestrates N workflows W(T) for a given query oM, selecting
the best one based on the scores S(T) from the Scorer. This setup
simply and directly scales inference, enabling broad exploration by
the Planner while ensuring quality by the Scorer.

Contexts Workflows
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@warer -~
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Scorerr,;
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Figure 4: One iteration of multi-agent coevolution

4.3 Multi-Agent Coevolution

Planner and Scorer are not born experts but evolve through itera-
tive fine-tuning. This refinement becomes especially critical when
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resource constraints and data privacy concerns drive the need for
open-source, lightweight LLMs. Next, we outline an iteration of the
coevolution process, as depicted in Fig. 4.

PPO for Planner. Inspired by [17, 24, 43, 48], Al feedback can
achieve comparable performance to human feedback in reinforce-
ment learning, significantly reducing human effort. FlowXpert em-
ploys PPO tuning to enhance the Planner’s workflow orchestration,
guided by multidimensional domain-specific feedback from the
Scorer. The main objective is as follows:

LCLIP — g, [min (rt(e)/it, clip (r:(6),1-€,1+¢) At)]

Ar =8+ (D81 + -+ (YN or_ )
O =1t +yV(se1) = V(st)
7o (ar|ss)

where the term r;(6) = represents the policy ratio,

70414 (atlse)
indicating the likelihood ratio between the current and previous
iteration Planner in generating each token; during the production
of workflow W(T) based on the prompt; Ay is the advantage esti-
mation, derived from the immediate reward r; and the state-value
function V (s;); The sentence-level score S () from the Scorer is
assigned as the immediate reward for the last token, while the KL
divergence penalty between new and old policies adjusts the imme-
diate rewards for other tokens; The clip function and e constrain
policy update magnitudes to ensure training stability.

DPO for Scorer. Given the importance of Al feedback reliabil-
ity, FlowXpert strengthens the Scorer’s workflow evaluation by
combining data synthesis and DPO tuning.

Step 1: Synthesizing Workflow Pairs with Preferences Controlled by
Knowledge Richness. In practice, identifying and correcting a small
number of redundant steps is relatively straightforward, while
OCEs prioritize comprehensive coverage of key steps. We gener-
ally consider the workflow quality to be positively correlated with
key steps, determined by the richness of contextual knowledge.
Therefore, for a query Q(T), we provide the Planner with three lev-
els of contexts: complete and correctly ordered recommendations,
complete but reversed ordered recommendations, and no context.
The three levels correspond to the generation of workflows with
varying quality. By pairing them, we obtain workflow pairs with
preferences: P = {(Wg(T), W;T)), (Wg(T), WP(T)), (Wf(T), WP(T))}.
The subscripts g, f, and p denote quality levels: good, fair, and poor,
respectively. Additionally, we employ the Scorer to validate their
quality, discarding any pairs misaligned with high or low scores.

Step 2: DPO Tuning. Based on the synthesized preference data
D = {(X, Wace; Wrej) | (Wace, Wrej) € P}, we perform DPO tun-
ing. X is the prompt template integrating the query and normal
contextual knowledge. Wy and Wy; denote the higher-quality
and lower-quality workflows, respectively, within each pair of P.
The loss function is as follows:

Lppo(mg: ref) = —E(x7 Woee.Wre;)~D

ﬁe(Wacc IX) _ g ﬂ@(WrEj IX) )
”ref(WacC | X) ”ref(Wrej | X)

@

[loga(ﬁlog Blo

where 79 and 7, ¢ denote the Scorer of the current and previous it-
eration, respectively; the scaling factor f measures errors in ranking
results and accounts for the KL constraint.
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Planner and Scorer undergo iterative tuning via PPO and DPO,
initialized from seed LLMs. The process relies solely on queries from
the training set, without the need for standard workflows. Through
multiple rounds of coevolution, Planner’s generation quality and
Scorer’s feedback effectiveness progressively improve together.

5 Experiment

In this section, we address the following research questions:
RQ1: How to evaluate the workflow orchestration capability in the
operation domain?

RQ2: How well does FlowXpert perform?

RQ3: Does each component contribute to FlowXpert?

5.1 RQ1: Evaluation System

Dataset: OpsFlowBench. To address the absence of task-specific
benchmarks for troubleshooting workflow planning, we construct
OpsFlowBench, a dataset derived from Huawei Cloud datacenter
switch operation documents. These documents encapsulate domain
expertise, detailing real-world incident descriptions, indicators, root
causes, and mitigation procedures. The dataset comprises 252 user
queries from 4 scenarios (hardware, interface, network, top) span-
ning 56 major incident types. Each query is paired with a standard
troubleshooting workflow, case; = (Q;, W;). The distribution of
cases across four scenarios is 83, 56, 31, and 82, respectively. The
above construction follows a multi-stage process: initial workflow
generation via GPT-4o, followed by manual refinement and valida-
tion conducted by a team of three graduate researchers specializing
in Artificial Intelligence for IT Operations (AIOps) and experienced
OCEs at Huawei Cloud.

Metric: STEPScore. Common text generation metrics such as
BLEU [33] and ROUGE [28] are often inadequate for assessing
workflow quality, as they fail to capture the structured nature of
workflows, which consist of a sequence of core steps. Inspired by
BERTScore [55], we propose STEPScore as a specialized evaluation
metric. Specifically, both the generated and reference workflows are
parsed into key step sets, S; and S, respectively. (1) For each step
s in Sy, we compute its maximum cosine similarity with all steps
in Sy, denoted as p;. The average of p; defines the workflow’s preci-
sion, indicating how closely the generated steps match the standard
steps. Precisionzls—lg‘Zsiesgmaxsjesrcos(E(s,-),E(sj)). (2) For each
step sj in Sy, we compute its maximum cosine similarity with all
steps in Sy, denoted as p;. The average of p; defines the workflow’s
recall, indicating how well the standard steps are retrieved in the
generated steps. Recallz|Sl—r|Zsjesrmaxsiesgcos(E(si),E(sJ-)). The
F1 score is the harmonic mean of Precision and Recall. Notably,
execution-related metrics like pass rate are excluded in benchmark
tests, as certain operations (e.g., physically cleaning fan dust) can-
not be timely assessed in offline settings. Instead, such metrics as
acceptance rate are applied in online deployment (Sec. 6.1).

Implementation details, including software environment, hard-
ware configurations, training procedures, dataset split, and hyper-
parameters, are provided in Appendix A.

5.2 RQ2: Overall Performance

We evaluate FlowXpert through three comparisons:
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Table 1: Overall performance across different scenarios on OpsFlowBench evaluated by STEPScore

STEPScore in Different Scenarios (%)

Seed LLM Method Hardware Interface Network TOP Average
Precision Recall F1  Precision Recall F1  Precision Recall F1  Precision Recall F1  Precision Recall F1
zero-shot 76.4 72.3 73.7 70.1 67.2 68.0 75.6 69.5 71.9 66.4 60.0 62.5 71.6 66.8 68.5
w/ VectorRAG 78.1 75.3 76.2 68.6 69.9 68.8 74.5 75.6 74.6 67.9 68.4 67.9 72.2 71.9 71.7
w/ GraphRAG 73.8 77.0 74.9 70.1 70.8 70.1 65.3 65.8 64.9 65.8 67.9 66.3 69.3 71.2 69.8
w/ CoT 76.6 76.7 76.4 71.7 732 721 68.7 73.1 70.5 64.9 67.4 65.8 70.7 72.5 71.2
Qwen-2.5-7B-Instruct  w/ SFT 67.5 70.5 68.5 65.7 70.5 67.5 63.2 68.6 65.3 61.6 66.2 63.3 64.6 68.8 66.2
w/ RL_GPT4o0 76.1 76.6 76.0 69.7 72.2 70.5 69.0 70.0 69.1 67.3 70.0 68.2 70.9 72.6 71.3
FlowXpert (0th iteration) 74.8 78.1 76.0 70.2 71.7 70.7 70.0 73.0 71.0 63.8 66.0 64.5 69.6 72.1 70.4
FlowXpert (1st iteration) 77.3 78.2 77.4 68.4 71.7 69.6 68.4 74.5 70.9 66.6 70.4 68.0 70.7 73.8 71.8
FlowXpert (2nd iteration) 77.2 783 77.5 71.0 733 717 70.7 73.0 71.4 67.6 67.0 66.7 71.9 729 719
zero-shot 65.8 62.5 63.6 49.7 45.6 47.3 71.0 65.6 67.2 56.4 49.1 51.9 59.8 54.8 56.6
w/ VectorRAG 75.2 74.7 74.6 70.6 67.8 68.6 69.5 70.8 69.7 63.9 63.5 63.2 69.8 69.0 69.0
w/ GraphRAG 71.0 74.1 72.1 67.6 70.2 68.6 64.0 68.0 65.5 64.6 66.7 65.3 67.3 70.1 68.2
w/ CoT 78.2 73.4 75.4 70.2 67.0 68.2 72.4 748 73.1 66.0 64.8 64.8 71.7 693  70.0
Llama-3.1-8B-Instruct  w/ SFT 79.6 72.7 75.3 71.4 66.1 68.2 70.7 62.3 65.1 69.0 61.5 64.6 73.2 66.3 69.0
w/ RL_GPT4o0 77.8 72.8 74.7 71.0 66.4 68.1 69.9 72.5 70.6 66.0 63.3 64.2 71.4 68.2 69.3
FlowXpert (Oth iteration) 76.7 75.6  75.7 71.0 69.1 69.5 70.6 715 70.6 65.7 64.2 64.4 71.1 69.9  70.0
FlowXpert (1st iteration) 77.0 72.8 74.4 69.7 68.2 68.6 71.4 71.9 71.1 65.5 63.9 64.1 70.9 68.8 69.3
FlowXpert (2nd iteration) 74.8 71.9 72.3 70.7 66.5 68.1 69.8 70.5 69.7 62.4 59.2 60.3 69.2 66.4 67.3
zero-shot 74.0 72.4 72.4 69.3 67.9 67.9 71.9 65.6 67.3 67.2 59.3 62.5 70.5 66.3 67.5
w/ VectorRAG 76.6 72.7 74.0 69.3 66.3 67.1 77.2 722 74.0 66.5 61.5 63.3 71.8 67.5 69.0
w/ GraphRAG 71.4 75.6 72.7 71.4 69.8 69.9 70.8 66.8 67.9 64.9 64.8 64.5 69.2 69.7 68.8
w/ CoT 75.0 73.3 73.5 71.9 67.9 69.2 70.6 735 713 65.3 60.7 61.7 70.6 68.0 68.4
InternLM-2.5-7B-Chat  w/ SFT 82.0 76.2 78.5 70.7 68.0 68.9 71.6 71.6 71.1 72.2 65.5 68.3 75.0 70.3 72.1
w/ RL_GPT4o0 75.2 74.0 74.0 69.3 71.2 69.9 66.9 69.3 67.7 66.5 67.5 66.5 70.0 70.6 69.9
FlowXpert (0th iteration) 72.5 75.9 73.5 66.7 71.7 68.8 66.3 72.0 68.6 64.3 65.5 64.4 67.8 71.1 68.9
FlowXpert (1st iteration) 73.2 75.8 73.8 69.8 714  70.3 67.1 70.8 68.3 64.2 68.4 65.8 68.7 71.8  69.7
FlowXpert (2nd iteration) 723 74.8 72.8 68.2 70.4 68.9 70.0 72.0 70.1 65.7 69.3 66.8 68.9 71.7 69.6

e Expertise Sources. We examine three knowledge retrieval meth-
ods: zero-shot, VectorRAG [25], and GraphRAG [14]. The gener-
ation module is the same as FlowXpert but without fine-tuning.

e Tuning Approaches. We compare different fine-tuning strate-
gies, including supervised fine-tuning (SFT) and reinforcement
learning with GPT-4o feedback (RL_GPT4o). Additionally, CoT
[46] serves as a baseline without fine-tuning. All methods lever-
age FlowXpert’s full knowledge base.

o Seed LLMs. Given the trade-off between cost and Chinese com-
prehension, we experiment on three LLMs: Qwen-2.5-7B-Instruct
[50], Llama-3.1-8B-Instruct [13], InternLM-2.5-7B-Chat [8].

Tab. 1 presents the performance of FlowXpert and baselines across
four troubleshooting scenarios on OpsFlowBench. The results un-
derscore FlowXpert’s superiority, attributed to its comprehensive
and precise domain knowledge and its alignment with practical
application requirements. (1) Effectiveness of Expertise Sources.
The zero-shot approach heavily depends on LLMs’ pretraining
corpus, which proves inadequate for troubleshooting and leads
to extremely low recall. Although precision is not so poor due to
semantically relevant steps generated by LLMs, it often fails to
reconstruct complete workflows. Among retrieval-based methods,
VectorRAG prioritizes breadth, while GraphRAG emphasizes depth,
yet neither fully capitalizes on both advantages. By integrating
these knowledge bases and structuring them through a domain on-
tology, FlowXpert achieves a balance between knowledge breadth
and precision. While broader knowledge introduces minor noise,
slightly reducing precision, FlowXpert significantly improves recall
by retrieving a more complete set of core steps, which OCEs priori-
tize in practice. (2) Impact of Tuning Approaches. CoT facilitates
the knowledge application in a straightforward manner but remains

limited and unstable. SFT enhances performance through language
modeling on high-quality datasets, neglecting domain specificity.
RL_GPT4o incorporates advanced model’s feedback to refine work-
flow generation, while its unreliability may lead to adverse effects.
In contrast, FlowXpert utilizes synthetic data to drive multi-agent
coevolution, achieving performance comparable to or even surpass-
ing that of SFT and RL_GPT4o. (3) Generalizability Across Seed
LLM:s. The results of different seed LLMs demonstrate that FlowX-
pert exhibits a degree of robustness and generalizability, suggesting
its potential applicability across diverse model architectures.

Table 2: The evaluation results of ablation study

Average STEPScore (%)

Seed LLM Method

Precision Recall F1
A1l: w/o Knowledge Base 71.6 66.8 685
A2: w/o Graph Base 72.2 71.9 717
A3: w/o Vector Base 71.4 719 712
B1: w/o DPO fine-tuning 70.3 729 712
2.5-7B-Instruct
Qwen TSHUCE B2: w/o PPO fine-tuning 70.0 725 708
FlowXpert (0th iteration) 69.6 721 704
FlowXpert (1st iteration) 70.7 73.8 718
FlowXpert (2nd iteration) 71.9 729 719

5.3 RQ3: Ablation Study

To validate the contribution of FlowXpert’s core components, we
conduct an ablation study under different conditions: Al: without
knowledge base, A2: without graph base, A3: without vector base;
B1: only fine-tune Planner, B2: only fine-tune Scorer. The results,
as shown in Tab. 2, reveal two key findings: (1) Importance of a
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Figure 5: The weekly acceptance rate of workflows during
the 10-week deployment

Comprehensive Knowledge Base (A1, A2, A3). Removing cer-
tain knowledge sources reduces recall and workflow completeness.
Although it may enhance precision by filtering out noise, OCEs
prioritize full retrieval of core steps. Thus, optimizing for overall
F1 score is more effective than solely maximizing precision. (2) Ef-
fectiveness of Coevolution (B1, B2). Independently fine-tuning
either Planner or Scorer yields improvements over FlowXpert’s
initial iteration. However, this approach constrains further perfor-
mance gains that could be brought by coevolutionary learning.

6 FlowXpert in Production

This section elaborates on how FlowXpert functions in a live produc-
tion environment. We evaluate the quality of generated workflows
through OCEs’ usage in daily incident management (Sec. 6.1). More-
over, we perform a case study to further demonstrate the potential
of Al Executors equipped with workflows for autonomous incident
management (Sec. 6.2).

6.1 Online Deployment: For OCEs

Huawei Cloud’s datacenter network (DCN) spans 17 regions and
63 availability zones, hosting O(10°) servers and O(10°) switches,
and generating approximately 20,000 incidents monthly. To opti-
mize OCEs’ incident handling, these incidents are aggregated into a
management system, Alarmagnify, where FlowXpert is integrated.
The system operates on a high-performance Linux server equipped
with an Intel(R) Xeon(R) Gold 6140 2.30GHz CPU and eight NVIDIA
V100 GPUs, each with 32GB VRAM. Leveraging operation docu-
ments and 189 common incident queries from the DCN team, we
perform a 2.2-hour knowledge base construction followed by a 15.1-
hour coevolution, transforming naive LLMs (Qwen2.5-7B-Instruct)
into specialized Planner and Scorer. For each ticket, FlowXpert gen-
erates a tailored troubleshooting workflow based on incident name
and description, which OCEs can then use for further analysis.
Effectiveness. In the production environment, FlowXpert gen-
erates workflows for 189 common incident types. We calculate the
STEPScore using manually curated workflows, achieving precision,
recall, and F1 scores of 63.2, 78.4, and 69.6 respectively. These met-
rics demonstrate FlowXpert’s capability to produce high-quality
workflows. Additionally, OCEs use the generated workflows for
troubleshooting analysis. A workflow is deemed acceptable by
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Query: How to handle the incident <DELETE_DEFAULT_ROUTE> ?

e [Workflow] for <DELETE_DEFAULT_ROUTE>
‘\U [Step1] Query the incident details based on the incident ID.
[Step2] Query the device's current default route entries by instance ID and device IP.
m [Step3] If default routes >1, proceed. Else, end. Disposal: report immediately.
[Stepa] Query shutdown tickets in 12 hours by device IP.

[Step5] If shutdowns > 3, contact OCEs. Else, shut down the ticket directly.

( N\
# STEP1: Process (Due to the non-disclosure agreement, we replace the actual query result with [Event]...)
Function Call: Query incident information.
m Response: [Event] [Area] [Instance ID] [Device IP] [Interface Exitlf]... {::\?

# STEP2: Process
Function Call: Query the number of default route entries for a given device.
Response: [Default number of route entries, n_1]. {\:\‘-

# STEP3: Decision
Logical judgment: Determine based on the number of default route entries.
Response: [Logic code] n_1 > 1 [Result] Perform step 4. A

# STEP4: Process
Function Call: Query the number of 12-hour shutdowns.
Response: [Number of shutdown tickets, n_2]. {‘:\?

# STEPS: Decision & Terminal
Logical judgment: Determine based on the number of shutdown tickets.

Step-by-step execution

Response: [Logic code] n_2 > 3 [Disposal Suggestion] Contact OCEs for support. @

Figure 6: Autonomous Al Executor for incident handling

OCE:s if it closely aligns with the standard incident-handling pro-
cess, in quantitative terms, it recalls at least 75% of core steps. From
October 21 to December 29, 2024, we gathered data on 34,488 inci-
dent tickets, tracking the number of accepted workflows and the
weekly acceptance rates. As shown in Fig. 5, approximately 80%
of the workflows effectively guided OCEs step by step in incident
management. These findings suggest that FlowXpert is capable of
orchestrating high-quality workflows that are useful in real-world
deployment.

Efficiency. As described in Sec. 3.2, developing a workflow for a
single incident previously took a team of seven OCEs about seven
hours, involving tasks such as identifying key metrics, assessing
coverage and effectiveness, and designing and testing workflows.
Notably, the team includes two experts whose expertise is indispens-
able but difficult to quantify temporally. With FlowXpert deployed,
the time required to generate a workflow for each incident has
been reduced to an average of 22.1 seconds, significantly reducing
both labor and time costs. Intuitively, FlowXpert ’s minute-level
generation combined with rapid validation by a single OCE can, to
some extent, replicate the 7-hour effort of a 7-person OCE team,
including contributions from 2 experts.

6.2 Case Study: For Al Executors

Furthermore, we develop an Al Executor powered by Pangu-7B [37]
to handle five categories of high-frequency incidents. As shown in
Fig. 6, when an incident is triggered, FlowXpert organizes the trou-
bleshooting workflow. After simple verification and refinement by
OCEs, the Executor carries out each step sequentially: In "Process”
steps, the Executor conducts intent recognition, parameter extrac-
tion, and tool invocation; In "Decision" steps, it performs logical
reasoning and transition determination. The Executor integrates
intermediate responses and delivers analysis results. This case illus-
trates that, following the workflow from the deployed FlowXpert,
the autonomous Executor effectively carries out troubleshooting
analysis in the production environment. Moreover, as indicated in
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Tab. 5 of Appendix C, the Al Executor enhances incident handling

efficiency while minimizing interruptions to OCEs.

6.3 Lessons Learned

Three main threats challenge the validity of FlowXpert in deploy-

ment, and we try to suggest possible solutions:

Novel Incident Handling. For out-of-distribution incidents, FlowX-
pert retrieves relevant contexts from the knowledge base. Then
Planner orchestrates workflows by leveraging historical handling
of similar cases, emulating experts’ analogical reasoning. As for
entirely novel incidents with no prior experience, manual handling
followed by periodic updates to the knowledge base is a good choice,

which requires only the addition of new chunks and nodes.

Execution Constraints. API sets are inadequate to fully capture
troubleshooting expertise. Additionally, certain operations, such as
physically checking if a fan blade is stuck, are hard to execute and
assess in real time. Given these constraints, our workflow genera-
tion relies on step descriptions in natural language rather than fully
executable APIs, potentially affecting the real-world executability.
However, we validate FlowXpert’s effectiveness in guiding execu-

tion within the real-world production (Sec. 6.1 and Sec. 6.2).

Coevolution Optimization. The effectiveness of coevolution de-
pends on synthetic data quality. In Tab. 5.2, performance improves
with additional iterations for Qwen and InternLM, but declines for
Llama, which appears to have limited Chinese language compre-
hension. Therefore, we introduce consistency validation by Scorer.
Also, human intervention in refining the synthetic data could en-
hance quality but requires a trade-off between performance and

manual effort.

7 Conclusion

This work presents FlowXpert, an automated framework for trou-
bleshooting workflow orchestration. Initially, we build a knowledge
base incorporating vector and graph indexing, which leverages
incident-aware nodes to sketch expertise precisely. Subsequently,
reinforcement learning is applied to refine the workflow generator
and evaluator, enabling multi-agent coevolution. Benchmark tests
on the constructed OpsFlowBench, evaluated by the tailored STEP-
Score metric, demonstrate FlowXpert’s effectiveness. Additionally,
real-world deployment highlights its contributions to OCEs and AI
Executors. We believe that the concept of transforming naive LLMs
into domain experts, through knowledge support and application

enhancement, will benefit more areas beyond troubleshooting.
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FlowXpert: Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and Multi-Agent Coevolution

A Implementation Details

We implement FlowXpert with Pytorch 2.4.1, CUDA 12.1, transform-
ers 4.46.1, peft 0.12.0, tr] 0.11.3, llamafactory 0.9.2 [57], neo4j 5.27.0,
and langchain 0.3.2. And we utilize a popular Sentence-BERT [36]
model, all-MiniLM-L6-v2 [2], as the embedding model for knowl-
edge base construction, retrieval, and similarity calculation, etc. The
benchmark tests are conducted on a high-performance Linux server
with two Intel Xeon Gold 5416S CPUs and eight NVIDIA A6000
GPUgs, each with 48GB of VRAM.

Table 3: Distribution of different scenarios

Hardware Interface Network Top All
Train 49 33 18 48 148
Test 34 23 13 34 104

Dataset Split. We gather 252 data pairs, (query, workflow),
across four distinct scenarios including Hardware, Interface, Net-
work, and Top. First, we sort the data pairs in each scenario accord-
ing to the workflow step count, to divide the data by task difficulty.
The top 75% of the data pairs are labeled as "Hard", while the re-
maining pairs are classified as "Easy". Next, we partition the dataset
for each difficulty level within each scenario. Through random sam-
pling, 60% of the data pairs are allocated to the training set, with
the remaining data pairs designated for the test set. The specific
partitioning results are presented in Tab. 3, where each number
represents the amount of data pairs in the dataset. Notably, the
training process of FlowXpert only needs to utilize the queries from
the training set, without the need for standard workflows.

Table 4: Descrptions of hyperparameters

Name Description Value

Maximum number of tokens the LLM 4096
can generate in the output sequence.

max_token

temperature Controls the randomness of LLM’s 1
output

DPO.batch_size Batch size for DPO training. 4

PPO.batch_size Batch size for PPO training. 4

DPO.learning_rate Learning rate for DPO training. 5e-5

PPO.learning_rate Learning rate for PPO training. 8e-6

lora_alpha Scaling factor for rank decomposition 16
in LoRA [20].

lora_rank Rank of LoRA decomposition, defin- 8

ing the number of low-rank matrices.

lora_dropout Dropout rate for LoRA layers. 0.05

N Number of generated workflows per 3
query in the online stage (Best-of-N).

KDD ’25, August 3-7, 2025, Toronto, ON, Canada.

Data Synthesis. In FlowXpert, we synthesize preference data for
Direct Preference Optimization (DPO) [35]. For one iteration of the

multi-agent coevolution, we generate three rounds of workflows
for queries from the training set of OpsFlowBench. Each round

produces three workflows of varying quality, based on the given
context, which are then paired to create preference data. Finally,
we obtain 1332 preference data pairs (148 X 3 X 3). The pairs are
employed for DPO tuning after consistency validation by Scorer.

Hyperparameters. In practice, one iteration corresponds to
one epoch of PPO and DPO fine-tuning for the Planner and Scorer,
respectively. We observe the performance of FlowXpert varies with
the number of iterations. Compared to the initial generation, FlowX-
pert improves the performance across different scenarios through
fine-tuning. As the number of iterations increases, performance
fluctuates but generally improves, indicating the contribution of
coevolution. However, excessive iterations may lead to overfitting,
causing performance degradation or slow convergence. Therefore,
we typically select three iterations. In addition, we present the
default value of main hyperparameters in Tab. 4.

Notably, we start the coevolution from seed LLMs rather than
SFT models for two reasons. First, the performance of SFT on trou-
bleshooting workflow generation is unstable as shown in Tab. 1.
Second, open-source instruction-tuned models [8, 13, 50] already
provide a strong initialization with a stable output format for work-
flow generation, which is typically a core goal of SFT stage [11].

B Prompt Design

We illustrate the prompt templates for graph base construction and
multi-agent generation in Fig. 7 and Fig. 8, respectively.

Table 5: Human Time vs. Executor Time

Incident Human Time(s) Executor Time(s)
BGP_STATE_CHANGE_ESTABLISHED TO IDLE 373.4 200.9
BGP_BACKWARD_TRANSITION_ACTIVE 602.2 226.7
BGP_NOTIFICATION 801.8 232.0
DELETE_DEFAULT_ROUTE 166.4 111.5
NETWORK_DEVICE_OFFLINE_MONITOR 401.1 206.9

C Human Time vs. Executor Time

Tab. 5 presents five categories of high-frequency incidents, compar-
ing the average handling time of human and AI Executor during
deployment. The significant reduction in handling time highlights
the efficiency of Al Executor.
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Prompt Template for Extracting Incidents Prompt Template for Filling in Nodes Prompt Template for Merging and Refining Nodes

System Prompt

#system role

You are a large language model skilled in extracting key information from documents

Your task s to extract all possible incident_name entries from a document and provide a brief summary for
each incident_name. Each incident_name represents a specific event in the document

#1nstructions

1. When the user provides document content, first search for and extract all potential incident_name entries.

2. An incident_name s typically a phrase from the original document, and certain incident_name entries are
preceded by the string “Incident Case:"
3. For each incident_name, generate a hr\ew based on the

4. Ensure the extracted incident_name ted , clear, and

the information in the document.

5. 1f no incident_name is found in the document, return an empty list. Otherwise, return a lst of tuples in the
format [(incident_name, summarization)]

Apply the above steps to process the document content provided by the user.

System Prompt
#system role

You are a large language model specialized in completing tasks based on given prompts.

We use a Schema to ly the Ontology of a also providing a list of possible
incident_name entries from the document.

Your task s to generate JSON objects for all incident_name entries in the list based on the content of the
provided Document. These objects must match the predefined Schema and should be returned as a JSON
array.

#Instructions

1. Accept the incident_name lst provided by the user. For each incident_name, extract relevant details from
the provided Document.

2 Ensure you fully understand the JSON Schema and its structure, including required fields, data types, and
constraints. Fil in the extracted information according to the predefined Schema and ignore irrelevant details.
5 Returna 15ON array of objects that correspond exactly to the provided incident_name entries. Do not
modify the incident_name.

4. All responses must primarily be in Chinese, except for proper nouns.

System Prompt

#system role

You are a large language model specialized in text summarization.

Your task is to merge a lst of dictionaries where each dictionary has the same keys and shares a common
primary key.

For each key, summarize the string values into a new, unified string value, ensuring no information s lost and
the resulting content is well-organized.

#1Instructions

1. Accept a lst of dictionaries where each dictionary has the same keys and a common primary key.

2. For each key, summarize its corresponding string values.

3. Ensure that no information is omitted, and the generated content s logically structured. If there are
repeated contents, rephrase or restructure them.

4.1 all dictionaries have an empty value for a specific key, the value for that key must be None. Do not use
null or any other placeholder value.

5. Only return the single merged and summarized dictionary, without any additional content or explanations

User Prompt

Refer to the following example to extract all incident_name entries (there may be none or multiple) from the
document. An incident_name is typically a phrase from the original document, and certain incident_name.
entries are preceded by the string “Incident Case:".

Each incident_name represents a specific event in the document and requires a brief summary.

You must not return any additional content or explanation; only the generated tuple list [(incident_name,
summarization)] should be returned.

Example

Document Content:

“Incident Case: Fan module indicator remains red o flashes red

Phenomenon Description

The fan module indicator remains red or flashes red.

Related Alarms and Logs

Cause Analysis:

« The fan module is not fully inserted into the fan siot.

« The fan blade is stuck by foreign objects or too dusty, causing blockage.

« The fan module itself is faulty.

Steps:

1.Check if the fan module is properly inserted. The fan module supports hot-plugging; try reinserting the fan
module.

2.Remove the fan module and check if the fan blade is stuck by foreign objects or too dusty.

« If the fan blade is stuck, carefully remove the foreign object.

« If the fan blade is too dusty, clean it with a brush.

3. Replace the fan module with a working one of the same model. If the issue disappears, the fan module is
faulty and needs replacement.

2Incident Case: Loud fan noise

Incident Case: Loud fan noise”

Returned Output

[

(“Fan module indicator remains red o flashes red”, “The fan module indicator remaining red or flashing red
may be caused by the fan module not being properly inserted, the fan blade being stuck by foreign objects or
t0o0 dusty, or the fan module itself being faulty.”),

(“Loud fan noise”, *")

1

the incident_ and their from the following
document;

Document Content: <DOC>

User Prompt

This is a fillin-the-blank task. We use a Schema to formally define the Ontology of a specific domai
Referring to the following example, for each incident_name in the given lst, extract relevam content from
the Document and fil it in detailinto JSON objects that match the predefined Schem:
1fno content is extracted for a field, its value must be set to None. Do not use null or anv other value.
If the provided incident_name listis empty or the Document contains additional potential mmem name
entries not in the fist, the incident_name an our
understanding of the Document.
You must not return any additional content or explanations; only return the lst of generated JSON objects.
#Example
<Incident>:
["Power Ou\age‘]
Document

“In Cummumly A, amajor power outage occurred due to a sudden surge in electricity demand. The surge
caused circuit breakers to trip, as indicated by related alarms and records.
To resolve the issue, the main power source was restarted, the entire electrical system was inspected, and
faulty crcuit breakers were replaced.
typically caused by dit d issues.

were activated to continuity, and no reports of critical data

Fortunately,
loss were made.”

tincident_name": "Power Outage",
“failure_desc": "A power outage caused by a sudden surge in electricity demand. Related alarms include
circuit breaker trip logs.",
"mitigation_steps": "Restarted the main power source, conducted a thorough inspection of the electrical
system, and replaced the faulty circuit breakers.",
"typical_cases": None,
"additional_info" "No reports of critical data loss; backup generators were activated.”

1
# Schema: <SCHEMA>
#Incident: <INCIDENT_NAMES>
# Document: <DOC>

User Prompt

This is a task to merge multiple dictionaries into one.

Referring to the example below, merge all dictionaries in the given list into a single dictionary by summarizing
the string values for the same keys.

Ensure that no information is lost and that the content is logically organized. If content is repeated, rephrase
or restructure it. If all dictionaries have an empty value for a specific key, the value for that key must be None.
Do not use null or any other placeholder value.

You must not return any additional content or explanations; only return the single merged and summarized
dictionary.

#Example

<List>

“incident_name": "Database Connection Failure”,
“failure_desc": "Database connection timed out. Multiple connection attempts were unsuccessful.",
"mitigation_steps": "1. Check if the database service is running. 2. Verfy the network connection. 3.
Checkif the firewall settings are blocking the database port.",
"typical_cases": "Connection failure due to database service not running or network issues.",
“additional_info": "Might be related to a system update."

“incident_name": "Database Connection Failure",
“failure_desc”:

0
<Response>

“incident name‘ "Database Connection Failure",

“failure_des imed out. attempts were ful
Attempted to e e B Vate client, but access was denied.",

“mitigation_steps": "1.1. Check if the database service is running. 1.2. Verify the network connection. 1.3.
Checkif the firewall settings are blocking the database port. 2.1. Check if user permissions are correct. 2.2.
Ensure the database server IP address has not been changed.",

“typical_cases": "conne:non laHure due to database service not running o network issues. Connection
failure cause i

“additional_info": “M-gh« be reated o2 system update."
}

#List: <XNODE LIST>

Figure 7: Prompt templates for graph base construction

Prompt Template for Planner Generation

System Prompt
# system role

You are an intelligent assistant capable of generating workflows based on a given Context to answer user

Questions.
# Instructions

System Prompt
# system role

Prompt Template for Scorer Generation

You are a scorer capable of evaluating the workflow to solve a given Question, based on the provided

reference knowledge Context and the user’s Question.
You will use the following scoring criteria: Relevance, Coverage, Accuracy, Coherence, and Conciseness.

1. Understand the two types of Contexts provided: vector retrieval context and graph retrieval context.
2. Each type of context and its relevance to the Question decreases line by line (lines are separated by \n).

Analyze the content of the contexts, filtering out less relevant and later information in both types of contexts.

3. Based on the filtered content from both contexts, generate a workflow using Mermaid syntax.
4. Only return the workflow in Mermaid syntax, enclosed with special symbols $$ at the beginning and end.

Each scoring criterion has a range from 1 to 5, with 1 being the lowest score and 5 being the highest score.

User Prompt

The Context has two sources: vector retrieval and graph retrieval.

When referencing the Context, the relevance of each type of Context to the Question decreases line by line
(lines are separated by \n). It may be necessary to filter out less relevant and later information from each
Context.

Using the provided Context and your inner knowledge, generate a workflow to answer the Question,
following the example below.

Example:

$$

graph TD

A[Start] --> B[Check fan working status<br>Execute the command display device]

B --> C{{ls the fan status showing any issues?}}

C-->|Yes| D[Ensure the fan is properly connected<br>Check if the fan blades are stuck or dusty]
C-->|No| E[Problem resolved]

D --> F{{Has the fan status returned to normal?}}

F -->|Yes| G[Problem resolved]

F -->|No| H[Upgrade the fan software<br>Execute the command upgrade fan slot-id]

H --> I[Check if the fan status has recovered]

| -->|Yes| G[Problem resolved]

| -->|No| J[Replace the fan module or contact technical support]

$S

Question: <QUERY>

Context_by_vector: <CONTEXT_BY_VECTOR>

Context_by_graph: <CONTEXT_BY_GRAPH>

User Prompt

Based on the given reference knowledge Context and the user’s Question, score the workflow to solve the
Question.

The scoring criteria include five aspects:

1. Relevance: Whether the workflow is highly relevant to the given reference knowledge Context and reflects
the key points in the context, addressing the needs of the Question.

2. Coverage: Whether the workflow covers all necessary steps and conditions, ensuring the
comprehensiveness of the process.

3. Accuracy: Whether each step is accurate and effectively solves the problems or needs in the context.

4. Coherence: Whether the workflow is logically coherent, and the transitions between steps are natural and
reasonable.

5. Conciseness: Whether the workflow is clear, concise, and avoids unnecessary complexity or redundancy,
making it easy for the executor to understand and follow.

Question: <QUERY>

Context_by_vector: <CONTEXT_BY_VECTOR>
Context_by_graph: <CONTEXT_BY_GRAPH>
Workflow: <WORKFLOW>

Please score the above workflow.

Note! Only return a dictionary object in the format below. Do not add any content different from the format.
The format is as follows (X_i is an integer between 1 and 5, where 1 is the lowest score and 5 is the highest
score, and each X_i does not have to be the same):

$S{{ “Relevance”: X_1, “Coverage”: X_2, “Accuracy”: X_3, “Coherence”: X_4, “Conciseness”: X_5 }}$$

Figure 8: Prompt templates for Planner and Scorer generation
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