
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LLM-Augmented Ticket Aggregation for Low-cost Mobile OS
Defect Resolution

Yongqian Sun
Nankai University
Tianjin, China

Bowen Hao
Nankai University
Tianjin, China

Xiaotian Wang
Nankai University
Tianjin, China

Chenyu Zhao
Nankai University
Tianjin, China

Yongxin Zhao
Nankai University
Tianjin, China

Binpeng Shi
Nankai University
Tianjin, China

Shenglin Zhang
Nankai University
Tianjin, China

Qiao Ge
Huawei Inc.

Wuhan, China

Wenhu Li
Huawei Inc.

Wuhan, China

Hua Wei
Huawei Inc.

Wuhan, China

Dan Pei
Tsinghua University

Beijing, China

Abstract
Mobile OS often exhibit defects due to their complexity and fre-
quent updates, adversely affecting user experience. To resolve these
defects, OS providers enlist beta users to test the OS. During test-
ing, any defects encountered are recorded in tickets and reported
back to the providers. However, the sheer volume of these tickets
significantly challenges the efficiency of the ticket handling sys-
tem, especially during the triage phase, where engineers assign
tickets to appropriate development teams for resolution. Enhancing
triage efficiency is possible by aggregating duplicate tickets related
to the same defect, allowing simultaneous assignment of multiple
tickets. Nonetheless, current ticket aggregation methods demand
substantial labeled data for training, imposing a labor cost that hin-
ders their practical implementation in production environments. To
reduce this labor cost, we propose TixFusion, an LLM-augmented
ticket aggregation framework. TixFusion employs unsupervised
clustering to aggregate tickets, minimizing the need for labeled
data, and integrates an LLM to extract discriminative information
from tickets, improving aggregation accuracy. Extensive experi-
ments using a dataset collected from the production environment
of a top-tier global mobile OS provider 𝐻 demonstrate that TixFu-
sion outperforms existing methods while maintaining a low labor
cost. Additionally, TixFusion has been deployed in 𝐻 for over three
months, processing more than 200,000 tickets, and has increased
the processing speed of triage engineers by 3.78 times.

CCS Concepts
• Software and its engineering→ Software defect analysis.

Keywords
Ticket Aggregation, Mobile Operating Systems, Defect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE ’25, Trondheim, Norway
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Yongqian Sun, Bowen Hao, Xiaotian Wang, Chenyu Zhao, Yongxin Zhao,
Binpeng Shi, Shenglin Zhang, Qiao Ge, Wenhu Li, Hua Wei, and Dan Pei.
2018. LLM-Augmented Ticket Aggregation for Low-cost Mobile OS Defect
Resolution. In Companion Proceedings of the 33rd ACM Symposium on the
Foundations of Software Engineering (FSE ’25), June 23–27, 2025, Trondheim,
Norway. ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
With the advancement of mobile Internet technology, the global
user base of smart mobile devices has exceeded 4.3 billion [17].
Mobile OS, as the foundation of these devices, plays a vital role in
modern life. However, the complexity and continuous evolution of
the mobile OS often introduce defects, ranging fromminor errors to
critical malfunctions [37], adversely affecting user experience and
potentially causing significant business consequences. For example,
a defect named “MediaProvider” was identified within Google’s
Android OS, which permitted attackers to execute arbitrary code
on vulnerable devices by manipulating specially crafted media
files. This defect affected approximately 1.5 billion Android users,
severely harming Google’s reputation [45].

To identify and fix such defects, mobile OS providers usually
implement strict testing procedures before releasing updates. The
beta test is a crucial final stage [26], during which various beta
users interact with the updated OS to report defects. As demon-
strated in Figure 1a, each defect is recorded in a dedicated ticket.
A vast volume of tickets is generated every day (e.g., over 3,000
in a top-tier global mobile OS provider). The ticket handling sys-
tem is responsible for triaging, and fixing these tickets to ensure a
high-quality user experience [3], as shown in Figure 1b.

During the triage stage, collected tickets must be assigned to the
appropriate development teams by triage engineers. This process is
time-consuming, requiring triage engineers to carefully review the
text and images uploaded by beta users before making assignments.
On average, an experienced triage engineer can process only about
40 tickets per day. Furthermore, the number of experienced triage
engineers is limited, as they require specialized knowledge of the
mobile OS and its associated development teams. As a result, the
reliance onmanual triage and the scarcity of skilled triage engineers

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

FSE ’25, June 23–27, 2025, Trondheim, Norway Yongqian Sun, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

...��������������

1727227855.mp41727227767.png

������������
��������� ������������
���������

����������
����������

	��
���������������������������� 	��
����������������������������

1727252049.png

��������������

���������������
������
���
������
��������������������������� ���������
��
�
�������������

���������������
��������������������
���������������­��������� ��������
�

�������������

(a) Example of duplicate tickets

Report
defects

Triage
defects

Fix
defects

Beta users Triage
team

Development
teams

Beta
test

(b) Ticket handling system

Figure 1: Illustration of duplicate tickets and overview of the ticket handling system.

often lead to delays, reducing the overall efficiency of the ticket
handling system.

Within the extensive volume of tickets, many duplicate tickets
refer to the same defect. These duplicate tickets waste valuable time
for the triage engineers because they must assign these tickets in-
dividually. To allow the triage engineers to assign duplicate tickets
collectively and improve efficiency, we can aggregate these tickets
[27]. Over the years, a series of ticket aggregation methods have
been proposed [5, 8, 27, 32]. However, these methods rely heavily
on a large number of labeled tickets to achieve satisfactory perfor-
mance. They require the labeling of connections between tickets, a
process more labor-intensive than the triage itself, rendering these
methods impractical for large-scale production environments (as
detailed in Section 5.4).

Therefore, we try to propose a low-cost ticket aggregationmethod
that relies on the fewest labeled tickets. Intuitively, we can apply
an unsupervised clustering approach to aggregate duplicate tickets
based on their semantic information. However, it faces the following
two challenges (see Section 3 for more details).

Challenge 1: Utilization of discriminative information. Due
to the lack of domain-specific training, unsupervised clustering
cannot effectively identify and utilize discriminative information
in tickets to distinguish between defects, impeding aggregation
performance.

Challenge 2: Lack of explainability. Neither clustering ap-
proaches nor existing ticket aggregation methods can provide ag-
gregation results with explanatory content. Triage engineers still
need to invest substantial time and effort in further examining the
tickets before they are assigned to the appropriate development
teams.

This paper presents TixFusion, an LLM-augmented ticket ag-
gregation framework. To address Challenge 1, we propose an in-
context learning-based method to extract discriminative informa-
tion from tickets. To address Challenge 2, we generate explanations
for each group of aggregated tickets. Additionally, recognizing the
direct visual insights from image data, we integrate image data into
our framework to enhance explainability.

The contributions of this paper are summarized as follows:

• We propose an LLM-augmented ticket aggregation framework
that achieves accurate aggregation while significantly reducing
the labeling overhead.

• We introduce an in-context learning-based method for discrimi-
native information extraction, enhancing extraction effectiveness

by incorporating domain knowledge and segmenting the pro-
cess into multiple rounds. The discriminative information is then
used to improve aggregation accuracy.

• To the best of our knowledge, we are the first to integrate image
data in ticket aggregation, offering a simple yet effective strategy
for utilizing image data. By combining image and text data, we
generate effective and readable explanations for aggregation
results, thereby enhancing the explainability.

• To substantiate the effectiveness of TixFusion, we conduct a com-
prehensive evaluation using a dataset collected from a top-tier
global mobile OS provider 𝐻 . The 𝐹1-score of TixFusion demon-
strates a significant improvement of 0.44 compared to baseline
methods. Furthermore, TixFusion has been deployed in 𝐻 for
over three months, processing more than 200,000 tickets, and
improving the processing speed of triage engineers by 3.78 times.

2 Background
2.1 Beta Test and Ticket
The inherent complexity and frequent updates of mobile OS in-
evitably introduce numerous defects. A defect is any flaw that
causes the OS to behave incorrectly or deviate from its intended
functionality, encompassing issues from minor glitches to major
malfunctions [37]. Such defects can degrade user experience and
result in adverse business impacts. To address these defects, mo-
bile OS providers usually conduct rigorous tests before releasing
updates. The beta test is the last phase of this testing process [26].
During this phase, providers distribute the updated OS to a selected
group of beta users to identify as many defects as possible.

Upon encountering defects in the updated OS, beta users report
them to the provider via tickets, as shown in Figure 1a. Each ticket
serves as a detailed record, capturing all necessary information for
the triage, diagnosis, and resolution of the defect. A ticket includes
the following fields: system version, device name, report time, defect
description (user’s detailed description of the encountered defect),
and attached files (screenshots or videos reflecting the defect).

2.2 Ticket Triage
Mobile OS providers commonly employ a robust ticket handling
system to efficiently manage tickets reported by beta users. We il-
lustrate the workflow of a ticket handling system of 𝐻 in Figure 1b.
The system first collects tickets from beta users. Next, the triage
team assigns these tickets to appropriate development teams by

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

LLM-Augmented Ticket Aggregation for Low-cost Mobile OS Defect Resolution FSE ’25, June 23–27, 2025, Trondheim, Norway

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

examining the detailed information in the tickets [4, 43, 49]. Upon
receiving assigned tickets, the development teams analyze the cor-
responding defects and fix them. Through this systematic process,
the providers aim to ensure a seamless experience for mobile OS
users by identifying and rectifying defects in the OS. The triage
phase is pivotal in this workflow, as it ensures timely and accurate
ticket assignment, optimizing the development teams’ productivity,
and enhancing the overall efficiency of the ticket handling system.

3 Motivation
The ticket handling system of 𝐻 generates over 3,000 tickets per
day, presenting a significant challenge to the efficiency of triage
engineers. Among the vast number of these tickets, many duplicate
tickets point to the same defect. Aggregation of these duplicate
tickets can improve the efficiency of triage engineers by allowing
collective processing.

Existingmethods for ticket aggregation [5, 8, 27, 32] are generally
effective but depend on an extensive amount of labeled tickets. They
require the labeling of connections between tickets, a task more
labor-intensive than the triage due to the presence of thousands of
distinct defects. Our evaluation in Section 5.4 reveals that preparing
the dataset for large-scale deployment of existing methods would
require over 1,000 person-days. Furthermore, the dynamic nature
of the mobile OS introduces new defects, necessitating frequent
updates to the labeled data and compounding the labor cost. These
factors render existing methods impractical for our production
environment.

Therefore, we try to propose a low-cost ticket aggregationmethod
that relies on the fewest labeled tickets. Intuitively, we can apply
an unsupervised clustering approach to aggregate duplicate tickets
based on their semantic information. However, it confronts the
following two challenges: utilization of discriminative information
and lack of explainability.

3.1 Challenge 1: Utilization of Discriminative
Information

During manual ticket processing, triage engineers concentrate on
defect-related information, including affected OS components, func-
tions, and defect behavior. This discriminative information is cru-
cial for distinguishing between defects. We categorize it into three
segments: component (the OS component affected by the defect),
function (the function of the affected component), and behavior
(the observed behavior of the defect), as shown in Figure 3a.

Since beta users typically do not possess specialized knowledge
of the mobile OS, discriminative information is often not directly
present in the raw tickets and requires extraction by triage engi-
neers based on their expertise. This absence leads to poor aggre-
gation performance of unsupervised clustering, as it lacks domain-
specific training to effectively extract discriminative information
from tickets.

To address this, we propose a two-step strategy: first, extract dis-
criminative information from tickets, and then use this information
as input for unsupervised clustering. This strategy allows for direct
leveraging of discriminative information to differentiate between
defects, thereby potentially improving aggregation performance.

Given that one of the primary data in tickets is the detailed
user description of defects, and considering the powerful natural
language processing capabilities of Large Language Models (LLMs),
we employ an LLM to perform the extraction [58]. Furthermore,
LLMs can achieve satisfactory performance on downstream tasks
without requiring a large amount of labeled data, which aligns with
our goal of reducing the labor cost of labeling [56].

3.1.1 Empirical Study. We conduct an empirical study to assess
the effectiveness of discriminative information extraction on unsu-
pervised clustering.

The DBSCAN clustering algorithm is tested with three embed-
ding models from a widely recognized text embedding benchmark
MTEB [36] on a test set comprising 1,479 tickets collected from
𝐻 . We use the widely accepted Rand Index (RI) [38] as the eval-
uation metric, which computes precision, recall, and 𝐹1-score by
comparing the aggregation results with the ground truth.

Table 1: Comparison of aggregation performance.

Data Embedding model Precision Recall 𝐹1-score

Raw
acge [22] 0.163 0.332 0.219

conan_v1 [29] 0.141 0.416 0.211
xiaobu_v2 [42] 0.134 0.437 0.205

Discriminative
acge 0.657 0.835 0.735

conan_v1 0.635 0.826 0.718
xiaobu_v2 0.644 0.823 0.723

The results are presented in Table 1. The top three rows repre-
sent the aggregation performance of unsupervised clustering using
raw tickets, while the bottom three rows show its performance
when discriminative information is used. The results reveal that ag-
gregation using raw tickets exhibits poor performance, supporting
the finding that unsupervised clustering algorithms cannot effec-
tively utilize the discriminative information in tickets. In contrast,
when discriminative information extracted by the LLM is employed,
the average 𝐹1-score improves by 0.514, demonstrating the signif-
icant enhancement in aggregation performance achieved by this
extraction strategy.

3.2 Challenge 2: Lack of Explainability
Clustering approaches and existing ticket aggregation methods
[5, 8, 27, 32] only deliver aggregation results without offering any
explanatory content. This lack of explainability restricts their ef-
fectiveness in facilitating the triage phase, as the triage engineers
must inspect multiple tickets within each group to assign them to
the appropriate development teams. The review process is time-
consuming, requiring engineers to examine 20% to 30% of the tickets
in each group to confirm assignments, with each ticket review tak-
ing about one minute.

To address this challenge, our framework generates explanations
for each group of aggregated tickets. These explanations offer clear
overviews of common characteristics within each group, enabling
triage engineers to comprehend the results without examining
individual tickets. Tickets often contain screenshots and videos
reflecting the defects, this image data can significantly enhance the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

FSE ’25, June 23–27, 2025, Trondheim, Norway Yongqian Sun, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Tickets

text

image

���������������

������������������ Processed
tickets

Knowledge
base

LLM Discriminative
informaiton

Aggregated
tickets

Explanations

�����
�����
����������

������������� ���������� ����������

�
	���

	
���

O�ine
Online

Figure 2: The framework of TixFusion.

explainability by providing direct visual insights of the OS’s state.
Therefore, we integrate image data into our framework to enhance
explainability.

4 Methodology
In this section, we introduce TixFusion, an LLM-augmented ticket
aggregation framework. TixFusion takes text and image data from
tickets (example in Figure 1a) as input and outputs aggregated
tickets with the same defect along with explanations.

The overall framework of TixFusion is illustrated in Figure 2,
which comprises two stages. In the offline stage, TixFusion collects
a small number of labeled tickets for in-context learning (ICL) sam-
ples [10], constructs a knowledge base, and fine-tunes the LLM. In
the online stage, TixFusion first preprocesses the tickets for noise
reduction and multimodal alignment. Then, TixFusion extracts dis-
criminative information from the processed tickets using LLM. Af-
ter that, to aggregate duplicate tickets, a clustering module is built
to vectorize this discriminative information through a pre-trained
embedding model and perform aggregation through unsupervised
clustering. Finally, TixFusion combines the extracted discriminative
information and original tickets to generate explanations for each
group of tickets with the same defect and presents the results to
the triage engineers for assignment.

4.1 Preprocessing Module
Tickets comprise both text and image data. In this stage, TixFusion
removes noise present in tickets and aligns the modalities.
Noise reduction. The text data in tickets refers to defect descrip-
tions, which are beta users’ detailed descriptions of the encoun-
tered defects. Since defect descriptions are manually written, they
sometimes contain irrelevant information such as users’ complaints,
which act as noise and obstruct subsequent processing. Large Lan-
guage Models (LLMs) have demonstrated powerful capabilities in
summarizing and refining text [58]. Therefore, TixFusion inputs the
raw text of defect descriptions into an LLM (an original GLM-4-9B)
and requests a refined version. To help the LLM identify and fil-
ter out noise, TixFusion incorporates five fixed examples into the
prompt.
Modality alignment. The image data comprises screenshots and
videos submitted by beta users to depict defects. To align the image

data with the defect descriptions in text form, TixFusion converts
this image data into text. Specifically, we individually process each
image using a multimodal large language model (mLLM, such as
GLM-4v[16]), generating detailed image descriptions. For videos,
we extract frames at a constant interval of 180 frames and feed
these frames into the mLLM for descriptions.

4.2 Extraction Module
To facilitate the subsequent unsupervised clustering, TixFusion
utilizes an LLM to extract discriminative information from the pre-
processed defect descriptions and image descriptions. However,
tickets contain certain domain knowledge, and the performance
of direct extraction through LLM is not satisfactory (see Section
5.3.1 for details). In light of this, in addition to conventional tech-
niques such as in-context learning prompting, chain-of-thought
prompting[51], and fine-tuning, TixFusion introduces two enhance-
ments: knowledge base construction and multi-round extraction.

4.2.1 Knowledge Base Construction. A knowledge base that encom-
passes triage engineers’ understanding of defects can provide the
LLM with additional context and enhance the quality of discrimina-
tive information extraction. Such knowledge bases are usually con-
structed through domain-specific documents [15]. However, there
are no such documents in our scenario, and creating them from
scratch requires a substantial amount of manual labor. Therefore,
we request experienced triage engineers to label a small number
(e.g., 10,000 in our scenario) of tickets and extract their knowledge
from these labels. The labels represent discriminative information
in the defect descriptions, formatted as “component (the OS compo-
nent affected by the defect) - function (the function of the affected
component) - behavior (the observed behavior of the defect)", as
illustrated in the left part of Figure 3a. This information is critical to
triage engineers during manual ticket processing, as outlined in Sec-
tion 3.1. The knowledge reflects typical behaviors of components
and functions in defect descriptions.

We derive two types of knowledge from the labeled tickets, cor-
responding to the OS’s components and the functions of those
components. Initially, we group the labeled tickets by component.
Within each group, we batch the defect descriptions and correspond-
ing labels, input them into an LLM (an original GLM-4-9B) along
with five fixed knowledge examples, and request summarizations

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LLM-Augmented Ticket Aggregation for Low-cost Mobile OS Defect Resolution FSE ’25, June 23–27, 2025, Trondheim, Norway

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

��������
������������������� Clicking
on the AI line in the middle
bottom of the screen has no
reaction at all.

����������������
���������������
 AI Navigation Bar
 - Navigation Bar Operation

- No response on click

ticket n

...

����
��	������

����������
�
�

�����
�	���������� When
users report issues related
to anomalies in the bottom
navigation bar of the
screen, such as
mismatched operations,
interaction anomalies,
missing functions ...

LLM

���������
�
�

��
�	��������������������
When users report issues
with the navigation bar at
the bottom of their mobile
system’s screen, such as
being unable to click or
respond, or related features
like smart voice control... ...

���������
��������
��������

(a) An example of discriminative information and knowledge

�����������������������

����������������������

����
������
��

����������

�	�

��������

�	�

(b) Construction workflow

Figure 3: Illustration of knowledge base construction.

about how components are described in defect descriptions. Next,
within each component group, we further group tickets by function
and request similar summarizations. These summarizations collec-
tively form a knowledge base, which provides additional context
to the LLM to enhance the quality of discriminative information
extraction.

4.2.2 Multi-Round Extraction. Inspired by inference scaling laws
[1, 41, 52], which suggest that increased computational resources
during inference can improve the model’s performance, TixFusion
adopts a multi-round extraction approach for defect descriptions
to enhance discriminative information extraction.

Initially, we prompt an LLM (a fine-tuned GLM-4-9B for ex-
traction) to identify the OS component impacted by the defect.
Subsequently, we direct the LLM to determine the specific function
of the identified component. Throughout the initial two rounds,
we integrate relevant knowledge about components and functions
from the knowledge base to assist identification. Finally, we ask
the LLM to summarize the anomalous behavior of the defect based
on the previously identified component and function. These three
rounds of interaction yield a structured “component - function -
behavior" format for discriminative information, as illustrated in
the left part of Figure 3a. During each extraction round, TixFusion
calculates the similarity between the current defect description and
the training set and incorporates the top-ranked (five in this paper)
examples into the prompts. Motivated by [12, 15, 47], we employ
the pre-trained Sentence-BERT [39] embedding model for similarity
calculation. Note that the calculation of similarity is not the con-
tribution of TixFusion. To more clearly illustrate the multi-round
extraction process, we use the following equations. Here, 𝐶 repre-
sents the identified component, 𝐹 represents the identified function,
𝐵 represents the summarized anomalous behavior, 𝐾 represents the
knowledge matched through the components and functions of the
examples.

LLM(query, examples, 𝐾comp) → 𝐶identified (1)
LLM(query, examples,𝐶identified, 𝐾func) → 𝐹identified (2)

LLM(query, examples,𝐶identified, 𝐹identified) → Banomalous (3)

Although multi-round extraction with the LLM requires more
computational time, we have adopted a daily-batch processing
workflow for deployment (see Section 6.1), where tickets received
during the day are processed at night. Therefore, the time consump-
tion is not a significant concern.

4.2.3 Image Data Utilization. Image descriptions are detailed
depictions of device screens where users encounter defects, offer-
ing direct visual insights of the OS’s state. These descriptions are
derived from user-uploaded screenshots and videos through the
preprocessing module.

We extract discriminative information from image descriptions
following the experience of triage engineers. During manual ticket
processing, triage engineers require only information from image
data that indicates the specific page or application in which the user
encountered the defect. This coarse-grained information derived
from image data is sufficient to facilitate the assignment of tickets.
Therefore, we input the image descriptions into an LLM and prompt
it to identify the pages being described (e.g., wifi connection page)
and take these as discriminative information from image data.

4.3 Clustering Module
The extracted discriminative information from defect descriptions
and image descriptions will be vectorized first by a pre-trained
Sentence-BERT model acge [22]. Then, the vectors are combined
through a weighted sum (e.g., 0.9 for defect descriptions and 0.1
for image descriptions) to create a single vector representation
for each ticket. After that, TixFusion employs the DBSCAN [11]
algorithm to perform clustering. As one iteration of clustering with
a fixed epsilon (eps) value cannot effectively cluster tickets due
to potential variations in the vector distances between different
groups of duplicate tickets, we execute the clustering twice. Initially,
we run DBSCANwith a large eps (0.2) for coarse-grained clustering.
For each group of tickets obtained from the initial clustering, we
calculate the local density of the group and use it as the epsilon
value for the second round of clustering.

After obtaining the aggregated tickets from the clustering, we
enhance explainability by providing explanations for each group.
These explanations facilitate a comprehensive understanding of
each group, allowing triage engineers to assign entire groups at
once without inspecting individual tickets, thus streamlining the
triage process. We create these explanations based on the insights
of triage engineers.

When triage engineers identify duplicate tickets, they first pin-
point discriminative information within the tickets. Subsequently,
they locate similar tickets in the dataset that point to the same defect
based on this information. Through this process, triage engineers
gather groups of duplicate tickets and gain a basic understanding
of each group.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

FSE ’25, June 23–27, 2025, Trondheim, Norway Yongqian Sun, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

We use an LLM to simulate this manual process and turn this ba-
sic understanding into concrete explanations. Specifically, we input
discriminative information, extracted from defect descriptions and
image descriptions based on triage engineers’ domain knowledge,
into the LLM to generate explanations. The discriminative infor-
mation from defect descriptions provides essential information for
distinguishing between defects, while that from image descriptions
offers direct visual insights into the state of the mobile OS. Addi-
tionally, we also input the original defect descriptions to provide
necessary details for generating explanations.

5 Evaluation
In this section, we conduct a comprehensive evaluation of TixFusion
to answer the subsequent research questions (RQs):
• RQ1: How does TixFusion perform overall in aggregating dupli-

cate tickets?
• RQ2: Does each component of TixFusion contribute significantly

to TixFusion’s performance?
• RQ3: How does the labor cost of the labeling data for TixFusion

compare to that of baseline methods?
• RQ4: How do we select the embedding model and the backbone

LLM for TixFusion?

5.1 Experiment Setup
5.1.1 Dataset. We collect a total of 11,431 tickets from the pro-
duction environment of 𝐻 . Among these, 9,952 tickets are used for
training, and the remaining 1,479 tickets are utilized to evaluate
aggregation performance.

5.1.2 Implementation Details. We conduct all the experiments with
two NVIDIA A30 GPUs, PyTorch 2.0.0, and CUDA toolkit 11.4. We
use GLM-4-9B and GLM-4V-9B [16] as the backbone models. The
fine-tuning is conducted with LLaMAFactory [59] and LoRA [19].

5.1.3 Metrics. Following existing methods [27, 32], we adopt the
widely accepted Rand Index (RI) [38] to evaluate the performance of
ticket aggregation. The RI calculates Precision, Recall, and 𝐹1-score
by measuring the similarity between the aggregation result and the
ground truth. Given a set of tickets, let 𝐶 denote the aggregation
result, and 𝐺 denote the ground truth. RI defines the following
metrics:
• True Positive (TP): The number of pairs of tickets correctly

identified as correlated in both 𝐶 and 𝐺 .
• True Negative (TN): The number of pairs of tickets correctly

identified as not correlated in both 𝐶 and 𝐺 .
• False Positive (FP): The number of pairs of tickets incorrectly

identified as correlated in 𝐶 , but actually not correlated in 𝐺 .
• False Negative (FN): The number of pairs of tickets incorrectly

identified as not correlated in 𝐶 , but actually correlated in 𝐺 .

Using these four basic metrics, RI derives: 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 ,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

5.1.4 Baselines.

• DBSCAN:We use a pre-trained Sentence-BERT model acge [22]
to vectorize tickets and subsequently apply DBSCAN clustering
to aggregate duplicate tickets.

• LiDAR [8]: LiDAR is a deep learning-based approach to identify
linked incidents in cloud systems. It integrates textual and struc-
tural information to predict connections among incidents. For
this evaluation, only the textual information of tickets is used to
identify links.

• iPACK [32]: iPACK is an incident-aware method used to ag-
gregate duplicate customer support tickets in cloud systems. It
operates in three steps: alert parsing, incident profiling, and
ticket-event correlation. For this study, we focus on the ticket-
event correlation step, which employs an attentive interaction
network to identify and aggregate duplicate tickets.

• COLA [27]: COLA combines correlation mining and LLM rea-
soning to aggregate alerts in cloud systems. COLA leverages
statistical evidence from frequent alerts and enhances LLM per-
formance through domain-specific documents. For our evalu-
ation, correlation mining is implemented using text similarity,
while the LLM reasoning module is left unchanged.
To construct the training set for baseline methods, we calculate

the semantic similarity between the labeled discriminative infor-
mation of tickets. A threshold is then determined based on insights
from triage engineers to establish connections among tickets. To
ensure comparability between the labor costs of labeling training
data for baseline methods and TixFusion, the size of the baseline
training dataset is fixed at 2,000 tickets. This decision aligns with
the labor cost comparison ratio discussed in Section 5.4.

5.2 RQ1: The Overall Performance
The comparative analysis, summarized in Table 2, highlights the
superior performance of TixFusion, which achieves an 𝐹1-score of
0.735, significantly outperforming the baseline approaches. The
learning-based approaches, including LiDAR, iPACK, and COLA,
exhibit suboptimal aggregation performance, likely due to the con-
strained size of their training datasets (see Section 5.1.4). This lim-
itation restricts their ability to capture the connections between
tickets effectively.

The unsupervised aggregation approach, leveraging a pre-trained
embedding model combined with DBSCAN clustering, also demon-
strates relatively poor performance. This outcome aligns with our
finding that unsupervised aggregation approaches, lacking explicit
training, struggle to identify and exploit discriminative information
within tickets to differentiate between distinct defects.

TixFusion addresses these challenges by employing an LLM to
extract discriminative information from tickets before applying
unsupervised aggregation, resulting in a marked performance im-
provement.

Table 2: Performance comparison of different methods.

Method Precision Recall 𝐹1-score

DBSCAN 0.107 0.599 0.181
LiDAR 0.135 0.379 0.199
iPACK 0.124 0.348 0.182
COLA 0.203 0.657 0.310
TixFusion 0.657 0.835 0.735

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LLM-Augmented Ticket Aggregation for Low-cost Mobile OS Defect Resolution FSE ’25, June 23–27, 2025, Trondheim, Norway

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

5.3 RQ2: Ablation Study
To assess the contributions of individual components in TixFusion,
we conduct ablation studies focusing on the extraction module,
clustering module, and the utilization of image data.

Table 3: Effectiveness of each component in TixFusion.

Method Precision Recall 𝐹1-score

TixFusion w/o EM 0.163 0.332 0.219
TixFusion w/o ICL-e 0.586 0.714 0.643
TixFusion w/o 2R-DBSCAN 0.656 0.812 0.726
TixFusion w/o Image 0.654 0.830 0.732
TixFusion 0.657 0.835 0.735

5.3.1 Extraction Module. The extraction module employs an LLM
to extract discriminative information from tickets, enhancing ag-
gregation performance (detailed in Section 4.2). To further refine
extraction, two additional techniques are integrated: knowledge
base construction and multi-round extraction. These techniques
are collectively considered as an In-Context-Learning (ICL)-based
enhancement, as the constructed knowledge is embedded into mul-
tiple rounds of interaction with the LLM.

Experiments are conducted under two configurations: one with-
out the extraction module, using raw ticket descriptions directly
(denoted as w/o EM), and another with the extraction module but
without the ICL-based enhancement (denoted as w/o ICL-e).

As listed in Table 3, the results confirm the effectiveness of
the extraction module in identifying discriminative information,
significantly improving aggregation performance. Moreover, the
ICL-based enhancement further boosts the quality of extraction,
contributing to superior results.

5.3.2 Clustering Module. The clustering module converts the ex-
tracted discriminative information into vectors and applies unsu-
pervised clustering to aggregate duplicate tickets. Due to variations
in the distances between groups of duplicate tickets after Sentence-
BERT embedding, a fixed epsilon value in DBSCAN clustering may
not yield optimal results for all groups. To address this, we pro-
pose a two-round DBSCAN clustering approach. The first round
employs a larger epsilon value for coarse-grained clustering, and
the resulting clusters are refined in the second round using locally
calculated density-based epsilon values.

This method is compared against a single-round DBSCAN ap-
proach using a smaller, fixed epsilon value (denoted as w/o 2R-
DBSCAN). The results in Table 3 demonstrate that the two-round
clustering approach effectively enhances aggregation performance
by dynamically adjusting epsilon values to better suit varying clus-
ter densities.

5.3.3 Image Data Utilization. User-provided image data, including
screenshots and videos illustrating reported defects, is incorporated
into TixFusion through a multimodal LLM. We evaluate the impact
of image data on both aggregation performance and explainability.
Aggregation performance. When evaluating aggregation results
without utilizing image data (denoted as w/o Image), we observe
only minimal improvements in the 𝐹1-score when image data is

included. This outcome is anticipated, as the granularity of the dis-
criminative information extracted from images is relatively coarse,
often lacking the specificity required for effective aggregation.

1 2 3
Rank

Image and Text

Text

Rule

Figure 4: The ranking given by triage engineers.

Explainability. Beyond aggregation, TixFusion generates explana-
tions for each group of tickets, utilizing discriminative information
derived from both text (defect descriptions) and image data (screen-
shots and videos). This aids triage engineers in comprehending the
aggregation results.

To validate the role of image data in enhancing explainability,
we generate three types of explanations for each group of aggre-
gated tickets: (1) using both text and image data, (2) using only text
data, and (3) rule-based explanations. Triage engineers rank the
explanations on a scale from 1 to 3, where a ranking of 1 denotes
the most effective and readable explanation, while a ranking of 3
indicates the least effective and readable. Effectiveness is evaluated
based on the explanation’s ability to comprehensively encapsulate
the discriminative information of the entire group, whereas read-
ability is assessed in terms of clarity, simplicity, logical structure,
and grammatical accuracy.

As shown in Figure 4, explanations integrating both text and
image data are rated as themost effective and readable in over 86% of
groups. This underscores the significant contribution of image data
to the explainability of the aggregation results, providing valuable
context for triage engineers.

5.4 RQ3: Labor Cost of Labeling
Existing ticket aggregation approaches rely on extensive labeled
datasets to identify connections between tickets, incurring sub-
stantial labor costs. To address this limitation, TixFusion adopts
unsupervised clustering to aggregate tickets and integrates an LLM
to enhance performance (detailed in Section 3). Specifically, Tix-
Fusion utilizes an LLM to extract discriminative information from
tickets, which are then fed into the unsupervised clustering as in-
put. While the discriminative information extraction process still
requires labeled data, such as examples of in-context learning or
fine-tuning, TixFusion shifts the focus of labeling from identifying
connections between tickets to labeling the discriminative informa-
tion of individual tickets. This shift significantly reduces labeling
labor costs.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

FSE ’25, June 23–27, 2025, Trondheim, Norway Yongqian Sun, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

To evaluate TixFusion’s effectiveness in reducing labeling labor
costs, we conducted a study involving two groups of triage engi-
neers tasked with labeling 1,200 tickets using two distinct methods.
The total time consumption (measured in person-days) is recorded
for both methods:
• Labeling of connections: This method, corresponding to exist-

ing ticket aggregation approaches, involves two steps: (1) ticket
understanding, where engineers comprehend the defect based
on text and image data within the tickets, and (2) duplicate ticket
search, where engineers identify other tickets in the dataset that
reference the same defect.

• Labeling of discriminative information: This method aligns
with the labeling required by TixFusion and also comprises two
steps: (1) ticket understanding and (2) discriminative information
output, where engineers articulate the discriminative informa-
tion corresponding to the defect based on their understanding
of the ticket.
The total time consumption and the breakdown of each step

for both labeling methods are summarized in Table 4. Labeling dis-
criminative information for 1,200 tickets using TixFusion’s method
required only 2.0 person-days, reflecting a 79% reduction in la-
bor compared to labeling connections. This significant reduction
primarily results from eliminating the most time-intensive step
in the connection labeling process: duplicate ticket search, where
engineers must scan the dataset to identify related tickets.

Table 4: Comparison of labeling methods.

Labeling Step 1 Prop. Step 2 Prop. Time Consumption

Connections 0.15 0.85 9.6 person-days
Discriminative 0.5 0.5 2.0 person-days

Moreover, the labor-saving potential of TixFusion’s labelingmethod
is expected to increase as the dataset size grows. The time re-
quired for duplicate ticket search scales with the size of the dataset,
whereas the discriminative information labeling process remains
relatively constant regardless of dataset size.

To provide additional context, existing aggregation methods
in the baselines have leveraged labeled datasets containing hun-
dreds of thousands of tickets for large-scale deployments in cloud
systems. Given the complexity of mobile OS, which shares simi-
larities with cloud systems—such as intricate ticket categories and
the generation of thousands of tickets daily [21]—it is reasonable
to anticipate that similar labeling requirements would apply for
large-scale deployments in our production environment. For Tix-
Fusion, we estimate that approximately 100,000 labeled tickets will
be required to ensure robust performance in large-scale deploy-
ment. Based on this scale, we project that TixFusion will require
167 person-days to label the dataset, representing an 89% reduction
compared to the 1,480 person-days required by baseline methods.

5.5 RQ4: Selection of Embedding Models and
LLMs

This section presents a comparative analysis of the embedding
model and LLM selections utilized by TixFusion.

For the embedding model, we employ acge [22], which serves
two purposes: (1) identifying examples for ICL and (2) vectorizing
tickets for the clustering module. To ensure optimal performance,
we select acge based on the results of the MTEB benchmark [36],
a widely used text embedding evaluation framework. We com-
pare acge against two other embedding models from the same
benchmark. As shown in Table 5, acge outperforms the alternatives,
confirming its suitability for TixFusion.

For the LLM, we utilize GLM-4-9B [16] to extract discrimina-
tive information from tickets. Its performance is compared against
two similarly sized state-of-the-art models: Qwen-2.5-7B [44] and
InternLM-2.5-7B [2]. The comparison results, also presented in Ta-
ble 5, demonstrate that GLM-4-9B achieves the best performance
among the three models, further validating its selection for TixFu-
sion.

Table 5: Comparison of embedding models and LLMs.

Method Precision Recall 𝐹1-score

ICL-xiaobu_v2 [42] 0.644 0.823 0.723
ICL-conan_v1 [29] 0.635 0.826 0.718
ICL-acge [22] 0.657 0.835 0.735

Clustering-xiaobu_v2 [42] 0.581 0.729 0.647
Clustering-conan_v1 [29] 0.554 0.676 0.609
Clustering-acge [22] 0.657 0.835 0.735

LLM-Qwen-2.5-7B [44] 0.569 0.669 0.615
LLM-InternLM-2.5-7B [2] 0.574 0.626 0.599
LLM-GLM-4-9B [16] 0.657 0.835 0.735

Report
defects

Triage
defects

Fix
defects

Beta users Triage
team

Development
teams

Beta
test

TixFusion

Aggregate
defects

Figure 5: The deployment of TixFusion on the ticket handling
system.

6 Discussion
6.1 Deployment
We have integrated the proposed method, TixFusion, into the ticket
handling system of 𝐻 for trial implementation. Over a stable op-
eration period exceeding three months, TixFusion has processed
more than 200,000 tickets and has improved the efficiency of triage
engineers by 3.78 times. The deployment architecture of TixFusion
is illustrated in Figure 5.

The system employs a daily batch-processing workflow to pro-
cess tickets. All tickets submitted by beta users are forwarded by the

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LLM-Augmented Ticket Aggregation for Low-cost Mobile OS Defect Resolution FSE ’25, June 23–27, 2025, Trondheim, Norway

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

ticket 1
After upgrading to
version 30, there is no
response when clicking
on the AI wisdom bar.

ticket 3
Clicking on the AI line in
the middle bottom of
the screen has no
reaction at all.

ticket 2
The AI navigation bar,
the single-click function
is disabled.

ticket 4
In this interface in the
wallet, the navigation
bar is not clickable.

ticket 5
The AI navigation bar is still not usable, no response after
pressing it. If the navigation bar cannot be canceled, it is
suggested to allow users to set it to hidden, as I don’t like
the screen not being full screen with a big chin left.

Extraction
module

��������������������

ticket 1
AI Navigation Bar - Navigation Bar
Operation - No response on click

ticket 5
AI Navigation Bar - AI Navigation Bar -
Unable to use

ticket 4
AI Navigation Bar - In-app - Navigation
bar click not available

ticket 3
AI Navigation Bar - Navigation Bar
Operation - No response on click

ticket 2
AI Navigation Bar - Navigation Bar
Operation - Navigation bar not available Clustering

module

Group 1

tickets: ticket 1, 2, 3, 4, 5
Explanation: The main issues manifest
as the AI navigation bar not responding
to clicks or being unavailable across
various application scenarios. These
problems span multiple interfaces
including hotel booking, settings,
weather, wallet, and the desktop,
indicating that this is a
cross-application functional issue

���������������������������
�������� ���������������
	�

Triage team Development
teams

Figure 6: The workflow of an example.

ticket handling system to a GPU server hosting TixFusion. Within
the server, TixFusion executes a series of operations, including pre-
processing, discriminative information extraction, and clustering.
Once processing is completed, TixFusion returns the aggregation re-
sults to the ticket handling system. These results consist of grouped
tickets, each accompanied by detailed explanations for the respec-
tive groups. The ticket handling system then presents these aggre-
gated groups and their explanations to triage engineers, facilitating
efficient ticket assignment.

6.2 Case Study
To comprehensively demonstrate the workflow of TixFusion and
its pivotal role in the triage process, we present a detailed case
study. This case examines a group of duplicate tickets identified
by TixFusion. To uphold strict user privacy standards, all sensitive
information, including screenshots, recordings, and related data,
has been excluded from the description. The group comprises five
tickets, all reporting the same system defect: the unresponsiveness
or malfunction of the “AI navigation bar”.

As shown in Figure 6, the tickets are first processed through
the preprocessing and discriminative information extraction stages.
During this phase, discriminative information is extracted from the
tickets to serve as input for subsequent analysis. It is then passed to
the clustering module, where they are vectorized using Sentence-
BERT and aggregated using the DBSCAN algorithm. The clustering
module identifies these five tickets as belonging to the same group
and generates a concise explanation based on both the extracted
discriminative information and the original ticket content. This
explanation provides a synthesized overview of the grouped tickets,
allowing triage engineers to quickly understand the aggregation
results. Consequently, the engineers can assign the entire group
collectively, eliminating the need to review each ticket individually.

Further analysis is provided in Figure 7, which presents the
cosine similarity matrices comparing the original defect descrip-
tions and the extracted discriminative information. The relatively
low cosine similarities among the original descriptions indicate

ticket1 ticket2 ticket3 ticket4 ticket5

tic
ke

t1
tic

ke
t2

tic
ke

t3
tic

ke
t4

tic
ke

t5

Original Description Similarity Matrix

ticket1 ticket2 ticket3 ticket4 ticket5

tic
ke

t1
tic

ke
t2

tic
ke

t3
tic

ke
t4

tic
ke

t5

Discriminative Information Similarity Matrix

0.6

0.7

0.8

0.9

1.0

Figure 7: Similarity matrices of the example.

challenges in grouping the tickets directly based on raw input, po-
tentially leading to reduced aggregation performance. However,
the higher cosine similarities among the extracted discriminative
information highlight the effectiveness of the extraction step in
enhancing aggregation accuracy.

6.3 Lessons Learned
6.3.1 Explainability of the Results. Initially, we only presented ag-
gregated tickets to the triage engineers. However, they feedbacked
that this output was of limited assistance, as they still needed to
examine multiple tickets within each group to decide appropri-
ate development teams for assignment. Therefore, we utilized an
LLM to generate detailed explanations for each group of aggre-
gated tickets, thereby aiding triage engineers in comprehending
the aggregation results.

6.3.2 Presentation of the Results. Given that the purpose of our
framework is to facilitate triage engineers, it is essential to prioritize
their needs when presenting the results. A clumsy presentation for-
mat could potentially compromise the practical effectiveness of the
framework. Consequently, we iteratively refined the presentation
format of the aggregation results based on the feedback from triage
engineers and ultimately integrated it into their existing triage
platform.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

FSE ’25, June 23–27, 2025, Trondheim, Norway Yongqian Sun, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

6.4 Generality of Results
Adaptability. This research is based on data collected from a
top-tier global mobile OS provider, which ensures the represen-
tativeness of our conclusions and methodologies. Furthermore, the
methodological framework, which utilizes LLMs to extract discrim-
inative information from data and combines them with traditional
machine learning techniques, demonstrates a high degree of versa-
tility. While initially designed for the scenarios addressed in this
study, the framework can be effectively extended to other domains
that involve natural language-rich data. Examples include the analy-
sis of failure reports in cloud systems and the processing of support
tickets in customer service operations. This versatility highlights
the potential for our method to serve as a reference for advancing
research and applications in related fields.
Robustness. Our method exhibits significant robustness, even
under varying data availability conditions. While image data is
incorporated into the ticket aggregation process to enhance ac-
curacy and explainability, the method retains its effectiveness in
scenarios where image data is unavailable. This resilience ensures
that the method maintains consistent performance and reliability,
regardless of the completeness of the data. Such robustness under-
scores the suitability of TixFusion for deployment in heterogeneous
environments, where data completeness may vary significantly.
Flexibility. TixFusion’s modular design endows it with exceptional
flexibility, granting mobile OS providers substantial autonomy in
adapting the framework to their specific needs. While preserving
the overall effectiveness of the framework, mobile OS providers can
customize various components, such as substituting clustering algo-
rithms or selecting LLMs tailored to their application contexts and
operational scales. This high degree of adaptability is particularly
critical in dynamic business environments, enabling the framework
to accommodate diverse requirements and challenges. By allow-
ing organizations to optimize the solution based on their unique
demands, our method maximizes operational efficiency and effec-
tiveness, further solidifying its value in real-world applications.

7 Related Work
7.1 Ticket Aggregation
Ticket aggregation methods aim to identify duplicate tickets that
refer to the same bug, cloud incident, or system defect, allowing
engineers to focus on resolving the issue and avoid wasting time
inspecting redundant tickets. LinkCM [18] aggregates customer
report tickets by matching them with system incidents to improve
customer service efficiency. LiDAR [8] aggregates related incidents
by combining semantic and service dependency representations to
facilitate incident mitigation. Warden [28] groups related alerts to
detect potential failures in cloud systems, enhancing incident man-
agement efficiency and reducing downtime. GRILA [9] aggregates
incidents by learning from the cascade graph of cloud failures to
narrow the scope of incidents and improve incident management
efficiency. OAS [5] aggregates alerts by learning their semantics
and behavioral representations, summarizing grouped alerts to aid
maintenance engineers in understanding system failures. iPACK
[32] aggregates customer support tickets using co-occurrence pat-
terns to improve customer ticket management efficiency. COLA

[27] aggregates alerts by combining correlation mining and LLM
to promote cloud system fault resolution.

Despite the excellent results achieved by the aforementioned
aggregation methods, they typically require extensive labeled data
for training, which incurs significant labor costs. To address this,
we adopt unsupervised clustering to aggregate duplicate tickets
and utilize an LLM to enhance its aggregation performance by
extracting discriminative information from tickets.

7.2 LLM for Software Engineering
The rapid advancement of Large Language Models (LLMs) has led
to their widespread application across various domains of software
engineering, including code generation [6, 13, 14, 33, 35, 46, 54],
log analysis [20, 24, 30, 31, 34, 53, 55, 60] , and cloud system main-
tenance [7, 23, 25, 40, 48, 50, 57].

In the domain of code generation, significant progress has been
made by integrating LLMs with specific tasks. For instance, DCGen
[46] translates webpage designs into corresponding UI code, stream-
lining the development process. Similarly, GPTDroid [35] utilizes
LLMs to generate GUI test scripts by passing page information to
the model, thereby automating the testing phase. For log analysis,
UniLog [53] proposes an automatic logging framework based on
in-context learning (ICL). LILAC [24] conducts log parsing with
improved ICL techniques.

In the realm of cloud system maintenance, LLMs have been uti-
lized to improve themanagement and resolution of incidents. OASIS
[25] generates human-readable summaries of system outages, aid-
ing maintenance engineers in quickly understanding the context
and severity of issues. RCAgent [48] conducts root cause analysis
on cloud incidents through a tool-augmented agent framework, en-
abling more effective resolution of cloud incidents. Different from
the aforementioned methods, which use LLMs as output genera-
tors, we leverage LLM as an auxiliary tool alongside the traditional
clustering algorithm to aggregate tickets.

8 Conclusion
In this paper, we introduce TixFusion, an LLM-augmented ticket ag-
gregation framework, specifically designed to streamline the triage
process for tickets generated during the beta testing of mobile
OS. By leveraging LLMs to extract discriminative information and
enhance aggregation performance, TixFusion effectively achieves
high-quality aggregation with minimal reliance on labor-intensive
data labeling. We propose an in-context learning-based extraction
method to improve the quality of discriminative information ex-
traction. Furthermore, by integrating a multimodal LLM, TixFusion
incorporates image data into the ticket aggregation process for the
first time, enabling a more comprehensive analysis of tickets. To as-
sist triage engineers, TixFusion generates concise and interpretable
explanations for each group of aggregated tickets, facilitating ef-
ficient decision-making. Extensive experiments conducted on a
ticket dataset from the production environment of a top-tier global
mobile OS provider 𝐻 demonstrate that TixFusion outperforms all
state-of-the-art methods. Additionally, TixFusion has been deployed
in𝐻 for over three months, during which it has achieved a 3.78-fold
increase in the processing efficiency of triage engineers.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

LLM-Augmented Ticket Aggregation for Low-cost Mobile OS Defect Resolution FSE ’25, June 23–27, 2025, Trondheim, Norway

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

References
[1] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le,

Christopher Ré, and Azalia Mirhoseini. 2024. Large Language Monkeys: Scal-
ing Inference Compute with Repeated Sampling. arXiv:2407.21787 [cs.LG]
https://arxiv.org/abs/2407.21787

[2] Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen,
Xun Chen, Zehui Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi
Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo,
Qipeng Guo, Conghui He, Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao,
Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li, Shuaibin Li, Wei
Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao,
Demin Song, Zifan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang,
Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,
Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong, Chao Xu, Ruiliang Xu,
Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia Yu, Jing Yu,
Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang,
Shuo Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng
Zhang, Xinyue Zhang, Hui Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou,
Zaida Zhou, Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao, and Dahua Lin.
2024. InternLM2 Technical Report. arXiv:2403.17297 [cs.CL]

[3] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An Empirical
Investigation of Incident Triage for Online Service Systems. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). 111–120. doi:10.1109/ICSE-SEIP.2019.00020

[4] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical
investigation of incident triage for online service systems. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 111–120.

[5] Jia Chen, Peng Wang, and Wei Wang. 2022. Online summarizing alerts through
semantic and behavior information. In Proceedings of the 44th International
Conference on Software Engineering. 1646–1657.

[6] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei
Yin. 2024. ChatUniTest: A Framework for LLM-Based Test Generation. In Com-
panion Proceedings of the 32nd ACM International Conference on the Foundations of
Software Engineering (Porto de Galinhas, Brazil) (FSE 2024). Association for Com-
puting Machinery, New York, NY, USA, 572–576. doi:10.1145/3663529.3663801

[7] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao,
Xuedong Gao, Hao Fan, Ming Wen, et al. 2024. Automatic root cause analysis
via large language models for cloud incidents. In Proceedings of the Nineteenth
European Conference on Computer Systems. 674–688.

[8] Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin,
Junjie Chen, Pu Zhao, Yu Kang, Feng Gao, et al. 2020. Identifying linked incidents
in large-scale online service systems. In Proceedings of the 28th ACM joint meeting
on European software engineering conference and symposium on the foundations
of software engineering. 304–314.

[9] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xuemin Wen, Xiao
Ling, Yongqiang Yang, and Michael R Lyu. 2021. Graph-based incident aggrega-
tion for large-scale online service systems. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 430–442.

[10] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia,
Jingjing Xu, ZhiyongWu, Tianyu Liu, et al. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234 (2022).

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
kdd, Vol. 96. 226–231.

[12] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,
Tat-Seng Chua, and Qing Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 6491–6501.

[13] Shuzheng Gao, Cuiyun Gao, Wenchao Gu, and Michael Lyu. 2024. Search-Based
LLMs for Code Optimization. arXiv preprint arXiv:2408.12159 (2024).

[14] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
and Michael R Lyu. 2023. What makes good in-context demonstrations for code
intelligence tasks with llms?. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 761–773.

[15] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi
Dai, Jiawei Sun, Meng Wang, and Haofen Wang. 2024. Retrieval-Augmented
Generation for Large Language Models: A Survey. arXiv:2312.10997 [cs.CL]
https://arxiv.org/abs/2312.10997

[16] Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego
Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai
Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei
Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang,

Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang,
Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan
Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
2024. ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4
All Tools. arXiv:2406.12793

[17] GSMA. 2023. The State of Mobile Internet Connectivity 2023.
https://www.gsma.com/r/wp-content/uploads/2023/10/The-State-of-Mobile-
Internet-Connectivity-Report-2023.pdf. Accessed: 2024-11-22.

[18] Jiazhen Gu, Jiaqi Wen, Zijian Wang, Pu Zhao, Chuan Luo, Yu Kang, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Efficient customer incident
triage via linking with system incidents. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1296–1307.

[19] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large
Language Models. arXiv:2106.09685 [cs.CL] https://arxiv.org/abs/2106.09685

[20] Junjie Huang, Zhihan Jiang, Zhuangbin Chen, and Michael R Lyu. 2024. ULog:
Unsupervised Log Parsing with Large Language Models through Log Contrastive
Units. arXiv preprint arXiv:2406.07174 (2024).

[21] Junjie Huang, Jinyang Liu, Zhuangbin Chen, Zhihan Jiang, Yichen Li, Jiazhen Gu,
Cong Feng, Zengyin Yang, Yongqiang Yang, andMichael R Lyu. 2024. FaultProfIT:
Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems. In
Proceedings of the 46th International Conference on Software Engineering: Software
Engineering in Practice. 392–404.

[22] INTSIG. 2024. acge_text_embedding. https://huggingface.co/aspire/acge_text_
embedding Accessed: 2024-12-28.

[23] Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si Qin,
Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, et al. 2024. Xpert:
Empowering incident management with query recommendations via large lan-
guage models. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1–13.

[24] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, and Michael R Lyu. 2024. Lilac: Log parsing using
llms with adaptive parsing cache. Proceedings of the ACM on Software Engineering
1, FSE (2024), 137–160.

[25] Pengxiang Jin, Shenglin Zhang, Minghua Ma, Haozhe Li, Yu Kang, Liqun Li,
Yudong Liu, BoQiao, Chaoyun Zhang, Pu Zhao, et al. 2023. Assess and summarize:
Improve outage understanding with large language models. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1657–1668.

[26] Mateja Kocbek and Marjan Hericko. 2013. Beta Testing of a Mobile Application:
A Case Study.. In SQAMIA. Citeseer, 29–34.

[27] Jinxi Kuang, Jinyang Liu, Junjie Huang, Renyi Zhong, Jiazhen Gu, Lan Yu, Rui Tan,
Zengyin Yang, and Michael R Lyu. 2024. Knowledge-aware Alert Aggregation
in Large-scale Cloud Systems: a Hybrid Approach. In Proceedings of the 46th
International Conference on Software Engineering: Software Engineering in Practice.
369–380.

[28] Liqun Li, Xu Zhang, Xin Zhao, Hongyu Zhang, Yu Kang, Pu Zhao, Bo Qiao, Shilin
He, Pochian Lee, Jeffrey Sun, et al. 2021. Fighting the fog of war: Automated
incident detection for cloud systems. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). 131–146.

[29] Shiyu Li, Yang Tang, Shizhe Chen, and Xi Chen. 2024. Conan-
embedding: General Text Embedding with More and Better Negative Samples.
arXiv:2408.15710 [cs.CL] https://arxiv.org/abs/2408.15710

[30] Yichen Li, Yintong Huo, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, Lionel C
Briand, and Michael R Lyu. 2024. Exploring the Effectiveness of LLMs in Auto-
mated Logging Statement Generation: An Empirical Study. IEEE Transactions on
Software Engineering (2024).

[31] Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu, Junjie Huang,
Jiazhen Gu, Pinjia He, and Michael R Lyu. 2024. Go static: Contextualized logging
statement generation. Proceedings of the ACM on Software Engineering 1, FSE
(2024), 609–630.

[32] Jinyang Liu, Shilin He, Zhuangbin Chen, Liqun Li, Yu Kang, Xu Zhang, Pinjia
He, Hongyu Zhang, Qingwei Lin, Zhangwei Xu, et al. 2023. Incident-aware du-
plicate ticket aggregation for cloud systems. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2299–2311.

[33] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. Advances in Neural Information Processing Systems
36 (2024).

[34] Yilun Liu, Shimin Tao, Weibin Meng, Feiyu Yao, Xiaofeng Zhao, and Hao Yang.
2024. LogPrompt: Prompt Engineering Towards Zero-Shot and Interpretable
Log Analysis. In Proceedings of the 2024 IEEE/ACM 46th International Confer-
ence on Software Engineering: Companion Proceedings (Lisbon, Portugal) (ICSE-
Companion ’24). Association for Computing Machinery, New York, NY, USA,
364–365. doi:10.1145/3639478.3643108

11

https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2403.17297
https://doi.org/10.1109/ICSE-SEIP.2019.00020
https://doi.org/10.1145/3663529.3663801
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2406.12793
https://www.gsma.com/r/wp-content/uploads/2023/10/The-State-of-Mobile-Internet-Connectivity-Report-2023.pdf
https://www.gsma.com/r/wp-content/uploads/2023/10/The-State-of-Mobile-Internet-Connectivity-Report-2023.pdf
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://huggingface.co/aspire/acge_text_embedding
https://huggingface.co/aspire/acge_text_embedding
https://arxiv.org/abs/2408.15710
https://arxiv.org/abs/2408.15710
https://doi.org/10.1145/3639478.3643108

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

FSE ’25, June 23–27, 2025, Trondheim, Norway Yongqian Sun, et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[35] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2024. Make llm a testing expert: Bringing
human-like interaction to mobile gui testing via functionality-aware decisions.
In Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering. 1–13.

[36] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. 2022. MTEB:
Massive Text Embedding Benchmark. arXiv preprint arXiv:2210.07316 (2022).
doi:10.48550/ARXIV.2210.07316

[37] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. 2023. DeepLineDP:
Towards a Deep Learning Approach for Line-Level Defect Prediction. IEEE
Transactions on Software Engineering 49, 1 (2023), 84–98. doi:10.1109/TSE.2022.
3144348

[38] WilliamM Rand. 1971. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association 66, 336 (1971), 846–850.

[39] N Reimers. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. arXiv preprint arXiv:1908.10084 (2019).

[40] Manish Shetty, Yinfang Chen, Gagan Somashekar, Minghua Ma, Yogesh
Simmhan, Xuchao Zhang, Jonathan Mace, Dax Vandevoorde, Pedro Las-Casas,
Shachee Mishra Gupta, et al. 2024. Building AI Agents for Autonomous Clouds:
Challenges and Design Principles. arXiv preprint arXiv:2407.12165 (2024).

[41] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling LLM Test-
Time Compute Optimally can be More Effective than Scaling Model Parameters.
arXiv:2408.03314 [cs.LG] https://arxiv.org/abs/2408.03314

[42] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao
Wang, and Yichen Wei. 2020. Circle loss: A unified perspective of pair similarity
optimization. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 6398–6407.

[43] Yongqian Sun, Binpeng Shi, Mingyu Mao, Minghua Ma, Sibo Xia, Shenglin
Zhang, and Dan Pei. 2024. ART: A Unified Unsupervised Framework for Incident
Management in Microservice Systems. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering. 1183–1194.

[44] Qwen Team. 2024. Qwen2.5: A Party of Foundation Models. https://qwenlm.
github.io/blog/qwen2.5/

[45] thenextweb. 2025. Android vulnerability lets hackers hijack your phone with
malicious videos. https://thenextweb.com/news/google-android-vulnerability-
malicious-video Accessed: 2025-01-14.

[46] Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenxuan Wang, Shuqing Li, Yintong
Huo, and Michael R Lyu. 2024. Automatically Generating UI Code from Screen-
shot: A Divide-and-Conquer-Based Approach. arXiv preprint arXiv:2406.16386
(2024).

[47] Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr.
2024. Knowledge graph prompting for multi-document question answering. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 19206–19214.

[48] ZefanWang, Zichuan Liu, Yingying Zhang, Aoxiao Zhong, JihongWang, Fengbin
Yin, Lunting Fan, LingfeiWu, andQingsongWen. 2024. Rcagent: Cloud root cause
analysis by autonomous agents with tool-augmented large language models.
In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management. 4966–4974.

[49] Zexin Wang, Minghua Ma, Ze Li, Chetan Bansal, Saravan Rajmohan,
Qingwei Lin Qingwei lin, and Dongmei Zhang. 2024. Large Lan-
guage Models Can Provide Accurate and Interpretable Incident Triage.
In 2024 International Symposium on Software Reliability Engineering.
https://www.microsoft.com/en-us/research/publication/large-language-
models-can-provide-accurate-and-interpretable-incident-triage/

[50] Zexin Wang, Minghua Ma, Ze Li, Chetan Bansal, Saravan Rajmohan,
Qingwei Lin Qingwei lin, and Dongmei Zhang. 2024. Large Lan-
guage Models Can Provide Accurate and Interpretable Incident Triage.
In 2024 International Symposium on Software Reliability Engineering.
https://www.microsoft.com/en-us/research/publication/large-language-
models-can-provide-accurate-and-interpretable-incident-triage/

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[52] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. 2024.
Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference
for Problem-Solving with Language Models. arXiv:2408.00724 [cs.AI] https:
//arxiv.org/abs/2408.00724

[53] Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun Li, Yu
Kang, Qingwei Lin, Yingnong Dang, et al. 2024. UniLog: Automatic Logging via
LLM and In-Context Learning. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering. 1–12.

[54] Junjielong Xu, Ying Fu, Shin Hwei Tan, and Pinjia He. 2024. Aligning LLMs for
FL-free Program Repair. arXiv preprint arXiv:2404.08877 (2024).

[55] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He. 2024.
DivLog: Log Parsing with Prompt Enhanced In-Context Learning. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering. 1–12.

[56] Jingfeng Yang, Hongye Jin, Ruixiang Tang, XiaotianHan, Qizhang Feng, Haoming
Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the power of llms
in practice: A survey on chatgpt and beyond. ACM Transactions on Knowledge
Discovery from Data 18, 6 (2024), 1–32.

[57] Xuchao Zhang, Supriyo Ghosh, Chetan Bansal, Rujia Wang, Minghua Ma, Yu
Kang, and Saravan Rajmohan. 2024. Automated root causing of cloud incidents
using in-context learning with GPT-4. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering. 266–277.

[58] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2024. A Survey of Large
Language Models. arXiv:2303.18223 [cs.CL] https://arxiv.org/abs/2303.18223

[59] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi
Feng, and Yongqiang Ma. 2024. LlamaFactory: Unified Efficient Fine-Tuning
of 100+ Language Models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 3: System Demonstrations).
Association for Computational Linguistics, Bangkok, Thailand. http://arxiv.org/
abs/2403.13372

[60] Aoxiao Zhong, Dengyao Mo, Guiyang Liu, Jinbu Liu, Qingda Lu, Qi Zhou, Jiesh-
eng Wu, Quanzheng Li, and Qingsong Wen. 2024. LogParser-LLM: Advancing
Efficient Log Parsing with Large Language Models. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4559–4570.

12

https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.1109/TSE.2022.3144348
https://doi.org/10.1109/TSE.2022.3144348
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://thenextweb.com/news/google-android-vulnerability-malicious-video
https://thenextweb.com/news/google-android-vulnerability-malicious-video
https://www.microsoft.com/en-us/research/publication/large-language-models-can-provide-accurate-and-interpretable-incident-triage/
https://www.microsoft.com/en-us/research/publication/large-language-models-can-provide-accurate-and-interpretable-incident-triage/
https://www.microsoft.com/en-us/research/publication/large-language-models-can-provide-accurate-and-interpretable-incident-triage/
https://www.microsoft.com/en-us/research/publication/large-language-models-can-provide-accurate-and-interpretable-incident-triage/
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

	Abstract
	1 Introduction
	2 Background
	2.1 Beta Test and Ticket
	2.2 Ticket Triage

	3 Motivation
	3.1 Challenge 1: Utilization of Discriminative Information
	3.2 Challenge 2: Lack of Explainability

	4 Methodology
	4.1 Preprocessing Module
	4.2 Extraction Module
	4.3 Clustering Module

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: The Overall Performance
	5.3 RQ2: Ablation Study
	5.4 RQ3: Labor Cost of Labeling
	5.5 RQ4: Selection of Embedding Models and LLMs

	6 Discussion
	6.1 Deployment
	6.2 Case Study
	6.3 Lessons Learned
	6.4 Generality of Results

	7 Related Work
	7.1 Ticket Aggregation
	7.2 LLM for Software Engineering

	8 Conclusion
	References

