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Abstract
Mobile OS often exhibit defects due to their complexity and fre-
quent updates, adversely affecting user experience. To resolve these
defects, OS providers enlist beta users to test the OS. During test-
ing, any defects encountered are recorded in tickets and reported
back to the providers. However, the sheer volume of these tickets
significantly challenges the efficiency of the ticket handling sys-
tem, especially during the triage phase, where engineers assign
tickets to appropriate development teams for resolution. Enhancing
triage efficiency is possible by aggregating duplicate tickets related
to the same defect, allowing simultaneous assignment of multiple
tickets. Nonetheless, current ticket aggregation methods demand
substantial labeled data for training, imposing a labor cost that hin-
ders their practical implementation in production environments. To
reduce this labor cost, we propose TixFusion, an LLM-augmented
ticket aggregation framework. TixFusion employs unsupervised
clustering to aggregate tickets, minimizing the need for labeled
data, and integrates an LLM to extract discriminative information
from tickets, improving aggregation accuracy. Extensive experi-
ments using a dataset collected from the production environment
of a top-tier global mobile OS provider 𝐻 demonstrate that TixFu-
sion outperforms existing methods while maintaining a low labor
cost. Additionally, TixFusion has been deployed in 𝐻 for over three
months, processing more than 200,000 tickets, and has increased
the processing speed of triage engineers by 3.78 times.

CCS Concepts
• Software and its engineering→ Software defect analysis.
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Ticket Aggregation, Mobile Operating Systems, Defect
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1 Introduction
With the advancement of mobile Internet technology, the global
user base of smart mobile devices has exceeded 4.3 billion [17].
Mobile OS, as the foundation of these devices, plays a vital role in
modern life. However, the complexity and continuous evolution of
the mobile OS often introduce defects, ranging fromminor errors to
critical malfunctions [37], adversely affecting user experience and
potentially causing significant business consequences. For example,
a defect named “MediaProvider” was identified within Google’s
Android OS, which permitted attackers to execute arbitrary code
on vulnerable devices by manipulating specially crafted media
files. This defect affected approximately 1.5 billion Android users,
severely harming Google’s reputation [45].

To identify and fix such defects, mobile OS providers usually
implement strict testing procedures before releasing updates. The
beta test is a crucial final stage [26], during which various beta
users interact with the updated OS to report defects. As demon-
strated in Figure 1a, each defect is recorded in a dedicated ticket.
A vast volume of tickets is generated every day (e.g., over 3,000
in a top-tier global mobile OS provider). The ticket handling sys-
tem is responsible for triaging, and fixing these tickets to ensure a
high-quality user experience [3], as shown in Figure 1b.

During the triage stage, collected tickets must be assigned to the
appropriate development teams by triage engineers. This process is
time-consuming, requiring triage engineers to carefully review the
text and images uploaded by beta users before making assignments.
On average, an experienced triage engineer can process only about
40 tickets per day. Furthermore, the number of experienced triage
engineers is limited, as they require specialized knowledge of the
mobile OS and its associated development teams. As a result, the
reliance onmanual triage and the scarcity of skilled triage engineers
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(a) Example of duplicate tickets

Report
defects

Triage
defects

Fix
defects

Beta users Triage
team

Development
teams

Beta
test

(b) Ticket handling system

Figure 1: Illustration of duplicate tickets and overview of the ticket handling system.

often lead to delays, reducing the overall efficiency of the ticket
handling system.

Within the extensive volume of tickets, many duplicate tickets
refer to the same defect. These duplicate tickets waste valuable time
for the triage engineers because they must assign these tickets in-
dividually. To allow the triage engineers to assign duplicate tickets
collectively and improve efficiency, we can aggregate these tickets
[27]. Over the years, a series of ticket aggregation methods have
been proposed [5, 8, 27, 32]. However, these methods rely heavily
on a large number of labeled tickets to achieve satisfactory perfor-
mance. They require the labeling of connections between tickets, a
process more labor-intensive than the triage itself, rendering these
methods impractical for large-scale production environments (as
detailed in Section 5.4).

Therefore, we try to propose a low-cost ticket aggregationmethod
that relies on the fewest labeled tickets. Intuitively, we can apply
an unsupervised clustering approach to aggregate duplicate tickets
based on their semantic information. However, it faces the following
two challenges (see Section 3 for more details).

Challenge 1: Utilization of discriminative information. Due
to the lack of domain-specific training, unsupervised clustering
cannot effectively identify and utilize discriminative information
in tickets to distinguish between defects, impeding aggregation
performance.

Challenge 2: Lack of explainability. Neither clustering ap-
proaches nor existing ticket aggregation methods can provide ag-
gregation results with explanatory content. Triage engineers still
need to invest substantial time and effort in further examining the
tickets before they are assigned to the appropriate development
teams.

This paper presents TixFusion, an LLM-augmented ticket ag-
gregation framework. To address Challenge 1, we propose an in-
context learning-based method to extract discriminative informa-
tion from tickets. To address Challenge 2, we generate explanations
for each group of aggregated tickets. Additionally, recognizing the
direct visual insights from image data, we integrate image data into
our framework to enhance explainability.

The contributions of this paper are summarized as follows:

• We propose an LLM-augmented ticket aggregation framework
that achieves accurate aggregation while significantly reducing
the labeling overhead.

• We introduce an in-context learning-based method for discrimi-
native information extraction, enhancing extraction effectiveness

by incorporating domain knowledge and segmenting the pro-
cess into multiple rounds. The discriminative information is then
used to improve aggregation accuracy.

• To the best of our knowledge, we are the first to integrate image
data in ticket aggregation, offering a simple yet effective strategy
for utilizing image data. By combining image and text data, we
generate effective and readable explanations for aggregation
results, thereby enhancing the explainability.

• To substantiate the effectiveness of TixFusion, we conduct a com-
prehensive evaluation using a dataset collected from a top-tier
global mobile OS provider 𝐻 . The 𝐹1-score of TixFusion demon-
strates a significant improvement of 0.44 compared to baseline
methods. Furthermore, TixFusion has been deployed in 𝐻 for
over three months, processing more than 200,000 tickets, and
improving the processing speed of triage engineers by 3.78 times.

2 Background
2.1 Beta Test and Ticket
The inherent complexity and frequent updates of mobile OS in-
evitably introduce numerous defects. A defect is any flaw that
causes the OS to behave incorrectly or deviate from its intended
functionality, encompassing issues from minor glitches to major
malfunctions [37]. Such defects can degrade user experience and
result in adverse business impacts. To address these defects, mo-
bile OS providers usually conduct rigorous tests before releasing
updates. The beta test is the last phase of this testing process [26].
During this phase, providers distribute the updated OS to a selected
group of beta users to identify as many defects as possible.

Upon encountering defects in the updated OS, beta users report
them to the provider via tickets, as shown in Figure 1a. Each ticket
serves as a detailed record, capturing all necessary information for
the triage, diagnosis, and resolution of the defect. A ticket includes
the following fields: system version, device name, report time, defect
description (user’s detailed description of the encountered defect),
and attached files (screenshots or videos reflecting the defect).

2.2 Ticket Triage
Mobile OS providers commonly employ a robust ticket handling
system to efficiently manage tickets reported by beta users. We il-
lustrate the workflow of a ticket handling system of 𝐻 in Figure 1b.
The system first collects tickets from beta users. Next, the triage
team assigns these tickets to appropriate development teams by
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examining the detailed information in the tickets [4, 43, 49]. Upon
receiving assigned tickets, the development teams analyze the cor-
responding defects and fix them. Through this systematic process,
the providers aim to ensure a seamless experience for mobile OS
users by identifying and rectifying defects in the OS. The triage
phase is pivotal in this workflow, as it ensures timely and accurate
ticket assignment, optimizing the development teams’ productivity,
and enhancing the overall efficiency of the ticket handling system.

3 Motivation
The ticket handling system of 𝐻 generates over 3,000 tickets per
day, presenting a significant challenge to the efficiency of triage
engineers. Among the vast number of these tickets, many duplicate
tickets point to the same defect. Aggregation of these duplicate
tickets can improve the efficiency of triage engineers by allowing
collective processing.

Existingmethods for ticket aggregation [5, 8, 27, 32] are generally
effective but depend on an extensive amount of labeled tickets. They
require the labeling of connections between tickets, a task more
labor-intensive than the triage due to the presence of thousands of
distinct defects. Our evaluation in Section 5.4 reveals that preparing
the dataset for large-scale deployment of existing methods would
require over 1,000 person-days. Furthermore, the dynamic nature
of the mobile OS introduces new defects, necessitating frequent
updates to the labeled data and compounding the labor cost. These
factors render existing methods impractical for our production
environment.

Therefore, we try to propose a low-cost ticket aggregationmethod
that relies on the fewest labeled tickets. Intuitively, we can apply
an unsupervised clustering approach to aggregate duplicate tickets
based on their semantic information. However, it confronts the
following two challenges: utilization of discriminative information
and lack of explainability.

3.1 Challenge 1: Utilization of Discriminative
Information

During manual ticket processing, triage engineers concentrate on
defect-related information, including affected OS components, func-
tions, and defect behavior. This discriminative information is cru-
cial for distinguishing between defects. We categorize it into three
segments: component (the OS component affected by the defect),
function (the function of the affected component), and behavior
(the observed behavior of the defect), as shown in Figure 3a.

Since beta users typically do not possess specialized knowledge
of the mobile OS, discriminative information is often not directly
present in the raw tickets and requires extraction by triage engi-
neers based on their expertise. This absence leads to poor aggre-
gation performance of unsupervised clustering, as it lacks domain-
specific training to effectively extract discriminative information
from tickets.

To address this, we propose a two-step strategy: first, extract dis-
criminative information from tickets, and then use this information
as input for unsupervised clustering. This strategy allows for direct
leveraging of discriminative information to differentiate between
defects, thereby potentially improving aggregation performance.

Given that one of the primary data in tickets is the detailed
user description of defects, and considering the powerful natural
language processing capabilities of Large Language Models (LLMs),
we employ an LLM to perform the extraction [58]. Furthermore,
LLMs can achieve satisfactory performance on downstream tasks
without requiring a large amount of labeled data, which aligns with
our goal of reducing the labor cost of labeling [56].

3.1.1 Empirical Study. We conduct an empirical study to assess
the effectiveness of discriminative information extraction on unsu-
pervised clustering.

The DBSCAN clustering algorithm is tested with three embed-
ding models from a widely recognized text embedding benchmark
MTEB [36] on a test set comprising 1,479 tickets collected from
𝐻 . We use the widely accepted Rand Index (RI) [38] as the eval-
uation metric, which computes precision, recall, and 𝐹1-score by
comparing the aggregation results with the ground truth.

Table 1: Comparison of aggregation performance.

Data Embedding model Precision Recall 𝐹1-score

Raw
acge [22] 0.163 0.332 0.219

conan_v1 [29] 0.141 0.416 0.211
xiaobu_v2 [42] 0.134 0.437 0.205

Discriminative
acge 0.657 0.835 0.735

conan_v1 0.635 0.826 0.718
xiaobu_v2 0.644 0.823 0.723

The results are presented in Table 1. The top three rows repre-
sent the aggregation performance of unsupervised clustering using
raw tickets, while the bottom three rows show its performance
when discriminative information is used. The results reveal that ag-
gregation using raw tickets exhibits poor performance, supporting
the finding that unsupervised clustering algorithms cannot effec-
tively utilize the discriminative information in tickets. In contrast,
when discriminative information extracted by the LLM is employed,
the average 𝐹1-score improves by 0.514, demonstrating the signif-
icant enhancement in aggregation performance achieved by this
extraction strategy.

3.2 Challenge 2: Lack of Explainability
Clustering approaches and existing ticket aggregation methods
[5, 8, 27, 32] only deliver aggregation results without offering any
explanatory content. This lack of explainability restricts their ef-
fectiveness in facilitating the triage phase, as the triage engineers
must inspect multiple tickets within each group to assign them to
the appropriate development teams. The review process is time-
consuming, requiring engineers to examine 20% to 30% of the tickets
in each group to confirm assignments, with each ticket review tak-
ing about one minute.

To address this challenge, our framework generates explanations
for each group of aggregated tickets. These explanations offer clear
overviews of common characteristics within each group, enabling
triage engineers to comprehend the results without examining
individual tickets. Tickets often contain screenshots and videos
reflecting the defects, this image data can significantly enhance the

3
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Figure 2: The framework of TixFusion.

explainability by providing direct visual insights of the OS’s state.
Therefore, we integrate image data into our framework to enhance
explainability.

4 Methodology
In this section, we introduce TixFusion, an LLM-augmented ticket
aggregation framework. TixFusion takes text and image data from
tickets (example in Figure 1a) as input and outputs aggregated
tickets with the same defect along with explanations.

The overall framework of TixFusion is illustrated in Figure 2,
which comprises two stages. In the offline stage, TixFusion collects
a small number of labeled tickets for in-context learning (ICL) sam-
ples [10], constructs a knowledge base, and fine-tunes the LLM. In
the online stage, TixFusion first preprocesses the tickets for noise
reduction and multimodal alignment. Then, TixFusion extracts dis-
criminative information from the processed tickets using LLM. Af-
ter that, to aggregate duplicate tickets, a clustering module is built
to vectorize this discriminative information through a pre-trained
embedding model and perform aggregation through unsupervised
clustering. Finally, TixFusion combines the extracted discriminative
information and original tickets to generate explanations for each
group of tickets with the same defect and presents the results to
the triage engineers for assignment.

4.1 Preprocessing Module
Tickets comprise both text and image data. In this stage, TixFusion
removes noise present in tickets and aligns the modalities.
Noise reduction. The text data in tickets refers to defect descrip-
tions, which are beta users’ detailed descriptions of the encoun-
tered defects. Since defect descriptions are manually written, they
sometimes contain irrelevant information such as users’ complaints,
which act as noise and obstruct subsequent processing. Large Lan-
guage Models (LLMs) have demonstrated powerful capabilities in
summarizing and refining text [58]. Therefore, TixFusion inputs the
raw text of defect descriptions into an LLM (an original GLM-4-9B)
and requests a refined version. To help the LLM identify and fil-
ter out noise, TixFusion incorporates five fixed examples into the
prompt.
Modality alignment. The image data comprises screenshots and
videos submitted by beta users to depict defects. To align the image

data with the defect descriptions in text form, TixFusion converts
this image data into text. Specifically, we individually process each
image using a multimodal large language model (mLLM, such as
GLM-4v[16]), generating detailed image descriptions. For videos,
we extract frames at a constant interval of 180 frames and feed
these frames into the mLLM for descriptions.

4.2 Extraction Module
To facilitate the subsequent unsupervised clustering, TixFusion
utilizes an LLM to extract discriminative information from the pre-
processed defect descriptions and image descriptions. However,
tickets contain certain domain knowledge, and the performance
of direct extraction through LLM is not satisfactory (see Section
5.3.1 for details). In light of this, in addition to conventional tech-
niques such as in-context learning prompting, chain-of-thought
prompting[51], and fine-tuning, TixFusion introduces two enhance-
ments: knowledge base construction and multi-round extraction.

4.2.1 Knowledge Base Construction. A knowledge base that encom-
passes triage engineers’ understanding of defects can provide the
LLM with additional context and enhance the quality of discrimina-
tive information extraction. Such knowledge bases are usually con-
structed through domain-specific documents [15]. However, there
are no such documents in our scenario, and creating them from
scratch requires a substantial amount of manual labor. Therefore,
we request experienced triage engineers to label a small number
(e.g., 10,000 in our scenario) of tickets and extract their knowledge
from these labels. The labels represent discriminative information
in the defect descriptions, formatted as “component (the OS compo-
nent affected by the defect) - function (the function of the affected
component) - behavior (the observed behavior of the defect)", as
illustrated in the left part of Figure 3a. This information is critical to
triage engineers during manual ticket processing, as outlined in Sec-
tion 3.1. The knowledge reflects typical behaviors of components
and functions in defect descriptions.

We derive two types of knowledge from the labeled tickets, cor-
responding to the OS’s components and the functions of those
components. Initially, we group the labeled tickets by component.
Within each group, we batch the defect descriptions and correspond-
ing labels, input them into an LLM (an original GLM-4-9B) along
with five fixed knowledge examples, and request summarizations

4
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(b) Construction workflow

Figure 3: Illustration of knowledge base construction.

about how components are described in defect descriptions. Next,
within each component group, we further group tickets by function
and request similar summarizations. These summarizations collec-
tively form a knowledge base, which provides additional context
to the LLM to enhance the quality of discriminative information
extraction.

4.2.2 Multi-Round Extraction. Inspired by inference scaling laws
[1, 41, 52], which suggest that increased computational resources
during inference can improve the model’s performance, TixFusion
adopts a multi-round extraction approach for defect descriptions
to enhance discriminative information extraction.

Initially, we prompt an LLM (a fine-tuned GLM-4-9B for ex-
traction) to identify the OS component impacted by the defect.
Subsequently, we direct the LLM to determine the specific function
of the identified component. Throughout the initial two rounds,
we integrate relevant knowledge about components and functions
from the knowledge base to assist identification. Finally, we ask
the LLM to summarize the anomalous behavior of the defect based
on the previously identified component and function. These three
rounds of interaction yield a structured “component - function -
behavior" format for discriminative information, as illustrated in
the left part of Figure 3a. During each extraction round, TixFusion
calculates the similarity between the current defect description and
the training set and incorporates the top-ranked (five in this paper)
examples into the prompts. Motivated by [12, 15, 47], we employ
the pre-trained Sentence-BERT [39] embedding model for similarity
calculation. Note that the calculation of similarity is not the con-
tribution of TixFusion. To more clearly illustrate the multi-round
extraction process, we use the following equations. Here, 𝐶 repre-
sents the identified component, 𝐹 represents the identified function,
𝐵 represents the summarized anomalous behavior, 𝐾 represents the
knowledge matched through the components and functions of the
examples.

LLM(query, examples, 𝐾comp) → 𝐶identified (1)
LLM(query, examples,𝐶identified, 𝐾func) → 𝐹identified (2)

LLM(query, examples,𝐶identified, 𝐹identified) → Banomalous (3)

Although multi-round extraction with the LLM requires more
computational time, we have adopted a daily-batch processing
workflow for deployment (see Section 6.1), where tickets received
during the day are processed at night. Therefore, the time consump-
tion is not a significant concern.

4.2.3 Image Data Utilization. Image descriptions are detailed
depictions of device screens where users encounter defects, offer-
ing direct visual insights of the OS’s state. These descriptions are
derived from user-uploaded screenshots and videos through the
preprocessing module.

We extract discriminative information from image descriptions
following the experience of triage engineers. During manual ticket
processing, triage engineers require only information from image
data that indicates the specific page or application in which the user
encountered the defect. This coarse-grained information derived
from image data is sufficient to facilitate the assignment of tickets.
Therefore, we input the image descriptions into an LLM and prompt
it to identify the pages being described (e.g., wifi connection page)
and take these as discriminative information from image data.

4.3 Clustering Module
The extracted discriminative information from defect descriptions
and image descriptions will be vectorized first by a pre-trained
Sentence-BERT model acge [22]. Then, the vectors are combined
through a weighted sum (e.g., 0.9 for defect descriptions and 0.1
for image descriptions) to create a single vector representation
for each ticket. After that, TixFusion employs the DBSCAN [11]
algorithm to perform clustering. As one iteration of clustering with
a fixed epsilon (eps) value cannot effectively cluster tickets due
to potential variations in the vector distances between different
groups of duplicate tickets, we execute the clustering twice. Initially,
we run DBSCANwith a large eps (0.2) for coarse-grained clustering.
For each group of tickets obtained from the initial clustering, we
calculate the local density of the group and use it as the epsilon
value for the second round of clustering.

After obtaining the aggregated tickets from the clustering, we
enhance explainability by providing explanations for each group.
These explanations facilitate a comprehensive understanding of
each group, allowing triage engineers to assign entire groups at
once without inspecting individual tickets, thus streamlining the
triage process. We create these explanations based on the insights
of triage engineers.

When triage engineers identify duplicate tickets, they first pin-
point discriminative information within the tickets. Subsequently,
they locate similar tickets in the dataset that point to the same defect
based on this information. Through this process, triage engineers
gather groups of duplicate tickets and gain a basic understanding
of each group.
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We use an LLM to simulate this manual process and turn this ba-
sic understanding into concrete explanations. Specifically, we input
discriminative information, extracted from defect descriptions and
image descriptions based on triage engineers’ domain knowledge,
into the LLM to generate explanations. The discriminative infor-
mation from defect descriptions provides essential information for
distinguishing between defects, while that from image descriptions
offers direct visual insights into the state of the mobile OS. Addi-
tionally, we also input the original defect descriptions to provide
necessary details for generating explanations.

5 Evaluation
In this section, we conduct a comprehensive evaluation of TixFusion
to answer the subsequent research questions (RQs):
• RQ1: How does TixFusion perform overall in aggregating dupli-

cate tickets?
• RQ2: Does each component of TixFusion contribute significantly

to TixFusion’s performance?
• RQ3: How does the labor cost of the labeling data for TixFusion

compare to that of baseline methods?
• RQ4: How do we select the embedding model and the backbone

LLM for TixFusion?

5.1 Experiment Setup
5.1.1 Dataset. We collect a total of 11,431 tickets from the pro-
duction environment of 𝐻 . Among these, 9,952 tickets are used for
training, and the remaining 1,479 tickets are utilized to evaluate
aggregation performance.

5.1.2 Implementation Details. We conduct all the experiments with
two NVIDIA A30 GPUs, PyTorch 2.0.0, and CUDA toolkit 11.4. We
use GLM-4-9B and GLM-4V-9B [16] as the backbone models. The
fine-tuning is conducted with LLaMAFactory [59] and LoRA [19].

5.1.3 Metrics. Following existing methods [27, 32], we adopt the
widely accepted Rand Index (RI) [38] to evaluate the performance of
ticket aggregation. The RI calculates Precision, Recall, and 𝐹1-score
by measuring the similarity between the aggregation result and the
ground truth. Given a set of tickets, let 𝐶 denote the aggregation
result, and 𝐺 denote the ground truth. RI defines the following
metrics:
• True Positive (TP): The number of pairs of tickets correctly

identified as correlated in both 𝐶 and 𝐺 .
• True Negative (TN): The number of pairs of tickets correctly

identified as not correlated in both 𝐶 and 𝐺 .
• False Positive (FP): The number of pairs of tickets incorrectly

identified as correlated in 𝐶 , but actually not correlated in 𝐺 .
• False Negative (FN): The number of pairs of tickets incorrectly

identified as not correlated in 𝐶 , but actually correlated in 𝐺 .

Using these four basic metrics, RI derives: 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 ,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

5.1.4 Baselines.

• DBSCAN:We use a pre-trained Sentence-BERT model acge [22]
to vectorize tickets and subsequently apply DBSCAN clustering
to aggregate duplicate tickets.

• LiDAR [8]: LiDAR is a deep learning-based approach to identify
linked incidents in cloud systems. It integrates textual and struc-
tural information to predict connections among incidents. For
this evaluation, only the textual information of tickets is used to
identify links.

• iPACK [32]: iPACK is an incident-aware method used to ag-
gregate duplicate customer support tickets in cloud systems. It
operates in three steps: alert parsing, incident profiling, and
ticket-event correlation. For this study, we focus on the ticket-
event correlation step, which employs an attentive interaction
network to identify and aggregate duplicate tickets.

• COLA [27]: COLA combines correlation mining and LLM rea-
soning to aggregate alerts in cloud systems. COLA leverages
statistical evidence from frequent alerts and enhances LLM per-
formance through domain-specific documents. For our evalu-
ation, correlation mining is implemented using text similarity,
while the LLM reasoning module is left unchanged.
To construct the training set for baseline methods, we calculate

the semantic similarity between the labeled discriminative infor-
mation of tickets. A threshold is then determined based on insights
from triage engineers to establish connections among tickets. To
ensure comparability between the labor costs of labeling training
data for baseline methods and TixFusion, the size of the baseline
training dataset is fixed at 2,000 tickets. This decision aligns with
the labor cost comparison ratio discussed in Section 5.4.

5.2 RQ1: The Overall Performance
The comparative analysis, summarized in Table 2, highlights the
superior performance of TixFusion, which achieves an 𝐹1-score of
0.735, significantly outperforming the baseline approaches. The
learning-based approaches, including LiDAR, iPACK, and COLA,
exhibit suboptimal aggregation performance, likely due to the con-
strained size of their training datasets (see Section 5.1.4). This lim-
itation restricts their ability to capture the connections between
tickets effectively.

The unsupervised aggregation approach, leveraging a pre-trained
embedding model combined with DBSCAN clustering, also demon-
strates relatively poor performance. This outcome aligns with our
finding that unsupervised aggregation approaches, lacking explicit
training, struggle to identify and exploit discriminative information
within tickets to differentiate between distinct defects.

TixFusion addresses these challenges by employing an LLM to
extract discriminative information from tickets before applying
unsupervised aggregation, resulting in a marked performance im-
provement.

Table 2: Performance comparison of different methods.

Method Precision Recall 𝐹1-score

DBSCAN 0.107 0.599 0.181
LiDAR 0.135 0.379 0.199
iPACK 0.124 0.348 0.182
COLA 0.203 0.657 0.310
TixFusion 0.657 0.835 0.735
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5.3 RQ2: Ablation Study
To assess the contributions of individual components in TixFusion,
we conduct ablation studies focusing on the extraction module,
clustering module, and the utilization of image data.

Table 3: Effectiveness of each component in TixFusion.

Method Precision Recall 𝐹1-score

TixFusion w/o EM 0.163 0.332 0.219
TixFusion w/o ICL-e 0.586 0.714 0.643
TixFusion w/o 2R-DBSCAN 0.656 0.812 0.726
TixFusion w/o Image 0.654 0.830 0.732
TixFusion 0.657 0.835 0.735

5.3.1 Extraction Module. The extraction module employs an LLM
to extract discriminative information from tickets, enhancing ag-
gregation performance (detailed in Section 4.2). To further refine
extraction, two additional techniques are integrated: knowledge
base construction and multi-round extraction. These techniques
are collectively considered as an In-Context-Learning (ICL)-based
enhancement, as the constructed knowledge is embedded into mul-
tiple rounds of interaction with the LLM.

Experiments are conducted under two configurations: one with-
out the extraction module, using raw ticket descriptions directly
(denoted as w/o EM), and another with the extraction module but
without the ICL-based enhancement (denoted as w/o ICL-e).

As listed in Table 3, the results confirm the effectiveness of
the extraction module in identifying discriminative information,
significantly improving aggregation performance. Moreover, the
ICL-based enhancement further boosts the quality of extraction,
contributing to superior results.

5.3.2 Clustering Module. The clustering module converts the ex-
tracted discriminative information into vectors and applies unsu-
pervised clustering to aggregate duplicate tickets. Due to variations
in the distances between groups of duplicate tickets after Sentence-
BERT embedding, a fixed epsilon value in DBSCAN clustering may
not yield optimal results for all groups. To address this, we pro-
pose a two-round DBSCAN clustering approach. The first round
employs a larger epsilon value for coarse-grained clustering, and
the resulting clusters are refined in the second round using locally
calculated density-based epsilon values.

This method is compared against a single-round DBSCAN ap-
proach using a smaller, fixed epsilon value (denoted as w/o 2R-
DBSCAN). The results in Table 3 demonstrate that the two-round
clustering approach effectively enhances aggregation performance
by dynamically adjusting epsilon values to better suit varying clus-
ter densities.

5.3.3 Image Data Utilization. User-provided image data, including
screenshots and videos illustrating reported defects, is incorporated
into TixFusion through a multimodal LLM. We evaluate the impact
of image data on both aggregation performance and explainability.
Aggregation performance. When evaluating aggregation results
without utilizing image data (denoted as w/o Image), we observe
only minimal improvements in the 𝐹1-score when image data is

included. This outcome is anticipated, as the granularity of the dis-
criminative information extracted from images is relatively coarse,
often lacking the specificity required for effective aggregation.

1 2 3
Rank

Image and Text

Text

Rule

Figure 4: The ranking given by triage engineers.

Explainability. Beyond aggregation, TixFusion generates explana-
tions for each group of tickets, utilizing discriminative information
derived from both text (defect descriptions) and image data (screen-
shots and videos). This aids triage engineers in comprehending the
aggregation results.

To validate the role of image data in enhancing explainability,
we generate three types of explanations for each group of aggre-
gated tickets: (1) using both text and image data, (2) using only text
data, and (3) rule-based explanations. Triage engineers rank the
explanations on a scale from 1 to 3, where a ranking of 1 denotes
the most effective and readable explanation, while a ranking of 3
indicates the least effective and readable. Effectiveness is evaluated
based on the explanation’s ability to comprehensively encapsulate
the discriminative information of the entire group, whereas read-
ability is assessed in terms of clarity, simplicity, logical structure,
and grammatical accuracy.

As shown in Figure 4, explanations integrating both text and
image data are rated as themost effective and readable in over 86% of
groups. This underscores the significant contribution of image data
to the explainability of the aggregation results, providing valuable
context for triage engineers.

5.4 RQ3: Labor Cost of Labeling
Existing ticket aggregation approaches rely on extensive labeled
datasets to identify connections between tickets, incurring sub-
stantial labor costs. To address this limitation, TixFusion adopts
unsupervised clustering to aggregate tickets and integrates an LLM
to enhance performance (detailed in Section 3). Specifically, Tix-
Fusion utilizes an LLM to extract discriminative information from
tickets, which are then fed into the unsupervised clustering as in-
put. While the discriminative information extraction process still
requires labeled data, such as examples of in-context learning or
fine-tuning, TixFusion shifts the focus of labeling from identifying
connections between tickets to labeling the discriminative informa-
tion of individual tickets. This shift significantly reduces labeling
labor costs.
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To evaluate TixFusion’s effectiveness in reducing labeling labor
costs, we conducted a study involving two groups of triage engi-
neers tasked with labeling 1,200 tickets using two distinct methods.
The total time consumption (measured in person-days) is recorded
for both methods:
• Labeling of connections: This method, corresponding to exist-

ing ticket aggregation approaches, involves two steps: (1) ticket
understanding, where engineers comprehend the defect based
on text and image data within the tickets, and (2) duplicate ticket
search, where engineers identify other tickets in the dataset that
reference the same defect.

• Labeling of discriminative information: This method aligns
with the labeling required by TixFusion and also comprises two
steps: (1) ticket understanding and (2) discriminative information
output, where engineers articulate the discriminative informa-
tion corresponding to the defect based on their understanding
of the ticket.
The total time consumption and the breakdown of each step

for both labeling methods are summarized in Table 4. Labeling dis-
criminative information for 1,200 tickets using TixFusion’s method
required only 2.0 person-days, reflecting a 79% reduction in la-
bor compared to labeling connections. This significant reduction
primarily results from eliminating the most time-intensive step
in the connection labeling process: duplicate ticket search, where
engineers must scan the dataset to identify related tickets.

Table 4: Comparison of labeling methods.

Labeling Step 1 Prop. Step 2 Prop. Time Consumption

Connections 0.15 0.85 9.6 person-days
Discriminative 0.5 0.5 2.0 person-days

Moreover, the labor-saving potential of TixFusion’s labelingmethod
is expected to increase as the dataset size grows. The time re-
quired for duplicate ticket search scales with the size of the dataset,
whereas the discriminative information labeling process remains
relatively constant regardless of dataset size.

To provide additional context, existing aggregation methods
in the baselines have leveraged labeled datasets containing hun-
dreds of thousands of tickets for large-scale deployments in cloud
systems. Given the complexity of mobile OS, which shares simi-
larities with cloud systems—such as intricate ticket categories and
the generation of thousands of tickets daily [21]—it is reasonable
to anticipate that similar labeling requirements would apply for
large-scale deployments in our production environment. For Tix-
Fusion, we estimate that approximately 100,000 labeled tickets will
be required to ensure robust performance in large-scale deploy-
ment. Based on this scale, we project that TixFusion will require
167 person-days to label the dataset, representing an 89% reduction
compared to the 1,480 person-days required by baseline methods.

5.5 RQ4: Selection of Embedding Models and
LLMs

This section presents a comparative analysis of the embedding
model and LLM selections utilized by TixFusion.

For the embedding model, we employ acge [22], which serves
two purposes: (1) identifying examples for ICL and (2) vectorizing
tickets for the clustering module. To ensure optimal performance,
we select acge based on the results of the MTEB benchmark [36],
a widely used text embedding evaluation framework. We com-
pare acge against two other embedding models from the same
benchmark. As shown in Table 5, acge outperforms the alternatives,
confirming its suitability for TixFusion.

For the LLM, we utilize GLM-4-9B [16] to extract discrimina-
tive information from tickets. Its performance is compared against
two similarly sized state-of-the-art models: Qwen-2.5-7B [44] and
InternLM-2.5-7B [2]. The comparison results, also presented in Ta-
ble 5, demonstrate that GLM-4-9B achieves the best performance
among the three models, further validating its selection for TixFu-
sion.

Table 5: Comparison of embedding models and LLMs.

Method Precision Recall 𝐹1-score

ICL-xiaobu_v2 [42] 0.644 0.823 0.723
ICL-conan_v1 [29] 0.635 0.826 0.718
ICL-acge [22] 0.657 0.835 0.735

Clustering-xiaobu_v2 [42] 0.581 0.729 0.647
Clustering-conan_v1 [29] 0.554 0.676 0.609
Clustering-acge [22] 0.657 0.835 0.735

LLM-Qwen-2.5-7B [44] 0.569 0.669 0.615
LLM-InternLM-2.5-7B [2] 0.574 0.626 0.599
LLM-GLM-4-9B [16] 0.657 0.835 0.735

Report
defects

Triage
defects

Fix
defects

Beta users Triage
team

Development
teams

Beta
test

TixFusion

Aggregate
defects

Figure 5: The deployment of TixFusion on the ticket handling
system.

6 Discussion
6.1 Deployment
We have integrated the proposed method, TixFusion, into the ticket
handling system of 𝐻 for trial implementation. Over a stable op-
eration period exceeding three months, TixFusion has processed
more than 200,000 tickets and has improved the efficiency of triage
engineers by 3.78 times. The deployment architecture of TixFusion
is illustrated in Figure 5.

The system employs a daily batch-processing workflow to pro-
cess tickets. All tickets submitted by beta users are forwarded by the
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ticket 1
After upgrading to 
version 30, there is no 
response when clicking 
on the AI wisdom bar.

ticket 3
Clicking on the AI line in 
the middle bottom of 
the screen has no 
reaction at all.

ticket 2
The AI navigation bar, 
the single-click function 
is disabled.

ticket 4
In this interface in the 
wallet, the navigation 
bar is not clickable.

ticket 5
The AI navigation bar is still not usable, no response after 
pressing it. If the navigation bar cannot be canceled, it is 
suggested to allow users to set it to hidden, as I don’t like 
the screen not being full screen with a big chin left.

Extraction
module

��������������������

ticket 1
AI Navigation Bar - Navigation Bar 
Operation - No response on click

ticket 5
AI Navigation Bar - AI Navigation Bar - 
Unable to use

ticket 4
AI Navigation Bar - In-app - Navigation 
bar click not available

ticket 3
AI Navigation Bar - Navigation Bar 
Operation - No response on click

ticket 2
AI Navigation Bar - Navigation Bar 
Operation - Navigation bar not available Clustering

module

Group 1

tickets:  ticket 1, 2, 3, 4, 5
Explanation: The main issues manifest 
as the AI navigation bar not responding 
to clicks or being unavailable across 
various application scenarios. These 
problems span multiple interfaces 
including hotel booking, settings, 
weather, wallet, and the desktop, 
indicating that this is a 
cross-application functional issue

���������������������������
�������� ���������������
	�

Triage team Development 
teams

Figure 6: The workflow of an example.

ticket handling system to a GPU server hosting TixFusion. Within
the server, TixFusion executes a series of operations, including pre-
processing, discriminative information extraction, and clustering.
Once processing is completed, TixFusion returns the aggregation re-
sults to the ticket handling system. These results consist of grouped
tickets, each accompanied by detailed explanations for the respec-
tive groups. The ticket handling system then presents these aggre-
gated groups and their explanations to triage engineers, facilitating
efficient ticket assignment.

6.2 Case Study
To comprehensively demonstrate the workflow of TixFusion and
its pivotal role in the triage process, we present a detailed case
study. This case examines a group of duplicate tickets identified
by TixFusion. To uphold strict user privacy standards, all sensitive
information, including screenshots, recordings, and related data,
has been excluded from the description. The group comprises five
tickets, all reporting the same system defect: the unresponsiveness
or malfunction of the “AI navigation bar”.

As shown in Figure 6, the tickets are first processed through
the preprocessing and discriminative information extraction stages.
During this phase, discriminative information is extracted from the
tickets to serve as input for subsequent analysis. It is then passed to
the clustering module, where they are vectorized using Sentence-
BERT and aggregated using the DBSCAN algorithm. The clustering
module identifies these five tickets as belonging to the same group
and generates a concise explanation based on both the extracted
discriminative information and the original ticket content. This
explanation provides a synthesized overview of the grouped tickets,
allowing triage engineers to quickly understand the aggregation
results. Consequently, the engineers can assign the entire group
collectively, eliminating the need to review each ticket individually.

Further analysis is provided in Figure 7, which presents the
cosine similarity matrices comparing the original defect descrip-
tions and the extracted discriminative information. The relatively
low cosine similarities among the original descriptions indicate

ticket1 ticket2 ticket3 ticket4 ticket5

tic
ke

t1
tic

ke
t2

tic
ke

t3
tic

ke
t4

tic
ke

t5

Original Description Similarity Matrix

ticket1 ticket2 ticket3 ticket4 ticket5

tic
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tic
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tic
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t3
tic

ke
t4

tic
ke

t5

Discriminative Information Similarity Matrix

0.6

0.7

0.8

0.9

1.0

Figure 7: Similarity matrices of the example.

challenges in grouping the tickets directly based on raw input, po-
tentially leading to reduced aggregation performance. However,
the higher cosine similarities among the extracted discriminative
information highlight the effectiveness of the extraction step in
enhancing aggregation accuracy.

6.3 Lessons Learned
6.3.1 Explainability of the Results. Initially, we only presented ag-
gregated tickets to the triage engineers. However, they feedbacked
that this output was of limited assistance, as they still needed to
examine multiple tickets within each group to decide appropri-
ate development teams for assignment. Therefore, we utilized an
LLM to generate detailed explanations for each group of aggre-
gated tickets, thereby aiding triage engineers in comprehending
the aggregation results.

6.3.2 Presentation of the Results. Given that the purpose of our
framework is to facilitate triage engineers, it is essential to prioritize
their needs when presenting the results. A clumsy presentation for-
mat could potentially compromise the practical effectiveness of the
framework. Consequently, we iteratively refined the presentation
format of the aggregation results based on the feedback from triage
engineers and ultimately integrated it into their existing triage
platform.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

FSE ’25, June 23–27, 2025, Trondheim, Norway Yongqian Sun, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

6.4 Generality of Results
Adaptability. This research is based on data collected from a
top-tier global mobile OS provider, which ensures the represen-
tativeness of our conclusions and methodologies. Furthermore, the
methodological framework, which utilizes LLMs to extract discrim-
inative information from data and combines them with traditional
machine learning techniques, demonstrates a high degree of versa-
tility. While initially designed for the scenarios addressed in this
study, the framework can be effectively extended to other domains
that involve natural language-rich data. Examples include the analy-
sis of failure reports in cloud systems and the processing of support
tickets in customer service operations. This versatility highlights
the potential for our method to serve as a reference for advancing
research and applications in related fields.
Robustness. Our method exhibits significant robustness, even
under varying data availability conditions. While image data is
incorporated into the ticket aggregation process to enhance ac-
curacy and explainability, the method retains its effectiveness in
scenarios where image data is unavailable. This resilience ensures
that the method maintains consistent performance and reliability,
regardless of the completeness of the data. Such robustness under-
scores the suitability of TixFusion for deployment in heterogeneous
environments, where data completeness may vary significantly.
Flexibility. TixFusion’s modular design endows it with exceptional
flexibility, granting mobile OS providers substantial autonomy in
adapting the framework to their specific needs. While preserving
the overall effectiveness of the framework, mobile OS providers can
customize various components, such as substituting clustering algo-
rithms or selecting LLMs tailored to their application contexts and
operational scales. This high degree of adaptability is particularly
critical in dynamic business environments, enabling the framework
to accommodate diverse requirements and challenges. By allow-
ing organizations to optimize the solution based on their unique
demands, our method maximizes operational efficiency and effec-
tiveness, further solidifying its value in real-world applications.

7 Related Work
7.1 Ticket Aggregation
Ticket aggregation methods aim to identify duplicate tickets that
refer to the same bug, cloud incident, or system defect, allowing
engineers to focus on resolving the issue and avoid wasting time
inspecting redundant tickets. LinkCM [18] aggregates customer
report tickets by matching them with system incidents to improve
customer service efficiency. LiDAR [8] aggregates related incidents
by combining semantic and service dependency representations to
facilitate incident mitigation. Warden [28] groups related alerts to
detect potential failures in cloud systems, enhancing incident man-
agement efficiency and reducing downtime. GRILA [9] aggregates
incidents by learning from the cascade graph of cloud failures to
narrow the scope of incidents and improve incident management
efficiency. OAS [5] aggregates alerts by learning their semantics
and behavioral representations, summarizing grouped alerts to aid
maintenance engineers in understanding system failures. iPACK
[32] aggregates customer support tickets using co-occurrence pat-
terns to improve customer ticket management efficiency. COLA

[27] aggregates alerts by combining correlation mining and LLM
to promote cloud system fault resolution.

Despite the excellent results achieved by the aforementioned
aggregation methods, they typically require extensive labeled data
for training, which incurs significant labor costs. To address this,
we adopt unsupervised clustering to aggregate duplicate tickets
and utilize an LLM to enhance its aggregation performance by
extracting discriminative information from tickets.

7.2 LLM for Software Engineering
The rapid advancement of Large Language Models (LLMs) has led
to their widespread application across various domains of software
engineering, including code generation [6, 13, 14, 33, 35, 46, 54],
log analysis [20, 24, 30, 31, 34, 53, 55, 60] , and cloud system main-
tenance [7, 23, 25, 40, 48, 50, 57].

In the domain of code generation, significant progress has been
made by integrating LLMs with specific tasks. For instance, DCGen
[46] translates webpage designs into corresponding UI code, stream-
lining the development process. Similarly, GPTDroid [35] utilizes
LLMs to generate GUI test scripts by passing page information to
the model, thereby automating the testing phase. For log analysis,
UniLog [53] proposes an automatic logging framework based on
in-context learning (ICL). LILAC [24] conducts log parsing with
improved ICL techniques.

In the realm of cloud system maintenance, LLMs have been uti-
lized to improve themanagement and resolution of incidents. OASIS
[25] generates human-readable summaries of system outages, aid-
ing maintenance engineers in quickly understanding the context
and severity of issues. RCAgent [48] conducts root cause analysis
on cloud incidents through a tool-augmented agent framework, en-
abling more effective resolution of cloud incidents. Different from
the aforementioned methods, which use LLMs as output genera-
tors, we leverage LLM as an auxiliary tool alongside the traditional
clustering algorithm to aggregate tickets.

8 Conclusion
In this paper, we introduce TixFusion, an LLM-augmented ticket ag-
gregation framework, specifically designed to streamline the triage
process for tickets generated during the beta testing of mobile
OS. By leveraging LLMs to extract discriminative information and
enhance aggregation performance, TixFusion effectively achieves
high-quality aggregation with minimal reliance on labor-intensive
data labeling. We propose an in-context learning-based extraction
method to improve the quality of discriminative information ex-
traction. Furthermore, by integrating a multimodal LLM, TixFusion
incorporates image data into the ticket aggregation process for the
first time, enabling a more comprehensive analysis of tickets. To as-
sist triage engineers, TixFusion generates concise and interpretable
explanations for each group of aggregated tickets, facilitating ef-
ficient decision-making. Extensive experiments conducted on a
ticket dataset from the production environment of a top-tier global
mobile OS provider 𝐻 demonstrate that TixFusion outperforms all
state-of-the-art methods. Additionally, TixFusion has been deployed
in𝐻 for over three months, during which it has achieved a 3.78-fold
increase in the processing efficiency of triage engineers.
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