
Bridging the Gap: LLM-Powered Transfer Learning
for Log Anomaly Detection in New Software

Systems
Yicheng Sui∗, Xiaotian Wang∗, Tianyu Cui∗, Tong Xiao†, Chenghao He∗,
Shenglin Zhang+∗, Yuzhi Zhang∗, Xiao Yang‡, Yongqian Sun∗, Dan Pei†

∗Nankai University, Tianjin, China †Tsinghua University, Beijing, China
‡China Mobile Communications Corporation, China

suiyicheng@mail.nankai.edu.cn, 2120240811@mail.nankai.edu.cn, 1120220298@mail.nankai.edu.cn,
xiaotong@tsinghua.edu.cn, 2011751@mail.nankai.edu.cn, zhangsl@nankai.edu.cn, zyz@nankai.edu.cn,

yangxiaoyjy@chinamobile.com, sunyongqian@nankai.edu.cn, peidan@tsinghua.edu.cn

Abstract—For large IT companies, maintaining numerous soft-
ware systems presents considerable complexity. Logs are invalu-
able for depicting the state of systems, making log-based anomaly
detection crucial for ensuring system reliability. Existing methods
require extensive log data for training, hindering their rapid
deployment for new systems. Cross-system log anomaly detection
methods attempt to transfer knowledge from mature systems to
new ones but often struggle with syntax differences and system-
specific knowledge, which hinders their effectiveness. To address
these issues, this paper proposes LogSynergy, a novel transfer
learning-based log anomaly detection framework. LogSynergy
employs (1) LLM-based event interpretation (LEI) to standardize
log syntax across different systems, and (2) system-unified feature
extraction (SUFE) to disentangle system-specific features from
system-unified features. These bridge the gap among different
systems and enhance LogSynergy’s generalizability. LogSynergy
has been deployed in the production environment of a top-
tier global Internet Service Provider (ISP), where it was eval-
uated on three real-world datasets. Additionally, we conducted
evaluations on three public datasets. The results demonstrate
that LogSynergy significantly outperforms existing methods. It
achieves F1-scores over 89% on the real-world datasets and over
83% on the public datasets, using only 5000 labeled log sequences
from the new system. These results underscore LogSynergy’s
effectiveness in rapidly deploying anomaly detection models for
new systems. The code of LogSynergy has been open-sourced at
https://anonymous.4open.science/r/LogSynergy-320D/.

Index Terms—log anomaly detection, transfer learning, feature
disentanglement

I. INTRODUCTION

Large-scale software systems are being rapidly developed
and implemented, presenting significant challenges for Internet
Service Providers (ISPs) in maintaining reliable and high-
performance services. Within ISPs, Cloud Data Management
Systems (CDMSs) are critical for managing vast amounts
of data across distributed cloud environments, serving as
the backbone for essential services. The complexity of these
systems necessitates efficient monitoring to ensure service
continuity, and it becomes increasingly important to identify

+ Corresponding Author.

anomalies quickly and accurately to prevent disruptions or per-
formance degradation. Moreover, the complexity of software
systems makes it imperative to identify anomalies promptly
and accurately to prevent service disruptions or performance
degradation. Against this backdrop, log data plays an essential
role, as it records software components’ status, activities,
and significant events and offers comprehensive insights into
system operations. Thus, log data emerges as a valuable
resource for anomaly detection. Log-based anomaly detection
can facilitate the rapid identification of software system issues
in CDMS, enabling ISPs to avert severe consequences of
failures.

For the CDMS in large ISPs, it is common to deploy or
update new software systems to accommodate the evolving
business needs of the ISP. As a result, it is crucial to quickly
deploy anomaly detection methods tailored for these newly
deployed systems to ensure their reliability and stability from
the outset. However, obtaining sufficient data and labels,
especially for anomalous logs, is a challenging task [1], [2]. To
mitigate this, cross-system log anomaly detection methods, uti-
lizing transfer learning [2]–[4] or meta-learning [1], have been
proposed to leverage knowledge from similar mature systems.
By transferring knowledge from similar mature systems, the
cross-system methods reduce the reliance on sufficient labeled
data from new systems. Fortunately, in large ISPs, where many
systems with similar functionalities are deployed, identifying
such similar systems is relatively easy, making cross-system
anomaly detection an effective solution for rapidly deploying
anomaly detection models.

However, existing cross-system log anomaly detection
methods typically utilize the syntax similarity between log
messages from mature and new systems. Our observations
from real-world log messages reveal that similar anomalous
events in different systems may exhibit significant syntax
differences. For example, Table I lists four log messages
from two different systems covering two anomalous events.
These logs originate from two different systems, resulting
in significant differences in syntax. Specifically, the first two

https://anonymous.4open.science/r/LogSynergy-320D/

TABLE I: Log messages that represent similar anomalies from
different systems. (Words marked in red indicate anomalies)

Anomalous
Event Dataset Log Message

Network
Interruption

Spirit [5]
Connection refused (111)

in open demux, open demux:
connect 172.30.72.31:33404

BGL [5]
ciod: failed to read message prefix

on control stream (CioStream
socket to 172.16.96.116:33399)

Parity
Error

Spirit [5]
GM: LANAI[0]: PANIC:

mcp/gm parity.c:124 :
parity int():firmware

BGL [5]
machine check interrupt

(bit=0x10): L2 dcache unit
read return parity error

log messages are both about network interruptions. However,
the first log message details the issue occurring during the
“open demux” operation. In contrast, the second log message
records the component involved in the issue. Similarly, the
third and fourth log messages document parity errors while
differ significantly in detail and focus. These illustrate the
substantial syntax differences in log messages from different
systems, even when they indicate the same anomalous event.
This difference hinders knowledge from source systems to be
effectively transferred to target systems, impacting the effec-
tiveness of transfer learning. Consequently, existing transfer
learning-based methods usually still require sufficient logs
from the new system, severely limiting their application in
new systems.

Moreover, there is another issue when transferring knowl-
edge from mature systems to new ones. Because log mes-
sages from mature systems are far more than those from
new systems, the transferred knowledge would include much
system-specific knowledge from the mature system which is
not applicable to the target system. So it is crucial to filter
out the system-specific knowledge to transfer the knowledge
effectively.

In summary, the significant syntax differences among differ-
ent systems and the system-specific knowledge from mature
systems create a gap that hinders effective knowledge transfer.
To address these issues, we propose LogSynergy, a novel
transfer learning-based log anomaly detection method that
is designed to bridge this gap and enable rapid deployment
for new software systems. LogSynergy first unifies the log
syntax of different systems using a large language model
(LLM)-based event interpretation method. It then disentangles
system-specific features and system-unified features and only
leverages the system-unified features to transfer knowledge
from mature systems to new systems. The main contributions
of this paper can be summarized as follows:
1. LLM-based Event Interpretation (LEI): To reduce the log
syntax differences in different systems, we propose an LLM-
based event interpretation (LEI) method. By leveraging the
semantic understanding capability of large language models
(LLMs) [6], LEI standardizes the syntax of log messages from
different systems, which can enhance the model’s generaliza-

tion capability.
2. System-Unified Feature Extraction (SUFE): To filter
out the system-specific knowledge from mature systems, we
propose a system-unified feature extraction (SUFE) method.
It disentangles system-specific features from system-unified
features by minimizing the mutual information [7] among
different systems and filters out system-specific knowledge by
filtering out system-specific features.
3. Extensive Evaluation on Real-World and Public
Datasets: We validate LogSynergy’s performance through
experiments on three log datasets from the CDMS of a top-
tier global ISP and three public log datasets. The evaluation
underscores LogSynergy’s effectiveness in handling diverse,
real-world log data and establishes its advantages over ex-
isting log anomaly detection methods in log-based anomaly
detection.

II. PRELIMINARIES AND RELATED WORK

A. Preliminaries

Transfer learning is used to improve model performance
in a target domain by leveraging knowledge acquired from a
related source domain, particularly in scenarios where labeled
data in the target domain is scarce [8]. Formally, given a source
domain-task pair (DS , TS) and a target domain-task pair
(DT , TT), transfer learning aims to improve fT in the target
domain by leveraging knowledge from a well-annotated source
domain, even when distributions or feature spaces differ. It
focuses on instance weighting, feature transformation, and
model adaptation to bridge domain discrepancies, mitigating
performance degradation and enhancing generalization [9].

Domain adaptation is a subfield of transfer learning that
aims to address performance degradation caused by domain
shift, minimizing distributional discrepancies between source
and target domains. This allows models trained on labeled
source data to generalize effectively to the target domain [10].
Common approaches in domain adaptation include distribu-
tion alignment methods, such as Maximum Mean Discrep-
ancy (MMD) [11], and adversarial learning techniques like
Dynamic Adversarial Adaptation Network (DAAN) [12]. In
LogSynergy, we use the DAAN for domain adaptation. DAAN
dynamically evaluates the relative importance of marginal and
conditional distributions, improving the alignment between
the feature distributions of the source and target domains.
This method enhances the model’s ability to generalize across
different domains by reducing domain-specific variations.

B. Related Work

In the field of log anomaly detection, various methods
have been proposed to address the challenges of detecting
anomalies in logs from new systems. As listed in Table II,
these methods can be categorized into six categories. Each
category has its strengths in specific scenarios, but all face
certain limitations when applied to new systems, especially
when the new system’s data is scarce.

The existing cross-system methods [1]–[4] often rely on
large amounts of labeled or normal data, which is difficult to

TABLE II: Related work on log anomaly detection and their limitations in new systems. (Works from the database systems
community in bold)

Method Category Methods Main Characteristics Limitations in New System

Supervised
Cross-System MetaLog [1], LogTransfer [2] Require sufficient labeled data

for transfer/meta-learning.
Limited labeled data in new systems
reduces effectiveness.

Unsupervised
Cross-System LogTAD [4], TransferLog [3] Rely on sufficient normal data

or pseudo-labels for transfer learning.
Limited data in new systems
reduces transfer learning effectiveness.

Unsupervised
Single-System

DeepLog [13], LogAnomaly [14],
Pluto [15], LogFlash [16],
ADOps [17], RT-Log [18]

Require sufficient normal data to learn
normal patterns by unsupervised learning.
No cross-system adaptability.

Limited data in new systems makes it
difficult to capture normal patterns.

Semi-Supervised
Single-System

PLELog [19], BTCNLog [20],
AFALog [21], SpikeLog [22]

Require sufficient labeled and unlabeled
data for semi-supervised learning.
Lack of cross-system adaptability.

Few data from new systems limits the
performance. Moreover, the anomaly detection
knowledge of mature systems cannot be
transferred to new systems.Supervised

Single-System
LogRobust [23], NeuralLog [24],
OneLog [25], MoniLog [26]

Require sufficient labeled data
for supervised learning.
Lack of cross-system adaptability.

LLM-Based LogGPT [27], PreLog [28]
Leverage pre-trained LLMs
for semantic comprehension
and anomaly detection.

Limited knowledge from LLMs and few new
systems’ data hinder LogGPT’s performance.
The scarcity of new system data limits
prompt-tuning effectiveness of PreLog.

obtain in new systems, limiting their effectiveness in trans-
fer learning. TransferLog [3] and LogTAD [4] use domain
adaptation techniques but still require substantial normal data
to maintain model performance. LogTransfer [2] and Meta-
Log [1] employ transfer learning and meta-learning strategies,
respectively, to adapt models across systems, but they rely on
sufficient labeled data in the new system.

Similarly, single-system methods perform well within a sin-
gle system but cannot transfer anomaly detection knowledge
across systems, making them unsuitable for detecting anoma-
lies in new systems. Research in this area is extensive and
can be broadly categorized into unsupervised, semi-supervised,
and supervised methods. Unsupervised methods, such as
DeepLog [13], LogAnomaly [14], Pluto [15], LogFlash [16],
ADOps [17], and RT-Log [18], rely on sufficient normal
data, while semi-supervised methods, including PLELog [19],
BTCNLog [20], AFALog [21], and SpikeLog [22], use a small
amount of labeled data for guidance. Supervised methods,
such as LogRobust [23], NeuralLog [24], OneLog [25], and
MoniLog [26], require fully labeled datasets. Despite their
strengths in single-system settings, these methods are limited
when data is scarce in new system scenarios and cannot be
directly applied to cross-system anomaly detection.

LLM-based methods enhance anomaly detection through
advanced semantic and contextual understanding, leverag-
ing pre-trained embeddings for generalization across datasets
with minimal retraining. These LLM-based methods have
demonstrated strong performance in processing time-series
and timestamped log data [29]. While approaches like Log-
GPT [27] and PreLog [28] enable zero-shot or few-shot de-
tection, they struggle to effectively transfer anomaly detection
knowledge from mature systems to new systems. Moreover,
the limited availability of labeled data in new systems further
hinders their effectiveness, making them less practical in new
software systems.

LogSynergy aims to bridge the gap between different sys-
tems to enhance transfer learning, enabling effective learning
with little data from the new systems and overcoming the

limitations of existing methods that struggle with insufficient
data of the new system.

III. DESIGN OF LOGSYNERGY

A. Overview

Fig.1 details the framework of LogSynergy. In the offline
phase, LogSynergy initially converts unstructured raw logs
into structured log events and parameters. Then, it splits
continuous log events into event sequences. Subsequently, it
analyzes the log events using LLM-based event interpretation
(LEI) to obtain event interpretations and converts these event
interpretations to event embeddings. The event embeddings
and log event sequences from both mature systems (i.e.,
source systems) and the new system (i.e., target system) are
then input into a classification model based on the Trans-
former Encoder [30] to train an anomaly detection model
offline. LogSynergy employs system-unified feature extraction
(SUFE) during training to filter out system-specific features.
When the target system generates log messages in the online
phase, LogSynergy extracts their features by the same method
used in the offline phase and evaluates them against the trained
model to determine whether they are anomalies.

In the rest of this section, we will introduce the pre-
processing phase in §III-B, followed by event representation
in §III-C, with a focus on LEI. Then, we will elaborate on the
transfer learning in §III-D and emphasize SUFE in §III-D2.
Finally, we will describe the online detection phase in §III-E.

B. Pre-processing

The pre-processing phase is the first step in the LogSynergy
framework. In this phase, unstructured raw logs from various
source and target systems are converted into a structured
format suitable for further analysis.

First, raw logs are collected from various systems. These
logs are unstructured, comprising log messages, timestamps,
and other relevant information generated during system op-
erations. Next, to transform these unstructured log messages
into a structured format, the classic log parsing technique,

Pre-processing

Raw Logs

MidplaneSwitchController performing
bit sparing on <*> bit <*>

total of <*> ddr error(s) detected and
corrected

…

Parsed Log Events

𝑺𝟏: 0, 0, 1, 2, 3, 4, 2, 2, 0, 0

𝑺𝟐: 4, 2, 2, 0, 0, 5, 6, 2, 1, 1

𝑺𝟑: 5, 6, 2, 1, 1, 1, 3, 1, 3, 1

…

Event Sequences

Event Representation
Comment: Port down reason
Interface <*> is down, due to
Los.

Parsed Log Event

Log Parsing

Splitting

Promotion

LLM

Interpretation

Network interface down due to
loss of signal

Unified Style Events
Sentence
Embedding

Event Embedding

Offline Training

Source System
Embedding Sequences

Target System
Embedding Sequences

System-Unified
Feature

Extraction Anomaly
DetectionModel

Online Detection

Online Logs

Processing

Embedding
Sequences

Anomaly
Score

Detection
Report

Analysis

§ 3.3
§ 3.4

§ 3.5

§ 3.2

Fig. 1: Framework of LogSynergy.

Drain [31], is employed. Drain effectively extracts templates
from log messages and maps each log message to its corre-
sponding template. This process converts the unstructured raw
logs into structured log events and their associated parameters.
Then, LogSynergy splits the continuous log messages into log
sequences using a sliding window approach.

By converting raw logs into structured log events and
parameters and segmenting them into log sequences, the data
is prepared for subsequent stages such as LLM-based event
interpretation, event embedding, and offline training.

C. Event Representation

To obtain a more accurate and unified log representation,
LogSynergy first utilizes LEI to interpret log events. Then, it
uses a pre-trained model to transform these interpretations into
feature vectors within a unified feature space.
LLM-based Event Interpretation (LEI): In recent years,
pre-trained LLMs have shown increasing capabilities and have
been widely used in log analysis [32]–[35]. These models
can analyze log messages and extract precise information
across different systems. To reduce the syntax differences,
we propose an event interpretation method based on LLMs,
specifically using ChatGPT 4o model [36]. This method inter-
prets log messages from various systems uniformly, focusing
on the essential information common to them.

By leveraging ChatGPT, LogSynergy can effectively ad-
dress the differences in log syntax across systems. Operators
interact with ChatGPT through prompts, guiding it to interpret
log messages semantically. Given the enormous volume of log
messages, it is impractical to interpret each one individually.
Therefore, LogSynergy uses log parsing methods to extract log
events, reducing the number of log messages that ChatGPT
needs to interpret. Specifically, LogSynergy selects a repre-
sentative log message from the messages corresponding to the
same log event.

Here are the logs:

1. MailboxMonitor::serviceMailboxes() lib_ido_error: -1114 unexpected
socket error: Broken pipe

2. mmcs_server exited abnormally due to signal: Segmentation fault

3. EXT2 filesystem cannot read inode bitmap, data access issues.

Here's a concise interpretation of the logs:

1. Unexpected error in mailbox communication, socket broken.

2. Server crashed unexpectedly, segmentation fault occurred.

3. Network address relocated.

Operator

ChatGPT

Got it! Feel free to share the logs, and I'll help you understand the
essential actions or statuses they indicate. ChatGPT

Operator

Hello ChatGPT, I have a series of logs from high-performance
computing (HPC) systems that need interpretating. Each interpretation
must be concise, not exceeding 16 words, and expressed in a single
sentence. Focus on identifying if the potential issues or errors could
affect the overall system stability and functionality.
Highlight any anomalies or irregularities that could indicate significant
problems within the system. Avoid technical jargon and abbreviations,
and use natural language easily understood without specialized
knowledge.
Thank you for your assistance.

Fig. 2: An example dialogue process of event interpretation.
(System information in red.)

During interactions with ChatGPT, operators construct spe-
cific prompts and input typical logs. A general format of the
prompts is shown in Fig.2. These prompts typically include a
brief description of the system type and keywords about the
log event to provide sufficient context for accurate interpreta-
tion. Due to the strong capabilities of the ChatGPT 4o model,
it can accurately interpret logs from many systems without
the need for major adjustments to the prompts. Therefore, in
most cases, the prompt only needs to specify the source of the
logs. As demonstrated in Fig.2, for logs from HPC systems,
we specify in the first sentence that the data comes from an
HPC system to enhance interpretation accuracy.

For example, consider an original log message: “Comment:

Port down reason Interface <*> is down, due to Los.” Chat-
GPT interprets this as “Network interface down due to loss of
signal.” In this process, ChatGPT understands the abbreviation
“Los” and expands it to “loss of signal,” clarifying the log mes-
sage. Moreover, the interpretation uses a more standardized
syntax while retaining the necessary information. This enables
LogSynergy to effectively understand the log semantics in
subsequent steps, reducing the impact of syntax differences
across diverse log formats.

However, LEI also has its limitations. The quality of log
interpretations heavily depends on the LLM’s capabilities
and the quality of the prompts. A notable challenge is the
hallucination phenomenon commonly observed in pre-trained
LLMs [37], where interpretations may contain fabricated or
incorrect information. To address this issue, operators need to
review the interpretations after generation to identify potential
errors. When necessary, interpretations can be regenerated to
ensure accuracy and reliability.
Event Embedding: To extract the semantic information
from the log interpretations, LogSynergy uses a pre-trained
model [38] to embed these log interpretations into a feature
space. Specifically, LogSynergy inputs the log interpretations
into the pre-trained model and obtains the outputs from the
final layer of the model’s feature extractor. These outputs (i.e.,
event embeddings) capture the semantic information of the log
events. This embedding technique has been widely adopted
in previous works [20], [24]. It is important to note that the
selection and use of pre-trained models for event embedding
is not our primary contribution. Various pre-trained models,
such as BERT [39] and GPT-2 [40], can be utilized.

D. Offline Training

In offline training, LogSynergy uses transfer learning and
samples from both source and target systems to train an
anomaly detection model. LogSynergy utilizes system-unified
feature extraction (SUFE) to filter out system-specific features.
Subsequently, domain adaptation is applied to minimize the
distribution discrepancy of system-unified features between the
source and target systems. In the rest of this subsection, we de-
tail offline training through four aspects: network architecture,
SUFE, domain adaptation, and model optimization.

1) Network Architecture: The network of LogSynergy con-
sists of several modules: a feature extractor F , an anomaly
classifier Canomaly, a system classifier Csystem, a mutual infor-
mation module MI , and a domain adaptation module DA.
During the online detection phase, only F and Canomaly are
used to detect anomalies, while the other modules are involved
only during training to optimize the model’s performance.

During training, LogSynergy incorporates SUFE and do-
main adaptation to improve the model’s generalization ability
on the target system. As shown in Fig.3, SUFE utilizes MI ,
Csystem, and Canomaly to decouple system-specific and system-
unified features. Csystem and Canomaly compute predictions for
system labels and anomaly labels using the system-specific and
system-unified features, respectively, optimizing the feature
extraction process from F through their corresponding loss

functions. Meanwhile, MI estimates the mutual information
between the two feature types, and SUFE minimizes this
mutual information to filter out system-specific features, en-
hancing generalization. Additionally, DA computes the dis-
tinguishability between the system-unified features extracted
from the source and target domain samples and minimizes it,
further improving the model’s ability to generalize to the target
system.
F is built from multiple layers of a Transformer Encoder.

Canomaly and Csystem are implemented with fully connected
layers. MI consists of several linear and activation layers. DA
uses linear layers and a gradient reversal layer (GRL) [41].

Source System
Embedding Sequences

Target System
Embedding Sequences

Feature Extractor
（Transformer Encoder）

Anomaly Classifier

System Classifier

Optimization
Objective

Detect
Anomaly

Distinguish
System

Disentangle
Feature

Mutual
Information

System-Unified Features

System-Specific Features

Extracted
Feature

Split
Feature

Fig. 3: Multiple optimization objectives of SUFE.

2) System-Unified Feature Extraction (SUFE): SUFE aims
to distinguish between system-specific features and system-
unified features effectively. Recent advancements in feature
disentanglement have shown excellent performance in this
area [42]–[44]. Therefore, we designed SUFE based on feature
disentanglement.

As shown in Fig.3, SUFE divides the features extracted by
the feature extractor F into system-unified features Fu(x) and
system-specific features Fs(x). We set that Fu(x) and Fs(x)
have the same dimension. Then, to ensure the effectiveness of
these features, SUFE uses two classifiers with their respective
optimization objectives. The system-specific features are op-
timized to distinguish the systems using the system classifier
Csystem, which predicts the system label (ẑ = Csystem(Fs(x))).
Here, ẑ is the predicted probability distribution over K classes,
and the true system label zk is represented as a one-hot
encoded vector. The system-unified features are optimized to
detect anomalies using the anomaly classifier Canomaly, which
predicts the anomaly label (ŷ = Canomaly(Fu(x))).

The loss functions for these two objectives are defined as
follows:

Lsystem = −E(x,z)∼D

[
K∑

k=1

zk log ẑk

]
(1)

Lanomaly = −E(x,y)∼D [y log ŷ + (1− y) log(1− ŷ)] (2)

By minimizing Lsystem and Lanomaly, respectively, the model
can better distinguish between systems using system-specific
features Fs(x) and more accurately detect anomalies using
system-unified features Fu(x)

We introduce a mutual information module MI inspired
by MT-MIM [43], [45] to estimate the correlation between

system-specific and system-unified features. By minimizing
LMI, SUFE disentangles the system-specific and system-
unified features, ensuring that the system-unified features
focus solely on anomaly detection, without interference from
system-specific features. This disentangling allows the system-
unified features to generalize across different systems, thereby
improving the model’s ability to detect anomalies in the target
system.

The mutual information loss is defined as:

LMI = MI(Fu(x), Fs(x)) (3)

To estimate the mutual information, we employ the Con-
trastive Learning Upper Bound (CLUB) method [46], which
provides a tractable and differentiable upper bound for MI.
CLUB utilizes several linear and activation layers to compute
the difference between the two feature sets, making it a suit-
able approach for estimating mutual information. For further
details on the CLUB method, please refer to the original
paper [46].

3) Domain Adaptation: While SUFE effectively disentan-
gles system-specific and system-unified features, the distribu-
tion of system-unified features may still differ across systems,
which hinders the model’s ability to generalize. To address
this issue, LogSynergy employs the domain adaptation, which
mitigates the distribution discrepancies.

Specificially, LogSynergy employs Dynamic Adversarial
Adaptation Network (DAAN) [12], which uses a domain
classifier D to measure the distinguishability between the
system-unified features extracted from the source and target
domains. D computes a cross-entropy loss, which acts as the
adversarial objective, pushing the feature extractor to minimize
domain-specific signals.

A Gradient Reversal Layer (GRL) is applied during adver-
sarial training to reverse the gradient during backpropagation,
enabling the network’s modules to be optimized adversarially.
This encourages F to extract domain-invariant system-unified
features while D learns to distinguish these features across
domains. As a result, the model, primarily trained on source
domain samples, can generalize well to target domain samples,
ensuring effective transfer learning with minimal target domain
data.

The domain adaptation loss function is given by:

LDA = −E(x,dlabel)∼D

[
dlabel logD(R(Fu(x)))

+ (1− dlabel) log(1−D(R(Fu(x))))
]

(4)

Here, dlabel represents the domain label (0 for the source
domain and 1 for the target domain), and R(Fu(x)) denotes
the feature extraction with the gradient reversal applied dur-
ing backpropagation by the GRL. By minimizing LDA, the
model learns to produce system-unified features that are less
distinguishable between the source and target domains, thus
ensuring better generalization across systems. For a more
detailed explanation of DAAN and its application to domain
adaptation, please refer to the original paper [12].

4) Model Optimization: During the model optimization
process, we combine the loss functions from SUFE and
domain adaptation to form the total loss function. Each
component of the total loss function plays a critical role
in ensuring that the model generalizes well to the target
system by balancing different optimization goals. The total
loss function is a weighted sum of these loss functions:

L = Lsystem + Lanomaly + λMILMI + λDALDA (5)

where λMI represents the weight coefficient for the mutual
information loss, and λDA represents the weight coefficient
for the domain adaptation loss.

E. Online Detection

During the online detection phase, LogSynergy uses the
model trained offline to detect anomalies in log sequences
recorded by the target system. First, LogSynergy processes the
logs into event sequences using the same method as offline log
processing. Then, it maps the events into event embeddings.
When a new log event appears, LogSynergy maps the new log
event into an event embedding. The embedding sequences are
then input into the model trained offline to obtain anomaly
probabilities distributed between 0 and 1. If the anomaly
probability exceeds the threshold of 0.5, it is considered an
anomaly, and an anomaly report is generated based on event
interpretation and anomaly score.

IV. EVALUATION

A. Experimental Design

1) Datasets: We conduct experiments using two distinct
groups of log datasets. The first group includes three widely
used public log datasets: BGL, Spirit, and Thunderbird [5],
which we selected following the related works [15], [18], [22],
[28]. From these datasets, we use specific subsets. The second
group includes three software system log datasets from the
production environments of a top-tier global ISP collected in
2023. Detailed information about these datasets is provided in
Table III. For the raw log files, we segmented them into log
sequences using a sliding window with a step size of 5 and a
window length of 10. LogSynergy and the baseline methods
used these log sequences as samples during the evaluation
process, feeding them into the model.

TABLE III: Detail of the datasets.

Datasets # of logs # of log
sequences # of anomalies

BGL 1,356,817 271,362 29,092
Spirit 4,783,733 956,745 8,857

Thunderbird 700,005 140,000 5,946

System A 2,166,422 433,014 886
System B 877,444 175,481 296
System C 691,433 137,258 5,170

For each group of datasets, we set one dataset as the target
system and the others as the source systems. From each source

system, we select 50,000 sequences for training, and for the
target system, we select 5,000 sequences for training. Based
on previous research [47], randomly selecting samples from
datasets for training can introduce unfair biases due to data
leakage. To mitigate this, we adopt a continuous sampling
strategy for training samples in the target system. Specifically,
we use the former portion of the dataset for training and the
latter for testing. This method aligns the experiment more
closely with real-world conditions, ensuring that the training
process accurately reflects real production environments and
reduces the risk of data leakage.

2) Baselines: To fairly compare LogSynergy with existing
methods, we choose nine baseline methods listed in Ta-
ble IV and Table V. These methods have different settings,
so they select samples from the training set in various ways.
DeepLog [13] and LogAnomaly [14] are unsupervised learn-
ing methods that utilize all normal samples from the target
system in the training set. PLELog [19] is a semi-supervised
method that uses 50% of the normal samples and the remaining
unlabeled samples from the training set. SpikeLog [22] is a
weakly supervised method that uses 98% of the anomalous
samples and the remaining unlabeled samples from the training
set. NeuralLog [24] and LogRobust [23] employ supervised
learning with all training set samples. PreLog [28] is a pre-
trained method for anomaly detection that utilizes the samples
from the source systems for pre-training and the samples from
the target system for prompt tuning. LogTAD [4] is an unsu-
pervised cross-system anomaly detection method that utilizes
all normal samples from the training set. LogTransfer [2],
MetaLog [1], and LogSynergy (our method) are supervised
cross-system anomaly detection methods that utilize all sam-
ples from the training set. Additionally, all the above baselines
use the same testing sets as LogSynergy for a fair comparison.

Moreover, all parameters for the baseline methods and
LogSynergy were selected based on the optimal F1-Score for
fair comparison. For the model configurations, DeepLog and
LogAnomaly use two LSTM [48] layers with 128 hidden units
and a top-k value of 9. PLELog uses a single LSTM layer
with 100 hidden units. SpikeLog uses a single Spiking Neural
Network [49] layer with 128 hidden units and an additional
LSTM layer with 32 hidden units. NeuralLog uses a single
Transformer Encoder [30] layer with an embedding dimension
of 768 and a feedforward layer dimension of 2048. LogRobust
uses two Bi-LSTM [50] layers with 128 hidden units. MetaLog
uses two GRU [51] layers, each with 100 hidden units. Both
LogTransfer and LogTAD use two LSTM layers with 128
hidden units.

3) Evaluation Metrics: We select precision, recall, and F1-
Score as evaluation metrics, where precision is defined as
the ratio of true positive predictions to the total number of
positive predictions made, defined by Precision = TP

TP+FP ;
recall is the ratio of true positive predictions to the total
actual positives, defined by Recall = TP

TP+FN ; and F1-Score
is the harmonic mean of precision and recall, defined by
F1 = 2 × Precision×Recall

Precision+Recall . System logs will be defined
as anomalous if their anomaly score exceeds the predefined

threshold. For all models employing classification, we set the
classification threshold at 0.5 to ensure a fair comparison.

4) Implementation Details: We conduct all the experiments
on a cloud platform provided by a top-tier global Internet Ser-
vice Provider (ISP). It provides GPU cloud services with Tesla
V100, 16-core CPU, and 32GB DRAM memory. We imple-
ment LogSynergy with Python 3.8.15, PyTorch 1.8, transform-
ers 4.35.0, and scikit-learn 1.3.2. Our code is open-sourced at
https://anonymous.4open.science/r/LogSynergy-320D/. In our
experiments, LogSynergy utilizes a six-layer Transformer En-
coder. The number of attention heads is set to 12, and the
feed-forward network that processes the output of the multi-
head self-attention mechanism has a dimensionality of 2048.
We use the AdamW optimizer [52] to train the Transformer
Encoder-based model in LogSynergy, with a learning rate of
1× 10−4. We set the mini-batch size to 1024 during training
and train the models for ten epochs. The hyperparameters
are set as follows: λDA = 0.01 and λMI = 0.01. The
number of samples used for training is ns = 50, 000 from
the source system and nt = 5, 000 from the target system.
Both λMI and nt are evaluated in §IV-C. To accelerate model
training, we enable fp16 (half-precision) [53] training using
the transformers library’s built-in support [54]. By using fp16,
we reduce memory consumption and increase computational
efficiency on GPUs, allowing for faster training times without
significantly sacrificing model performance.

B. The Overall Performance

As listed in Table IV and Table V, LogSynergy’s F1-
Score significantly outperforms all baseline methods. The
unsupervised methods, DeepLog [13] and LogAnomaly [14],
utilize only a small number of normal samples from the
target system for training. Consequently, they cannot learn
enough normal patterns, leading to the misclassification of
new patterns as anomalies. This results in high recall but low
precision, yielding lower F1-scores. PLELog [19] is designed
for single-system anomaly detection and cannot bridge the gap
between the target and source systems. Moreover, the limited
number of target system samples leads to poor adaptation,
causing many normal samples to be misclassified as anomalies.
This results in low precision despite high recall in multiple
experiments.

SpikeLog, NeuralLog, and LogRobust are weakly super-
vised or supervised single-system anomaly detection methods.
Their performance depends on the similarity between the
source and target systems as well as their feature engineering,
resulting in significant performance variations across different
target systems. For instance, in experiments with BGL, System
B, and System C as the target systems, both NeuralLog and
SpikeLog exhibit poor F1-scores due to the low similarity
between the source and target systems. In contrast, LogRobust,
with its stronger robustness, performs better than SpikeLog
and NeuralLog in these experiments. However, all their per-
formances fall short compared to LogSynergy.

PreLog focuses on pre-training models to optimize se-
mantic representations, rather than directly learning anomaly

https://anonymous.4open.science/r/LogSynergy-320D/

TABLE IV: The Precision (P), Recall (R), and F1-Score(F1) on BGL, Spirit, and Thunderbird (One used as the target system
and the others as the source).

Method Type BGL Spirit Thunderbird
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

DeepLog [13] Unsupervised 10.77 100 19.44 0.99 100 1.95 4.60 100 8.79
LogAnomaly [14] 11.77 100 21.06 10.99 100 19.80 25.61 100 40.78

PLELog [19] Semi-supervised 11.16 38.66 17.33 1.17 89.98 2.31 5.14 97.38 9.77

SpikeLog [22] Weakly-supervised 27.92 51.09 22.10 33.79 31.53 32.62 60.66 68.73 64.44

NeuralLog [24] Supervised 100 2.01 3.95 37.33 73.66 49.55 79.02 99.83 88.21
LogRobust [23] 44.75 46.67 45.69 19.83 25.97 22.49 69.34 97.49 81.04

PreLog [28] Pre-trained 72.81 68.63 70.66 0 0 0 79.51 96.87 87.34

LogTAD [4] Unsupervised Cross-System 10.27 78.59 18.16 1.33 85.55 2.62 6.33 99.30 11.9

LogTransfer [2]
Supervised Cross-System

13.41 2.70 4.50 26.39 18.85 21.99 85.14 71.69 77.84
MetaLog [1] 15.23 91.12 26.10 3.13 15.51 4.50 3.00 3.39 3.18
LogSynergy 97.43 72.83 83.35 88.91 92.41 90.62 96.23 99.83 97.99

TABLE V: The Precision (P), Recall (R), and F1-Score(F1) on System A, System B, and System C (One used as the target
system and the others as the source).

Method Type System A System B System C
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

DeepLog [13] Unsupervised 0.64 100 1.28 0.16 100 0.32 4.02 100 7.73
LogAnomaly [14] 1.04 99.89 2.06 0.86 100 1.71 5.13 98.99 9.75

PLELog [19] Semi-supervised 3.24 89.29 6.26 0.18 91.64 0.35 6.68 89.93 12.42

SpikeLog [22] Weakly-supervised 31.81 93.11 47.43 0.26 18.75 0.51 2.13 87.38 4.16

NeuralLog [24] Supervised 29.57 80.40 43.24 100 13.74 24.16 100 0.82 1.63
LogRobust [23] 32.04 91.39 47.45 93.40 37.64 53.66 88.97 85.98 87.45

PreLog [28] Pre-trained 0 0 0 0.07 84.82 0.14 0 0 0

LogTAD [4] Unsupervised Cross-System 5.28 96.41 10.01 11.94 99.62 21.33 35.70 99.06 52.48

LogTransfer [2]
Supervised Cross-System

31.72 91.04 47.05 24.00 13.69 17.43 0 0 0
MetaLog [1] 3.22 99.77 6.23 13.79 36.12 19.96 78.31 80.31 79.30
LogSynergy 92.31 94.99 93.63 91.73 96.96 94.27 92.22 86.49 89.26

detection. While it performs well for systems like BGL and
Thunderbird, where new anomalies share semantic similarities
with existing ones, its performance drops significantly for
other systems, with F1-scores nearing zero. This highlights
the need for sufficient target system samples during PreLog’s
fine-tuning process.

Similar to DeepLog and LogAnomaly, LogTAD learns
normal log patterns to detect anomalies. However, there are
limitations when applying LogTAD to the target system. On
the one hand, due to the limited number of samples from the
target system, LogTAD cannot learn enough normal patterns
specific to the target system. On the other hand, although
LogTAD employs domain adaptation to bridge the differences
between the source and target systems, it cannot reduce the
syntax differences. These syntax differences typically influ-
ence its feature engineering. Consequently, the normal patterns
from the source systems cannot be effectively applied to the
target system. This results in a high number of false positives,
as many new patterns are incorrectly identified as anomalies,
leading to low precision and F1-scores.

Among the supervised cross-system log anomaly detection

methods, LogTransfer achieves a high F1-Score on Thunder-
bird, and MetaLog achieves a high F1-Score on System C.
However, their performance is notably lower on other systems.
LogTransfer is suited for similar systems and struggles with
dissimilar systems. For example, in BGL and System C,
LogTransfer gets a considerably lower F1-Score than other
systems because BGL and System C are significantly different
from their source systems in syntax and patterns. MetaLog
is designed for target systems with few anomalies. However,
it requires a sufficient number of normal samples from the
target system. Due to the limited number of samples from the
target system, MetaLog achieves a low F1-Score, with less
than 10% in three sets of experiments. However, MetaLog
achieved an F1-Score of 79.3% in System C, indicating that
its performance is unstable. MetaLog can achieve a high F1-
Score when certain anomaly patterns are well modeled by its
feature engineering.

LogSynergy reduces the log syntax differences and filters
out the system-specific knowledge, enabling the effective
transferring knowledge from the source systems to the target
system. These results demonstrate that LogSynergy can train

10
3

10
2

10
1

10
0

0

20

40

60

80

100
F1

-S
co

re

System A
System B
System C

BGL
Spirit
Thunderbird

(a) λMI

10000 20000 30000 40000 50000 60000 70000 80000
0

20

40

60

80

100

F1
-S

co
re

System A
System B
System C

BGL
Spirit
Thunderbird

(b) ns

1000 2000 3000 4000 5000 6000 7000 8000

20

40

60

80

100

F1
-S

co
re

System A
System B
System C

BGL
Spirit
Thunderbird

(c) nt

Fig. 4: F1-Score with different hyper-parameter values: (a) λMI, (b) ns and (c) nt across different datasets.

a log anomaly detection model for a new system rapidly with
high performance.

C. Influence of Hyper-Parameters

In this section, we evaluate the impact of hyperparameters
on LogSynergy, including the weight coefficient of LMI (i.e.,
λMI), as well as the number of source system samples and
labels (ns) and target system samples and labels (nt) during
training. In the evaluations above, we set λMI, ns, and nt to
their respective default values.

For λMI, we assess different values, including 0.001, 0.01,
0.05, 0.1, and 0.5. As shown in Fig. 4a, we find that the
performance remains stable when λMI is small but decreases
significantly as λMI increases. As mentioned in §III-D2, when
λMI is too large, the model prioritizes reducing the correlation
between system-specific and system-unified features, neglect-
ing the differences in their classification characteristics, which
leads to suboptimal feature disentanglement. Conversely, bet-
ter performance is generally achieved when λMI is small.
Specifically, setting λMI to 0.01 results in the highest F1-Score
on four target systems and near-highest scores on two others.
Therefore, the default value of λMI is set to 0.01.

For ns, we set eight values ranging from 10,000 to 80,000,
with steps of 10,000. Generally, we find that performance
improves with more samples and labels, stabilizing around
50,000. However, in some cases where poor-quality samples
were randomly selected, increasing the sample size did not
necessarily improve anomaly detection, suggesting that the
benefit of more samples depends on their quality.

For nt, we set eight values ranging from 1,000 to 8,000,
with steps of 1,000. Generally, the performance of the model
improves as more target system samples and labels are in-
cluded in the training process. As shown in Fig. 4c, the F1-
Score increases significantly as nt grows initially and begins
to stabilize around 4,000. This indicates that LogSynergy can
achieve acceptable and stable performance with only a few
target system samples and labels, making it well-suited for
log anomaly detection in new systems.

D. Ablation Study

We conduct ablation experiments on the six datasets men-
tioned above to evaluate the effectiveness of transfer learning
and two essential modules in LogSynergy: LLM-based event
interpretation (LEI) and system unified feature extraction
(SUFE).

Precision Recall F1-Score
0

50

100 97.4

72.8
83.3

20.9

5.9 9.2

98.0

27.1

42.5

18.2

42.2

25.4

BGL

Precision Recall F1-Score
0

50

100 92.3 95.0 93.388.4

67.3
76.4

90.1
81.7 85.7

92.7

36.9

52.8

System A

Precision Recall F1-Score
0

50

100 88.9 92.4 90.6
80.1

58.0
67.3

87.1
92.6 89.8

69.9 67.4 68.6

Spirit

Precision Recall F1-Score
0

50

100 91.7 97.0 94.3

80.1

58.0
67.3

91.8

46.8

62.0

99.0

79.5
88.2

System B

Precision Recall F1-Score
0

50

100 96.2 99.8 98.0

81.6

99.8
89.890.2

99.8 94.8

5.3 5.1 5.2

Thunderbird

Precision Recall F1-Score
0

50

100 92.2
86.5 89.384.6 89.5 87.088.1

77.8 82.6

3.9

100.0

7.5

System C

LogSynergy
LogSynergy w/o LEI

LogSynergy w/o SUFE
Direct Application of NeuralLog

Fig. 5: Ablation study results of LEI, SUFE and transfer
learning.

1) Effectiveness of LEI: Our proposed LogSynergy uses
LEI to interpret log events, thereby unifying the log syntax
from different systems. To evaluate the effectiveness of this
method, we remove LEI from LogSynergy and map log events
directly to the feature space instead of using interpreted logs.
We denote LogSynergy with LEI removed as “LogSynergy
w/o LEI”, and its performance is shown in Fig.5.

The results presented in Fig.5 demonstrate that LEI greatly
improves the performance of LogSynergy, especially on the
BGL, where it improves the F1-Score by up to 74%. This
method enhances the performance of transfer learning by
making logs with similar content from different systems more
easily transferable through unified log syntax. These findings
indicate that our method of unifying different log syntax
through LEI can effectively reduce the differences between
logs from various systems and substantially enhance transfer
learning performance.

2) Effectiveness of SUFE: In our proposed method, we
use SUFE to filter out system-specific features and retain
system-unified features, so that the extracted features are more
applicable to the target system. To evaluate the effectiveness
of SUFE, we remove SUFE from LogSynergy and train the
log anomaly detection model using only domain adaptation.
We denote LogSynergy with SUFE removed as “LogSynergy

w/o SUFE”, and its performance is shown in Fig.5.
Fig.5 illustrates that SUFE positively impacts the perfor-

mance of LogSynergy. Across experiments on six datasets,
SUFE consistently improved the F1-Score on each dataset.
By extracting system-shared features, SUFE effectively re-
duces the influence of system-specific features on feature
distribution, thereby enhancing the model’s generalization
performance on the target system. This improvement in gener-
alization enables the model trained by LogSynergy to perform
better in anomaly detection on the target system’s logs.

3) Effectiveness of Transfer Learning: LogSynergy applies
transfer learning to transfer log anomaly detection knowledge
from the source systems to the target system, addressing the
lack of data in the target system. To evaluate the effectiveness
of transfer learning, we select the state-of-the-art single-system
log anomaly detection method, NeuralLog, and train the model
using only the data from the source system, directly evaluating
it on the target system’s logs. We refer to this method, which
does not use transfer learning, as the “direct application of
NeuralLog”, and its performance is shown in Fig.5.

Fig.5 illustrates that transfer learning significantly impacts
log anomaly detection performance on the target system. In
experiments across six datasets, the performance of the direct
application of NeuralLog was consistently lower than that of
LogSynergy. The F1-Score of direct application of NeuralLog
reached 88.2% for System B, while the performance on
other datasets was significantly lower than LogSynergy. This
experiment demonstrates that even though the source and
target systems have similarities, models trained directly on
the source system typically do not perform well on the target
system, highlighting the necessity of transfer learning.

E. Threats to Validity

1) External Threats: In evaluating LogSynergy, we selected
portions of logs from three public datasets and real logs from
a top-tier global ISP. Based on the analysis of these real logs,
we found that anomalies occur at a very low frequency in the
real world. For instance, some logs with negative semantics,
such as frequent login failures, are not considered anomalies
in practice. LogSynergy is designed for real-world scenarios,
learning anomaly classification from source systems. However,
it can also be affected by low-quality or misclassified log
anomalies. When the quality of the logs is poor, and logs that
frequently appear but do not significantly impact the software
system are treated as anomalies, LogSynergy may learn from
these misclassified anomalies, leading to a degradation in
performance.

2) Internal Threats: As mentioned in §III-C, due to the
hallucination problem of LLMs, there might be occasional
biased or incorrect log interpretations. These inaccuracies can
influence the effectiveness of subsequent log representations
and the final performance of the anomaly detection model.
For example, if an LLM misinterprets a critical log event,
the anomaly detection could be flawed. However, given that
the number of distinct log events is limited (usually only
a few hundred), manually reviewing the LLM-generated log

interpretations for these events is feasible and requires less
human effort. This manual check can mitigate the impact of
potential hallucinations, ensuring the reliability of the anomaly
detection process.

V. LESSON LEARNED

Precision Recall F1-Score
0

20

40

60

80

100 99.2 98.9 99.0
94.1 93.9 94.0

11.7

34.2

17.5

94.1

20.4

33.5

BGL & Spirit to System B
BGL & Spirit to System C

System B & System C to BGL
System B & System C to Spirit

Fig. 6: Comparison of transfer learning experimental results
across different source and target systems.

In this section, we discuss and analyze some shortcomings
of LogSynergy. LogSynergy is based on the assumption that
there should be a certain degree of similarity between the
source and target systems. Although LogSynergy achieves
uniformity in log syntax and features through two key com-
ponents, LEI and SUFE, software systems often have sig-
nificant differences that can impact transfer learning perfor-
mance. Specifically, when two systems differ significantly
in functionality, transfer learning performance may degrade.
Similarly, if the source system includes some functionalities
or anomalies of the target system, LogSynergy will exhibit
excellent anomaly detection performance. Conversely, if the
anomalies in the source system do not cover those in the
target system or if there are significant differences between
the target and source systems, LogSynergy cannot guarantee
the effectiveness of transfer learning.

To verify these two scenarios, we select logs from two
systems in each group for mutual transfer learning. Specifi-
cally, we use BGL and Spirit from the first group as source
systems and transferred them to System B and System C from
the second group respectively; similarly, we use System B
and System C from the second group as source systems and
transferred them to BGL and Spirit from the first group. The
performance comparison of these four sets of experiments is
shown Fig.6. We find that transferring from BGL and Spirit to
System B and System C results in high performance, with F1-
scores of 99% and 94%, respectively. Conversely, transferring
from System B and System C to BGL and Spirit results in
lower performance.

We think the reason is that, as supercomputer systems, BGL
and Spirit’s logs typically contain logs from various compo-
nents and multiple anomaly types, possessing rich knowledge
for anomaly detection. Therefore, when transferring to the
relatively simpler System B and System C, they can cover
most of the anomalies in these systems. On the other hand,
the performance is unsatisfactory since System B and System

C cannot cover the anomalies and functionalities of BGL
and Spirit. Specifically, when Spirit is the target system,
its precision is high, but recall is low, indicating that some
anomalies have yet to occur in System B and System C. For
BGL, both precision and recall are low, reflecting a significant
shortage in anomaly detection performance.

VI. DEPLOYMENT AND APPLICATION

A. Workflow of Deployment

Collection

Raw Logs Log
Database

Filebeats Kafka Logstash

Detection

Log
Sequences

Anomaly
Detection Model

Log
Interpretations

Anomaly
Alert

Anomalous?

Report

Anomaly
Report
(Web)

SMS

Email

Fig. 7: The workflow of LogSynergy in the production envi-
ronment.

To investigate the effectiveness of LogSynergy in real-world
applications, we deploy LogSynergy on the cloud platform
provided by the top-tier global ISP mentioned in §IV. LogSyn-
ergy is deployed as an application within a Docker container
equipped with a V100 GPU.

As shown in Fig.7, the workflow of LogSynergy is divided
into three stages:
Collection: Logs are collected by Filebeat [55] in real-
time, transferred to Kafka [56] for buffering, and parsed by
LogStash [57]. Filebeat is deployed on distributed systems
to gather raw logs, which are then formatted into a unified
structure by LogStash. The logs are split into sequences using
a sliding window approach, where each window consists of 10
logs with a 5-step shift. This process standardizes logs across
systems, enabling efficient anomaly detection in later stages.
Detection: Due to the large volume of logs, we use a pattern-
matching method for online detection. When a new log
sequence is generated, it is first matched against a pattern
library of historical anomalies from LogSynergy. If a new
pattern is detected, the sequence is processed by the offline-
trained LogSynergy model for anomaly detection, minimizing
computational overhead from redundant log patterns.
Report: Upon detecting an anomaly, LogSynergy generates
a detailed report combining the log interpretation from LEI
and the anomaly alert. The report includes the original log
sequence, interpretations, and relevant metadata (timestamps,
system identifiers). Reports are sent to operations engineers
via SMS and email for timely alerts, ensuring prompt response
and resolution.

B. Details of Deployment

This subsection provides details about key aspects of
LogSynergy’s operation, including labeling procedures, the use
of LLMs for generating and reviewing interpretations, and the
time required for model training.

1) Labeling Process: The labels in the new systems are
manually annotated by operators. To ensure the reliability of
the annotations, two operators independently label each se-
quence. In cases of disagreement, a third operator is consulted
to resolve the conflict. This collaborative approach minimizes
labeling errors and ensures high-quality training data for the
new system.

2) LLM-Generated Interpretations and Error Review:
LogSynergy utilizes the ChatGPT 4o model to generate in-
terpretations for log templates, with API interactions ensuring
that this process is completed rapidly. In our experiments,
generating interpretations for a new dataset typically takes less
than a minute, as only a few hundred log templates require
processing.

As mentioned in §III-C, all LLM-generated interpretations
must be reviewed to ensure accuracy, with the focus of the
review being on detecting errors in format and length rather
than semantic correctness. The interpretations can be regener-
ated when format errors are found to ensure compliance with
the required format. Since a typical dataset contains only a
few hundred templates, and each template is reviewed once for
errors, the review process is efficient. Operators can complete
this task within ten minutes, ensuring the overall workload
remains manageable.

3) Training Time: The training process for LogSynergy
is highly efficient, taking approximately 10 minutes. This
speed is achieved by using only 50,000 sequences from each
mature system and 5,000 sequences from the new system.
Additionally, mixed-precision training is employed to further
accelerate the process. This efficient training pipeline ensures
that LogSynergy can be rapidly deployed in real-world sce-
narios.

C. Effectiveness of Depolyment

LogSynergy has been deployed for over three months in the
CDMS of a top-tier global ISP, during which more than 100
new software systems were deployed or updated. Each system
requires a corresponding log-based anomaly detection model,
and given the frequency of updates, applying supervised
methods across all systems becomes impractical. As a result,
unsupervised and rule-based methods are primarily used, but
they suffer from a high reliance on operator-defined rules,
leading to false negatives. The process of summarizing rules
is time-consuming and costly, making it difficult to quickly
generate enough rules to cover anomalies in new systems.

In contrast, LogSynergy offers significant advantages in
both deployment efficiency and performance.

1) Deployment Efficiency: LogSynergy enables rapid de-
ployment of anomaly detection models for new software
systems. Traditional rule-based methods require engineers to
generate over ten anomaly detection rules for each system, a
process that takes 1-2 weeks per rule. This rule accumulation
involves analyzing issues, identifying patterns, and validating
rules, which leads to delays and substantial manual effort.

LogSynergy, on the other hand, requires only tens of thou-
sands of logs, and typically completes model training and

initial deployment within a few days. The log collection can be
done in a day, and manual labeling typically takes just a few
hours. This drastically reduces the manual effort and delays,
enabling faster deployment of log-based anomaly detection
models. According to our statistics, the deployment time using
LogSynergy is reduced by over 90% compared to traditional
rule-based methods.

2) Performance: LogSynergy significantly improves the
performance by addressing the limitations of rule-based meth-
ods. While rule-based approaches offer high precision, they
can only detect predefined anomalies, resulting in low recall.
This is especially problematic for new systems with limited
data, where it takes considerable time to accumulate enough
rules for adequate recall.

In contrast, LogSynergy leverages transfer learning from
mature systems to adapt to new, unknown anomalies. This
allows it to detect a wider range of anomalies while maintain-
ing high precision, thereby significantly improving recall and
overall performance. Although production data are rarely fully
labeled, we could not precisely quantify the performance im-
provement. However, based on our analysis of false positives
and false negatives, we conclude that LogSynergy outperforms
the rule-based methods.

D. Case Study

The quantitative evaluation of the deployed LogSynergy has
been discussed in §IV. In this section, we perform a case
study to further demonstrate the advantage of LogSynergy.
In §IV, we find that LogTransfer performs the best among
cross-system log anomaly detection methods in System A.
Therefore, we select a false positive case from LogTransfer for
detailed analysis. System A is the new system, while System
C is the mature system. The upper part of Fig.8 depicts the
raw log messages from System A, including highlighted words
relevant to the false positive case. To highlight the issue, we
remove some repetitive or non-essential log messages from the
sequence.

Since this pattern does not appear in the training samples
of System A, it relies on the training samples from the mature
system used for transfer learning. By analyzing these training
samples, we identify the closest match in System C. In System
C, this sample is anomalous, indicating multiple interfaces and
sessions experiencing consecutive anomalous state changes.
However, in System A, the sample is normal, representing
typical state changes.

The issue arises because the log messages from System A
share a high degree of similarity with those from System C.
This similarity is especially pronounced in the words used
within the log messages. We highlight these similar words in
the raw log messages shown in Fig.8. LogTransfer, utilizing
Word2Vec [58] and GloVe [59] to generate log representations,
interprets these similar words as similar features. Conse-
quently, the model mistakenly identifies the normal sample
from System A as being similar to the anomalous sample from
System C. The misinterpretation of the log representations
leads to the false positive.

LogSynergy, however, uses the LEI method to obtain log
interpretations, effectively converting log messages into more
accurate log representations. As shown in the lower part of
Fig.8, the log interpretations focus on the essential common
information across logs with different syntax (such as current
states), ignoring less important details (such as the specifics
of changes). As a result, the similarity between the log
interpretations of these messages is significantly lower, thus
preventing false positives due to misleading similarity.

System C
(1) The status of the non-virtual interface has changed. (RouterId=**, IfIndex=**,
IfInstId=**, IfState=**, InterfaceName=**, ChgReason=**)
(2) BFD session changed to Down. (SlotNumber=**, Discriminator=**,
Diagnostic=DetectDown, Applications=OSPFV3, ProcessPST=False, BindInterfaceName=**,
InterfacePhysicalState=Down, InterfaceProtocolState=Down, TunnelName=-,
DownReason=FEI Notify, NpDownTime=**)
(3) The IPv6 status changes. (ifName=**, AdminStatus=UP, OperStatus=DOWN,
Reason=The interface is Down)
(4) LLDP neighbor information was changed. (Added=0, Deleted=0, Dropped=0, Aged=1)
(5)Neighbor changes event: neighbor status changed. (ProcessId=**, RouterId=**,
Interface=**, NbrEvent=KillNbr, NbrPreviousState=Full, NbrCurrentState=Down,
CpuUsage=18%)
(6) Interface ** state changed from Point-to-Point to Down. (Event=InterfaceDown,
ProcessId=**)

System A
(1) Session to neighbor changed. Neighbor is up, pre-state: OPENREC, state:
OPERATIONAL, status code: **, Receive keepalive.
(2) MC-LAG global keepalive status changed. Global timer turns into NORMAL
(3) MC-LAG keepalive status changed. The interface timer turns into NORMAL

System A
(1) Neighbor connection is now operational and receiving signals.
(2) Global connection timer is functioning normally.
(3) Interface connection timer is functioning normally.

System C
(1) Non-virtual interface status has changed.
(2) BFD session is down due to an interface issue.
(3) IPv6 interface is down.
(4) LLDP neighbor information aged out.
(5) Neighbor status changed to down.
(6) Interface state changed from active to down.

Raw Log Messages

Log Interpretations

Fig. 8: A false positive case in System A caused by a
misleadingly “similar” case in System C.

VII. CONCLUSION

In this paper, we proposed LogSynergy, a novel transfer
learning-based framework for log anomaly detection designed
to bridge the gap between logs from different software sys-
tems. LogSynergy tackles syntax differences and system-
specific knowledge through two key innovations: LLM-based
event interpretation (LEI) and system-unified feature extrac-
tion (SUFE). These innovations improve knowledge transfer
and enhance the generalizability of anomaly detection models.
LogSynergy has been deployed in the production environment
of a top-tier global ISP, where it was evaluated on three
real-world datasets and three public datasets. It achieved
F1-scores of over 89% on real-world datasets and 83% on
public datasets, using only 5000 labeled log sequences from
a new system. These results demonstrate the effectiveness
of LogSynergy in rapidly deploying anomaly detection mod-
els. In the future, we plan to further validate LogSynergy’s
performance in more diverse scenarios and explore potential
enhancements to handle increasingly complex log data.

REFERENCES

[1] C. Zhang, T. Jia, G. Shen, P. Zhu, and Y. Li, “Metalog: Generalizable
cross-system anomaly detection from logs with meta-learning,” in
Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639205

[2] R. Chen, S. Zhang, D. Li, Y. Zhang, F. Guo, W. Meng, D. Pei,
Y. Zhang, X. Chen, and Y. Liu, “Logtransfer: Cross-system log anomaly
detection for software systems with transfer learning,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020, pp. 37–47.

[3] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Transfer log-based anomaly detection with pseudo labels,” in 2020 16th
International Conference on Network and Service Management (CNSM),
2020, pp. 1–5.

[4] X. Han and S. Yuan, “Unsupervised cross-system log anomaly detection
via domain adaptation,” in Proceedings of the 30th ACM international
conference on information & knowledge management, 2021, pp. 3068–
3072.

[5] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th annual IEEE/IFIP international conference on
dependable systems and networks (DSN’07). IEEE, 2007, pp. 575–
584.

[6] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Am-
atriain, and J. Gao, “Large language models: A survey,” arXiv preprint
arXiv:2402.06196, 2024.

[7] L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and
N. Veyrat-Charvillon, “Mutual information analysis: a comprehensive
study,” Journal of Cryptology, vol. 24, no. 2, pp. 269–291, 2011.

[8] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43–76, 2021.

[9] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[10] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief
review of domain adaptation,” Advances in data science and information
engineering: proceedings from ICDATA 2020 and IKE 2020, pp. 877–
894, 2021.

[11] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola,
“A kernel method for the two-sample-problem,” Advances in neural
information processing systems, vol. 19, 2006.

[12] C. Yu, J. Wang, Y. Chen, and M. Huang, “Transfer learning with
dynamic adversarial adaptation network,” in 2019 IEEE international
conference on data mining (ICDM). IEEE, 2019, pp. 778–786.

[13] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 1285–1298.

[14] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI, vol. 19, no. 7,
2019, pp. 4739–4745.

[15] L. Ma, L. Cao, P. M. VanNostrand, D. M. Hofmann, Y. Su, and E. A.
Rundensteiner, “Pluto: Sample selection for robust anomaly detection on
polluted log data,” Proceedings of the ACM on Management of Data,
vol. 2, no. 4, pp. 1–25, 2024.

[16] T. Jia, Y. Wu, C. Hou, and Y. Li, “Logflash: Real-time streaming
anomaly detection and diagnosis from system logs for large-scale
software systems,” in 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2021, pp. 80–90.

[17] X. Song, Y. Zhu, J. Wu, B. Liu, and H. Wei, “Adops: An
anomaly detection pipeline in structured logs,” Proc. VLDB Endow.,
vol. 16, no. 12, p. 4050–4053, Aug. 2023. [Online]. Available:
https://doi.org/10.14778/3611540.3611618

[18] P. Jia, S. Cai, B. C. Ooi, P. Wang, and Y. Xiong, “Robust and transferable
log-based anomaly detection,” Proc. ACM Manag. Data, vol. 1, no. 1,
May 2023. [Online]. Available: https://doi.org/10.1145/3588918

[19] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 1448–1460.

[20] Z. Yin, X. Kong, and C. Yin, “Semi-supervised log anomaly detection
based on bidirectional temporal convolution network,” Computers &
Security, vol. 140, p. 103808, 2024.

[21] C. Duan, T. Jia, H. Cai, Y. Li, and G. Huang, “Afalog: A general
augmentation framework for log-based anomaly detection with active
learning,” in 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2023, pp. 46–56.

[22] J. Qi, Z. Luan, S. Huang, C. Fung, H. Yang, and D. Qian, “Spikelog:
Log-based anomaly detection via potential-assisted spiking neuron net-
work,” IEEE Transactions on Knowledge and Data Engineering, 2023.

[23] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,
X. Yang, Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on
unstable log data,” in Proceedings of the 2019 27th ACM joint meeting
on European software engineering conference and symposium on the
foundations of software engineering, 2019, pp. 807–817.

[24] V.-H. Le and H. Zhang, “Log-based anomaly detection without log pars-
ing,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2021, pp. 492–504.

[25] S. Hashemi and M. Mäntylä, “Onelog: towards end-to-end software log
anomaly detection,” Automated Software Engineering, vol. 31, no. 2,
p. 37, 2024.

[26] A. Vervaet, “Monilog: An automated log-based anomaly detection
system for cloud computing infrastructures,” in 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE). IEEE Computer
Society, 2021, pp. 2739–2743.

[27] J. Qi, S. Huang, Z. Luan, S. Yang, C. Fung, H. Yang, D. Qian, J. Shang,
Z. Xiao, and Z. Wu, “Loggpt: Exploring chatgpt for log-based anomaly
detection,” in 2023 IEEE International Conference on High Performance
Computing & Communications, Data Science & Systems, Smart City
& Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 2023, pp. 273–280.

[28] V.-H. Le and H. Zhang, “Prelog: A pre-trained model for log analytics,”
Proceedings of the ACM on Management of Data, vol. 2, no. 3, pp.
1–28, 2024.

[29] J. Su, C. Jiang, X. Jin, Y. Qiao, T. Xiao, H. Ma, R. Wei, Z. Jing, J. Xu,
and J. Lin, “Large language models for forecasting and anomaly detec-
tion: A systematic literature review,” arXiv preprint arXiv:2402.10350,
2024.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[31] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE international conference
on web services (ICWS). IEEE, 2017, pp. 33–40.

[32] Z. Ma, A. R. Chen, D. J. Kim, T.-H. Chen, and S. Wang,
“Llmparser: An exploratory study on using large language models
for log parsing,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639150

[33] Y. Liu, S. Tao, W. Meng, J. Wang, W. Ma, Y. Zhao, Y. Chen, H. Yang,
Y. Jiang, and X. Chen, “Logprompt: Prompt engineering towards zero-
shot and interpretable log analysis,” arXiv preprint arXiv:2308.07610,
2023.

[34] J. Xu, R. Yang, Y. Huo, C. Zhang, and P. He, “Divlog: Log parsing with
prompt enhanced in-context learning,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024, pp. 1–12.

[35] J. Xu, Z. Cui, Y. Zhao, X. Zhang, S. He, P. He, L. Li, Y. Kang,
Q. Lin, Y. Dang et al., “Unilog: Automatic logging via llm and in-
context learning,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2024, pp. 1–12.

[36] OpenAI, “Chatgpt,” 2023, https://www.openai.com/chatgpt.
[37] V. Rawte, A. Sheth, and A. Das, “A survey of hallucination in large

foundation models,” arXiv preprint arXiv:2309.05922, 2023.
[38] HF Canonical Model Maintainers, “distilbert-base-uncased-finetuned-

sst-2-english (revision bfdd146),” 2022. [Online]. Available: https:
//huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[40] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

https://doi.org/10.1145/3597503.3639205
https://doi.org/10.14778/3611540.3611618
https://doi.org/10.1145/3588918
https://doi.org/10.1145/3597503.3639150
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

[41] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-
propagation,” in International conference on machine learning. PMLR,
2015, pp. 1180–1189.

[42] D. Mahapatra, S. Korevaar, B. Bozorgtabar, and R. Tennakoon, “Un-
supervised domain adaptation using feature disentanglement and gcns
for medical image classification,” in European Conference on Computer
Vision. Springer, 2022, pp. 735–748.

[43] X. Hou, Y. Li, and S. Wang, “Disentangled representation for age-
invariant face recognition: A mutual information minimization perspec-
tive,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 3692–3701.

[44] X. Jie, X. Zhou, C. Su, Z. Zhou, Y. Yuan, J. Bu, and H. Wang, “Disen-
tangled anomaly detection for multivariate time series,” in Companion
Proceedings of the ACM on Web Conference 2024, 2024, pp. 931–934.

[45] C. Hu, J. Wu, C. Sun, X. Chen, and R. Yan, “Mutual information-
based feature disentangled network for anomaly detection under variable
working conditions,” Mechanical Systems and Signal Processing, vol.
204, p. 110804, 2023.

[46] P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, “Club: A con-
trastive log-ratio upper bound of mutual information,” in International
conference on machine learning. PMLR, 2020, pp. 1779–1788.

[47] V.-H. Le and H. Zhang, “Log-based anomaly detection with deep
learning: how far are we?” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 1356–1367.
[Online]. Available: https://doi.org/10.1145/3510003.3510155

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[49] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural networks,
vol. 111, pp. 47–63, 2019.

[50] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[51] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru)
neural networks,” in 2017 IEEE 60th international midwest symposium
on circuits and systems (MWSCAS). IEEE, 2017, pp. 1597–1600.

[52] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Bkg6RiCqY7

[53] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing
gpu tensor cores for fast fp16 arithmetic to speed up mixed-precision
iterative refinement solvers,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2018, pp. 603–613.

[54] H. Face, “Transformers: State-of-the-art natural language processing
for pytorch, tensorflow, and jax,” 2020, https://github.com/huggingface/
transformers.

[55] B. Elasticsearch, “Filebeat-lightweight shipper for logs (2020),” URL
https://www. elastic. co/products/beats/filebeat. Accessed, pp. 02–12,
2021.

[56] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[57] E. Stack, “Elasticsearch, logstash, kibana— elastic,” URL: https://www.
elastic.co/what-is/elk-stack, 2021.

[58] K. W. Church, “Word2vec,” Natural Language Engineering, vol. 23,
no. 1, pp. 155–162, 2017.

[59] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

https://doi.org/10.1145/3510003.3510155
https://openreview.net/forum?id=Bkg6RiCqY7
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

	Introduction
	Preliminaries and Related Work
	Preliminaries
	Related Work

	Design of LogSynergy
	Overview
	Pre-processing
	Event Representation
	Offline Training
	Network Architecture
	System-Unified Feature Extraction (SUFE)
	Domain Adaptation
	Model Optimization

	Online Detection

	Evaluation
	Experimental Design
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details

	The Overall Performance
	Influence of Hyper-Parameters
	Ablation Study
	Effectiveness of LEI
	Effectiveness of SUFE
	Effectiveness of Transfer Learning

	Threats to Validity
	External Threats
	Internal Threats

	Lesson Learned
	Deployment and Application
	Workflow of Deployment
	Details of Deployment
	Labeling Process
	LLM-Generated Interpretations and Error Review
	Training Time

	Effectiveness of Depolyment
	Deployment Efficiency
	Performance

	Case Study

	Conclusion
	References

