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Abstract—Automatic log analysis is essential for the efficient
Operation and Maintenance (O&M) of software systems, pro-
viding critical insights into system behaviors. However, existing
approaches mostly treat log analysis as training a model to per-
form an isolated task ( e.g., anomaly detection, log parsing, etc.)
using task-specific log-label pairs. These task-based approaches
are inflexible in generalizing to complex scenarios, depend on
task-specific training data, and cost significantly when deploying
multiple models. In this paper, we propose an instruction-based
training approach that transforms log-label pairs from multiple
tasks and domains into a unified format of instruction-response
pairs. Our trained model, LogLM, can follow complex user
instructions and generalize better across different tasks, thereby
increasing flexibility and reducing the dependence on task-specific
training data. By integrating major log analysis tasks into a single
model, our approach also relieves model deployment burden.
Experimentally, LogLM outperforms existing approaches across
five log analysis capabilities, and exhibits strong generalization
abilities on complex instructions and unseen tasks.

Index Terms—log analysis, instruction tuning, large language
model, instruction following, multi-task learning

I. INTRODUCTION

In the ever-evolving landscape of software systems, log
analysis has become a critical component of system Operation
and Maintenance (O&M). Logs serve as an invaluable source
of information, capturing events, errors, and other significant
activities that can shed light on system performance and
potential failures. However, as systems grow in complexity,
manually analyzing logs becomes inefficient and requires
advanced expertise. Thus, automated log analysis has emerged
as a solution, using algorithms and machine learning models
to extract meaningful insights from log data. This automation
enhances efficiency, enabling timely detection of anomalies,
identifying potential patterns, and aiding O&M engineers in
taking actions, thereby helping maintain system reliability [1].

Traditionally, the research field of log analysis has been
divided into discrete tasks, each with its own methodologies
and benchmarking datasets. Two of the most widely studied
tasks are log parsing and log-based anomaly detection. Log
parsing involves transforming raw, unstructured log data into
a structured format, with event templates and key variables
extracted from log messages [2]. Anomaly detection, on the
other hand, focuses on identifying deviations from normal

(a) Task-based log analysis

(b) Instruction-based log analysis
Fig. 1. Illustrated comparison between (a) existing task-based log analysis
approaches and (b) our LogLM, an instruction-based log analysis model.

log behavior, which may signal underlying issues within the
system [3]. Beyond these, other studied tasks include log
interpretation [4], which aims to make logs more under-
standable to human, root cause analysis [5], which seeks to
reveal the causes of system failures from logs, and solution
recommendation [6], which suggests corrective actions for the
identified problems in logs.

Recently, with the rapid advancements in AI technologies,
particularly in large language model (LLM), a variety of LLM-
based approaches for log analysis have been introduced [7]–
[9]. LLMs such as GPT-4 [10] and Claude-3.5 [11] are capable
of following complex instructions and performing a wide range
of tasks. However, as shown in Fig. 1(a), most of these
approaches continue to treat log analysis as isolated tasks,
training LLMs to handle standalone tasks such as log parsing
or anomaly detection without considering the interrelations
between these tasks. We observed that this task-based train-
ing approach fails to fully capitalize on the capabilities of
LLMs (e.g., a performance drop of 8.70% in log parsing and
69.47% in anomaly detection in Fig. 5). For LLMs nowadays,
the training paradigm is instruction-based (called instruction
tuning [12]), involving training on natural instructions across
multiple tasks and domains, thereby offering greater flexibil-
ity and broader application. Furthermore, current task-based
methods encounter several limitations when applied to real-
world industrial scenarios:
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(1) Inflexibility in generalizing to unseen tasks and com-
plex user instructions. Task-based log analysis models are
typically trained to output predictions on a fixed input format,
which leads to an inflexible human-machine interactivity style
in responding to real-world user instructions, particularly for
dynamic O&M environments where new types of tasks often
emerge. For example, in real-world cases, instead of parsing a
log into a template, an O&M engineer may want the model to
compare two logs and find the differences [13]. In addition to
reporting anomaly in logs, the engineer may instruct the model
to further output a justification along with its conclusion [4].
Existing methods are designed to handle a fixed task (e.g.,
input a log and output “abnormal” or “normal”) and struggle to
adapt to such flexible instructions or unfamiliar tasks, leading
to a limited user experience.

(2) Dependency on task-specific and domain-specific
training data caused by ignoring cross-task (or domain)
connections. As observed by recent studies [14]–[16], existing
approaches are dependent on task-specific training data. Their
performances can drop significantly in online situation, where
available task-specific logs in the specific domain (e.g., mod-
ules, versions and devices) is scarce due to frequent software
update and third-party module import [14]. The dependency
on task-specific or domain-specific training data is due to the
ignorance of inherent connections between different analysis
tasks and log domains. For example, accurately parsing a log’s
structure can significantly improve anomaly detection [17];
a correct diagnosis of the root cause of a failure is crucial
for generating a meaningful solution [6]. Also, logs from
different domains are heterogeneous in format and structure,
but may share some common patterns [15]. Just as human
experts draw from prior knowledge across different domains,
LLMs may also apply insights from solving one log analysis
task to another and enriches analysis abilities by integrating
log patterns from diverse domains, thereby requiring less in-
domain and task-specific training data.

(3) Significant burden in deployment. In large-scale soft-
ware systems, the sheer volume of O&M tasks and diversity
of logs from different domains demand that engineers deploy
multiple specialized models, each fine-tuned for a particu-
lar task or domain. This leads to increased complexity in
managing these models, as hundreds of specialized models
may need to be maintained (e.g., five tasks and nine domains
leads to 45 fine-tuned models to deploy), which is also noted
as the “pipeline challenge” [18]. Such an approach not only
consumes significant computational resources but also burdens
engineers with managing and updating a vast array of models.

In this paper, we propose LogLM, a novel instruction-
based approach to log analysis that addresses these limi-
tations. (Strictly, this is moving from “task-based” models
to an “instruction-tuned unified-task” model.) As shown in
Fig. 1(b), our approach transforms task-specific log-label pairs
into instruction-response pairs, allowing the model to learn to
properly respond to diverse user instructions. Instead of focus-
ing on performing isolated tasks, our goal is to build a model
that has comprehensive log analysis abilities. Thus, LogLM

Fig. 2. Comparison of average performance between LogLM and existing
methods across five log analysis capabilities. The dots indicate the relative
percentage of baselines’ average performances in comparison to LogLM’s.
LogLM-7B is fine-tuned from an open-source LLM with 7B parameters.

is trained on diverse instruction pairs, covering five log anal-
ysis capabilities and spanning nine log domains. Compared
with existing methods, LogLM offers several key advantages:
(1) Instruction-following capability enables flexibility. By
training on natural instructions, LogLM can handle complex
user instructions (Fig. 4), providing greater flexibility. (2)
Deep understanding of cross-task (or domain) connections
relieves dependency. Our training set breaks the barriers
among different analysis tasks and log domains, enabling
LogLM possessing deeper understanding of connections be-
tween tasks and domains. When in-domain (or task) training
data is scarce, LogLM learns from out-of-domain (or task)
data, as indicated by the increased performance in Fig. 5 after
introducing instructions from other tasks and domains in the
training set. (3) Single-model deployment reduces burden.
LogLM’s multi-task ability allows for deploying only a single
model for complex systems. Our contributions are:

• We present a new approach to log analysis that uses in-
struction tuning to combine cross-task and cross-domain
log data into a standard instruction-response format,
allowing for more effective log analysis capabilities. In
Fig. 2, our model aces across all five analysis abilities.

• We develop a highly generalized instruction-following
model capable of handling complex user instructions and
performing previously unseen tasks (achieving best in 10
out 12 test terms on unseen tasks as shown in Table V).

• We open-source the full training dataset and codes of
LogLM, facilitating the development of future models.1

II. RELATED WORK

A. LLMs & Instruction Tuning

Recent LLMs, such as GPT-4 [10], have demonstrated the
capability to execute complex tasks and generate appropriate

1Dataset and code available at https://github.com/lunyiliu/LogLM

https://github.com/lunyiliu/LogLM


responses to human instructions [19]–[21]. The development
of these capabilities follows a two-stage process. The first
stage, known as pre-training, involves training a foundation
model to predict subsequent words in large-scale corpora [22].
Despite foundation models like LLaMA [23] being capable
of sentence completion, they exhibit limitations in effectively
responding to human instructions. To address this deficiency,
LLMs undergo a second phase termed human alignment. A
common method in this phase is instruction tuning [24],
where the foundation model is fine-tuned using a diverse set
of human instructions involving various tasks, paired with
corresponding desired responses. This process aims to align
the model’s outputs with human expectations and enhance its
ability to generalize to unseen instructions [24]–[26]. It lever-
ages instruction datasets composed of structured instruction
pairs. Each pair consists of an INSTRUCTION, representing a
human input, and a RESPONSE, representing the ideal output
that resolves the instruction’s task. Through training on these
pairs, the model learns to apply its pre-trained knowledge to
generate appropriate responses to varied instructions and can
generalize to new instructions [12].

Our work, LogLM, can be seen as a pioneering exploration
on leveraging the technique of instruction tuning to solve in-
dustrial challenges in the field of log analysis. We also noticed
a similar work using LLMs to analyze other semi-structured
data similar to log data [27], where diverse instructions are
synthesized for multiple table-based tasks.

B. Log Analysis

1) Task of Log Parsing: Log parsing is a widely studied
task designed to reduce the volume of extensive log data
by extracting meaningful templates from raw logs, facilitat-
ing further analysis tasks such as anomaly detection. Early
approaches to log parsing primarily focused on coarse-level
parsing, which involves aggregating lexically similar logs into
templates. A log template only retains static parts in a log and
replaces dynamic variables with a symbol of <*>. Examples
of these methods include cluster-based [2], [28], heuristic [29],
[30], and tree-based methods [31]–[33].

Beyond coarse-level methods, there is a growing body of
research dedicated to fine-level log parsing, which emphasizes
the significance of variables within logs [16], [34]–[36].

Additionally, recent methods have begun to directly lever-
age LLMs for log parsing, such as LogPPT [37] and Log-
Prompt [14], while other methods utilize LLMs as an enhance-
ment to existing models [7], [9].

2) Task of Log-based Anomaly Detection: Anomaly de-
tection involves distinguishing anomalies within input logs.
Following Le et al. [3], anomaly is defined as a pattern that
violates normal sessions of systems. Techniques for anomaly
detection can be categorized into two main classes: session-
level methods and template-level methods. Both approaches
typically begin by parsing raw logs into templates to facilitate
analysis. Session-level methods subsequently aggregate log
templates into sessions using a windowing strategy, and treat
these log sessions as the minimum unit for anomaly detection.

In contrast, template-level methods directly identify anomalies
based on the semantics of individual log templates. If any
template within a log session is predicted to be abnormal,
template-level methods classify the entire session as anomaly.

Within session-level methods, further distinctions can
be made between forecast-based and classification-based
approaches. Classification-based methods need both nor-
mal and abnormal training logs for training [38]–[40],
whereas forecast-based methods require only normal historical
logs [41], [42].

Template-level methods include techniques such as Log-
Prompt [14], which designs chain-of-thought prompts to
detect anomalies in log entries using ChatGPT, and RA-
GLog [8], which employs retrieval-augmented generation to
assist anomaly detection using LLMs. Additionally, Cui et
al. [43] proposed a benchmark for template-level anomaly
detection and evaluates various LLMs on this task.

3) Other Analysis Tasks: In addition to the two widely
investigated tasks, several other tasks in log analysis are also
studied. Meng et al. [44] proposed the task of log summary,
which involves summarizing key phrases from log sequences.
Liu et al. [4] proposed log interpretation, a task that aims to
explain key elements in logs and describe the logs in natural
language. Chen et al. [5] implemented an on-call system
empowered by LLMs that predicts cloud incidents’ root cause
category. Ahmed et al. [6] utilized fine-tuned LLMs to handle
cloud incidents and recommend mitigation steps for engineers.

4) LogLM v.s. Existing Approaches: At earlier times there
were endeavors which attempted to unify multiple log analysis
tasks, such as Unilog [45] and Biglog [15], where a universal
log encoder was trained for performing multiple downstream
tasks. However, they still require fine-tuning on task-specific
and domain-specific log-label pairs to update the parameters in
classification layers of the model, leading to multiple different
models for varied downstream tasks in the deployment. Also,
they can’t follow complex user instructions or perform unseen
tasks. LogPrompt [14] is another method supporting both log
parsing and anomaly detection. But it requires meticulous
prompt engineering for each task. And the underlying LLM is
API-based ChatGPT, which limits the application in industry.

Compared with existing approaches, LogLM unifies multi-
ple log tasks and is trained from open-source LLMs, thereby
distinguishing by its potentials of single-model deployment
for multi-task analysis in industrial applications. Moreover,
LogLM can follow complex user instructions and perform
analysis tasks that are unseen from training set, increasing
the flexibility and intelligence of automated software O&M.

III. METHODOLOGY

Fig. 3 provides an overview of our methodology to build
LogLM. We first define five closely interconnected log analysis
capabilities for LogLM, which facilitate a profound compre-
hension of log data and a robust application of log analysis.
To construct a high-quality instruction dataset, we identified
publicly available data sources comprising real-world logs
and user posts from technical communities. We designed



Fig. 3. Illustration on the capabilities composition, training dataset construction and training of LogLM.

an LLM-assisted workflow to transform log-label pairs and
log-problem-resolution triplets from these data sources into
the format of (INSTRUCTION, RESPONSE), covering all five
analysis capabilities. The instruction pairs are then utilized to
fine-tune LogLM from foundation LLMs.

A. Analysis Capabilities Composition

To facilitate a comprehensive log-related analytical capacity
for LogLM, it is imperative to meticulously select the types
of instructions utilized during the instruction tuning process.
Based on existing studies in the field of log analysis, five
most representative log analysis capabilities are considered in
composition of the instruction dataset of LogLM. These five
capabilities are not discrete entities; rather, they are closely
interconnected, thereby fostering a deeper understanding of
log-related analytical tasks by the model. Specifically, these
capabilities can be categorized into two distinct groups.

(1) Log Understanding Capabilities, which consists of
structural understanding (Log Parsing) and semantic under-
standing (Log Interpretation). Log Parsing involves decompos-
ing a log’s structure into its template and variable components,
which aids in comprehending the overall structure of logs.
Conversely, Log Interpretation expands the semantic content
of logs into coherent natural language sentences, thereby
enhancing the understanding of log semantics. A precise
decomposition of log structure and an accurate interpretation
of log semantics is the foundation of subsequent applications.

(2) Log Application Capabilities, including three log-
related application tasks: Anomaly Detection, Root Cause
Analysis and Solution Recommendation. These three capabil-
ities follow a logical sequence that reflects the operational
procedures typically employed by O&M engineers during
log analysis. When system anomaly is detected from logs,
engineers need to find the cause of the breakdown and take

measures to solve the problem. Thus, the integration of these
three application capabilities, along with the two understand-
ing capabilities, addresses the practical requirements encoun-
tered in real-world scenarios, thereby enhancing the overall
performance of log analysis.

In real-world practice, the five capabilities are indispensable
for an engineer to perform log analysis. For example, Tom,
a web O&M engineer, spotted a server log: “2024-12-25
08:32:00, ERROR 500 /checkout - Database Timeout”. By
filtering out irrelevant variables (through Log Parsing), Tom
focused on “ERROR 500” and “Database Timeout”. Based
on his expertise (through Log Interpretation), this log was
interpreted by Tom as a failed database connection, which
suggested a potential system anomaly (Anomaly Detection).
By examining server resources, Tom found the root cause
of this incident: the recent database update had introduced
a change in query execution plans, which overloaded the
server during peak traffic (Root Cause Analysis). Tom then
recommended several solutions in a group meeting, including
rolling back the update, scaling up the database server and
setting up proactive alerts (Solution Recommendation). By
including these capabilities into the training set, the LLM
can comprehensively learn essential skills for log analysis
and maximally aligns with real-world human engineers.

B. Instruction Dataset Construction

Upon determining the capabilities composition, we seek
to construct pairs of (INSTRUCTION,RESPONSE) within these
capabilities. Log parsing and anomaly detection are two well-
established tasks, thereby the instruction pairs of the two capa-
bilities were constructed from log-label pairs in representative
open-source datasets. For the other three capabilities, it is
challenging to find off-the-shelf open-source datasets. Thus,
we designed an LLM-assisted workflow to decompose log-



TABLE I
STATISTICS OF THE INSTRUCTION DATASET FOR TRAINING LOGLM

Capabilities Data Source # Instruction
Pairs Domain

Log Parsing Loghub2k [46]

200 HDFS
200 Hadoop
200 Zookeeper
200 BGL
200 HPC
200 Linux
200 Proxifier

Anomaly Detection LogPrompt [14] 194 BGL
138 Spirit

Log Interpretation
LogExpert [47]

300
ApacheRoot Cause Analysis 300

Solution Recommendation 300

All - 2632 -

related high-quality community posts on technical forums, into
instruction pairs of the three capabilities. The statistics of the
constructed instruction dataset for training is shown in Table I,
and the specific construction process is discussed below.

1) Log Parsing: As shown in Table I, the source data
utilized for constructing instruction pairs related to Log Pars-
ing is the Loghub2k dataset [46], which comprises real-
world logs derived from a variety of domains. Zhu et al. [2]
manually extracted log templates from a subset of 2000 logs
across multiple domains, thereby establishing a benchmark
that is considered most representative for the log parsing task.
Consistent with prior research [15], [48], [49], log-template
pairs from seven prominent domains—including supercom-
puters, distributed systems, operating systems, and software
applications—were selected to formulate instruction pairs.

As discussed in Section I, our objective is to mitigate
reliance on in-domain and task-specific log data. Thus, we
incorporated only a limited selection of log-template pairs
into the instruction dataset, reserving the majority for test-
ing purposes. This approach effectively simulates real-world
online scenarios where in-domain log data for training is
often scarce [16]. Specifically, we adhered to the setting in
LogPrompt [14], wherein the chronologically first 10% of logs
were selected from each domain to construct the training set
and the remaining 90% were for evaluation. This yielded a
total of 1400 log-template pairs across the seven domains.

In constructing instruction pairs for Log Parsing, as shown
in Fig. 3, we employed a straightforward prompt proposed
by Liu et al. [14] as INSTRUCTION. This prompt has demon-
strated consistent parsing performance when applied to Chat-
GPT, thereby qualifying it as a high-quality INSTRUCTION.
For the RESPONSE, the manually extracted templates from the
dataset provide a human-preferred answer to the INSTRUC-
TION, thereby enhancing human alignment in subsequent
instruction tuning processes.

2) Anomaly Detection: Instruction pairs related to Anomaly
Detection were derived from the BGL and Spirit benchmark
datasets, which were meticulously curated by Oliner et al.

[50]. These datasets comprise system logs collected from
supercomputers, with annotations performed in collaboration
with domain experts to identify anomalous events for the
anomaly detection task. Liu et al. [14] extracted a total of 1766
log templates from the BGL dataset and 1297 from the Spirit
dataset, and released these pairs of log templates and anomaly
labels. From this collection, we randomly selected a minor
subset—approximately 10%—from each dataset to construct
the instruction pairs, while reserving the remaining data for
evaluation purposes. To ensure a balanced representation of
abnormal and normal samples, we ensured that each subset
contained around 10% abnormal samples, thereby reflecting
the original distribution of abnormal and normal log messages
in the source data. For the construction of the instruction pairs,
as shown in Fig. 3, we employed a straightforward prompt for
the anomaly detection task proposed by Liu et al. [14], with a
single log as an input and the normal/abnormal label serving
directly as the RESPONSE. For new logs, multiple entries can
be concatenated and input as a single log.

3) Interpretation, Root Cause & Solution (IRS): For IRS
capabilities, the availability of off-the-shelf datasets that en-
compass logs and their corresponding task outputs is limited.
However, community contributions on technical forums may
offer valuable data sources useful for the development of IRS
capabilities for LogLM. Specifically, when users post technical
issues accompanied by error logs generated by software, their
descriptions often contain the direct causes of the errors
present in the logs, as well as the contextual circumstances
surrounding those logs, which help in interpreting the logs.
Furthermore, the highest-voted recommended resolutions typ-
ically include interpretations of the logs, identifications of the
root causes of the errors, and user-preferred solutions.

To achieve this, we utilize a dataset released by Wang et
al. [47], which consists of log-related user posts from Stack
Overflow tagged with ”apache”. This dataset was meticulously
curated to include only those user posts that contained at least
one accompanying log. Additionally, the authors manually
verified the feasibility of the highest-voted resolutions for
each post, resulting in a high-quality dataset comprising 384
log-problem-resolution triplets. Subsequently, we composed a
prompt to instruct GPT-4 to decompose three instruction pairs,
regarding to Log Interpretation, Root Cause Analysis, and
Solution Recommendation, from each log-problem-resolution
triplet within the dataset. The specific prompt utilized is:

Assume you are a dedicated IT specialist focusing on
log analysis for system O&M. The following real-world
case includes a log, a title, a description of related user
posted problem and a community solution. Your task is
to decompose three INSTRUCTION-INPUT-RESPONSE
pairs based on the real-world case. Requirement for IN-
STRUCTION: The topic of three instructions are inter-
pretation of the log, root cause of the log and solution
of the log, respectively. Organize each instruction to be
a concise user query on the log. Requirement for INPUT:



The three inputs are all the given log in the real-world case.
If the original log is quite long, retain only necessary part.
Requirement for RESPONSE: The three responses must
properly meet the instructions. Organize your language to
be precise and professional. Format your answer like this:
INSTRUCTION 1: xxx\n INPUT 1: xxx\n RESPONSE
1: xxx\n INSTRUCTION 2: xxx\n INPUT 2: xxx\n
RESPONSE 2: xxx\n INSTRUCTION 3: xxx\n INPUT
3: xxx\n RESPONSE 3: xxx. The case begins: {Input}

By applying this prompt to GPT-4 (model version: gpt-
4-turbo-preview), we generated 384 instruction pairs corre-
sponding to each capability, with INSTRUCTION reflecting the
specific requests merged with the input log, and RESPONSE
being derived from human-authored posts. To mitigate the risk
of generating inaccurate or irrelevant content, we implemented
a human calibration process to ensure that the generated
instruction pairs were consistent with the original user posts
and expert resolutions. Approximately 2% of the generated
content was excluded following this inspection, resulting in
376 calibrated instruction pairs for each of the three capabil-
ities. These instruction pairs were subsequently divided into
training and testing sets in an 8:2 ratio (i.e., 300:76).

C. Training of LogLM

The instruction dataset in Table I serves as a paradigm
for properly responding to human instructions in log anal-
ysis, which the LLM learns to emulate during instruction
tuning. Starting with a pre-trained foundation model, the
LLM gradually aligns its pre-existing knowledge with human-
preferred analysis outputs by predicting the next tokens in the
RESPONSE conditioned on an input INSTRUCTION.

Denote the instruction pair by x = (INSTRUCTION, RE-
SPONSE), where x ∈ C represents elements in the constructed
instruction dataset C. The parameters of the foundation model
are denoted as θ, and after instruction tuning, the parame-
ters are updated to θc, which represents the adapted model,
LogLM. The goal is to maximize the log likelihood of
next tokens (i.e., minimal unit of a tokenized sentence) in
the RESPONSE conditioned on the corresponding INSTRUC-
TION. By denoting the tokens in the RESPONSE of x as
(y1, y2, . . . , yNx

), where Nx is the number of tokens in the
RESPONSE, the training objective can be formulated as:

θc = argmax
θ

∑
x∈C

Nx∑
i=1

logP (yi | INSTRUCTION, y1:i−1; θ, x).

(1)

IV. EXPERIMENT

A. Implementation Details

In the experiment, the foundation model θ is LLaMA-
2-7B [51], an open-source LLM with 7B parameters. Our
main implementation of LogLM, denoted by LogLM-7B, was
trained on the full instruction dataset in Table I according
to Eq. (1). During instruction tuning, the learning rate is

2 × 10−5, the batch size is 32 and the number of training
epochs is six. Other parameters follow the default settings
in LLaMAFactory [52], the framework we utilized for LLM
training and inferencing.

B. Research Questions & Key Findings

In this section, we describe the research questions (RQ) on
evaluating LogLM and the key findings in experiments.

RQ1: Can the instruction-based approach outperform task-
based methods in the five log analysis capabilities?

Key Findings of RQ1: To assess LogLM’s log analysis
capabilities, in Section IV-C, we compare its performance
with existing task-based methods across five benchmarks rep-
resenting different log analysis capabilities. As a single model,
LogLM-7B consistently outperforms 20 existing approaches
across different analysis tasks, highlighting its strong industrial
application potential due to its cost-effectiveness.

RQ2: (A) What contributes to LogLM’s superior perfor-
mance? (B) Can LogLM reduce reliance on in-domain and
task-specific log data? (C) Does the model benefit from
increased diversity and quantity of training instructions?

Key Findings of RQ2: Section IV-D addresses the three
sub-questions through an ablation study on the training data
composition of LogLM. Beginning with merely in-domain
training data for a specific task, we observe a substantial
improvement in LogLM’s average performance as instruction
pairs from other domains and tasks are introduced. This
demonstrates that LogLM’s advantage stems from learning
connections between instruction pairs across diverse domains
and tasks (RQ2-A). Furthermore, this supports answering
RQ2-B, as the majority of LogLM’s training data come from
other domains and tasks, reducing the need for extensive data
collection in a private domain or for an emerging task in
industrial applications. Regarding RQ2-C, the finding suggests
that training on instruction pairs from a diverse set of log
domains and analysis tasks enhances LogLM’s performance,
highlighting its application potential in complex systems.

RQ3: Can LogLM generalize to unseen tasks and follow
complex user instructions?

Key Findings of RQ3: In Section IV-E1, we train LogLM
using instruction pairs from only four capabilities, leaving
the remaining one as an unseen task. Despite this, LogLM
achieved best performance on 10 of 12 test items in these
unseen tasks. Additionally, a case study in Section IV-E2
demonstrate LogLM-7B’s ability to answer knowledge-based
questions related to log analysis, handle previously unseen
instructions, and perform a combination of tasks.

The rest of Section IV is organized as follows. Section IV-C
addresses RQ1, evaluating Log Parsing in Section IV-C1,
Anomaly Detection in Section IV-C2 and the other three
capabilities in Section IV-C3. Section IV-D and IV-E address
RQ2 and RQ3, respectively.

C. RQ1: Benchmarking on Log Analysis Capabilities

1) Log Parsing:



TABLE II
BENCHMARKING ON THE CAPABILITY OF LOG PARSING EVALUATED IN BOTH COARSE-LEVEL AND FINE-LEVEL

Methods HDFS Hadoop Zookeeper BGL HPC Linux Proxifier Avg.

RIa F1 RI F1 RI F1 RI F1 RI F1 RI F1 RI F1 RI F1

IPLoM [30] 0.914 0.389 0.636 0.068 0.787 0.225 0.858 0.391 0.228 0.002 0.695 0.225 0.822 0.500 0.706 0.257
LKE [28] 0.861 0.424 0.150 0.198 0.787 0.225 0.848 0.379 0.119 0.381 0.825 0.388 0.379 0.309 0.567 0.329
LogSig [53] 0.872 0.344 0.651 0.050 0.787 0.225 0.806 0.333 0.119 0.002 0.715 0.146 0.559 0.339 0.644 0.206
FT-tree [31] 0.908 0.385 0.668 0.046 0.773 0.186 0.275 0.497 0.119 0.002 0.709 0.211 0.722 0.420 0.596 0.250
Spell [29] 0.871 0.000 0.721 0.058 0.102 0.045 0.503 0.536 0.882 0.000 0.706 0.091 0.621 0.000 0.629 0.104
Drain [32] 0.914 0.389 0.647 0.068 0.787 0.225 0.822 0.397 0.119 0.002 0.695 0.225 0.822 0.500 0.687 0.258
MoLFI [54] 0.871 0.000 0.699 0.095 0.899 0.000 0.792 0.333 0.881 0.000 0.410 0.026 0.621 0.000 0.739 0.065
LogParse [34] 0.907 0.632 0.349 0.502 0.982 0.348 0.992 0.665 0.194 0.330 0.825 0.588 0.490 0.334 0.677 0.486
LogStamp [16] 0.954 0.523 0.927 0.594 0.992 0.275 0.984 0.818 0.949 0.434 0.760 0.658 0.811 0.438 0.911 0.534
LogPrompt [4] 0.890 0.863 0.879 0.763 0.948 0.889 0.964 0.865 0.934 0.759 0.758 0.766 0.567 0.653 0.849 0.794
LogLM-7B 1.000 0.998 1.000 0.973 1.000 0.995 0.999 0.977 0.999 0.935 0.994 0.934 0.879 0.940 0.982 0.965
a RI stands for coarse-level RandIndex. F1 stands for fine-level F1-score.

a) Evaluation Setting: As is discussed in Section III-B1,
this benchmark involves testing the performance of log parsing
on the chronologically last 90% of the logs from seven
domains in the Loghub2k [46] dataset. We compare LogLM
with 10 existing approaches specifically designed for the task
of log parsing, encompassing cluster-based methods [28], [53],
heuristic methods [29], [30], [54], tree-based methods [31],
[32], machine learning methods [34] and LLM-based meth-
ods [4], [16]. Following the experiment setting in Liu et
al. [14], each baseline is trained on the first 10% of the logs in
each domain, except for LogPrompt [4], which directly utilize
ChatGPT for log parsing without training. In other words, for
each domain, LogLM and other approaches only see the first
10% of logs in the specific domain during training and the rest
90% of logs are unseen, thereby simulating online situations
while ensuring a fair comparison.

Following Liu et al. [14], two most popular evaluation
metrics for the task of log parsing among existing stud-
ies [15], [16], [34] are utilized, encompassing both coarse-
level (RandIndex [55]) and fine-level (F1-score). RandIndex
assesses the accuracy of log clustering (i.e., whether two logs
with the same template are accurately clustered together),
regardless of the correctness of variables in the extracted
templates. In contrast, F1-score measures the precise identifi-
cation of variable parts in logs, thereby serving as a fine-level
metric. To calculate the F1-score, the predicted log template is
tokenized into a list of tokens. Then, for each token, count the
terms TP , TN , FP , and FN . If the token is truly a variable
and is correctly predicted as such (or not), increment the TP
(or FP ) by one. If the token is not a variable and is predicted
not to be a variable (or be), increment the TN (or FN ) by one.
The F1-score is computed as the harmonic average of Recall
(Recall = TP

TP+FN ) and Precision (Precision = TP
TP+FP ).

b) Result: As shown in Table II, our model, LogLM-
7B, exhibited remarkable performances on this benchmark,
outperforming existing approaches significantly in both coarse-
level evaluation and fine-level evaluation. Averagely, LogLM-
7B outperforms best baselines by 7.79% in RandIndex and
by 10.03% in F1-score. This advantages indicate that LogLM

TABLE III
BENCHMARKING ON THE CAPABILITY OF ANOMALY DETECTION

Methods BGL Spirit

S-F1a T-F1 S-F1 T-F1

DeepLog [41] 0.194 - 0.092 -
LogAnomaly [42] 0.129 - 0.138 -
LogRobust [38] 0.536 - 0.045 -
ChatGPT [14] 0.129 0.067 0.122 0.050
LogPrompt [14] 0.314 0.233 0.144 0.071
LogLM-7B 0.811 0.625 0.584 0.278
a S-F1/T-F1 means F1-Score in session/template-level.

can accurately recognize variable parts in logs while extract-
ing correct coarse-level templates, even when the in-domain
training logs are limited in quantity.

2) Anomaly Detection:
a) Evaluation Setting: This evaluation involves compar-

ing LogLM with both template-level methods [14] and session-
level methods [38], [41], [42], as discussed in Section II-B2.
Thus, the evaluation settings are split into template-level
and session-level. For template-level, the test set is the split
template-label pairs as discussed in Section III-B2, containing
around 90% of the templates extracted by Liu et al. [14] from
the dataset of BGL and Spirit. For session-level, following
the setting in LogPrompt, log sessions were built using fixed-
window grouping with a length of 100 chronologically adja-
cent logs in BGL and Spirit. The first 4000 logs in each dataset
are used for training baselines and the rest logs are for testing.
To avoid data leakage, logs in the training set of LogLM were
excluded from the session-level test set, leading to a final test
set of 40521 and 7515 sessions for BGL and Spirit.

The evaluation metric for both the template-level and
session-level is the F1-score of anomaly. F1-score in template-
level (or session-level) considers accurate recall of abnormal
logs (or sessions) from test cases and the precise prediction
of anomaly in template-level (or session-level). Similar to
Section IV-C1a, TP represents the successful identification of
an anomaly (similarly for TN , FP , and FN ) and the F1-score



TABLE IV
BENCHMARKING WITH EXISTING LLMS ON LOG INTERPRETATION, ROOT CAUSE ANALYSIS, AND SOLUTION GENERATION

Methods Log Interpretation Root Cause Analysis Solution Recommendation

BLEU R-1a R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L

LLaMA-3-70B [56] 0.507 7.984 2.121 5.864 0.172 6.876 1.273 4.382 0.529 7.640 1.557 5.368
LLaMA-3.1-405B [56] 4.466 28.563 11.106 17.071 1.416 12.984 3.694 8.162 2.018 18.768 5.287 12.045
Claude-3.5-Sonnet [11] 4.324 30.512 11.786 18.307 2.563 25.824 7.909 15.221 2.698 23.618 6.936 15.109
GPT-4 [10] 2.831 25.205 9.147 13.683 2.057 21.810 6.544 11.518 1.502 21.964 5.532 12.274
OWL-7B [57] 2.566 28.211 8.289 19.123 1.947 20.893 5.671 14.718 0.953 21.620 5.006 15.574
LogLM-7B 15.584 46.488 23.087 34.769 12.398 40.602 19.042 30.227 8.241 34.415 13.911 25.431

a R-1 stands for ROUGE-1. R-2 stands for ROUGE-2. R-L stands for ROUGE-L.

is calculated as the harmonic average of Recall and Precision.
b) Result: The result is shown in Table III. As is ob-

served in the study of Liu et al. [14], detecting anomaly in
online situations with limited number of training logs can
be challenging for most methods, including even ChatGPT.
Normally, without fitting on enough historical data, it is hard to
precisely model the anomaly patterns in domain-specific logs.
However, by training on diverse log tasks, LogLM possesses
more knowledge in log analysis, thereby can model in-domain
anomaly patterns more efficiently. As a result, LogLM-7B
achieves a strong result in Table III both for BGL and Spirit,
while utilizing only 100+ in-domain logs in training.

3) Interpretation, Root Cause & Solution (IRS) Tasks:
a) Evaluation Setting: The evaluation sets for IRS tasks

encompass 76 Q&A pairs for each capability, constructed from
user posts and highest-voted resolutions in real-world technical
community as described in Section III-B3. For baselines,
general-purpose LLMs are involved given their strong abilities
of solving complex problems [19], [21], including LLaMA-
3-70B [56], LLaMA-3.1-405B [56], Claude-3.5-Sonnet [11]
and GPT-4 [10]. In addition, OWL-7B [57], a domain-purpose
LLM designed for IT operations, is also included in the evalu-
ation. All baselines are directly prompted with instructions in
the evaluation sets (i.e., zero-shot). For fairness, we examine
the zero-shot (i.e., no in-domain training data) performance of
LogLM in Section IV-E1.

The evaluation employs four commonly-used metrics in
Q&A tasks for measuring the accuracy of generated answers
compared with reference answers. ROUGE-1 and ROUGE-
2 [58] assess the overlap of unigrams and bigrams (i.e., a
sequence of one or two consecutive words), respectively, be-
tween the generated and reference texts, focusing on successful
recalls of information in reference answers. ROUGE-L [58]
measures the longest common subsequence (LCS) between
the two texts, capturing sentence-level structural similarity.
BLEU [59] evaluates precision of generated answers by count-
ing percentage of n-gram (i.e., n consecutive words) overlap in
the generated texts, penalizing brevity and rewarding fluency.

Each of these metrics ranges from 0 to 100. A score of 100
indicates a perfect match between the generated and reference
text, while a score of 0 indicates no overlap. ROUGE-1 and
ROUGE-2 are computed as the ratio of overlapping n-grams in
the generated text to number of n-grams in the reference text.

ROUGE-L is calculated as the length of LCS to the length
of the reference text. BLEU, however, is calculated as the
geometric mean of n-gram precision (i.e., overlapping n-grams
to number of n-grams in the predicted text) from n = 1 to n =
4, with a brevity penalty to penalize short outputs. These four
metrics capture both surface-level lexical overlap and deeper
structural similarities, which are essential for Q&A evaluation.

b) Result: As shown in Table IV, LogLM-7B outper-
forms existing LLMs in all three capabilities. The advan-
tages in ROUGE-1 and ROUGE-2 indicate that LogLM’s
responses recalled more key information in the reference
responses, which is essential for providing correct root causes
of logged errors and feasible solutions. Also, the higher scores
in ROUGE-L indicate the sentence structure of LogLM’s
responses are more similar to human-calibrated reference
responses derived from community expert resolutions. This
suggests that LogLM’s answers are more natural in style
and layout, which is especially advantageous for generating
human-preferred interpretations of logs. Moreover, a signif-
icant advantage of LogLM-7B in BLEU score is observed
across the three capabilities, indicating that LogLM generated
more precise and readable contents with less hallucination.

D. RQ2: Ablation Study on Training Data Composition

1) Evaluation Setting: In this section, we trained models
from LLaMA-2-7B with the same training settings, except
using four distinct groups of instruction pairs, and evaluated
their performances on Log Parsing and Anomaly Detection.
The four groups are as follows: (1) LogLM: This group utilizes
the complete instruction dataset in Table I, resulting in the
exact LogLM-7B model. (2) W/o IRS instructions: In this
group, instructions related to Log Interpretation, Root Cause
Analysis, and Solution Recommendation were excluded from
the training process. (3) W/o IRS+Parsing instructions (or
w/o IRS+Anomaly instructions): In addition to the IRS-related
instructions, this group further excludes instructions involving
Log Parsing (or Anomaly Detection) to assess the model’s
ability to perform Anomaly Detection (or Log Parsing). In
this case, only task-relevant instruction pairs remain in the
training set. (4) W/o IRS+Parsing+Domain instructions (or
w/o IRS+Anomaly+Domain instructions): This group involves
the further exclusion of instruction pairs containing logs from



Fig. 4. Three cases of LogLM-7B responding to complex user instructions: (a) log-related Q&A, (b) unseen new task, and (c) combination of tasks.

(a) Log Parsing

(b) Anomaly Detection
Fig. 5. Ablation study on the training data of LogLM, evaluated on (a)
Log Parsing and (b) Anomaly Detection. See additional results (other three
tasks, and an upsampling group to control quantity) in our GitHub Page.

other domains, resulting in a training set composed solely of
in-domain logs relevant to the specific task.

2) Result: As shown in Fig. 5, the average performance
for both tasks consistently declines when instruction pairs
from other tasks and domains are excluded. Since the aim
of instruction tuning is to train the model to generate human-
preferred responses to user instructions, incorporating diverse
instruction pairs from various tasks and domains enhances
the model’s alignment with human preferences. Rather than
merely fitting on task labels from a specific domain, the model
is trained to leverage its pre-existing knowledge and inference
capabilities to address a wide range of log-related problems,

TABLE V
EVALUATION OF LOGLM ON TASKS UNSEEN FROM TRAINING

Unseen Taska BLEU ROUGE-1 ROUGE-2 ROUGE-L

Log 6.451 36.841 13.212 25.364
Interpretation (v.s. 4.466)b (v.s. 30.512) (v.s. 11.786) (v.s. 19.123)

Root Cause 9.253 36.089 14.747 26.890
Analysis (v.s. 2.563) (v.s. 25.824) (v.s. 7.909) (v.s. 15.221)

Solution 1.233 24.221 6.033 17.475
Recommendation (v.s. 2.698) (v.s. 23.618) (v.s. 6.936) (v.s. 15.574)

a Unseen task X: testing on X after excluding X from training.
b Compare LogLM with best baselines of the task from Table IV.

thereby developing a robust and comprehensive log analysis
capability while reducing dependency on in-domain task data.
This suggests LogLM’s potential to benefit from the continual
emergence of new logs and tasks in real-world systems.

E. RQ3: Generalization on Unseen & Complex Instructions

1) Performing Unseen Analysis Tasks: Table V displays
the performance of LogLM on unseen tasks, which were
excluded from training set in advance (i.e., four capabilities
for training and the remaining one capability for testing). A
universal decline on performance of corresponding capabilities
can be observed when being treated as the unseen task.
The capability with the sharpest performance drop is Solu-
tion Recommendation, possibly due to its challenging nature
compared with other capabilities. However, despite not being
trained on the excluded task, LogLM still outperforms existing
LLMs (highest scores from Table IV achieved by baselines are
displayed in the parentheses) in 10 out of the 12 test terms.
This result not only indicates a strong generalization ability of
LogLM on unseen instructions, but also suggests that LogLM
acquired a comprehensive problem-solving ability related to
log analysis through capturing cross-task connections.

2) Following Complex User Instructions: Fig. 4 shows
three cases in which LogLM-7B responds to complex user
instructions. In case (a), an open-ended question related to log
analysis is posed, seeking advice on improving logging strate-
gies. LogLM’s response includes several recommendations,
such as incorporating timestamps, establishing log levels, and



adding concise messages, demonstrating that LogLM pos-
sesses a solid understanding of log analysis and can effectively
apply log-related knowledge to generate appropriate responses.
In case (b), LogLM is tasked with a novel problem: comparing
two logs and identifying the differences. The model success-
fully identifies key distinctions, such as the use of proxies
and encryption methods, indicating that LogLM’s analytical
capabilities are not confined to predefined tasks or domains but
can extend to emerging problems with logical accuracy. Case
(c) involves a combination of two known capabilities from
training: Anomaly Detection and Log Interpretation, requiring
the model to detect anomalies while providing justification
for its conclusions. This type of instruction is common in
real-world scenarios where O&M engineers need more than
just predicted values from a model—they require detailed
explanations to inform further actions [4]. In response, LogLM
effectively follows the instruction, delivering both a conclusion
and a well-reasoned justification for the “10061 error”.

The flexibility exhibited by LogLM may be attributed to the
systematic composition of instruction pairs in Table I, which
span two log-understanding and three log-application capabil-
ities. Consequently, through training on these diverse pairs of
user instructions and human-preferred responses, LogLM has
developed not only a deep comprehension of log semantics and
structures but also a robust capacity to address practical log-
related problems and generate well-formatted responses. This
instruction-following ability highlights the model’s potential
in dynamic and complex industrial environments.

V. DISCUSSION

A. LogLM in Practice

We further examine the feasibility of our approach in in-
dustrial applications, by deploying LogLM as the log analysis
component within a software and network O&M platform of
Huawei. The deployment process involved instruction tuning
based on Huawei’s proprietary LLM, Pangu [60], using the
proposed instruction dataset in Table I. To support retrieving
real-time logs from local devices via private API, instruction
pairs involving function calling [61] were also added to the
instruction dataset as a new capability of LogLM. The fine-
tuned model is denoted by LogLM-Huawei.

In practice, the platform operates by allowing users to issue
instructions, which are then responded by LogLM-Huawei.
The model first retrieves relevant logs from the specified
devices by calling system APIs. Upon receiving the logs,
LogLM-Huawei performs a thorough analysis and responds to
users. The instructions from users span a variety of operational
needs, such as resource checks and fault diagnosis.

For instance, a typical query might involve a client asking
for an investigation into whether a specific user experienced
issues over the past three days. LogLM-Huawei firstly requests
an API calling to retrieve logs within past three days from the
user’s associated devices. The platform will parse the request,
collect the logs retrieved from the API and send them to the
model. LogLM-Huawei then evaluates the devices’ statuses
through examining on multiple logs, and provides analysis

results on possible issues the user experienced, along with
recommendations on actions. Other frequent user instructions
include inquiries about specific device statuses and system-
generated logs, and related knowledge-based questions.

Since its deployment in the platform managing arrays of
devices, LogLM has processed over 30k queries over six
months, averaging 200+ queries per day. LogLM’s robust log
analysis and adaptive instruction-following abilities make it the
central intelligence of the O&M platform, driving real-world
applications and delivering valuable insights to customers.

B. Threats to Validity
Our study has several limitations:
(1) Hallucination in LLMs: Despite the competitive perfor-

mance of LogLM-7B in log analysis benchmarks, occasional
hallucinations observed in generated outputs may affect ac-
curacy. While hallucination is a known issue in LLMs and
has garnered attention from AI researchers [62], mitigation
strategies exist for industrial deployment, such as incorporat-
ing post-processing modules, optimizing prompts, or utilizing
larger foundation models.

(2) Fairness of Experimental Comparisons: In Section IV-C,
the training data for LogLM differs from that of baseline
methods, raising concerns about the fairness of comparisons.
However, due to the proprietary and pre-trained nature of many
baselines (e.g., relying on ChatGPT), identical data usage is
unfeasible. To ensure fairness, as discussed in Sections IV-C1a
and IV-C2a, LogLM uses the same or fewer in-domain and
task-specific log-label pairs than existing methods for Log
Parsing and Anomaly Detection. Furthermore, for the three
IRS capabilities, Table V shows that LogLM outperforms most
baselines, even without task-specific training data.

(3) Biases in Studied Logs: Most studied logs in this paper
are system logs, from middlewares, frameworks to operation
systems. In practice, logs from software applications are also
analyzed, which may leads to biases in LogLM. However,
the availability of open-source datasets for application logs
is limited. To address this, logs from the Apache server
application are included in the study, mitigating this issue.

(4) Limited Practice Verification: In practice, LogLM has
been verified only on Huawei’s O&M platform. Other organi-
zations have different environments and requirements, which
may introduce potential external threats to LogLM. Expanding
its deployment across various organizations would enhance its
generalizability and help mitigate external threats

VI. CONCLUSION

In this paper, we present LogLM, an instruction-based log
analysis approach. Through our empirical study, three key
advantages of LogLM over existing task-based methods are
highlighted: (1) greater flexibility, (2) multi-task and general-
ization capability and (3) enabling single-model deployment.
The released instruction dataset of LogLM can facilitate future
endeavors in building LLMs for software O&M. Future work
include adding more instruction sets, testing with larger foun-
dation models and further deploying LogLM across various
organizations to validate its generalizability.
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