
A Multimodal Intelligent Change Assessment Framework for
Microservice Systems Based on Large Language Models

Yongqian Sun
Nankai University
Tianjin, China

Tinghua Zheng
Nankai University
Tianjin, China

Xidao Wen
Tsinghua University

Beijing, China

Weihua Kuang
Nankai University
Tianjin, China

Heng Liu
CHINA TIANCHEN ENGINEERING

CORPORATION LTD.
Tianjin, China

Shenglin Zhang
Nankai University
Tianjin, China

Chao Shen
Nankai University
Tianjin, China

Bo Wu
Tencent Technologies

Beijing, China

Dan Pei
Tsinghua University

Beijing, China

Abstract
Frequent changes in large-scale online service systems often lead to
failures, threatening system reliability. To overcome the limitations
of existing techniques in erroneous change detection, failure triage,
and root cause change analysis, this paper presents a multimodal
intelligent change assessment framework based on large language
models. Our framework integrates retrieval-augmented generation
techniques and leverages unified representation of multimodal data,
enhanced knowledge access, and domain-specific LLMs to auto-
mate the entire change management lifecycle. Experiments on two
microservice system datasets show that our method outperforms
state-of-the-arts in accuracy, efficiency, and minimizing manual
intervention. This work provides a robust solution for change man-
agement and valuable insights into improving system stability and
optimizing operational workflows.

Keywords
Software Change, Anomaly Detection, Failure Triage, Root Cause
Analysis, LLMs, RAG.

ACM Reference Format:
Yongqian Sun, Tinghua Zheng, Xidao Wen, Weihua Kuang, Heng Liu,
Shenglin Zhang, Chao Shen, Bo Wu, and Dan Pei. 2025. A Multimodal
Intelligent Change Assessment Framework for Microservice Systems Based
on Large Language Models. In Companion Proceedings of the 33rd ACM
Symposium on the Foundations of Software Engineering (FSE ’25), June 23–
27, 2025, Trondheim, Norway. ACM, New York, NY, USA, 11 pages. https:
//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’25, June 23–27, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/25/06
https://doi.org/XXXXXXX.XXXXXXX

Rollback

Deployment Detection

Rollback Rollback

N N N

Y Y Y

pre-change post-change

Triage Diagnosis

Redeployment

Triage Diagnosis

Redeployment

Detection

Figure 1: A Typical Software Change Life Cycle. When an
erroneous change occurs, multiple rollback deployments are
required to complete the change.

1 Introduction
In large-scale online systems, a large number of software changes
occur daily, leading to significant risks of service failures. For
instance, studies reveal that major online service providers like
Google implement over 10,000 software changes each day [27]. An-
other study reports that approximately 70% of service incidents
stem from erroneous software changes [1]. At Baidu, 54% of service
failures are attributed to changes [40]. Such failures can result in
severe economic losses; for example, Facebook outage caused by an
erroneous software change led to an estimated $60 million loss in
2021 [32]. These examples underscore the critical need for timely
detection of erroneous software changes, accurate diagnosis of their
root causes, and rapid resolution to mitigate business impact.

The software change life cycle consists of several stages: (1) De-
ployment: Developers deploy a new software version to a limited set
of servers, virtual machines, or containers, monitoring its status; (2)
Detection: If anomalies occur, the deployment is halted and rolled
back; (3) Triage: The incident is assigned to the appropriate engi-
neering team after an initial assessment; (4) Diagnosis: Engineers
investigate the root cause, which often requires multiple rounds
of communication; (5) Redeployment: Once resolved, the change

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

is redeployed. A typical software change life cycle is illustrated in
Figure 1.

Handling software change errors effectively involves three pri-
mary steps: erroneous change detection (ECD), failure triage (FT),
and root cause change analysis (RCCA). These tasks are essential
for operation and maintenance management. ECD has received
considerable attention, with work like SCWarn [43], Kontrast [31],
Lumos [24], and Funnel [40] automating this step. However, FT
and RCCA remain largely manual, with limited automation. While
ChangeRCA [38] addresses RCCA, no mature solutions currently
exist for automating FT. When an erroneous change is detected by
ECD, the change is often rolled back immediately, leaving FT and
RCCA to be performed manually by engineers, who must analyze
multimodal data such as metrics and logs. This manual intervention
increases both labor costs and operational delays.

Despite the advancements in ECD automation, no existingmethod
fully integrates all three tasks—ECD, FT, and RCCA—into a unified
framework. In practice, engineers rely on separate single-task tech-
niques for each stage, resulting in redundant efforts (e.g., feature
extraction, model training, data organization), which increases the
time needed to resolve erroneous changes [34].

To this end, we propose SCELM (Software Change Evaluation
and LifecycleManagement), to automate and streamline the critical
stages of change management. SCELM integrates large language
models (LLMs) and multi-task learning to combine these tasks
into a single, automated pipeline. Unlike existing methods that
require separate, manual processes, SCELM streamlines the entire
workflow—from detecting erroneous changes and triaging incidents
to identifying root causes. Using a Retrieval-Augmented Generation
(RAG) model, SCELM improves the ability of LLMs to access and
update operational knowledge, ensuring that it adapts to evolving
scenarios. This unified approach enhances efficiency, reduces labor
costs, and accelerates issue resolution, ultimately leading to more
reliable and cost-effective service management.

The contributions of our work are summarized as follows:

• SCELM is the first framework to integrate ECD, FT, and
RCCA into a unified pipeline. By leveraging LLMs with
multi-task learning capabilities, SCELM automates the en-
tire software change assessment process, offering a seamless
solution for change management.

• We designed an RAG model to automate the three key steps
in change assessment. This model enhances LLMs’ ability to
access and process operational knowledge, enabling more
accurate change-related semantic information management.
SCELM dynamically updates and manages knowledge bases,
significantly increasing its practical applicability.

• To substantiate the effectiveness of SCELM, we have im-
plemented SCELM on a large Software as a Service (SaaS)
microservice system for more than 11 months, monitoring
thousands of changes per week.

• Extensive experiments were conducted on two microser-
vice system datasets, comprising 54 and 364 instances, re-
spectively. The results demonstrate the effectiveness and
efficiency of SCELM . Our source code is publicly available1.

1https://anonymous.4open.science/r/AIOps-SCELM

2 Motivation
2.1 Inefficiencies in Change Management
Change management is critical in digital operations, ensuring rapid
failure detection and resolution to minimize disruptions and en-
hance reliability. However, current practices face challenges like
the lack of standardized frameworks and the high cost of manual
involvement. While techniques such as ECD, FT, and RCCA are
widely applied, they remain isolated and are not yet part of a unified,
automated framework.

Currently, On-Call Engineers (OCEs) oversee the entire change
lifecycle, from planning and rollout to issue resolution. When er-
roneous changes occur, OCEs face a heavy workload, leading to
inefficiency and potential errors. According to our experience with
OCEs, diagnosing a failure typically takes 2–3 hours, involving de-
tailed analysis, team discussions, and formal reviews. This process
is time-consuming and costly.

For example, during a service rollout, each system node is up-
dated sequentially. If an erroneous change occurs, engineers must
correlate change history, metrics, logs, and environmental condi-
tions. Ideally, this would take 30 minutes to 1 hour to meet Service
Level Agreement (SLA) targets. However, manual workflows often
delay this, complicating efforts to maintain service continuity.

To address these challenges, an automated, end-to-end change
management framework is necessary. Integrating ECD, FT, and
RCCA into a cohesive system can streamline the process, reduce
reliance on manual intervention, and improve efficiency.

2.2 Improving Change Management with LLMs
Managing frequent software changes is a significant challenge for
OCEs. To handle these changes efficiently, an automated solution is
needed to reducemanual work and speed up decision-making. LLMs
are well-suited for this, excelling at tasks like anomaly detection,
failure triage, and root cause analysis, which require processing
large amounts of unstructured data [26].

Fine-tuning models for change assessment requires large, labeled
datasets and substantial computational resources, making it unsuit-
able for real-time tasks, especially in data-scarce and time-sensitive
environments [7]. RAG, however, dynamically retrieves external
knowledge, making it more efficient and adaptable for real-time
change assessment, even with smaller datasets.

LLMs can generate incorrect or nonsensical responses, known
as hallucinations[4]. RAG mitigates this by enhancing the LLM’s
access to relevant external knowledge, improving the accuracy and
reliability of real-time responses. RAG enables LLMs to "search"
external knowledge during inference, much like an "open-book
exam" [41]. This is valuable in change management, where past
experiences are crucial for accurate decision-making.

3 Problem Formulation
Directly inputting multimodal data into LLMs for change assess-
ment management encounters the following challenges:

3.1 Complexities in Handling Multimodal Data
In change assessment tasks, the data involved is not only large in
volume but also comes frommultiple sources and in varying formats.

2

https://anonymous.4open.science/r/AIOps-SCELM

Timestamp | service | serverity: error,
message: write error...

M
et

ric
Lo

g

Report
Erroneous change:

1、Metrics from
prometheus show that
the disk has serious
abnormalities

2、Logs from log
store show read and
write exceptions

...

pre-change post-change

Different sources

cpu_usage_rate

disk_usage_rate

disk_IO_rate

Va
lu

e

Timestamps

Figure 2: An erroneous change Case Presented fromDifferent
Sources (metrics, logs). Metrics are time series data and logs
are semi-structured text data.

These include structured data (e.g., metrics like CPU usage, response
time), semi-structured data (e.g., service logs), and unstructured
data (e.g., fault reports and change notes). Each of these data types
has different characteristics, structures, and relationships, which
complicates their integration into a single representation. Different
sources data are illustrated in Figure 2.

Current methods for handling multimodal data, such as SCWarn
[43] and ANOFusion [39], typically convert these diverse data types
into a unified format, such as time series or metrics. However, such
conversion often leads to the loss of crucial semantic information
embedded within the data, especially in logs where operational
context and historical events are significant. This oversimplification
limits the model’s ability to perform accurate analysis. Therefore,
the core challenge is how to represent this multimodal data in a
way that retains as much semantic detail as possible, while still
making it suitable for machine learning models, particularly LLMs.

Moreover, LLMs, particularly smaller models, are not able to
process multimodal data directly[2, 25]. These models are typically
limited to processing text-based input, while more complex, multi-
modal data (including both logs and metrics) cannot be effectively
processed without advanced pre-processing. This mismatch be-
tween data types and model capabilities creates a significant barrier
for real-time change assessment tasks.

3.2 Hallucinations in LLMs’ Generated Content
While LLMs have advanced significantly in natural language pro-
cessing (NLP), both academic and industrial communities recognize
their limitations. A major issue is their tendency to generate factu-
ally incorrect or nonsensical outputs, known as "hallucination." This
poses risks to LLM deployment, as their knowledge base is static
and based on training data, limiting their ability to provide accu-
rate answers for recent developments or complex, domain-specific
problems. This is referred to as "intrinsic hallucination."

To mitigate these issues, recent studies have introduced RAG to
enhance LLM capabilities[13, 15, 28]. However, RAG is not immune
to hallucinations. Low-quality or irrelevant documents retrieved
during the retrieval phase can introduce errors, leading to inaccu-
rate responses, a phenomenon known as "extrinsic hallucination"
[4].

In real-world environments, engineers often deal with complex,
recurring anomalies. Effective resolution depends on their exper-
tise and understanding of the system. However, LLMs struggle to

handle novel anomalies or new scenarios, limiting their usefulness
in dynamic, high-stakes environments.

3.3 Limitations of LLMs in Change Management
Change management is a complex task involving system depen-
dency analysis, real-time monitoring, change impact assessment,
and contingency planning. This requires a deep understanding of
system architecture, the operating environment, historical data,
and interaction effects—areas where LLMs often struggle.

Traditional tools in operational analysis rely on predefined rules,
algorithms, or expert knowledge to quickly identify bottlenecks
and risks. For example, before implementing a change, automated
tools can assess its impact and generate detailed risk reports. While
general LLMs excel in language understanding, they often rely on
patterns and correlations in training data. If the data lacks domain-
specific knowledge or real-time updates, the generated content may
be inaccurate or incomplete.

For instance, in change impact assessments, LLMs may generate
reasonable-sounding suggestions that don’t align with the system’s
operational logic. Complex system dependencies and interaction
effects are often overlooked, leading to errors. A specific example is
database architecture adjustments, where LLMs may fail to identify
critical cross-database dependencies, leading to downstream im-
pacts like data inconsistencies, service interruptions, or cascading
failures. Thus, while LLMs are strong in language processing, their
effectiveness is limited in complex operational tasks [14].

3.4 Problem Description
To address data confidentiality concerns and the high costs of com-
mercial LLMs, we employ open-source models. Given the real-time
and responsive requirements of change management, we adopt
small-parameter LLMs (e.g., 7B) to balance processing speed and
computational efficiency. Combined with RAG, these models en-
able dynamic knowledge retrieval from external sources, facilitating
efficient handling of tasks like ECD, FT, and RCCA.

This approach leverages RAG-enhanced small-parameter LLMs
to deliver real-time responses and accurate operational issue analy-
sis. By simulating OCEs’ cognitive processes, we aim to establish
a unified LLM-based framework for processing multimodal data,
extracting actionable insights, and delivering timely assessments.
This reduces manual intervention while improving the accuracy
and speed of failure management, addressing the critical demands
of live system change management.

4 Approach
4.1 Overview
We propose SCELM, a change assessment framework for ECD, FT,
and RCCA tasks. As shown in Figure 3, SCELM operates in two
stages: offline preparing and online stage. The offline preparing
stage constructs a historical change knowledge base by modeling
past change orders, logs, and metrics. The online stage processes
real-time data, using RAG to support efficient ECD, FT, and RCCA.

Specifically, SCELM consists of three modules. Module 1 synthe-
sizes data from metrics and logs into domain-specific text using
preprocessing and hybrid algorithms, enabling consistent analy-
sis. Module 2 builds and vectorizes a historical change knowledge

3

Log

Metric

Change Order

Historical Data

Pre-processing Hybrid Algorithm Historical Domain Text Vector Database

Offline Preparing

Log

Metric

Online Data

Pre-processing

Online Stage

Domain Text Retriever LLMs Analysis Reports

RCCA
FT

ECD

input

input output

update

② Enhanced Knowledge Access
and Precise Reasoning for LLMs

③ Domain-Specific LLMs
Operational Model Construction

①Unified Representation of
Multi-source Heterogeneous Data

Figure 3: The Overall Framework of SCELM. Multimodal
data are converted into domain text and then fed to LLMs to
generate analysis reports.

Log

Metric

Metric Log*

Multi-Modal
Serialized Data

Ti
m

e
St

ep
s

Log+

Detection
Algorithm

Natural Language for
Numerical Analysis

Natural Language for
Multimodal Serialized Data

Natural Language for Log+Drain Algorithm

Pattern Matcher
Algorithm

Change Order

Unified Representation of Multi-source Heterogeneous Data

Domain Text Pre-processing

Hybrid Algorithm

Log+: New Logs Generated after Change Occurs
Log*: Logs Generated before Change Occurs

Figure 4: The Framework Diagram of Module 1. Metrics and
logs are converted into natural language after pre-processing
and hybrid algorithm, and then converted into domain text
in combination with change order information.

base to mitigate hallucination issues, enhancing LLMs reasoning
and change assessment accuracy. Module 3 employs RAG to simu-
late OCEs cognitive processes, producing actionable reports that
analyze failure types, identify root causes, and provide targeted
recommendations.

4.2 Unified Representation of Multimodal Data
This module enhances the identification and classification of failure
points by analyzing data derived from ECD. It extracts information
about failure-related anomalies and change order data, providing
a targeted textual summary for individual cases. The framework
diagram for this module is shown in Figure 4.

4.2.1 Multimodal Data Serialization and Log Processing. To process
the various types of data involved in change assessments, we seri-
alize multimodal data (metrics and logs) into time series. Metrics
are processed by standard normalization techniques, while logs are
handled by the approach in SCWarn [43]. Specifically, we calculate
the frequency of parsed log templates using Drain [8] to convert
logs into time series.

In typical conditions, logs usuallymatch existing templates. How-
ever, in erroneous change situations, the volume of new logs in-
creases, resulting in new log templates that are not matched by
existing ones. The SCWarn approach handles this by assessing the
number of new logs that do not match any template. However, our

T1: Time systemed[number]: Reloaded System Logging Service.(L1)
T2: Time vsftpd[number]: Login success: User IP (L2, L4)
T3: Time getBackupEmp[number]: WARNING(*): Queue is too long, try to clean... (L3)

L1: 2024-05-07T01:23:01 systemed[100]: Reloaded System Logging Service.
L2: 2024-05-07T01:23:01 vsftpd[279840]: Login success: User x.x.x.x
L3: 2024-05-07T01:23:01 getBackupEmp[958010]: WARNING(service.py:146): Queue is too
long, try to clean...
L4: 2024-05-07T01:23:01 vsftpd[279950]: Login success: User x.x.x.x
L5: 2024-05-07T01:23:02 systemed[404]: ERROR(system.py:213): Out of memory, try to clean...
L6: 2024-05-07T01:23:02 computeOwnObjectIDs[50662]: ERROR(compute.py:136): Compute
error, load ID fail...

Matching
L1 -> T1 L2, L4 -> T2
L3 -> T3 L5 L6

Log Templates

Online Logs

Figure 5: Log Matching Example. L5 and L6 are new logs
generated after the change occurs and cannot match the log
template before the change.

observations in real-world scenarios indicate that new log templates
arising from changes often contain significant semantic informa-
tion, which is crucial for diagnosing failures and performing root
cause analysis.

As shown in Figure 5, L5 and L6 represent new log templates
generated after a change. These logs are unmatchable with existing
templates but provide critical failure insights—L5 signals system
failure, and L6 indicates business failure. From a semantic perspec-
tive, these logs directly point to the failure cause. If we only focus
on the number of new logs (as SCWarn does), we would miss this
important semantic content. After pre-processing, these logs are
transformed into time series and integrated with the metrics data.
New log templates, due to their semantic richness, are represented
in natural language for cohesive processing by LLMs.
4.2.2 Enhanced Identification and Classification of Failure Points.
Anomalies in time series data can be classified based on their du-
ration and shape. When anomalies are detected, OCEs typically
compare them with historical incidents to understand the nature
of the anomaly and derive troubleshooting recommendations. We
enhance this process by using a pattern matcher [33] to define
graphical rules and patterns that identify the shapes of anomalies.
This approach helps classify anomalies as either transient fluctua-
tions or persistent anomalies.

For example, a "single spike" in response time may indicate a
temporary issue that quickly resolves, while a "steady increase" in
memory usage could signal a more persistent problem. By classi-
fying anomalies in this way, we can filter out irrelevant noise and
focus on the issues that matter most. As shown in Figure 6, these
anomaly shapes are converted into natural language descriptions
through the pattern matcher, making it easier for LLMs to process
and interpret the results.

4.2.3 Integration of Anomaly Metric Data and Change Order In-
formation. We integrate the multimodal serialized data with the
change order information to produce a domain text that consoli-
dates data from the previous steps and encapsulates the key insights
needed for LLMs to generate accurate change assessments.

The purpose of the domain text is to structure diverse data types
(e.g., time-series metrics, log data, change order information) in
a way that is understandable by LLMs, facilitating more accurate
change analysis. The domain text includes the following elements:

4

Type-1
patterns

Type-2
patterns

Fig. 2: Typical anomaly patterns summarized from large-scale real-world data

TABLE I: Detailed explanations of anomaly patterns, including corresponding example metrics and problem scenarios

Type Anomaly patterns Example metrics Examples of problem scenarios

Type-1:
Still in
abnormal
state

Sudden increase
system.cpu.pct usage; system.mem.bu-
ffered; system.net.packets in.error

A sudden high-load task occupies many resources;
Cyclic calls due to configuration errors or bugs

Sudden decrease
system.net.packets in.count; weblogi-
c.webapp.sessions; app.response.rate

Network disconnection; Request
obstruction; Power outage

Level shift up
system.mem.pct usage;
system.io.w await

A sudden high-load task lasts for a while;
Bursted user request

Level shift down
system.cpu.idle; system.mem.free;
app.success.rate

Increase in bad blocks on disk;
Power outage; Server down

Steady increase system.disk.used; oracle.tablespace.used Memory leak caused by buggy code;
Insufficient resourcesSteady decrease system.mem.free; oracle.tablespace.free

Type-2:
Recover
to normal
state

Single spike oracle.lock.wait; system.disk.await Transient network jitter; A temporary high-load task
Single dip system.net.bytes rcvd; app.success.rate Network/system stuck and recovery
Transient level shift up oracle.read.sequential; oracle.lock.wait A high-load task takes up resources for a while and

has been released;
A faulty disk has been replaced

Transient level shift
down

system.cpu.idle;system.mem.free

Multiple spikes system.io.await; app.response.time Continuously unstable system;
Network fluctuationsMultiple dips system.net.bytes sent; app.success.rate

Fluctuations
system.mem.used;app.response.rate;
system.cpu.pct usage

Server restarts continuously;
Continuously unstable system

of this incident, and the other is that its anomaly pattern should
satisfy the physical meaning and engineers’ demand.

III. APPROACH

Motivated by the insights learned from the preliminary
study, we propose an effective approach to identifying root-
cause metrics named PatternMatcher. As presented in Fig. 3,
PatternMatcher contains three components: coarse-grained
anomaly detection, anomaly pattern classification, and root-
cause metric ranking. Specifically, when an incident occurs in
the online service system, PatternMatcher would be triggered,
and related metrics to this incident would be collected based
on system topology. First, PatternMatcher utilizes two-sample
hypothesis test as the coarse-grained anomaly detection algo-
rithm because of its high efficiency and accuracy. It can filter
out the metrics performing normally during the occurrence of
this incident so that the search space could be significantly
reduced. Afterwards, we propose a novel anomaly pattern
classification approach based on 1-D CNN [8], to further
analyze the specific anomaly patterns of abnormal metrics.
The goal is to filter out abnormal metrics whose anomaly
patterns are not concerned by engineers, so as to improve
the accuracy and provide more comprehensive information to
engineers. Finally, we design a ranking strategy taking both

Candidate
metrics

Incident Pattern
classification

Training

EngineersCoarse-grained
anomaly
detection

Abnormal
metrics

Labeled
data

Root-cause
metrics

EngineersTopology
Label

Ranking

Fig. 3: Overview of PatternMatcher

the above two steps into consideration, so that engineers could
check suspicious metrics according to the ranking list. In the
following, we will present three main modules in detail.

A. Coarse-grained Anomaly Detection

As introduced in §II-C, one requirement of root-cause met-
rics is that they should behave abnormally when an incident
occurs. In the literature, several approaches have been pro-
posed to identifying root-cause metrics via anomaly detection.
For example, FluxRank [4] adopts Kernel Density Estimation
(KDE) to detect the change of metric distribution using the
local data before the incident occurs. However, KDE suffers
from several limitations in practice. First, the selection of
kernel functions (e.g., RBF and Gaussian) and the bandwidth
strongly affect the accuracy [11]. Besides, it is difficult for

Figure 6: Typical Anomaly Patterns Summarized From Large-
scale Real-world Data. Type-1: still in abnormal state. Type-2:
recover to normal state.

(1) Change order records that include the change order ID,
the affected service, type of the change (e.g., change config-
urations), and the start and end times for submission and
analysis.

(2) Timestamps of anomalies identified that show when
anomalies were detected by the system, linking changes to
observed issues.

(3) Anomaly classifications and metric descriptions that
define the types of anomalies and describes the related met-
rics

(4) Metric comparisons before and after the change that
compare key metrics before and after the change, summariz-
ing their impact.

(5) Detailed comparison of metrics and findings that pro-
vide a comparison of individual metrics (e.g., max, min, av-
erage) before and after the change, along with a summary
of the results.

(6) New log template descriptions that describe new log tem-
plates created after the change, which may highlight new
failures or changes.

Historical change orders typically contain complete information,
including the status of previous changes, whether those changes
were erroneous, the types of failures that occurred, the root causes,
and the corresponding solutions. This historical data is invaluable
in constructing a historical experience knowledge base that in-
forms the analysis of future changes. On the other hand, online
change orders provide real-time change-related information and
help streamline the acquisition of multimodal data, making it easier
to process and generate real-time assessments.

By integrating these data points into a cohesive domain text,
we ensure that LLMs have a structured, comprehensive input for
generating accurate results in tasks like ECD, FT, and RCCA.

4.3 Enhanced Knowledge Access and Precise
Reasoning for LLMs

As shown in Figure 7, Module 2 is responsible for building and
leveraging a knowledge base of historical experience to improve
the understanding and response capabilities of LLM in change
scenarios. This module enhances the model’s ability to analyze
changes by providing it with extensive contextual information and
historical instances. By incorporating past change records, anal-
ysis results, and exception-handling experiences, LLMs can draw
from past knowledge during new change analysis, improving the
accuracy of the generated text. This process helps LLMs identify
change types, recognize abnormal characteristics, and propose pos-
sible response strategies, ultimately offering OCEs more instructive
analysis recommendations. The module consists of three steps:
4.3.1 Vectorization of Domain-Specific Text. We vectorize the
domain-specific text of each change case to help LLMs quickly

Domain Text Domain Text
Knowledge Vector

Vector Database Historical Experience

Enhanced Knowledge Access and Precise Reasoning for LLMs

Historical
Domain Text

Historical Text
Knowledge Vector

Historical Experience

structure

query
Retriever

Figure 7: The Framework Diagram of Module 2. Retriever
finds the most similar historical experience in the vector
database based on the input domain text.

retrieve and reference key information when for analysis. This
process transforms text data into points in a high-dimensional vec-
tor space, preserving the semantic content. By doing so, LLMs can
match context and integrate historical experience into new analyses.
The vectorized texts can either serve as direct input for subsequent
tasks or as an index for retrieving and matching similar historical
cases, improving the overall efficiency of change evaluations.

4.3.2 Domain Text Knowledge Point Extraction. To better organize
and utilize historical experience, we implement a metric clustering
method. This method classifies and summarizes various metrics
based on their physical meaning as knowledge points in domain
texts. Metrics showing significant abnormal fluctuations or trends
are prioritized and labeled as Top Abnormal Key Performance In-
dicators (KPIs). In practice, these KPIs often represent the status
of critical system components or nodes, and they carry significant
physical implications. For instance, multiple related metrics con-
cerning server anomalies can help identify the root cause of failures.
Metric clustering standardizes the classification of these metrics,
making anomaly detection more systematic and robust.

4.3.3 Building a Knowledge Base and Loading Historical Experi-
ence. The historical experience base is constructed from historical
change orders, which contain information on whether a change
was successful, the root cause of any failures, and the solutions.
We retrieve relevant metrics and logs from these historical records,
process with Module 1, and integrate into historical domain texts.

Once the historical experience has been vectorized and inte-
grated, the system can search for similar historical cases within the
knowledge base. By matching knowledge elements from the cur-
rent change with similar past cases, the system retrieves additional
relevant texts for deeper analysis. These texts are incorporated into
the Prompt Enhancement Module, providing additional context and
supporting the current analysis. The wealth of historical knowledge
enables LLMs to quickly reference past experiences when analyzing
new changes, aligning their output more closely with real-world
conditions and minimizing potential biases. Furthermore, these
texts help LLMs automatically identify potential risk points, com-
mon failure characteristics, and appropriate response measures,
making the change analysis process more comprehensive.

The main objective of loading historical change experience is to
continuously strengthen the change analysis capabilities of LLMs.

5

Domain Text

Vector Database Historical Experience

Context

Engineer Task
Description LLMs

prompt

Output

update

 Domain-Specific LLMs Operational Model Construction

query

Analysis Reports

RCCA
FT

ECD

Figure 8: The Framework Diagram of Module 3. LLMs gener-
ates change analysis with prompts and historical experience.

By reusing and expanding past experiences, LLMs can form more
consistent analysis logic for new changes, avoid repetitive errors,
and improve the accuracy and consistency of generated results.
Additionally, incorporating historical knowledge ensures that the
generated analysis is aligned with the OCE’s workflow, making the
model’s suggestions more practical and actionable, ultimately pro-
viding strong support for decision-making during system changes.

4.4 Domain-Specific LLMs Operational Model
Construction

As shown in Figure 8, Module 3 focuses on generating detailed
change assessment reports using LLMs. This module takes domain-
specific text, system status, and historical experiences, then gen-
erates comprehensive and structured reports that provide clear
guidance for change management. The goal is for LLMs to not only
generate analysis content that fits the context but also offer pro-
fessional responses based on realistic operational scenarios. The
content generated includes judgments on whether a change is a
failure, failure triage, root cause analysis, and proposed solutions.
This module is mainly divided into two steps:

4.4.1 RAG Retriever Augment Generation. Retriever loads histori-
cal experience from the change management knowledge base. The
process of loading historical records and experience data is detailed
in Module 2. By utilizing past data trends, events, and results, this
step enables LLMs to provide deeper, more professional responses
beyond surface-level analysis. It allows LLMs to suggest more ac-
curate change management strategies based on historical context.
Augment task involves describing the task sequence and structuring
the output.First, we model the logical sequence of tasks followed
by OCEs during real-world scenarios. For example, for multi-step
change tasks, the RAG framework outlines the process from ini-
tiation to final confirmation. This helps LLMs align their outputs
with the logical workflows used by OCEs. Then, the generated anal-
ysis is organized into sections such as background introduction,
change analysis, risk assessment, and result summary. This format
enhances readability, helps users grasp essential content quickly,
and supports subsequent system processing.

Generation task involves adaptive text generation, which tailors
the output based on the characteristics of the specific change sce-
nario. RAG adapts its generated content based on the context of the
change[14]. With significant anomalies or fluctuations, it enhances
the analysis with risk assessments andmitigation strategies. For less

Change Ticket
NO.50004
Service adservice Start time 2024-05-07 19:30:00 End time 2024-05-08 19:30:00
Environment BJ-k8s Container AD-env-cont Host x,y,z,1,2,3
Config env=BJ-k8s, cont=AD-cont, host=6, ip=x,x,x,x
Operation Migrate adservice to new environment(BJ-k8s), ip=x,x,x,x ...
Involved Data Related 6 machine KPIs of host, 24 business KPIs of adservice, logs of adservice

LLMs Analysis Report
Change Type: failure
Failure Triage: Wrong IP Address-Configuration Errors-Defective Software Changes
Top 5 abnormal kpi: cpu_usage, memory_usage, net_send_packet, net_recv_packet, istio_count
reason: The data shows significant changes in CPU usage, memory usage, network packet
sending and receiving, and Istio count after the change. This indicates a potential issue with the system's
performance or resource allocation.
solution： 1. Investigate Resource Utilization:Analyze system logs and resource monitoring tools
to pinpoint the cause of decreased CPU and memory usage.
 2. Network Performance Analysis:Conduct network diagnostics to identify bottlenecks
or connectivity problems affecting 'net_recv_packet'.
 3. Scale Resources: If necessary, increase server capacity or adjust load balancing
configurations to accommodate the increased request volume reflected in 'istio_count'.

Figure 9: An Example Report Provided by SCELM.

complex changes, the analysis is simplified. This adaptive genera-
tion ensures that the produced content is more context-appropriate,
improving the accuracy and relevance of the analysis.

4.4.2 Generating Analytical report. Once the domain texts and
contextual information are provided, LLMs generate a detailed
change management analysis report, covering all key tasks. For
example, if anomalies and failures occur during the change process,
the LLMs can categorize the failure type, identify the root cause, and
provide targeted recommendations for resolution. The generated
report includes the following sections:

(1) Change Type: Normal or failure.
(2) Failure Triage: If the change type is failure, provide the fail-

ure category of change.
(3) Top 5 Abnormal KPIs: If change type is failure, provide the 5

KPIs that have the largest impact on change.
(4) Reason: Provide the reason for this change of judgment.
(5) Solution: If change type is failure, provide specific solutions

that may be useful.
For instance, as shown in Figure 9, an erroneous change during a

service migration was caused by a configuration error—specifically
an IP configuration issue. The LLMs’ judgment is based on es-
tablished reasoning, and the provided solutions can be quickly
implemented by engineers to resolve the issue.

Through Module 3, LLMs generate structured, detailed change
management analysis reports. The combination of RAG’s retrieval
and generation capabilities, along with adaptive generation, en-
sures that the analysis is contextually appropriate and actionable.
This process provides a solid basis for decision support, improves
transparency, and enhances the manageability of system changes.
By offering well-structured analysis with clear steps, these reports
facilitate effective decision-making and better risk management.

5 Evaluation
In this section, we address the following research questions:

• RQ1: How does SCELM perform in ECD, FT, and RCCA?
• RQ2: How does each component contribute to SCELM?
• RQ3: How do the major hyperparameters of SCELM impact
its performance?

• RQ4: How does RAG reduce the impact of hallucinations and
improve the expertise in the field of change management?

• RQ5: How does the size of LLM paramter influence perfor-
mance?

6

Table 1: Datasets Descriptions.

Dataset #Instances #Failure #Normal #Failure Types #Records

D1 54 40 14 5 metric 26,438,400
log 4,529,848,320

D2 364 183 181 6 metric 4,193,280

5.1 Experimental Setup
5.1.1 Datasets. To evaluate the performance of SCELM, we con-
duct extensive experiments on two microservice system datasets D1
and D2. Table 1 provides the detailed information of the datasets.

D1 is from a large-scale microservice system operated by an e-
commerce company serving over 100 million users, with thousands
of software changes weekly. The company has faced significant
economic losses due to failed changes, emphasizing the need for
effective change management. We studied 263 change cases over
two years, selecting 54 representative cases for the experiment—40
erroneous changes and 14 normal changes. Failures in D1 include
change issues related to container hardware, network, CPU, mem-
ory, node disk, and business-related failures. We used data from
one week before the change as training data and from the week
after the change as testing data. Due to confidentiality agreements,
this dataset is not publicly available.

D2 is from a popular [12, 22, 37] microservice benchmark sys-
tem: Hipster Shop [29], which allows us to inject various types
of software changes (e.g., adding dead loops, modifying network
configurations, introducing random delays in SQL queries) into
microservices. We used Prometheus to collect time-series KPI data,
including CPU usage, memory utilization, network flow, service
success rate, transaction count, and response time. Two authors
independently labeled KPI segments as anomalous or not, resolving
any disagreements through discussion.

5.1.2 Baseline Approaches. We selected the current popular auto-
mated change methods (i.e., Lumos[24], FUNNEL[40], Gandalf[16],
SCWarn[43], Kontrast[31]) as our baseline methods, which are
mainly applicable to ECD. ChangeRCA[38] requires the use of ser-
vice dependency graphs for service-level RCCA. Since the causal
assumptions and data requirements adopted by ChangeRCA are
not consistent with those of D1 and D2, we use the representative
method PDiagnose[9] for RCCA. Since FT is not involved in the
automated change approach, we adopt MicroCBR[17], a commonly
used FT automation method in microservices, as our baseline in the
FT phase. We use the parameters as specified in the respective work.
For dataset-specific settings (e.g., window length), we adjust them
based on the ranges provided or according to our data. Additionally,
due to the absence of an ECD module in some methods and to
maintain independent performance evaluation for each task, we
assume known timestamps of failures in FT and RCCA evaluations.

5.1.3 Evaluation Metrics. Both ECD and FT are classification tasks.
The former is a binary classification of whether a failure occurs,
while the latter is a multi-classification problem of which type
the current failure belongs to. During evaluations, we adopt True
Positive (TP), False Positive (FP), and False Negative (FN), and
then calculate: precision = TP

TP+FP , recall =
TP

TP+FN , and 𝐹1-score =
2 · precision·recall

precision+recall . We use the Weighted Average F1-score [3] for FT
considering the imbalanced failure types. For RCCA, we introduce
TopK as: TopK = 1

𝑁

∑𝑁
𝑖=1 (𝑔𝑖 ∈ 𝑃𝑖,1:𝐾), to calculate the probability of

the root cause within the top-𝐾 predicted candidates 𝑃𝑖,[1:𝐾] , where
𝑔𝑖 is the groundtruth root cause for the 𝑖-th failure case, and𝑁 is the
number of failures for evaluation. Finally, AVG@5 = 1

5
∑5
𝐾=1 TopK.

5.1.4 Implementations and Parameters. We use Python 3.9.19, Py-
torch 2.3.0, scikit-learn 1.5.1, and langchain 0.2.10 to implement
SCELM and baseline. We run experiments on a server with CUDA
Version: 12.4 NVIDIA RTX A6000 (GPU). We use the flagship mod-
els qwen2[36], llama3[5], gemma2[30] open sourced by various
companies as hyperparameters. We use Ollama (version is 0.1.48)
for local deployment. We repeat each experiment five times and
average the results to minimize the impact of randomness.

5.2 RQ1: How Does SCELM Perform in ECD, FT,
and RCCA?

Table 2 presents a comparison of SCELMwith baselines. SCELM con-
sistently outperforms the baselines across all evaluation metrics,
demonstrating superior performance in ECD, FT, and RCCA.

In the ECD phase, SCELM achieved F1-scores of 1.0 and 0.9421
on D1 and D2, respectively. In comparison, the baseline meth-
ods—SCWarn, Kontrast, Lumos, Funnel, and Gandalf—achieved
average F1-scores of 0.8935, 0.888, 0.868, 0.869, and 0.8685, respec-
tively. SCELM’s average precision and recall were 1.000 and 0.946,
respectively. This indicates that SCELM is highly effective at de-
tecting erroneous changes, with minimal false negatives (which
could lead to missed failure alerts and degraded service quality)
and few false positives (minimizing wasted diagnostic efforts and
preventing the blockage of legitimate changes).

We analyzed the performance gaps between SCELM and the
baseline methods. Among the baselines, SCWarn achieved the best
performance, with an average F1-score close to 0.9, benefiting from
LSTM’s strength in processing time series data. However, it fails to
account for the semantic information in logs arising from changes.
Kontrast, which uses contrastive learning to compare time series
changes before and after a change, struggles to capture correlations
between metrics and logs during failures. Lumos, relying on sta-
tistical tests, is effective only when significant data changes occur.
Funnel, using iSST (improved Singular Spectrum Transform) for
change point detection, is limited in its applicability across all types
of time series data. Gandalf, based on Holt-Winters for anomaly
detection, is restricted to seasonal KPIs.

In the FT and RCCA phases, SCELM achieved F1-scores of 0.964
and 0.865, and Top1 scores of 0.775 and 0.879, respectively, across
both datasets. In contrast, MicroCBR only achieved F1-scores of
0.461 and 0.414, while PDiagnose had an AVG@5 of 0.150 and
0.507, which is worse than SCELM’s Top1 performance. This can
be attributed to MicroCBR and PDiagnose’s limited sensitivity to
fine-grained changes in the change process, as they fail to capture
correlations between metrics and logs. Additionally, in PDiagnose,
the analysis outcomes of each modality are influenced by the pre-
ceding modality, creating potential cascading effects.

Table 3 compares the efficiency of SCELMwith the baselinemeth-
ods. SCELM outperforms the baselines by completing more tasks
per change case in the same time frame. SCELM’s approach mirrors
the workflow of real-world operations engineers, ensuring high per-
formance with a lightweight design. Despite being slightly slower
overall (e.g., SCWarn took 4.375 seconds for D1, while SCELM took

7

Table 2: Performances of ECD, FT, and RCCA. A dash ("-") indicates that the method does not address the respective problem.

Method
D1 D2

ECD FT RCCA ECD FT RCCA
Precision Recall F1-score Precision Recall F1-score Top1 Top3 AVG@5 Precision Recall F1-score Precision Recall F1-score Top1 Top3 AVG@5

SCELM 1.000 1.000 1.000 0.964 0.964 0.964 0.775 0.900 0.975 1.000 0.891 0.942 0.861 0.870 0.865 0.879 0.932 0.932
SCWarn 0.900 0.857 0.878 - - - - - - 0.929 0.891 0.909 - - - - - -
Kontrast 0.925 0.860 0.892 - - - - - - 0.891 0.876 0.884 - - - - - -
Lumos 0.926 0.841 0.881 - - - - - - 0.874 0.837 0.855 - - - - - -
Funnel 0.875 0.875 0.875 - - - - - - 0.858 0.867 0.863 - - - - - -
Gandalf 0.900 0.818 0.857 - - - - - - 0.880 0.880 0.880 - - - - - -
MicroCBR - - - 0.461 0.461 0.461 - - - - - - 0.418 0.420 0.414 - - -
PDiagnose - - - - - - 0.025 0.100 0.150 - - - - - - 0.067 0.307 0.507

Table 3: Processing Time for Each Change Case (in seconds).
Method ECD FT RCCA D1 D2

SCELM ✓ ✓ ✓ 6.357 6.977
SCWarn ✓ 4.375 2.189
Kontrast ✓ 6.331 2.829
Lumos ✓ 4.375 1.928
Funnel ✓ 8.875 3.928
Gandalf ✓ 3.605 2.920
MicroCBR ✓ 47.937 19.279
PDiagnose ✓ 0.357 0.179

Table 4: The Evaluation Results of Ablation Study.

Stage Evaluation D1 D2
SCELM A1 A2 SCELM A1 A2

ECD
Precision 1.000 1.000 1.000 1.000 0.764 1.000
Recall 1.000 1.000 1.000 0.891 0.979 0.943
F1-score 1.000 1.000 1.000 0.942 0.858 0.971

FT
Precision 0.964 0.864 0.864 0.870 0.825 0.838
Recall 0.964 0.926 0.929 0.865 0.648 0.690
F1-score 0.964 0.895 0.895 0.861 0.659 0.723

RCCA
Top1 0.775 0.000 0.100 0.879 0.147 0.542
Top3 0.900 0.000 0.120 0.932 0.158 0.542

AVG@5 0.975 0.000 0.120 0.932 0.163 0.542

6.357 seconds), SCELM completed three tasks (ECD, FT, RCCA) in
that time, whereas SCWarn only handled ECD. This demonstrates
SCELM’s efficiency and suitability for end-to-end change processes.

Overall, the results highlight the practical applicability of SCELM,
showcasing its ability to efficiently and effectively perform real-
time ECD, FT, and RCCA in a unified framework.

5.3 RQ2: Ablation Study
To demonstrate the effectiveness of two key components of SCELM—(1)
the natural language description of the data in the domain text, and
(2) the detection algorithm for multimodal data—we conducted an
ablation study. We created two variants of SCELM: A1 removes the
data description in the domain text; A2 does not perform detection
algorithm detection on multimodal data. Table 4 shows the results
of each variant.

Effect of ECD. The experimental results indicate that removing
both key components (natural language description and detection
algorithm) has little effect on the ECD task. This can be explained
by the fact that ECD is fundamentally anomaly detection, and LLMs
are inherently able to recognize data fluctuations. In A2, where no
detection algorithm is used, the model still performs satisfactorily
with just the natural language description. This suggests that the
physical meaning of the data, which is explicitly described in natural
language, holds significant value. In real-world scenarios, engineers
often make judgments based on the physical meaning of data, and
the detection algorithm serves more as an auxiliary tool.

Figure 10: Experience Level Comparison Results.

Effect of FT. The impact on FT is similar to ECD. However, over-
all, SCELM outperforms both variants. This is because SCELM
performs failure triage mainly based on the physical meaning of
the data, which is consistent with how engineers perform triage
in real-world situations. Engineers typically classify failures based
on their semantic understanding—rooted in the physical meaning
of the data—and LLMs excel at processing this type of semantic
information. Hence, SCELM’s performance remains superior even
when certain components are removed.

Effect of RCCA. For RCCA, the removal of the natural language
description significantly weakens SCELM’s ability to identify the
root cause. In the A1 variant, SCELM’s root cause detection is
nearly non-existent, with Top 5 results showing all empty values,
especially in D1. This indicates that SCELMstruggles to pinpoint
the root cause without the natural language context that explains
the physical meaning of the data. When the detection algorithm is
also removed (as in A2), the results are not as poor as A1, but they
are still suboptimal. This suggests that both the detection algorithm
and the natural language description of the data complement each
other in the RCCA task. In the real world, engineers typically use
both the results from detection algorithms and their understanding
of the physical meaning of data to identify the root cause. Therefore,
the combined effect of the detection algorithm and the semantic
description in SCELMallows it to replicate this process and make
more accurate root cause assessments.

5.4 RQ3: Hyperparameters Sensitivity
We use the degree of professional knowledge in RAG as a hyper-
parameter in SCELM to explore how historical experience impacts
algorithm performance. This provides guidance for deploying the
algorithm in real-world scenarios. We randomly extract historical
experiences from two datasets, D1 and D2, at different proportions.

8

Table 5: Performance With and Without RAG.
Dataset avg_reason avg_reason (no RAG) avg_solution avg_solution (no RAG)
D1 0.840 0.567 0.800 0.641
D2 0.968 0.778 0.944 0.632

The experimental results are shown in Figure 10, where the solid
line represents D1 and the dotted line represents D2.

Cold Start (0% Historical Experience). With no historical expe-
rience (a cold start), SCELM still shows reasonable performance,
particularly in ECD.

Increase in Historical Experience (Up to 10%). As the historical
experience increases, performance steadily improves. Beyond 10%
historical experience, further improvements areminimal. This could
be because ECD is anomaly detection, which relies heavily on data
fluctuations and the physical meaning of the data itself.

Impact on FT (Beyond 10%). When experience level reaches 20%,
further improvements in FT become less noticeable, and some slight
downward trends appear in the D1 dataset. This is due to the small
number of cases in D1—when extracting 10%, only two cases are
sampled, and they may either belong to the same category or differ-
ent categories. Thus, in real-world deployment, even when dealing
with a small number of cases, it is important to cover a wider range
to help the algorithm learn more effectively.

Effect on RCCA (Beyond 70%). After 70% historical experience,
the improvement in RCCA becomes negligible, particularly in D1.
The large number of cases in D2 helps stabilize the results, while
D1’s smaller case count limits the model’s ability to meet learning
requirements until around 70% historical experience. In real-world
deployment, when historical experience is very limited, the algo-
rithm can focus on ECD and FT. Once the number of different cases
exceeds 20, the improvement in RCCA is substantial.

5.5 RQ4: How RAG Mitigates Hallucinations
and Improves Change Expertise?

To better utilize SCELM and reduce manual involvement in the
change process, we studied the professionalism of the output text
generated by SCELM and explored the effect of RAG on reduc-
ing hallucinations in LLMs. We used the failure causes and solu-
tions from historical erroneous changes as the benchmark text and
compared them to the failure causes and solutions generated by
SCELM as the reference text. The cosine similarity between the
benchmark text and the reference text was calculated [23].

As shown in Table 5, avg_reason represents the average cosine
similarity of the failure causes, and avg_solution represents the
average cosine similarity of the solutions. The table clearly shows
that, whether for D1 or D2, there is a significant difference in the
output text when SCELMis usedwith andwithout RAG.With RAG’s
participation, the similarity for the D1 dataset remains above 0.8,
and in D2, it even exceeds 0.9.

To verify this, we specifically checked the model’s output and
found that, with RAG’s participation, the output text did not exhibit
the nonsensical patterns (hallucinations) typically caused by LLMs.
While the similarity did not reach 100%, this is understandable
due to the inherent differences between cases—failure causes and
solutions vary across different situations. Thus, RAG effectively
reduces the impact of hallucinations in LLMs and enhances the
professionalism and accuracy of their output, especially in the
context of change management.

Change Platform SCELM

Monitor

Alert and Rollback

pre-change

post-change

Platform Side

User Side

Analysis Reports

RCCA
FT

ECD

Request Response

Figure 11: The Deployment of SCELM on The Change Plat-
form.

5.6 RQ5: LLMs with Small Parameter Scales
Table 6 presents the experimental results of LLMs with different
parameter scales. It is evident that the model with 7 billion parame-
ters achieves the best performance. When the model has 2 billion
parameters, its performance on the ECD and FT tasks remains sat-
isfactory, but there is a notable degradation in performance during
the RCCA phase. This decline can primarily be attributed to the 2-
billion-parameter model’s limited capacity to capture the semantic
nuances of domain changes, likely due to the constraints imposed
by its smaller parameter size. We have tried using LLMs with larger
parameters, but due to our graphics card bottleneck, LLMs with
larger parameters run very slowly, which is not enough to meet the
timeliness requirements of changes. In theory, LLMs with larger
parameters have a deeper understanding of semantics and the re-
sults may be more accurate, especially for RCCA. However, from
the current results, LLMs with 7 billion parameters is sufficient and
has a certain degree of economy with high cost performance.

6 Implementation
SCELM has been deployed in an automated change platform for a
large SaaS microservice system. As illustrated in Figure 11, when a
new change occurs, the user initiates it through the platform, which
generates a change order and begins execution. SCELM monitors
the change status in real-time, displays updates to the user, and
issues alerts upon detecting erroneous changes. It triggers system
rollbacks and provides a detailed change analysis report to aid
engineers in corrective actions.

Deployment effectiveness. SCELM has been operational for
over 11 months, monitoring thousands of changes weekly. Feedback
from OCEs indicates that it detects nearly all erroneous changes,
achieving over 95% F1-score in classification and 75% localization
accuracy, aligning with evaluation results. Compared to traditional
methods, SCELM reduces erroneous change resolution times by
90%, significantly enhancing accident-handling efficiency. OCEs
report simplified, faster, and more automated change assessments,

9

Table 6: Performance of LLMs with Small Parameter Scales.

Stage Evaluation D1 D2
SCELM(7b) SCELM(2b) SCELM(7b) SCELM(2b)

ECD
Precision 1.000 1.000 1.000 0.9641
Recall 1.000 0.750 0.984 0.979
F1-score 1.000 0.857 0.992 0.972

FT
Precision 0.964 0.864 0.870 0.514
Recall 0.964 0.929 0.865 0.547
F1-score 0.964 0.895 0.861 0.520

RCCA
Top1 0.775 0.022 0.879 0.214
Top3 0.900 0.022 0.932 0.219

AVG@5 0.975 0.022 0.932 0.219

highlighting SCELM’s strong generalization capabilities and plans
for broader application.

7 Discussion
7.1 Lessons Learned
One of the lessons we learned is the scarcity of data, especially
during the cold start phase, which can lead to inaccurate results.
To address this, practitioners should use change data early on to
help the model build foundational knowledge. Organizing internal
records and historical cases would provide better context.

Although this study focuses on RAG technology due to limited
data, fine-tuning LLMs could improve performance in specific sce-
narios. Future work will combine fine-tuning with RAG to optimize
performance across more scenarios. Additionally, transfer learning
and data augmentation could also help mitigate the cold start issue
by transferring data from similar scenarios or generating synthetic
data, allowing the model to adapt quickly.

Another lesson we learned is the validity of change work order
information, as companies may differ in how they record data.
Engineers sometimes fail to report the true causes of failures. To
improve the reliability of historical data, companies should ensure
work order accuracy. This is essential for tracing past failures and
guiding future change evaluations.

7.2 Threats to Validity
Threats to validity mainly arise from variations in the capabilities of
large models. While SCELM uses large models for specialized tasks,
their performance can vary depending on domain-specific features
and anomaly detection. Even with the same SCELM framework,
different training data, parameter settings, and model architectures
can lead to different results.

To mitigate this, we recommend performance evaluations and
multimodal integration strategies. Models should be chosen based
on the specific context, and ensemble methods can be used to im-
prove accuracy by combining outputs from different models. An
adaptive evaluation system can adjust model weights based on
performance, minimizing the impact of model differences.

These strategies will enhance the validity and robustness of
SCELM in real-world applications, helping it adapt to evolving
change scenarios and providing reliable support for decision-making.

8 Related Work
8.1 Software Changes
Software changes have been a popular research domain in academia
and industry for several years [18, 35, 38, 42]. In order to improve

the reliability of software changes, it is crucial to identify failure
software changes in a timely manner and find out the root causes
to solve them. Existing erroneous software change identification
approaches [16, 40, 43], Lumos[24] majorly regard this problem as
an anomaly detection task, utilizing anomaly detection (or change
point detection [19–21]) algorithms to apply to this problem di-
rectly. For instance, multimodal LSTM in SCWarn[43], improved
Singular Spectrum Transform (iSST) in Funnel[40], Holt-Winters
in Gandalf[16], A/B Test in Lumos[24] and contrastive learning in
Kontrast[31]. However, these approachs all focus on ECD. Although
ChangeRCA[38] focuses on RCCA, the root cause analysis only
stays at the microservice level and cannot locate which indicators
or logs in specific services are the root causes. These change tech-
niques only cover certain stages and do not span the entire change
lifecycle. In our approach, we use multimodal data fusion combined
with LLM to identify failure software changes and find out the root
causes to provide targeted solutions and adjustment suggestions,
covering the entire life cycle of software changes.

8.2 LLMs-RAG
LLMs have achieved remarkable success, but they continue to ex-
hibit significant limitations, particularly in specialized domains or
knowledge-intensive tasks. These limitations include a tendency
to produce "hallucinations"—factually inaccurate or fabricated re-
sponses—when addressing queries that exceed their training data
or require real-time information. To address these challenges, RAG
enhances LLMs by leveraging external knowledge bases. Through
semantic similarity calculations, RAG retrieves relevant document
chunks, enabling LLMs to incorporate external information. This
approach significantly mitigates the problem of generating factu-
ally incorrect content[6]. RAG technologies have been successfully
applied across various domains, including fault diagnosis in power
grids[11] and medical decision-making [10]. In our study, we ap-
plied RAG techniques to the domain of software change assessment
management and observed encouraging outcomes.

9 Conclusion
Ensuring reliability during software changes is crucial. This paper
proposes SCELM, an innovative unsupervised automated change
assessment framework that integrates ECD, FT, and RCCA using
multimodal techniques. SCELM fully automates the key steps in
software change assessment by leveraging LLMs and their multi-
task learning capabilities. While LLMs have been applied in vari-
ous domains (fine-tuning and RAG), our research reveals that in
the change management domain, existing data is insufficient, and
fine-tuning methods show limited effectiveness. In contrast, RAG
demonstrates strong expressiveness, and our approach achieves
promising results across multiple change datasets. This work sets a
benchmark for future research, provides a standard for LLM appli-
cations in change management, and enriches the evaluation metrics
for LLMs.

References
[1] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site

reliability engineering: How Google runs production systems. " O’Reilly Media,
Inc.".

10

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[3] Nancy Chinchor and Beth M Sundheim. 1993. MUC-5 evaluation metrics. In Fifth
Message Understanding Conference (MUC-5): Proceedings of a Conference Held in
Baltimore, Maryland, August 25-27, 1993.

[4] Hanxing Ding, Liang Pang, Zihao Wei, Huawei Shen, and Xueqi Cheng. 2024.
Retrieve only when it needs: Adaptive retrieval augmentation for hallucination
mitigation in large language models. arXiv preprint arXiv:2402.10612 (2024).

[5] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[6] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

[7] Aman Gupta, Anup Shirgaonkar, Angels de Luis Balaguer, Bruno Silva, Daniel
Holstein, Dawei Li, Jennifer Marsman, Leonardo O Nunes, Mahsa Rouzbahman,
Morris Sharp, et al. 2024. RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case
Study on Agriculture. arXiv preprint arXiv:2401.08406 (2024).

[8] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[9] Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. 2021. Diagnosing
performance issues in microservices with heterogeneous data source. In 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing
& Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 493–500.

[10] Xinke Jiang, Yue Fang, Rihong Qiu, Haoyu Zhang, Yongxin Xu, Hao Chen,
Wentao Zhang, Ruizhe Zhang, Yuchen Fang, Xu Chu, et al. 2024. TC-RAG:
Turing-Complete RAG’s Case study on Medical LLM Systems. arXiv preprint
arXiv:2408.09199 (2024).

[11] Liu Jing and Amirul Rahman. 2024. Fault Diagnosis in Power Grids with Large
Language Model. arXiv preprint arXiv:2407.08836 (2024).

[12] Lars Larsson, William Tärneberg, Cristian Klein, Maria Kihl, and Erik Elmroth.
2021. Adaptive and application-agnostic caching in service meshes for resilient
cloud applications. In 2021 IEEE 7th International Conference on Network Soft-
warization (NetSoft). IEEE, 176–180.

[13] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[14] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[15] Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. 2022. A survey on
retrieval-augmented text generation. arXiv preprint arXiv:2202.01110 (2022).

[16] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj Singh,
Xinsheng Yang, Qingwei Lin, Youjiang Wu, Sebastien Levy, et al. 2020. Gandalf:
An intelligent,{End-To-End} analytics service for safe deployment in {Large-
Scale} cloud infrastructure. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). 389–402.

[17] Fengrui Liu, Yang Wang, Zhenyu Li, Rui Ren, Hongtao Guan, Xian Yu, Xiaofan
Chen, and Gaogang Xie. 2022. MicroCBR: Case-Based Reasoning on Spatio-
temporal Fault Knowledge Graph for Microservices Troubleshooting. In Interna-
tional Conference on Case-Based Reasoning. Springer, 224–239.

[18] Ajay Mahimkar, Carlos Eduardo de Andrade, Rakesh Sinha, and Giritharan Rana.
2021. A composition framework for change management. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference. 788–806.

[19] Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates, Yin Zhang, Joanne Emmons,
Brian Huntley, and Mark Stockert. 2011. Rapid detection of maintenance induced
changes in service performance. In Proceedings of the Seventh COnference on
Emerging Networking EXperiments and Technologies. 1–12.

[20] Ajay Mahimkar, Zihui Ge, Jennifer Yates, Chris Hristov, Vincent Cordaro, Shane
Smith, Jing Xu, and Mark Stockert. 2013. Robust assessment of changes in cellular
networks. In Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies. 175–186.

[21] Ajay Anil Mahimkar, Han Hee Song, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer
Yates, Yin Zhang, and Joanne Emmons. 2010. Detecting the performance impact
of upgrades in large operational networks. In Proceedings of the ACM SIGCOMM
2010 Conference. 303–314.

[22] John Paul Martin, A Kandasamy, and K Chandrasekaran. 2020. CREW: Cost and
Reliability aware Eagle-Whale optimiser for service placement in Fog. Software:
Practice and Experience 50, 12 (2020), 2337–2360.

[23] Anirudh Phukan, Harshit Kumar Morj, Apoorv Saxena, Koustava Goswami, et al.
2024. Beyond Logit Lens: Contextual Embeddings for Robust Hallucination
Detection & Grounding in VLMs. arXiv preprint arXiv:2411.19187 (2024).

[24] Jamie Pool, Ebrahim Beyrami, Vishak Gopal, Ashkan Aazami, Jayant Gupchup,
Jeff Rowland, Binlong Li, Pritesh Kanani, Ross Cutler, and Johannes Gehrke. 2020.
Lumos: A library for diagnosing metric regressions in web-scale applications.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2562–2570.

[25] Alec Radford. 2018. Improving language understanding by generative pre-
training. (2018).

[26] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[27] Andy Singleton. 2016. The economics of microservices. IEEE Cloud Computing 3,
5 (2016), 16–20.

[28] Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kalu-
arachchi, Rajib Rana, and Suranga Nanayakkara. 2023. Improving the domain
adaptation of retrieval augmented generation (RAG) models for open domain
question answering. Transactions of the Association for Computational Linguistics
11 (2023), 1–17.

[29] Clay Smith. 2022. hipster-shop. //https://github.com/lightstep/hipster-shop.
[30] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy

Hardin, Surya Bhupatiraju, Léonard Hussenot, ThomasMesnard, Bobak Shahriari,
Alexandre Ramé, et al. 2024. Gemma 2: Improving open language models at a
practical size. arXiv preprint arXiv:2408.00118 (2024).

[31] Xuanrun Wang, Kanglin Yin, Qianyu Ouyang, Xidao Wen, Shenglin Zhang,
Wenchi Zhang, Li Cao, Jiuxue Han, Xing Jin, and Dan Pei. 2022. Identifying
erroneous software changes through self-supervised contrastive learning on time
series data. In 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 366–377.

[32] Wikipedia contributors. 2024. 2021 Facebook outage — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=2021_Facebook_outage&
oldid=1260851067. [Online; accessed 11-January-2025].

[33] Canhua Wu, Nengwen Zhao, Lixin Wang, Xiaoqin Yang, Shining Li, Ming Zhang,
Xing Jin, Xidao Wen, Xiaohui Nie, Wenchi Zhang, et al. 2021. Identifying root-
cause metrics for incident diagnosis in online service systems. In 2021 IEEE
32nd International Symposium on Software Reliability Engineering (ISSRE). IEEE,
91–102.

[34] Yifan Wu, Bingxu Chai, Ying Li, Bingchang Liu, Jianguo Li, Yong Yang, and Wei
Jiang. 2023. An empirical study on change-induced incidents of online service
systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 234–245.

[35] Yong Xu, Xu Zhang, Chuan Luo, Si Qin, Rohit Pandey, Chao Du, Qingwei Lin,
Yingnong Dang, and Andrew Zhou. 2021. CARE: Infusing causal aware thinking
to root cause analysis in cloud system. In Proceedings of the 1st Workshop on High
Availability and Observability of Cloud Systems. 1–3.

[36] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5
Technical Report. arXiv preprint arXiv:2412.15115 (2024).

[37] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao
Jing, Tianjun Weng, Xinmeng Sun, and Xiaoyun Li. 2021. Microrank: End-to-
end latency issue localization with extended spectrum analysis in microservice
environments. In Proceedings of the Web Conference 2021. 3087–3098.

[38] Guangba Yu, Pengfei Chen, Zilong He, Qiuyu Yan, Yu Luo, Fangyuan Li, and
Zibin Zheng. 2024. ChangeRCA: Finding Root Causes from Software Changes in
Large Online Systems. Proceedings of the ACM on Software Engineering 1, FSE
(2024), 24–46.

[39] Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng Zhang, Sibo
Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin, et al. 2023. Robust failure
diagnosis of microservice system through multimodal data. IEEE Transactions on
Services Computing 16, 6 (2023), 3851–3864.

[40] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin Tao, and Zhi
Zang. 2015. Rapid and robust impact assessment of software changes in large
internet-based services. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. 1–13.

[41] Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion
Stoica, and Joseph E Gonzalez. 2024. Raft: Adapting language model to domain
specific rag. arXiv preprint arXiv:2403.10131 (2024).

[42] Xu Zhang, Chao Du, Yifan Li, Yong Xu, Hongyu Zhang, Si Qin, Ze Li, Qingwei
Lin, Yingnong Dang, Andrew Zhou, et al. 2021. Halo: Hierarchy-aware fault
localization for cloud systems. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 3948–3958.

[43] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu,
Hongyu Xu, Wenchi Zhang, Kaixin Sui, and Dan Pei. 2021. Identifying bad
software changes via multimodal anomaly detection for online service systems.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 527–539.

11

//https://github.com/lightstep/hipster-shop
https://en.wikipedia.org/w/index.php?title=2021_Facebook_outage&oldid=1260851067
https://en.wikipedia.org/w/index.php?title=2021_Facebook_outage&oldid=1260851067

	Abstract
	1 Introduction
	2 Motivation
	2.1 Inefficiencies in Change Management
	2.2 Improving Change Management with LLMs

	3 Problem Formulation
	3.1 Complexities in Handling Multimodal Data
	3.2 Hallucinations in LLMs' Generated Content
	3.3 Limitations of LLMs in Change Management
	3.4 Problem Description

	4 Approach
	4.1 Overview
	4.2 Unified Representation of Multimodal Data
	4.3 Enhanced Knowledge Access and Precise Reasoning for LLMs
	4.4 Domain-Specific LLMs Operational Model Construction

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: How Does SCELM Perform in ECD, FT, and RCCA?
	5.3 RQ2: Ablation Study
	5.4 RQ3: Hyperparameters Sensitivity
	5.5 RQ4: How RAG Mitigates Hallucinations and Improves Change Expertise?
	5.6 RQ5: LLMs with Small Parameter Scales

	6 Implementation
	7 Discussion
	7.1 Lessons Learned
	7.2 Threats to Validity

	8 Related Work
	8.1 Software Changes
	8.2 LLMs-RAG

	9 Conclusion
	References

