
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FlowXpert: Expertizing Troubleshooting Workflow Orchestration
with Knowledge Base and Multi-Agent Coevolution

Binpeng Shi
Nankai University
Tianjin, China

Yu Luo
Jingya Wang

Nankai University
Tianjin, China

Yongxin Zhao
Nankai University
Tianjin, China

Shenglin Zhang
Nankai University
Tianjin, China

Bowen Hao
Nankai University
Tianjin, China

Chenyu Zhao
Nankai University
Tianjin, China

Yongqian Sun
Nankai University
Tianjin, China

Zhi Zhang
Ronghua Sun
Haihua Li

Huawei Cloud
Dongguan, China

Wei Song
Xiaolong Chen
Jingbo Miao
Huawei Inc.

Nanjing, China

Dan Pei
Tsinghua University

Beijing, China

Abstract
Incident management remains a critical yet challenging task for
large-scale cloud services. Most cloud service providers abstract
troubleshooting into predefined workflows for different incidents,
offering step-by-step guidance. However, manually crafting work-
flows is resource-consuming and knowledge-intensive, hindering
large-scale deployment. Most automated techniques for workflow
orchestration rely on large language models (LLMs) to handle com-
plex tasks but overlook key aspects of troubleshooting, including
complex expertise, domain requirements, and the reliability of AI
feedback. These limitations undermine workflow quality. There-
fore, we propose FlowXpert, a novel framework for troubleshooting
workflow orchestration. Leveraging LLMs, it first builds a knowl-
edge base centered on incident-aware nodes to precisely depict
expertise. Then, fed into AI feedback and synthetic preference data,
reinforcement learning is applied to refine the workflow generator
and evaluator. To assess troubleshooting workflows, we introduce
OpsFlowBench based on Huawei Cloud’s datacenter switch oper-
ation documents. Benchmark tests under the tailored STEPScore
metric validate its effectiveness. Furthermore, during a 10-week
deployment in Huawei Cloud’s datacenter network, FlowXpert pro-
vided valuable support to both on-call engineers and AI executors,
as evidenced by empirical data and case study.

CCS Concepts
• Software and its engineering→ Softwaremaintenance tools.

Keywords
Troubleshooting, Workflow Orchestration, Incident Management,
Large Language Model

1 Introduction
Huawei Cloud’s datacenter network (DCN) hosts more than𝑂 (106)
servers and 𝑂 (105) switches across 17 regions and 63 availability
zones worldwide. Each month, the system generates over 20,000
incident tickets, posing a significant threat to cloud service relia-
bility [3–5]. At such a large scale, effective and efficient incident
management becomes more and more essential. Nowadays, most
cloud service providers embrace process automation [6, 22, 40, 42],
abstracting troubleshooting into workflows for different incidents,

which follow a structured sequence of core steps. The primary
customer for workflows consists of on-call engineers (OCEs) and
AI executors (Executors). (1) For OCEs, workflows offer step-by-
step guidance, including operations, commands, and data queries,
thereby reducing expertise demands and boosting efficiency. Ad-
ditionally, as standardized carriers of expertise, workflows facili-
tate knowledge sharing. When encountering novel incidents, past
workflows of similar cases could serve as valuable references. (2)
Moreover, Huawei Cloud engineers have transformed common
workflows into executable scripts, enabling automated incident
management and reducing the excessive burden on OCEs. Moving
forward, Executor, an AI agent equipped with tool invocation and
result analysis capabilities, is expected to streamline this process by
directly interpreting workflows, eliminating the need for manual
script conversion [42].

Traditionally, workflows are manually crafted, demanding sig-
nificant effort and deep expertise. This resource-consuming and
knowledge-intensive process struggles to keep pace with the grow-
ing number and complexity of incident scenarios, hindering large-
scale development and deployment of AI executors. Recent ad-
vancements in large language models (LLMs) demonstrate strong
potential in understanding natural language and handling com-
plex tasks across various domains [32, 44, 56], paving the way for
automatic high-quality workflow generation.

FlowXpertNaive LLM

Process Step
A[Incident: Low optical power] --> B
[Clean the optical module interface]

Decision Step
B --> C[Check if the optical power has
returned to normal?]

Process Step
C -- No --> D[Repair or contact support]

Terminal Step
C -- Yes --> E[Complete]

A Troubleshooting Workflow

Skill Sets

Application Capability

Domain Knowledge TO

OCEs

AI Executors

&

Figure 1: From naive LLM to workflow generator

As depicted in Fig. 1, for the transformation of naive LLMs into
high-quality workflow generators, both domain knowledge and
application capabilities are indispensable [18, 21, 27, 29, 53]. (1)
Support of domain knowledge. It ensures the knowledge used
in task-solving comes not from out-of-domain corpora but rather
from expertise accumulated within the domain. To prevent halluci-
nations and noise, comprehensive and precise knowledge must be

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

KDD ’25, August 3-7, 2025, Toronto, Canada B. Shi, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

provided, typically in three forms. The first is action space, where
application programming interfaces (APIs) define the executable
operations within a given domain [6, 16, 54]. These APIs, developed
and tested by experts, exhibit high accuracy and reliability before
being made available to LLMs. The other two forms involve vector-
based [25] and graph-based [14] retrieval of relevant documents.
Vector indexing enables efficient semantic matching across large-
scale texts, ensuring broad coverage of relevant information. Graph
indexing captures complex relationships, particularly upstream and
downstream dependencies between documents, thereby enhanc-
ing retrieval depth. (2) Alignment of application capability. It
guides LLMs to faithfully follow and fully explore domain knowl-
edge, unlocking their workflow orchestration capability. Supervised
fine-tuning (SFT) is a common approach [16]. It primarily relies on
language modeling fine-tuning like next-token or mask prediction
yet often lacks targeted optimization for workflow orchestration.
In contrast, reinforcement learning (RL) incorporates a feedback
mechanism to directly enhance task performance, allowing the
model to iteratively refine and improve its knowledge application
[26, 45]. Moreover, some techniques [24, 45] utilize AI as a feedback
source in RL, further reducing the need for human intervention.

When equipped with domain knowledge support and aligned
knowledge application capability, LLMs specialize in workflow
orchestration. However, in troubleshooting, three domain-specific
challenges still exist:

C1: Complexity of troubleshooting expertise. Generally, OCEs
document operation experiences like incident indicators, root causes,
mitigation steps, etc.However, defining APIs based on these records
to provide domain knowledge is suboptimal, as the process is labor-
intensive. Furthermore, the constrained scope of API-defined spaces
cannot fully capture the complexity and variability of troubleshoot-
ing expertise, which restricts LLMs from orchestrating only simple,
small-scale workflows [16, 52]. Vector indexing also struggles to in-
tegrate distant textual information, limiting the depth of knowledge
extraction [14]. Meanwhile, graph indexing faces granularity issues
of entities and relationships, which often overlook the granularity
required for troubleshooting [27, 51]. These limitations make it
challenging to precisely depict complex troubleshooting expertise.

C2: Compliance of workflow orchestrationwith domain require-
ments. In troubleshooting, an effective workflow should comprehen-
sively recall all key steps. Some redundancy or minor imperfections
are acceptable and easily adjustable. Additionally, workflows must
meet specific requirements such as readability and executability.
That is, they should avoid confusion for OCEs and Executors while
successfully guiding troubleshooting procedures.

C3: Reliability of AI feedback. RL with AI feedback is a common
approach to improving workflow generation quality [26, 45]. In
production environments, given concerns about resource cost and
data privacy, customized open-source models are typically adopted
as AI evaluators. However, static open-source LLMs have limited ca-
pability for providing feedback, especially in knowledge-intensive
troubleshooting, where they may even produce incorrect feedback.
None of the existing techniques [24, 26, 45] have accounted for this
when leveraging AI evaluators.

In this work, we propose FlowXpert, a framework for automated
orchestration of troubleshooting workflows. Specifically, FlowX-
pert consists of two modules: (1) Knowledge Base Construction. We

convert operation documents into vector and graph databases to
offer comprehensive and deep domain knowledge support (C1). The
graph base is structured around a core of incident-aware nodes.
Assisted by LLMs, the construction process includes incident ex-
traction, node filling, merging, and refinement. (2) Multi-Agent
Coevolution. This module instantiates two LLM-driven agents, the
Planner and the Scorer, responsible for orchestrating and evaluating
troubleshooting workflows respectively. To align workflows with
domain requirements (C2), we fine-tune the Planner using Proxi-
mal Policy Optimization (PPO) [39], guided by multi-dimensional
scores from the Scorer. To improve AI feedback reliability (C3),
we synthesize preference data controlled by contextual richness,
then fine-tune the Scorer using Direct Preference Optimization
(DPO) [35]. The Planner and Scorer collaborate and coevolve to en-
sure precise application of domain knowledge, thereby producing
high-quality workflows.

Our contributions are summarized as follows:

• We propose FlowXpert, a novel framework that orchestrates
troubleshooting workflows by integrating domain knowledge
support and aligned knowledge application.

• For high-quality workflow generation, we (1) define a domain
ontology to guide the knowledge base construction, which con-
verts troubleshooting expertise into precise incident-aware nodes
(Sec. 4.1), (2) implement multi-agent coevolution through PPO
and DPO tuning (Sec. 4.3), (3) design a preference data synthe-
sis method controlled by contextual richness, improving the AI
evaluator’s discernment capability (Sec. 4.3).

• To evaluate models’ capability to orchestrate troubleshooting
workflows, we introduce STEPScore, a metric designed around
core characteristics of workflows, and conduct extensive bench-
mark tests based on real-world incidents from Huawei Cloud
datacenter switches (Sec. 5.1). The results demonstrate FlowX-
pert’s effectiveness (Sec. 5.2).

• During a 10-week deployment in the Huawei Cloud’s DCN, our
framework contributed a lot to both OCEs (Sec. 6.1) and Execu-
tors (Sec. 6.2), recorded through empirical data and case study.

2 Related Work
Support of domainknowledge.When adopting LLMs for domain-
specific tasks, comprehensive and in-depth knowledge support is
essential, typically encompassing three forms. (1) Action space. Re-
Act [52] reveals the integration of reasoning and acting to generate
task-solving trajectories. Building on this, ToolLLaMA [34] and T-
eval [10] demonstrate LLMs’ capability to employ tools for domain-
specific tasks. In production settings, the tools are virtualized as a set
of APIs, which are meticulously developed and rigorously tested to
equip LLMs with extensive domain knowledge. Several techniques
[6, 16, 54] enable LLMs to learn, select, and invoke APIs to generate
workflows and solve tasks. However, defining an API-based action
space to sketch expertise is labor-intensive and inherently limited
in scope. (2) Vector indexing. To provide comprehensive knowl-
edge, vector indexing enables retrieval based on semantic similarity.
Nevertheless, its linear structure hampers the establishment of long-
range associations between texts [23, 25, 41]. (3) Graph indexing.
In response, Graph RAG [14] constructs knowledge graphs by ex-
tracting entities and relationships, identifying communities, and

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FlowXpert: Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and Multi-Agent Coevolution KDD ’25, August 3-7, 2025, Toronto, Canada

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

establishing knowledge links with a global perspective. Further
techniques enhance knowledge depth by extending graphs through
multi-hop connections [9], brain-inspired modeling [19], and topic-
aware retrieval [30, 51]. However, manual graph construction lacks
scalability, while automated methods often miss the optimal gran-
ularity for troubleshooting, leading to either excessive noise or
information loss. To harmonize the strengths of both approaches,
emerging techniques combine vector and graph bases to provide
domain knowledge [27, 38]. Yet, granularity issues in graph bases
still hinder the precise sketch of troubleshooting expertise. This is
the work of FlowXpert’s Module 1.

Alignment of knowledge application. Aligning LLMs with
domain knowledge applications is crucial for tailoring them for
specialized tasks. StateFlow [49] integrates finite state machines
to explicitly define workflows, enabling better control over com-
plex problem-solving. Certain techniques [26, 54] leverage LLMs’
in-context learning by incorporating human feedback into prompts
to refine generated workflows. Although effective and straight-
forward, these techniques rely on human intervention, limiting
adaptability to diverse scenarios and restricting LLM adjustments.
In contrast, fine-tuning presents a more robust strategy for teaching
LLMs knowledge application patterns. SFT is commonly utilized to
align LLMs with desired outputs. For example, WorkflowLLM [16]
fine-tunes Llamawith supervised learning on a large set of synthetic
standard workflows. However, SFT focuses on language modeling
rather than task-specific objectives. As a result, SFT tends to mem-
orize training data, whereas RL generalizes in out-of-distribution
data by directly optimizing for task performance [11]. AutoFlow
[26] and PEER [45] utilize RL to refine workflow generators. Specif-
ically, AutoFlow employs PPO based on workflow execution feed-
back, while PEER synthesizes preference data using AI feedback
and then applies DPO fine-tuning. For the latter solution, extensive
works [17, 24, 43, 48] have shown that AI feedback can match or
even surpass human annotations while reducing manual workload.
However, in automated troubleshooting, little attention has been
given to how RL enhances knowledge application or whether AI
feedback aligns with domain-specific requirements. This challenge
is precisely what FlowXpert’s Module 2 aims to address.

3 Motivation
This section explains our motivation in two aspects: usage and ac-
quisition. The former emphasizes the practical utility and unrealized
potential of workflows in production, while the latter outlines the
process, costs, and principles for acquiring workflows.

3.1 Workflow Usage
As illustrated on the right side of Fig. 1, workflows comprise a se-
quence of steps for incident resolution. These steps are recorded in
natural language, encompassing instructions, commands, queries,
code snippets, etc. Logically, they can be classified into three types
[26]: (1) Process step. It defines the action to be executed. (2) Deci-
sion step. It introduces a branch based on specific conditions. (3)
Terminal step. It marks the completion. We commonly use Mermaid
[1], a Markdown-like syntax, to represent structured workflows.

Workflows play a critical role in production. Since 2021, Huawei
Cloud’s OCEs have developed workflows for 189 distinct incident

types across domains such as network, hardware, interface, and
system. Among these, 79 high-frequency incidents have been auto-
mated into scripts. When these incidents occur, OCEs require no
manual intervention; the program automatically generates execu-
tion results and analysis conclusions step by step. For incidents not
equipped with scripts, OCEs receive workflow recommendations
of similar cases. This provides a reference for every operation, re-
ducing reliance on expertise and boosting efficiency. Notably, with
the aid of workflows and scripts, the average incident resolution
time has dropped from 24 minutes to 9 minutes, a 62.5% reduction.
Despite more incidents from expanded business, labor costs remain
unchanged.

3.2 Workflow Acquisition
The current workflow acquisition process primarily depends on
manual effort. At Huawei Cloud, OCEs routinely review operation
documents from recent incident handling to derive workflows. De-
veloping a workflow for a single incident requires a team of seven
OCEs, including two experts, and takes approximately seven hours.
The process is as follows: (1) Summarization (two hours). Collecting
typical cases, analyzing root causes, and identifying key metrics. (2)
Formulation (two hours). Defining standard incident-handling steps
and assessing coverage and effectiveness. (3) Orchestration (three
hours). Designing and testing workflows. On one hand, this is a
resource-consuming and knowledge-intensive task. As the business
expands, manually updating and maintaining workflows struggle
to keep pace with the growing complexity and volume of incident
scenarios. On the other hand, a comprehensive survey on OCEs
reveals that factors like inconsistent standards, biased expertise,
unclear expressions, and redundant or omitted steps challenge the
quality of manually created workflows. These issues may mislead
OCEs or Executors, potentially causing errors and greater losses in
incident handling. In a word, OCEs call for an automated approach
to orchestrate workflows from operation documents.

Usually, a high-quality workflow adheres to the following prin-
ciples: fidelity to domain knowledge in operation documents, cov-
erage of key steps, and readability and executability for both OCEs
and Executors, etc. Despite these qualitative guidelines, there are
few dedicated metrics for quantifying workflow quality. Task suc-
cess rate is utilized as an indirect metric [6, 16, 26]. However, many
operations like physically cleaning fan dust, involve long execution
chains, making timely feedback impractical. Additionally, text gen-
eration metrics like BLEU [33] and ROUGE [28] fail to capture the
core characteristics of workflows, i.e., task-solving through multiple
key steps. The absence of a dedicated evaluation system hinders the
advancement of automated techniques for workflow generation.

INSIGHT:Workflows play a critical role in troubleshoot-
ing, which urgently needs to shift from manual creation
to automated orchestration. Additionally, a dedicated eval-
uation metric would be beneficial.

4 Methodology
As detailed in Fig. 2, the offline process of FlowXpert is dedicated
to transforming naive LLMs into high-quality workflow generators.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’25, August 3-7, 2025, Toronto, Canada B. Shi, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Knowledge Base Construction

Offline Process

Multi-Agent Coevolution

Final Workflows

5 Output

Incident OCEs
1 Start Enter a Query2 i : Online Generation: LLM-enhanced Module

3 Retrieve the
Knowledge Base

Vector Base

Graph Base

Relevant Chunks

Relevant Nodes

Operation
Documents

Knowledge
Base Builder

PPO Generate Scores as

A Reward for RL

Synthesize Workflow

Pairs with Preferences DPO

Sample and
Generate
4

ScorerPlanner

Figure 2: The framework of FlowXpert

Specifically, Module 1, Knowledge Base Construction, builds vector
and graph bases by parsing operation documents that cover typical
cases, incident indicators, root causes, and mitigation steps, thereby
providing troubleshooting expertise for workflow orchestration.
Module 2, Multi-Agent Coevolution, focuses on fine-tuning two LLM-
driven agents: Planner and Scorer, responsible for generating work-
flows and assessing their quality, respectively. First, PPO tuning,
guided by multi-dimensional AI feedback from Scorer, enhances
the Planner. Second, we synthesize workflow pairs with prefer-
ences controlled by the richness of domain knowledge. DPO is then
employed to refine the Scorer’s judgment capability. These fine-
tuning strategies collectively enhance the application of domain
knowledge from Module 1. For online generation, when handling
an incident ticket, FlowXpert first retrieves contextual knowledge
from knowledge bases according to OCEs’ queries. Then the Plan-
ner and Scorer engage in sampling and generation, automatically
producing workflows for incident management.

4.1 Knowledge Base Construction
This module systematically integrates contextual knowledge from
both vector and graph bases.

Construction. The vector indexing adheres to the standard
paradigm [25], where raw documents are segmented into chunks
due to the LLMs’ context size limitations. An encoder converts these
chunks into embeddings, which are then stored in a vector database.
The graph indexing is designed for this work. Specifically, it follows
four steps with the assistance of an LLM-enhanced knowledge
base builder: predefining incident-aware nodes, extracting incidents
from chunks, filling in nodes, and merging and refining them across
chunks, as shown in Fig. 3 and detailed below. All prompt templates
can be found in Fig. 7 of Appendix B.

Step 1: Predefining Incident-Aware Nodes. The key to constructing
a graph knowledge base (𝐾𝐺) lies in triplet extraction. However, ir-
relevant entities or relations with poor granularity introduce noise
or omit critical information. Instead, ontology offers a standardized
framework for knowledge representation through detailed concept

ChunksOperation
Documents

Incident Names

STEP
3

: Fill in
 N

o
d

es

STEP4: Merge and Refine Nodes

STEP2: Extract Incidents

A B C

C D

TODO
Incident Name: A

Failure Description: todo

Mitigation Steps: todo
Typical Cases: todo
Additional Note: todo

A

Nodes to be filled

MERGED

C

FILLED
Incident Name: A

Failure Description: Indicator light…

Mitigation Steps: Check the module…
Typical Cases: The root cause often…
Additional Note: Before checking…

C

FILLED

AFILLED

C

FILLED

DFilled incident-aware nodes

Figure 3: The process of graph base construction

definitions and relation modeling at a higher level, thereby mitigat-
ing granularity issues in knowledge management while facilitating
knowledge sharing, updating, and expansion [7, 12, 15, 31, 47].

Therefore, FlowXpert constrains triplet extraction within a pre-
defined troubleshooting ontology, ensuring a knowledge graph
that remains highly focused on the operation domain. Specifically,
we abstract the key elements of incident management into five
concepts: 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 = {𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡, 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐷𝑒𝑠𝑐𝑝𝑟𝑖𝑡𝑖𝑜𝑛, 𝑀𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛
𝑆𝑡𝑒𝑝𝑠, 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝐶𝑎𝑠𝑒𝑠, 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑜𝑡𝑒}. Among them, 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡
serves as the central concept, while the others characterize its
attributes from various perspectives. Accordingly, we define the on-
tology relations: 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = {(𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡, ℎ𝑎𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝐴𝑡𝑡𝑟𝑠)},
where 𝐴𝑡𝑡𝑟𝑠 = 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 \ {𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡}. Leveraging the concepts
and relationships, we restructure the triples in 𝐾𝐺 into multiple
Incident-AwareNodes:𝑛𝑜𝑑𝑒𝑖 = {(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑖 , ℎ𝑎𝑠 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑎𝑡𝑡𝑟𝑠𝑖 𝑗)}.
The 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑖 and𝑎𝑡𝑡𝑟𝑠𝑖 𝑗 denote the instances of 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 and𝐴𝑡𝑡𝑟𝑠 ,
respectively. Thus, 𝐾𝐺 is conceptualized as a set of incident-aware
nodes, each node resembling a blank form to be filled, with the
incident name as the primary key and the other fields as incident’s
attributes tailored to OCEs’ interests and concerns. Consequently,
triplet extraction in 𝐾𝐺 construction is elevated to the level of

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FlowXpert: Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and Multi-Agent Coevolution KDD ’25, August 3-7, 2025, Toronto, Canada

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

incident-aware node completion, providing proper granularity for
knowledge exploration in operation documents.

Step 2: Extracting Incidents from Chunks. Completing all contents
of a node at once remains challenging. So we start with the incident
name acquisition. Given the context length limitation of LLMs, we
split the raw document into 𝐾 chunks and instruct LLMs to extract
all incident instances 𝑎 (𝑘)

𝑖
, i.e., incident names, for each chunk 𝑘 .

Step 3: Filling in Incident-Aware Nodes.With determined incident
names, this step identifies the remaining attributes of the nodes like
filling in forms. Specifically, LLMs extract other attributes from the
chunk in a few-shot setting, i.e., 𝑎𝑡𝑡𝑟𝑠 (𝑘)

𝑖 𝑗
associated with 𝑎 (𝑘)

𝑖
. No-

tably, chunking may disperse the information of the same incident
across multiple chunks. To mitigate the risk of missing or mismatch-
ing attributes due to absent incident instances, we fill the nodes
with the incidents extracted from the current and the most recent
previous chunk. The final node set is 𝑆 (𝑘)={𝑛𝑜𝑑𝑒 (𝑘)1 ,. . . ,𝑛𝑜𝑑𝑒

(𝑘)
𝑛 } ,

where 𝑛 denotes the node number extracted from chunk 𝑘 .
Step 4: Merging and Refining Nodes across Chunks. In Step 3, incor-

porating incidents from the previous chunk mitigates information
loss but leads to notable node redundancy. To address this, we
merge and refine nodes of the same incident type. Utilizing the
strong semantic capability of LLMs, this step merges, restructures,
and refines node content. The final output is a knowledge graph
consisting of incident nodes, i.e., 𝐾𝐺 = {𝑛𝑜𝑑𝑒𝑖 | 𝑖 = 1, ..., 𝑁 }, where
𝑁 denotes the number of all incident types. Each node corresponds
to an incident type, consolidating all relevant information from the
source documents into four attributes: failure descriptions, mitiga-
tion steps, typical cases, and additional notes.

Retrieval.When an incident is triggered online, a query 𝑄 (𝑇)

is generated, typically including the incident name and description.
The semantic similarity is then calculated between 𝑄 (𝑇) and the
vector indices of each chunk, as well as the encoded incident name
of each node. Relevant domain knowledge is ranked by similarity
scores, i.e.,𝐶 (𝑇)={𝑐ℎ𝑢𝑛𝑘𝑠 (𝑇)

𝑡𝑜𝑝𝐾
,𝑛𝑜𝑑𝑒𝑠

(𝑇)
𝑡𝑜𝑝𝑁

}, where 𝑐ℎ𝑢𝑛𝑘𝑠 (𝑇)
𝑡𝑜𝑝𝐾

and

𝑛𝑜𝑑𝑒𝑠
(𝑇)
𝑡𝑜𝑝𝑁

represent the 𝑡𝑜𝑝𝐾 and 𝑡𝑜𝑝𝑁 most relevant chunks and
nodes in natural language, respectively.

4.2 Agent Roles and Their Collaboration
We employ LLM-driven agents to simulate the workflow generator
and evaluator. Each agent specializes in a single task, collaborating
to drive high-quality workflow orchestration. All prompt templates
can be found in Fig. 8 of Appendix B.

Planner and Scorer. (1) The Planner agent orchestrates work-
flows using retrieved knowledge from the previous module,𝑊 (𝑇) =
𝑃𝑙𝑎𝑛𝑛𝑒𝑟 (𝑄 (𝑇) ,𝐶 (𝑇)). (2) The Scorer agent evaluates how well the
generated workflows align with domain requirements. It assigns
multidimensional scores, covering Relevance (consistency with con-
textual knowledge), Coverage (completeness of necessary steps),
Accuracy (correctness of steps), Coherence (logical flow), and Con-
ciseness (clarity, brevity, and ease of execution). The overall work-
flow quality is quantified by averaging these five scores, 𝑆 (𝑇) =

𝑆𝑐𝑜𝑟𝑒𝑟 (𝑄 (𝑇) ,𝐶 (𝑇) ,𝑊 (𝑇)). The score 𝑆 (𝑇) is utilized for both offline
fine-tuning and online generation.

Best-of-N Sampling. During online generation, the Planner
orchestrates 𝑁 workflows𝑊 (𝑇) for a given query 𝑄 (𝑇) , selecting

Contexts

Contexts of Varying Richness Workflow Pairs

Workflows

PlannerT ScorerT

Accepted Workflows

Rejected Workflows

Preference Data

Workflows and Scores

PPO training

PlannerT

PlannerT+1

DPO training

ScorerT

ScorerT+1

Figure 4: One iteration of multi-agent coevolution

the best one based on the scores 𝑆 (𝑇) from the Scorer. This setup
simply and directly scales inference, enabling broad exploration by
the Planner while ensuring quality by the Scorer.

4.3 Multi-Agent Coevolution
Planner and Scorer are not born experts but evolve through itera-
tive fine-tuning. This refinement becomes especially critical when
resource constraints and data privacy concerns drive the need for
open-source, lightweight LLMs. Next, we outline an iteration of the
coevolution process, as depicted in Fig. 4.

PPO for Planner. Inspired by [17, 24, 43, 48], AI feedback can
achieve comparable performance to human feedback in reinforce-
ment learning, significantly reducing human effort. FlowXpert em-
ploys PPO tuning to enhance the Planner’s workflow orchestration,
guided by multidimensional domain-specific feedback from the
Scorer. The main objective is as follows:

𝐿𝐶𝐿𝐼𝑃 = E𝑡
[
min

(
𝑟𝑡 (𝜃)𝐴𝑡 , clip (𝑟𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡

)]
𝐴𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + · · · + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1
𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)

(1)

where the term 𝑟𝑡 (𝜃) =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
𝜋𝜃old (𝑎𝑡 |𝑠𝑡)

represents the policy ratio,
indicating the likelihood ratio between the current and previous
iteration Planner in generating each 𝑡𝑜𝑘𝑒𝑛𝑡 during the production
of workflow𝑊 (𝑇) based on the prompt; 𝐴𝑡 is the advantage esti-
mation, derived from the immediate reward 𝑟𝑡 and the state-value
function 𝑉 (𝑠𝑡); The sentence-level score 𝑆 (𝑇) from the Scorer is
assigned as the immediate reward for the last token, while the KL
divergence penalty between new and old policies adjusts the imme-
diate rewards for other tokens; The clip function and 𝜖 constrain
policy update magnitudes to ensure training stability.

DPO for Scorer. Given the importance of AI feedback reliabil-
ity, FlowXpert strengthens the Scorer’s workflow evaluation by
combining data synthesis and DPO tuning.

Step 1: Synthesizing Workflow Pairs with Preferences Controlled by
Knowledge Richness. In practice, identifying and correcting a small
number of redundant steps is relatively straightforward, while
OCEs prioritize comprehensive coverage of key steps. We gener-
ally consider the workflow quality to be positively correlated with
key steps, determined by the richness of contextual knowledge.
Therefore, for a query𝑄 (𝑇) , we provide the Planner with three lev-
els of contexts: complete and correctly ordered recommendations,
complete but reversed ordered recommendations, and no context.
The three levels correspond to the generation of workflows with
varying quality. By pairing them, we obtain workflow pairs with
preferences: P = {(𝑊 (𝑇)

𝑔 , 𝑊
(𝑇)
𝑓

), (𝑊 (𝑇)
𝑔 , 𝑊

(𝑇)
𝑝), (𝑊 (𝑇)

𝑓
, 𝑊

(𝑇)
𝑝)}.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

KDD ’25, August 3-7, 2025, Toronto, Canada B. Shi, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

The subscripts 𝑔, 𝑓 , and 𝑝 denote quality levels: good, fair, and poor,
respectively. Additionally, we employ the Scorer to validate their
quality, discarding any pairs misaligned with high or low scores.

Step 2: DPO Tuning. Based on the synthesized preference data
D = {(𝑋,𝑊𝑎𝑐𝑐 , 𝑊𝑟𝑒 𝑗) | (𝑊𝑎𝑐𝑐 , 𝑊𝑟𝑒 𝑗) ∈ P}, we perform DPO tun-
ing. 𝑋 is the prompt template integrating the query and normal
contextual knowledge.𝑊𝑎𝑐𝑐 and𝑊𝑟𝑒 𝑗 denote the higher-quality
and lower-quality workflows, respectively, within each pair of P.
The loss function is as follows:

𝐿𝐷𝑃𝑂 (𝜋𝜃 ;𝜋𝑟𝑒 𝑓) = −E(𝑋𝑇 ,𝑊𝑎𝑐𝑐 ,𝑊𝑟𝑒 𝑗)∼𝐷[
log𝜎

(
𝛽 log

𝜋𝜃 (𝑊𝑎𝑐𝑐 | 𝑋)
𝜋ref (𝑊𝑎𝑐𝑐 | 𝑋) − 𝛽 log

𝜋𝜃 (𝑊𝑟𝑒 𝑗 | 𝑋)
𝜋ref (𝑊𝑟𝑒 𝑗 | 𝑋)

)] (2)

where 𝜋𝜃 and 𝜋𝑟𝑒 𝑓 denote the Scorer of the current and previous it-
eration, respectively; the scaling factor 𝛽 measures errors in ranking
results and accounts for the KL constraint.

Planner and Scorer undergo iterative tuning via PPO and DPO,
initialized from seed LLMs. The process relies solely on queries from
the training set, without the need for standard workflows. Through
multiple rounds of coevolution, Planner’s generation quality and
Scorer’s feedback effectiveness progressively improve together.

5 Experiment
In this section, we address the following research questions:
RQ1: How to evaluate the workflow orchestration capability in the
operation domain?
RQ2: How well does FlowXpert perform?
RQ3: Does each component contribute to FlowXpert?

5.1 RQ1: Evaluation System
Dataset: OpsFlowBench. To address the absence of task-specific
benchmarks for troubleshooting workflow planning, we construct
OpsFlowBench, a dataset derived from Huawei Cloud datacenter
switch operation documents. These documents encapsulate domain
expertise, detailing real-world incident descriptions, indicators, root
causes, and mitigation procedures. The dataset comprises 252 user
queries from 4 scenarios (hardware, interface, network, top) span-
ning 56 major incident types. Each query is paired with a standard
troubleshooting workflow, 𝑐𝑎𝑠𝑒𝑖 = (𝑄𝑖 ,𝑊𝑖). The distribution of
cases across four scenarios is 83, 56, 31, and 82, respectively. The
above construction follows a multi-stage process: initial workflow
generation via GPT-4o, followed by manual refinement and valida-
tion conducted by a team of three graduate researchers specializing
in Artificial Intelligence for IT Operations (AIOps) and experienced
OCEs at Huawei Cloud.

Metric: STEPScore. Common text generation metrics such as
BLEU [33] and ROUGE [28] are often inadequate for assessing
workflow quality, as they fail to capture the structured nature of
workflows, which consist of a sequence of core steps. Inspired by
BERTScore [55], we propose STEPScore as a specialized evaluation
metric. Specifically, both the generated and reference workflows are
parsed into key step sets, 𝑆𝑔 and 𝑆𝑟 , respectively. (1) For each step
𝑠𝑖 in 𝑆𝑔 , we compute its maximum cosine similarity with all steps
in 𝑆𝑟 , denoted as 𝑝𝑖 . The average of 𝑝𝑖 defines the workflow’s preci-
sion, indicating how closely the generated steps match the standard
steps. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 1

|𝑆𝑔 |
∑
𝑠𝑖 ∈𝑆𝑔max𝑠 𝑗 ∈𝑆𝑟 cos(𝐸 (𝑠𝑖),𝐸 (𝑠 𝑗)). (2) For each

step 𝑠 𝑗 in 𝑆𝑟 , we compute its maximum cosine similarity with all
steps in 𝑆𝑔 , denoted as 𝑝 𝑗 . The average of 𝑝 𝑗 defines the workflow’s
recall, indicating how well the standard steps are retrieved in the
generated steps. 𝑅𝑒𝑐𝑎𝑙𝑙= 1

|𝑆𝑟 |
∑
𝑠 𝑗 ∈𝑆𝑟max𝑠𝑖 ∈𝑆𝑔cos(𝐸 (𝑠𝑖),𝐸 (𝑠 𝑗)). The

𝐹1 score is the harmonic mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 . Notably,
execution-related metrics like pass rate are excluded in benchmark
tests, as certain operations (e.g., physically cleaning fan dust) can-
not be timely assessed in offline settings. Instead, such metrics as
acceptance rate are applied in online deployment (Sec. 6.1).

Implementation details, including software environment, hard-
ware configurations, training procedures, dataset split, and hyper-
parameters, are provided in Appendix A.

5.2 RQ2: Overall Performance
We evaluate FlowXpert through three comparisons:

• Expertise Sources. We examine three knowledge retrieval meth-
ods: zero-shot, VectorRAG [25], and GraphRAG [14]. The gener-
ation module is the same as FlowXpert but without fine-tuning.

• Tuning Approaches. We compare different fine-tuning strate-
gies, including supervised fine-tuning (SFT) and reinforcement
learning with GPT-4o feedback (RL_GPT4o). Additionally, CoT
[46] serves as a baseline without fine-tuning. All methods lever-
age FlowXpert’s full knowledge base.

• Seed LLMs. Given the trade-off between cost and Chinese com-
prehension, we experiment on three LLMs: Qwen-2.5-7B-Instruct
[50], Llama-3.1-8B-Instruct [13], InternLM-2.5-7B-Chat [8].

Tab. 1 presents the performance of FlowXpert and baselines across
four troubleshooting scenarios on OpsFlowBench. The results un-
derscore FlowXpert’s superiority, attributed to its comprehensive
and precise domain knowledge and its alignment with practical
application requirements. (1) Effectiveness of Expertise Sources.
The zero-shot approach heavily depends on LLMs’ pretraining
corpus, which proves inadequate for troubleshooting and leads
to extremely low recall. Although precision is not so poor due to
semantically relevant steps generated by LLMs, it often fails to
reconstruct complete workflows. Among retrieval-based methods,
VectorRAG prioritizes breadth, while GraphRAG emphasizes depth,
yet neither fully capitalizes on both advantages. By integrating
these knowledge bases and structuring them through a domain on-
tology, FlowXpert achieves a balance between knowledge breadth
and precision. While broader knowledge introduces minor noise,
slightly reducing precision, FlowXpert significantly improves recall
by retrieving a more complete set of core steps, which OCEs priori-
tize in practice. (2) Impact of Tuning Approaches. CoT facilitates
the knowledge application in a straightforward manner but remains
limited and unstable. SFT enhances performance through language
modeling on high-quality datasets, neglecting domain specificity.
RL_GPT4o incorporates advanced model’s feedback to refine work-
flow generation, while its unreliability may lead to adverse effects.
In contrast, FlowXpert utilizes synthetic data to drive multi-agent
coevolution, achieving performance comparable to or even surpass-
ing that of SFT and RL_GPT4o. (3) Generalizability Across Seed
LLMs. The results of different seed LLMs demonstrate that FlowX-
pert exhibits a degree of robustness and generalizability, suggesting
its potential applicability across diverse model architectures.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FlowXpert: Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and Multi-Agent Coevolution KDD ’25, August 3-7, 2025, Toronto, Canada

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Overall performance across different scenarios on OpsFlowBench evaluated by STEPScore

Seed LLM Method
STEPScore in Different Scenarios (%)

Hardware Interface Network TOP Average
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Qwen-2.5-7B-Instruct

zero-shot 76.4 72.3 73.7 70.1 67.2 68.0 75.6 69.5 71.9 66.4 60.0 62.5 71.6 66.8 68.5
w/ VectorRAG 78.1 75.3 76.2 68.6 69.9 68.8 74.5 75.6 74.6 67.9 68.4 67.9 72.2 71.9 71.7
w/ GraphRAG 73.8 77.0 74.9 70.1 70.8 70.1 65.3 65.8 64.9 65.8 67.9 66.3 69.3 71.2 69.8
w/ CoT 76.6 76.7 76.4 71.7 73.2 72.1 68.7 73.1 70.5 64.9 67.4 65.8 70.7 72.5 71.2
w/ SFT 67.5 70.5 68.5 65.7 70.5 67.5 63.2 68.6 65.3 61.6 66.2 63.3 64.6 68.8 66.2
w/ RL_GPT4o 76.1 76.6 76.0 69.7 72.2 70.5 69.0 70.0 69.1 67.3 70.0 68.2 70.9 72.6 71.3
FlowXpert (0th iteration) 74.8 78.1 76.0 70.2 71.7 70.7 70.0 73.0 71.0 63.8 66.0 64.5 69.6 72.1 70.4
FlowXpert (1st iteration) 77.3 78.2 77.4 68.4 71.7 69.6 68.4 74.5 70.9 66.6 70.4 68.0 70.7 73.8 71.8
FlowXpert (2nd iteration) 77.2 78.3 77.5 71.0 73.3 71.7 70.7 73.0 71.4 67.6 67.0 66.7 71.9 72.9 71.9

Llama-3.1-8B-Instruct

zero-shot 65.8 62.5 63.6 49.7 45.6 47.3 71.0 65.6 67.2 56.4 49.1 51.9 59.8 54.8 56.6
w/ VectorRAG 75.2 74.7 74.6 70.6 67.8 68.6 69.5 70.8 69.7 63.9 63.5 63.2 69.8 69.0 69.0
w/ GraphRAG 71.0 74.1 72.1 67.6 70.2 68.6 64.0 68.0 65.5 64.6 66.7 65.3 67.3 70.1 68.2
w/ CoT 78.2 73.4 75.4 70.2 67.0 68.2 72.4 74.8 73.1 66.0 64.8 64.8 71.7 69.3 70.0
w/ SFT 79.6 72.7 75.3 71.4 66.1 68.2 70.7 62.3 65.1 69.0 61.5 64.6 73.2 66.3 69.0
w/ RL_GPT4o 77.8 72.8 74.7 71.0 66.4 68.1 69.9 72.5 70.6 66.0 63.3 64.2 71.4 68.2 69.3
FlowXpert (0th iteration) 76.7 75.6 75.7 71.0 69.1 69.5 70.6 71.5 70.6 65.7 64.2 64.4 71.1 69.9 70.0
FlowXpert (1st iteration) 77.0 72.8 74.4 69.7 68.2 68.6 71.4 71.9 71.1 65.5 63.9 64.1 70.9 68.8 69.3
FlowXpert (2nd iteration) 74.8 71.9 72.3 70.7 66.5 68.1 69.8 70.5 69.7 62.4 59.2 60.3 69.2 66.4 67.3

InternLM-2.5-7B-Chat

zero-shot 74.0 72.4 72.4 69.3 67.9 67.9 71.9 65.6 67.3 67.2 59.3 62.5 70.5 66.3 67.5
w/ VectorRAG 76.6 72.7 74.0 69.3 66.3 67.1 77.2 72.2 74.0 66.5 61.5 63.3 71.8 67.5 69.0
w/ GraphRAG 71.4 75.6 72.7 71.4 69.8 69.9 70.8 66.8 67.9 64.9 64.8 64.5 69.2 69.7 68.8
w/ CoT 75.0 73.3 73.5 71.9 67.9 69.2 70.6 73.5 71.3 65.3 60.7 61.7 70.6 68.0 68.4
w/ SFT 82.0 76.2 78.5 70.7 68.0 68.9 71.6 71.6 71.1 72.2 65.5 68.3 75.0 70.3 72.1
w/ RL_GPT4o 75.2 74.0 74.0 69.3 71.2 69.9 66.9 69.3 67.7 66.5 67.5 66.5 70.0 70.6 69.9
FlowXpert (0th iteration) 72.5 75.9 73.5 66.7 71.7 68.8 66.3 72.0 68.6 64.3 65.5 64.4 67.8 71.1 68.9
FlowXpert (1st iteration) 73.2 75.8 73.8 69.8 71.4 70.3 67.1 70.8 68.3 64.2 68.4 65.8 68.7 71.8 69.7
FlowXpert (2nd iteration) 72.3 74.8 72.8 68.2 70.4 68.9 70.0 72.0 70.1 65.7 69.3 66.8 68.9 71.7 69.6

5.3 RQ3: Ablation Study
To validate the contribution of FlowXpert’s core components, we
conduct an ablation study under different conditions: A1: without
knowledge base, A2: without graph base, A3: without vector base;
B1: only fine-tune Planner, B2: only fine-tune Scorer. The results,
as shown in Tab. 2, reveal two key findings: (1) Importance of a
Comprehensive Knowledge Base (A1, A2, A3). Removing cer-
tain knowledge sources reduces recall and workflow completeness.
Although it may enhance precision by filtering out noise, OCEs
prioritize full retrieval of core steps. Thus, optimizing for overall
F1 score is more effective than solely maximizing precision. (2) Ef-
fectiveness of Coevolution (B1, B2). Independently fine-tuning
either Planner or Scorer yields improvements over FlowXpert’s
initial iteration. However, this approach constrains further perfor-
mance gains that could be brought by coevolutionary learning.

6 FlowXpert in Production
This section elaborates on how FlowXpert functions in a live produc-
tion environment. We evaluate the quality of generated workflows
through OCEs’ usage in daily incident management (Sec. 6.1). More-
over, we perform a case study to further demonstrate the potential
of AI Executors equipped with workflows for autonomous incident
management (Sec. 6.2).

6.1 Online Deployment: For OCEs
Huawei Cloud’s datacenter network (DCN) spans 17 regions and
63 availability zones, hosting 𝑂 (106) servers and 𝑂 (105) switches,
and generating approximately 20,000 incidents monthly. To opti-
mize OCEs’ incident handling, these incidents are aggregated into a
management system, Alarmagnify, where FlowXpert is integrated.

Table 2: The evaluation results of ablation study

Seed LLM Method Average STEPScore (%)
Precision Recall F1

Qwen2.5-7B-Instruct

A1: w/o Knowledge Base 71.6 66.8 68.5
A2: w/o Graph Base 72.2 71.9 71.7
A3: w/o Vector Base 71.4 71.9 71.2
B1: w/o DPO fine-tuning 70.3 72.9 71.2
B2: w/o PPO fine-tuning 70.0 72.5 70.8
FlowXpert (0th iteration) 69.6 72.1 70.4
FlowXpert (1st iteration) 70.7 73.8 71.8
FlowXpert (2nd iteration) 71.9 72.9 71.9

The system operates on a high-performance Linux server equipped
with an Intel(R) Xeon(R) Gold 6140 2.30GHz CPU and eight NVIDIA
V100 GPUs, each with 32GB VRAM. Leveraging operation docu-
ments and 189 common incident queries from the DCN team, we
perform a 2.2-hour knowledge base construction followed by a 15.1-
hour coevolution, transforming naive LLMs (Qwen2.5-7B-Instruct)
into specialized Planner and Scorer. For each ticket, FlowXpert gen-
erates a tailored troubleshooting workflow based on incident name
and description, which OCEs can then use for further analysis.

Effectiveness. In the production environment, FlowXpert gen-
erates workflows for 189 common incident types. We calculate the
STEPScore using manually curated workflows, achieving precision,
recall, and F1 scores of 63.2, 78.4, and 69.6 respectively. These met-
rics demonstrate FlowXpert’s capability to produce high-quality
workflows. Additionally, OCEs use the generated workflows for
troubleshooting analysis. A workflow is deemed acceptable by
OCEs if it closely aligns with the standard incident-handling pro-
cess, in quantitative terms, it recalls at least 75% of core steps. From

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

KDD ’25, August 3-7, 2025, Toronto, Canada B. Shi, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 2 3 4 5 6 7 8 9 10
Week Index During Deployment

1

2

3

4

5

In
cid

en
t T

ick
et

 N
um

be
rs

 /
K

0.2

0.4

0.6

0.8

Ac
ce

pt
an

ce
 R

at
e

Accepted Workflows Unaccepted Workflows Acceptance Rate

Figure 5: The weekly acceptance rate of workflows during
the 10-week deployment

October 21 to December 29, 2024, we gathered data on 34,488 inci-
dent tickets, tracking the number of accepted workflows and the
weekly acceptance rates. As shown in Fig. 5, approximately 80%
of the workflows effectively guided OCEs step by step in incident
management. These findings suggest that FlowXpert is capable of
orchestrating high-quality workflows that are useful in real-world
deployment.

Efficiency. As described in Sec. 3.2, developing a workflow for a
single incident previously took a team of seven OCEs about seven
hours, involving tasks such as identifying key metrics, assessing
coverage and effectiveness, and designing and testing workflows.
Notably, the team includes two experts whose expertise is indispens-
able but difficult to quantify temporally. With FlowXpert deployed,
the time required to generate a workflow for each incident has
been reduced to an average of 22.1 seconds, significantly reducing
both labor and time costs. Intuitively, FlowXpert ’s minute-level
generation combined with rapid validation by a single OCE can, to
some extent, replicate the 7-hour effort of a 7-person OCE team,
including contributions from 2 experts.

6.2 Case Study: For AI Executors
Furthermore, we develop an AI Executor powered by Pangu-7B [37]
to handle five categories of high-frequency incidents. As shown in
Fig. 6, when an incident is triggered, FlowXpert organizes the trou-
bleshooting workflow. After simple verification and refinement by
OCEs, the Executor carries out each step sequentially: In "Process"
steps, the Executor conducts intent recognition, parameter extrac-
tion, and tool invocation; In "Decision" steps, it performs logical
reasoning and transition determination. The Executor integrates
intermediate responses and delivers analysis results. This case illus-
trates that, following the workflow from the deployed FlowXpert,
the autonomous Executor effectively carries out troubleshooting
analysis in the production environment. Moreover, as indicated in
Tab. 5 of Appendix C, the AI Executor enhances incident handling
efficiency while minimizing interruptions to OCEs.

6.3 Lessons Learned
Three main threats challenge the validity of FlowXpert in deploy-
ment, and we try to suggest possible solutions:
Novel IncidentHandling. For out-of-distribution incidents, FlowX-
pert retrieves relevant contexts from the knowledge base. Then

[Workflow] for <DELETE_DEFAULT_ROUTE>
[Step1] Query the incident details based on the incident ID.
[Step2] Query the device's current default route entries by instance ID and device IP.
[Step3] If default routes >1, proceed. Else, end. Disposal: report immediately.
[Step4] Query shutdown tickets in 12 hours by device IP.
[Step5] If shutdowns > 3, contact OCEs. Else, shut down the ticket directly.

FlowXpert

Query: How to handle the incident <DELETE_DEFAULT_ROUTE> ?

Executor

Function Call: Query the number of default route entries for a given device.

STEP2: Process

Response: [Default number of route entries, n_1].

Logical judgment: Determine based on the number of default route entries.

STEP3: Decision

Response: [Logic code] n_1 > 1 [Result] Perform step 4.

Function Call: Query the number of 12-hour shutdowns.

STEP4: Process

Response: [Number of shutdown tickets, n_2].

Logical judgment: Determine based on the number of shutdown tickets.
STEP5: Decision & Terminal

Response: [Logic code] n_2 > 3 [Disposal Suggestion] Contact OCEs for support.

Function Call: Query incident information.

STEP1: Process

Response: [Event] [Area] [Instance ID] [Device IP] [Interface ExitIf]…

(Due to the non-disclosure agreement, we replace the actual query result with [Event]…)

St
ep

-b
y-

st
ep

 e
xe

cu
ti

o
n

Figure 6: Autonomous AI Executor for incident handling

Planner orchestrates workflows by leveraging historical handling
of similar cases, emulating experts’ analogical reasoning. As for
entirely novel incidents with no prior experience, manual handling
followed by periodic updates to the knowledge base is a good choice,
which requires only the addition of new chunks and nodes.
Execution Constraints. API sets are inadequate to fully capture
troubleshooting expertise. Additionally, certain operations, such as
physically checking if a fan blade is stuck, are hard to execute and
assess in real time. Given these constraints, our workflow genera-
tion relies on step descriptions in natural language rather than fully
executable APIs, potentially affecting the real-world executability.
However, we validate FlowXpert’s effectiveness in guiding execu-
tion within the real-world production (Sec. 6.1 and Sec. 6.2).
Coevolution Optimization. The effectiveness of coevolution de-
pends on synthetic data quality. In Tab. 5.2, performance improves
with additional iterations for Qwen and InternLM, but declines for
Llama, which appears to have limited Chinese language compre-
hension. Therefore, we introduce consistency validation by Scorer.
Also, human intervention in refining the synthetic data could en-
hance quality but requires a trade-off between performance and
manual effort.

7 Conclusion
This work presents FlowXpert, an automated framework for trou-
bleshooting workflow orchestration. Initially, we build a knowledge
base incorporating vector and graph indexing, which leverages
incident-aware nodes to sketch expertise precisely. Subsequently,
reinforcement learning is applied to refine the workflow generator
and evaluator, enabling multi-agent coevolution. Benchmark tests
on the constructed OpsFlowBench, evaluated by the tailored STEP-
Score metric, demonstrate FlowXpert’s effectiveness. Additionally,
real-world deployment highlights its contributions to OCEs and AI
Executors. We believe that the concept of transforming naive LLMs
into domain experts, through knowledge support and application
enhancement, will benefit more areas beyond troubleshooting.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

FlowXpert: Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and Multi-Agent Coevolution KDD ’25, August 3-7, 2025, Toronto, Canada

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] 2014. Mermaid - Generation of diagrams like flowcharts or sequence diagrams

from text in a similar manner as markdown. https://mermaid-js.github.io
[2] 2021. sentence-transformers/all-MiniLM-L6-v2. https://huggingface.co/sentence-

transformers/all-MiniLM-L6-v2. Accessed: 2024-08.
[3] 2023. Alibaba Cloud Health Dashboard. https://status.aliyun.com/#/

historyEvent.
[4] 2023. Google Cloud Services Hit by Outage in Paris. https://thenewstack.io/

google-cloud-services-hit-by-outage-in-paris/.
[5] 2023. Microsoft cloud outage hits users around the world. https://edition.cnn.

com/2023/01/25/tech/microsoft-cloud-outage-worldwide-trnd/index.html.
[6] Kaikai An, Fangkai Yang, Junting Lu, Liqun Li, Zhixing Ren, Hao Huang, Lu

Wang, Pu Zhao, Yu Kang, Hua Ding, et al. 2024. Nissist: An incident mitigation
copilot based on troubleshooting guides. arXiv preprint arXiv:2402.17531 (2024).

[7] Kathrin Blagec, Adriano Barbosa-Silva, Simon Ott, and Matthias Samwald. 2022.
A curated, ontology-based, large-scale knowledge graph of artificial intelligence
tasks and benchmarks. Scientific Data 9, 1 (2022), 322.

[8] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun
Chen, Zehui Chen, Zhi Chen, Pei Chu, and et al. 2024. Internlm2 technical report.
arXiv preprint arXiv:2403.17297 (2024).

[9] Rong-Ching Chang and Jiawei Zhang. 2024. CommunityKG-RAG: Leveraging
Community Structures in Knowledge Graphs for Advanced Retrieval-Augmented
Generation in Fact-Checking. arXiv preprint arXiv:2408.08535 (2024).

[10] Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng,
Jingming Zhuo, Songyang Zhang, Dahua Lin, Kai Chen, et al. 2024. T-eval:
Evaluating the tool utilization capability of large language models step by step.
In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 9510–9529.

[11] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale
Schuurmans, Quoc V Le, Sergey Levine, and Yi Ma. 2025. SFT Memorizes, RL
Generalizes: A Comparative Study of Foundation Model Post-training. arXiv
preprint arXiv:2501.17161 (2025).

[12] R Du, H An, K Wang, and W Liu. 2024. A short review for ontology learning:
Stride to large language models trend. arXiv preprint arXiv:2404.14991 (2024).

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
and et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

[14] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, and Jonathan Larson. 2024. From local to global: A graph
rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130
(2024).

[15] Lisa Ehrlinger and Wolfram Wöß. 2016. Towards a definition of knowledge
graphs. SEMANTiCS (Posters, Demos, SuCCESS) 48, 1-4 (2016), 2.

[16] Shengda Fan, Xin Cong, Yuepeng Fu, Zhong Zhang, Shuyan Zhang, Yuanwei
Liu, Yesai Wu, Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2024. WorkflowLLM:
Enhancing Workflow Orchestration Capability of Large Language Models. arXiv
preprint arXiv:2411.05451 (2024).

[17] Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. 2024. GPTScore:
Evaluate as You Desire. In Proceedings of the 2024 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers). 6556–6576.

[18] Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal, Amir Feder, Roi Reichart,
and Jonathan Herzig. 2024. Does Fine-Tuning LLMs on New Knowledge Encour-
age Hallucinations? arXiv preprint arXiv:2405.05904 (2024).

[19] Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su.
2024. HippoRAG: Neurobiologically Inspired Long-Term Memory for Large
Language Models. arXiv preprint arXiv:2405.14831 (2024).

[20] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations.

[21] Quzhe Huang, Mingxu Tao, Chen Zhang, Zhenwei An, Cong Jiang, Zhibin Chen,
Zirui Wu, and Yansong Feng. 2023. Lawyer llama technical report. arXiv preprint
arXiv:2305.15062 (2023).

[22] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1410–1420.

[23] Zhouyu Jiang, Mengshu Sun, Lei Liang, and Zhiqiang Zhang. 2024. Retrieve,
summarize, plan: Advancing multi-hop question answering with an iterative
approach. arXiv preprint arXiv:2407.13101 (2024).

[24] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret,
Kellie Ren Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al.
2024. RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback
with AI Feedback. In Forty-first International Conference on Machine Learning.

[25] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[26] Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao
Wang, He Zhu, and Yongfeng Zhang. 2024. Autoflow: Automated workflow
generation for large language model agents. arXiv preprint arXiv:2407.12821
(2024).

[27] Lei Liang,Mengshu Sun, ZhengkeGui, Zhongshu Zhu, Zhouyu Jiang, Ling Zhong,
Yuan Qu, Peilong Zhao, Zhongpu Bo, Jin Yang, et al. 2024. Kag: Boosting llms
in professional domains via knowledge augmented generation. arXiv preprint
arXiv:2409.13731 (2024).

[28] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[29] Yougang Lyu, Lingyong Yan, Shuaiqiang Wang, Haibo Shi, Dawei Yin, Pengjie
Ren, Zhumin Chen, Maarten de Rijke, and Zhaochun Ren. 2024. KnowTuning:
Knowledge-aware Fine-tuning for Large Language Models. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing. 14535–
14556.

[30] Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, and Jian Guo. 2024.
Think-on-graph 2.0: Deep and interpretable large language model reasoning
with knowledge graph-guided retrieval. arXiv e-prints (2024), arXiv–2407.

[31] Nandana Mihindukulasooriya, Sanju Tiwari, Carlos F Enguix, and Kusum Lata.
2023. Text2kgbench: A benchmark for ontology-driven knowledge graph gener-
ation from text. In International Semantic Web Conference. Springer, 247–265.

[32] Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo
Fusi, Nicholas King, Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. 2023. Can
generalist foundation models outcompete special-purpose tuning? case study in
medicine. arXiv preprint arXiv:2311.16452 (2023).

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[34] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin,
Xin Cong, Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li, Zhiyuan Liu, and Maosong Sun.
2024. ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs. In The Twelfth International Conference on Learning Representations.

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neural Information Processing
Systems 36 (2024).

[36] N Reimers. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. arXiv preprint arXiv:1908.10084 (2019).

[37] Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao
Wang, Pengfei Li, Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al.
2023. Pangu-{\Sigma}: Towards trillion parameter language model with sparse
heterogeneous computing. arXiv preprint arXiv:2303.10845 (2023).

[38] Bhaskarjit Sarmah, Dhagash Mehta, Benika Hall, Rohan Rao, Sunil Patel, and
Stefano Pasquali. 2024. Hybridrag: Integrating knowledge graphs and vector re-
trieval augmented generation for efficient information extraction. In Proceedings
of the 5th ACM International Conference on AI in Finance. 608–616.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[40] Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun Radhakrishna,
and Anurag Gupta. 2022. Autotsg: learning and synthesis for incident trou-
bleshooting. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1477–
1488.

[41] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.
2022. Interleaving retrieval with chain-of-thought reasoning for knowledge-
intensive multi-step questions. arXiv preprint arXiv:2212.10509 (2022).

[42] Haopei Wang, Anubhavnidhi Abhashkumar, Changyu Lin, Tianrong Zhang,
Xiaoming Gu, Ning Ma, Chang Wu, Songlin Liu, Wei Zhou, Yongbin Dong,
et al. 2024. {NetAssistant}: Dialogue Based Network Diagnosis in Data Cen-
ter Networks. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 2011–2024.

[43] Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-
Yu, Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li.
2024. Self-taught evaluators. arXiv preprint arXiv: 2408.02666 (2024).

[44] Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang,
Nebojsa Jojic, Eric Xing, and Zhiting Hu. 2024. PromptAgent: Strategic Planning
with Language Models Enables Expert-level Prompt Optimization. In The Twelfth
International Conference on Learning Representations.

[45] Yiying Wang, Xiaojing Li, Binzhu Wang, Yueyang Zhou, Yingru Lin, Han Ji,
Hong Chen, Jinshi Zhang, Fei Yu, Zewei Zhao, et al. 2024. PEER: Expertizing
Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods.
arXiv preprint arXiv:2407.06985 (2024).

9

https://mermaid-js.github.io
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://status.aliyun.com/##/historyEvent
https://status.aliyun.com/##/historyEvent
https://thenewstack.io/google-cloud-services-hit-by-outage-in-paris/
https://thenewstack.io/google-cloud-services-hit-by-outage-in-paris/
https://edition.cnn.com/2023/01/25/tech/microsoft-cloud-outage-worldwide-trnd/index.html
https://edition.cnn.com/2023/01/25/tech/microsoft-cloud-outage-worldwide-trnd/index.html

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

KDD ’25, August 3-7, 2025, Toronto, Canada B. Shi, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[47] Alfred Ka Yiu Wong, Pradeep Ray, Nandan Parameswaran, and John Strassner.
2005. Ontology mapping for the interoperability problem in network manage-
ment. IEEE Journal on selected areas in Communications 23, 10 (2005), 2058–2068.

[48] Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao
Jiao, Jason Weston, and Sainbayar Sukhbaatar. 2024. Meta-rewarding language
models: Self-improving alignment with llm-as-a-meta-judge. arXiv preprint
arXiv:2407.19594 (2024).

[49] Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang, and Qingyun Wu. 2024.
StateFlow: Enhancing LLM Task-Solving through State-Driven Workflows. In
First Conference on Language Modeling.

[50] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, and et al. 2024. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115 (2024).

[51] Rui Yang, Boming Yang, Aosong Feng, Sixun Ouyang, Moritz Blum, Tianwei She,
Yuang Jiang, Freddy Lecue, Jinghui Lu, and Irene Li. 2024. Graphusion: A RAG
Framework for Knowledge Graph Construction with a Global Perspective. arXiv
preprint arXiv:2410.17600 (2024).

[52] Shunyu Yao, Jeffrey Zhao, Dian Yu, NanDu, Izhak Shafran, Karthik RNarasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. In The Eleventh International Conference on Learning Representations.

[53] Xunjian Yin, Baizhou Huang, and XiaojunWan. 2023. ALCUNA: Large Language
Models Meet New Knowledge. CoRR abs/2310.14820 (2023).

[54] Zhen Zeng, William Watson, Nicole Cho, Saba Rahimi, Shayleen Reynolds,
Tucker Balch, and Manuela Veloso. 2023. FlowMind: automatic workflow gener-
ation with LLMs. In Proceedings of the Fourth ACM International Conference on
AI in Finance. 73–81.

[55] Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav
Artzi. 2020. BERTScore: Evaluating Text Generation with BERT. In International
Conference on Learning Representations.

[56] Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion
Stoica, and Joseph E. Gonzalez. 2024. RAFT: Adapting LanguageModel to Domain
Specific RAG. In First Conference on Language Modeling.

[57] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi
Feng, and Yongqiang Ma. 2024. LlamaFactory: Unified Efficient Fine-Tuning
of 100+ Language Models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 3: System Demonstrations).
Association for Computational Linguistics, Bangkok, Thailand.

A Implementation Details
We implement FlowXpert with Pytorch 2.4.1, CUDA 12.1, transform-
ers 4.46.1, peft 0.12.0, trl 0.11.3, llamafactory 0.9.2 [57], neo4j 5.27.0,
and langchain 0.3.2. And we utilize a popular Sentence-BERT [36]
model, all-MiniLM-L6-v2 [2], as the embedding model for knowl-
edge base construction, retrieval, and similarity calculation, etc. The
benchmark tests are conducted on a high-performance Linux server
with two Intel Xeon Gold 5416S CPUs and eight NVIDIA A6000
GPUs, each with 48GB of VRAM.

Dataset Split. We gather 252 data pairs, (query, workflow),
across four distinct scenarios including Hardware, Interface, Net-
work, and Top. First, we sort the data pairs in each scenario accord-
ing to the workflow step count, to divide the data by task difficulty.
The top 75% of the data pairs are labeled as "Hard", while the re-
maining pairs are classified as "Easy". Next, we partition the dataset
for each difficulty level within each scenario. Through random sam-
pling, 60% of the data pairs are allocated to the training set, with
the remaining data pairs designated for the test set. The specific
partitioning results are presented in Tab. 3, where each number
represents the amount of data pairs in the dataset. Notably, the
training process of FlowXpert only needs to utilize the queries from
the training set, without the need for standard workflows.

Data Synthesis. In FlowXpert, we synthesize preference data for
Direct Preference Optimization (DPO) [35]. For one iteration of the
multi-agent coevolution, we generate three rounds of workflows

Table 3: Distribution of different scenarios

Hardware Interface Network Top All

Train 49 33 18 48 148
Test 34 23 13 34 104

for queries from the training set of OpsFlowBench. Each round
produces three workflows of varying quality, based on the given
context, which are then paired to create preference data. Finally,
we obtain 1332 preference data pairs (148 × 3 × 3). The pairs are
employed for DPO tuning after consistency validation by Scorer.

Hyperparameters. In practice, one iteration corresponds to
one epoch of PPO and DPO fine-tuning for the Planner and Scorer,
respectively. We show in Fig. 9 how the performance of FlowXpert
varies with the number of iterations. Compared to the initial gen-
eration, FlowXpert improves the performance across different sce-
narios through fine-tuning. As the number of iterations increases,
performance fluctuates but generally improves, indicating the con-
tribution of coevolution. However, excessive iterations may lead
to overfitting, causing performance degradation or slow conver-
gence. Therefore, we typically select three iterations. In addition,
we present the default value of main hyperparameters in Tab. 4.

Notably, we start the coevolution from seed LLMs rather than
SFT models for two reasons. First, the performance of SFT on trou-
bleshooting workflow generation is unstable as shown in Tab. 1.
Second, open-source instruction-tuned models [8, 13, 50] already
provide a strong initialization with a stable output format for work-
flow generation, which is typically a core goal of SFT stage [11].

Table 4: Descrptions of hyperparameters

Name Description Value

max_token Maximum number of tokens the LLM
can generate in the output sequence.

4096

temperature Controls the randomness of LLM’s
output

1

DPO.batch_size Batch size for DPO training. 4

PPO.batch_size Batch size for PPO training. 4

DPO.learning_rate Learning rate for DPO training. 5e-5

PPO.learning_rate Learning rate for PPO training. 8e-6

lora_alpha Scaling factor for rank decomposition
in LoRA [20].

16

lora_rank Rank of LoRA decomposition, defin-
ing the number of low-rank matrices.

8

lora_dropout Dropout rate for LoRA layers. 0.05

N Number of generated workflows per
query in the online stage (Best-of-N).

3

B Prompt Design
We illustrate the prompt templates for graph base construction and
multi-agent generation in Fig. 7 and Fig. 8, respectively.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

FlowXpert: Expertizing Troubleshooting Workflow Orchestration with Knowledge Base and Multi-Agent Coevolution KDD ’25, August 3-7, 2025, Toronto, Canada

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Prompt Template for Extracting Incidents

System Prompt

User Prompt

system role
You are a large language model skilled in extracting key information from documents.
Your task is to extract all possible incident_name entries from a document and provide a brief summary for
each incident_name. Each incident_name represents a specific event in the document.
Instructions
1. When the user provides document content, first search for and extract all potential incident_name entries.
2. An incident_name is typically a phrase from the original document, and certain incident_name entries are
preceded by the string “Incident Case:”.
3. For each incident_name, generate a brief summary (summarization) based on the document content.
4. Ensure the extracted incident_name and generated summarization are concise, clear, and accurately reflect
the information in the document.
5. If no incident_name is found in the document, return an empty list. Otherwise, return a list of tuples in the
format [(incident_name, summarization)].
Apply the above steps to process the document content provided by the user.

Refer to the following example to extract all incident_name entries (there may be none or multiple) from the
document. An incident_name is typically a phrase from the original document, and certain incident_name
entries are preceded by the string “Incident Case:”.
Each incident_name represents a specific event in the document and requires a brief summary.
You must not return any additional content or explanation; only the generated tuple list [(incident_name,
summarization)] should be returned.
Example 1
Document Content:
“Incident Case: Fan module indicator remains red or flashes red
Phenomenon Description
The fan module indicator remains red or flashes red.
Related Alarms and Logs
Cause Analysis:
• The fan module is not fully inserted into the fan slot.
• The fan blade is stuck by foreign objects or too dusty, causing blockage.
• The fan module itself is faulty.
Steps:
1.Check if the fan module is properly inserted. The fan module supports hot-plugging; try reinserting the fan
module.
2.Remove the fan module and check if the fan blade is stuck by foreign objects or too dusty.
• If the fan blade is stuck, carefully remove the foreign object.
• If the fan blade is too dusty, clean it with a brush.
3. Replace the fan module with a working one of the same model. If the issue disappears, the fan module is
faulty and needs replacement.
2 Incident Case: Loud fan noise
Incident Case: Loud fan noise”
Returned Output:
[
(“Fan module indicator remains red or flashes red”, “The fan module indicator remaining red or flashing red
may be caused by the fan module not being properly inserted, the fan blade being stuck by foreign objects or
too dusty, or the fan module itself being faulty.”),
(“Loud fan noise”, “”)
]
Please extract the incident_name entries and their corresponding summarization from the following
document:

Document Content: <DOC>

Prompt Template for Filling in Nodes

System Prompt

User Prompt

system role
You are a large language model specialized in completing tasks based on given prompts.
We use a Schema to formally define the Ontology of a specific domain while also providing a list of possible
incident_name entries from the document.
Your task is to generate JSON objects for all incident_name entries in the list based on the content of the
provided Document. These objects must match the predefined Schema and should be returned as a JSON
array.
Instructions
1. Accept the incident_name list provided by the user. For each incident_name, extract relevant details from
the provided Document.
2. Ensure you fully understand the JSON Schema and its structure, including required fields, data types, and
constraints. Fill in the extracted information according to the predefined Schema and ignore irrelevant details.
3. Return a JSON array of objects that correspond exactly to the provided incident_name entries. Do not
modify the incident_name.
4. All responses must primarily be in Chinese, except for proper nouns.

This is a fill-in-the-blank task. We use a Schema to formally define the Ontology of a specific domain.
Referring to the following example, for each incident_name in the given list, extract relevant content from
the Document and fill it in detail into JSON objects that match the predefined Schema.
If no content is extracted for a field, its value must be set to None. Do not use null or any other value.
If the provided incident_name list is empty or the Document contains additional potential incident_name
entries not in the list, supplement the incident_name and corresponding JSON objects based on your
understanding of the Document.
You must not return any additional content or explanations; only return the list of generated JSON objects.
Example

<Incident>:
["Power Outage"]
Document:
“In Community A, a major power outage occurred due to a sudden surge in electricity demand. The surge
caused circuit breakers to trip, as indicated by related alarms and records.
To resolve the issue, the main power source was restarted, the entire electrical system was inspected, and
faulty circuit breakers were replaced.
Such incidents are typically caused by extreme weather conditions and infrastructure issues.
Fortunately, backup generators were activated to maintain power continuity, and no reports of critical data
loss were made.”
[

{
"incident_name": "Power Outage",
"failure_desc": "A power outage caused by a sudden surge in electricity demand. Related alarms include

circuit breaker trip logs.",
"mitigation_steps": "Restarted the main power source, conducted a thorough inspection of the electrical

system, and replaced the faulty circuit breakers.",
"typical_cases": None,
"additional_info": "No reports of critical data loss; backup generators were activated."

}
]

Schema: <SCHEMA>
Incident: <INCIDENT_NAMES>
Document: <DOC>

Prompt Template for Merging and Refining Nodes

System Prompt

User Prompt

system role
You are a large language model specialized in text summarization.
Your task is to merge a list of dictionaries where each dictionary has the same keys and shares a common
primary key.
For each key, summarize the string values into a new, unified string value, ensuring no information is lost and
the resulting content is well-organized.
Instructions
1. Accept a list of dictionaries where each dictionary has the same keys and a common primary key.
2. For each key, summarize its corresponding string values.
3. Ensure that no information is omitted, and the generated content is logically structured. If there are
repeated contents, rephrase or restructure them.
4. If all dictionaries have an empty value for a specific key, the value for that key must be None. Do not use
null or any other placeholder value.
5. Only return the single merged and summarized dictionary, without any additional content or explanations.

This is a task to merge multiple dictionaries into one.
Referring to the example below, merge all dictionaries in the given list into a single dictionary by summarizing
the string values for the same keys.
Ensure that no information is lost and that the content is logically organized. If content is repeated, rephrase
or restructure it. If all dictionaries have an empty value for a specific key, the value for that key must be None.
Do not use null or any other placeholder value.
You must not return any additional content or explanations; only return the single merged and summarized
dictionary.
Example
<List>
[{

"incident_name": "Database Connection Failure",
"failure_desc": "Database connection timed out. Multiple connection attempts were unsuccessful.",
"mitigation_steps": "1. Check if the database service is running. 2. Verify the network connection. 3.

Check if the firewall settings are blocking the database port.",
"typical_cases": "Connection failure due to database service not running or network issues.",
"additional_info": "Might be related to a system update."

},
{

"incident_name": "Database Connection Failure",
“failure_desc”: …

}]
<Response>
{

"incident_name": "Database Connection Failure",
"failure_desc": "Database connection timed out. Multiple connection attempts were unsuccessful.

Attempted to connect to the database via the client, but access was denied.",
"mitigation_steps": "1.1. Check if the database service is running. 1.2. Verify the network connection. 1.3.

Check if the firewall settings are blocking the database port. 2.1. Check if user permissions are correct. 2.2.
Ensure the database server IP address has not been changed.",

"typical_cases": "Connection failure due to database service not running or network issues. Connection
failure caused by insufficient user permissions or incorrect IP address configuration.",

"additional_info": "Might be related to a system update."
}

List: <NODE LIST>

Figure 7: Prompt templates for graph base construction

Prompt Template for Planner Generation

System Prompt

User Prompt

system role
You are an intelligent assistant capable of generating workflows based on a given Context to answer user
Questions.
Instructions
1. Understand the two types of Contexts provided: vector retrieval context and graph retrieval context.
2. Each type of context and its relevance to the Question decreases line by line (lines are separated by \n).
Analyze the content of the contexts, filtering out less relevant and later information in both types of contexts.
3. Based on the filtered content from both contexts, generate a workflow using Mermaid syntax.
4. Only return the workflow in Mermaid syntax, enclosed with special symbols $$ at the beginning and end.

The Context has two sources: vector retrieval and graph retrieval.
When referencing the Context, the relevance of each type of Context to the Question decreases line by line
(lines are separated by \n). It may be necessary to filter out less relevant and later information from each
Context.
Using the provided Context and your inner knowledge, generate a workflow to answer the Question,
following the example below.
Example:
$$
graph TD
A[Start] --> B[Check fan working status
Execute the command display device]
B --> C{{Is the fan status showing any issues?}}
C -->|Yes| D[Ensure the fan is properly connected
Check if the fan blades are stuck or dusty]
C -->|No| E[Problem resolved]
D --> F{{Has the fan status returned to normal?}}
F -->|Yes| G[Problem resolved]
F -->|No| H[Upgrade the fan software
Execute the command upgrade fan slot-id]
H --> I[Check if the fan status has recovered]
I -->|Yes| G[Problem resolved]
I -->|No| J[Replace the fan module or contact technical support]
$$

Question: <QUERY>
Context_by_vector: <CONTEXT_BY_VECTOR>
Context_by_graph: <CONTEXT_BY_GRAPH>

Prompt Template for Scorer Generation

System Prompt

User Prompt

system role
You are a scorer capable of evaluating the workflow to solve a given Question, based on the provided
reference knowledge Context and the user’s Question.
You will use the following scoring criteria: Relevance, Coverage, Accuracy, Coherence, and Conciseness.
Each scoring criterion has a range from 1 to 5, with 1 being the lowest score and 5 being the highest score.

Based on the given reference knowledge Context and the user’s Question, score the workflow to solve the
Question.
The scoring criteria include five aspects:
1. Relevance: Whether the workflow is highly relevant to the given reference knowledge Context and reflects
the key points in the context, addressing the needs of the Question.
2. Coverage: Whether the workflow covers all necessary steps and conditions, ensuring the
comprehensiveness of the process.
3. Accuracy: Whether each step is accurate and effectively solves the problems or needs in the context.
4. Coherence: Whether the workflow is logically coherent, and the transitions between steps are natural and
reasonable.
5. Conciseness: Whether the workflow is clear, concise, and avoids unnecessary complexity or redundancy,
making it easy for the executor to understand and follow.

Question: <QUERY>
Context_by_vector: <CONTEXT_BY_VECTOR>
Context_by_graph: <CONTEXT_BY_GRAPH>
Workflow: <WORKFLOW>

Please score the above workflow.
Note! Only return a dictionary object in the format below. Do not add any content different from the format.
The format is as follows (X_i is an integer between 1 and 5, where 1 is the lowest score and 5 is the highest
score, and each X_i does not have to be the same):
$${{ “Relevance”: X_1, “Coverage”: X_2, “Accuracy”: X_3, “Coherence”: X_4, “Conciseness”: X_5 }}$$

Figure 8: Prompt templates for Planner and Scorer generation

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

KDD ’25, August 3-7, 2025, Toronto, Canada B. Shi, et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0 1 2 3 4 5

55

60

65

70

75

80

ST
EP

Sc
or

e
(%

)

Precision

0 1 2 3 4 5
Iteration

Recall

0 1 2 3 4 5

F1

Average Hardware Interface Network Top

Figure 9: The effectiveness of FlowXpert (seed LLM: Qwen-2.5-7B-Instruct) under different iterations

Table 5: Human Time vs. Executor Time

Incident Human Time(s) Executor Time(s)

BGP_STATE_CHANGE_ESTABLISHED_TO_IDLE 373.4 200.9

BGP_BACKWARD_TRANSITION_ACTIVE 602.2 226.7

BGP_NOTIFICATION 801.8 232.0

DELETE_DEFAULT_ROUTE 166.4 111.5

NETWORK_DEVICE_OFFLINE_MONITOR 401.1 206.9

C Human Time vs. Executor Time
Tab. 5 presents five categories of high-frequency incidents, compar-
ing the average handling time of human and AI Executor during
deployment. The significant reduction in handling time highlights
the efficiency of AI Executor.

12

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Workflow Usage
	3.2 Workflow Acquisition

	4 Methodology
	4.1 Knowledge Base Construction
	4.2 Agent Roles and Their Collaboration
	4.3 Multi-Agent Coevolution

	5 Experiment
	5.1 RQ1: Evaluation System
	5.2 RQ2: Overall Performance
	5.3 RQ3: Ablation Study

	6 FlowXpert in Production
	6.1 Online Deployment: For OCEs
	6.2 Case Study: For AI Executors
	6.3 Lessons Learned

	7 Conclusion
	References
	A Implementation Details
	B Prompt Design
	C Human Time vs. Executor Time

