
IEEE TRANSACTIONS ON NETWORKING 1

Real-Time Anomaly Detection for
Large-Scale Network Devices

Lei Tao , Minghua Ma , Member, IEEE, Shenglin Zhang , Member, IEEE, Junhua Kuang,
Xiao-Wei Guo, Canqun Yang , and Dan Pei , Senior Member, IEEE

Abstract— With the booming of large-scale network devices,
anomaly detection on multivariate time series (MTS), such as
a combination of CPU utilization, average response time, and
network packet loss, is important for system reliability. Although
a collection of learning-based approaches have been designed for
this purpose, our study shows that these approaches suffer from
long initialization time for sufficient training data. Our previously
proposed JumpStarter model stands as a MTS anomaly detec-
tion method characterized by its brief initialization time and
commendable detection performance. However, it suffers from
high computational cost and inappropriateness for periodic MTS.
In this paper, we propose VersaGuardian, which introduces
the Dynamic Mode Decomposition technique to MTS anomaly
detection for diverse types of MTS in a rapidly initialized,
computationally efficient manner. With real-world MTS datasets
collected from three companies, our results show that Versa-
Guardian achieves an average F1 score of 94.42%, significantly
outperforming the popular anomaly detection algorithms, with
a much shorter initialization time of 20 minutes and detection
time of 15.28 milliseconds.

Index Terms— Anomaly detection, network devices, multivari-
ate time series, dynamic mode decomposition.

I. INTRODUCTION

IN THE context of large-scale networks, hardware replace-
ment, code modifications, software configurations, and the

introduction of new technologies are commonplace among var-
ious teams. These activities aim to deploy new functionalities,
address existing errors, and optimize performance. It is crucial

Received 21 January 2024; revised 10 November 2024; accepted 11 January
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor Y. Liu.
This work was supported in part by the Advanced Research Project of China
under Grant 31511010501; and in part by the National Natural Science
Foundation of China under Grant 62272249, Grant 62302244, and Grant
62072264. (Corresponding author: Shenglin Zhang.)

Lei Tao and Junhua Kuang are with the College of Software, Nankai
University, Tianjin 300192, China (e-mail: leitao@mail.nankai.edu.cn;
2013157@mail.nankai.edu.cn).

Minghua Ma is with Microsoft, Redmond, WA 98052 USA (e-mail:
minghuama@microsoft.com).

Shenglin Zhang is with the College of Software, Nankai University,
Tianjin 300192, China, and also with the Haihe Laboratory of Information
Technology Application Innovation (HL-IT), Tianjin 300459, China (e-mail:
zhangsl@nankai.edu.cn).

Xiao-Wei Guo is with the College of Computer Science, National University
of Defense Technology, Changsha 410073, China (e-mail: guoxiaowei@
nudt.edu.cn).

Canqun Yang is with the College of Computer Science, National Univer-
sity of Defense Technology, Changsha 410073, China, and also with the
National Supercomputer Center in Tianjin, Tianjin 300456, China (e-mail:
canqun@nudt.edu.cn).

Dan Pei is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100190, China, and also with Beijing National
Research Center for Information Science and Technology, Beijing 100190,
China (e-mail: peidan@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TON.2025.3529861

to recognize that despite meticulous pre-deployment testing,
the complexity arising from operational scale, diverse device
types, vendor heterogeneity, and intricate interactions between
device and software components may lead to latent defects
and functional inadequacies surfacing in a real production
environment [1], [2]. Even seemingly minor upgrades can
potentially result in significant failures with repercussions for
end-user experience. Early detection of anomalies resulting
from hardware or software changes is paramount [3], enabling
release and operators to intervene in the event of erroneous
alterations and facilitate timely rollback procedures to prevent
broader adverse consequences [4].

To facilitate the detection of anomalies within network
devices, operators engage in the ongoing collection of moni-
toring data of each performance metric (e.g., CPU utilization,
network packet loss and protocol flaps, etc.) at equally
spaced intervals [5]. The monitoring data of a metric form
a univariate time series, and thus that of network devices,
which has multiple metrics, constitutes a multivariate time
series (MTS). Traditional MTS anomaly detection approaches
are typically based on detecting univariate time series [6].
However, the status of a specific metric does not adequately
reflect the overall status that operators are more concerned
about [7], [8]. The limitations of univariate time series
anomaly detection in capturing complex temporal relation-
ships among different univariate time series often result in
alert storms [9]. To address this issue, recent works [7],
[10], [11], [12], [13], [14], [15] have utilized deep learning
techniques to build learning models for detecting anomalies
in MTS.

Learning-based approaches are often impractical due to
their reliance on a substantial amount of training data, which
is not readily available in many real-world scenarios. As a
result of hardware or software changes, the data distribution
of MTS can undergo significant shifts, which are known as
expected concept drift [16]. For instance, when operators
deploy a service to more network devices through a software
change, the metric “Requests Per Second” in each network
device may experience a substantial drop, as illustrated in
Figure 1. Operators anticipate this change and do not consider
rolling back the software change. However, after the change,
it can lead to a high number of false alarms or missed alerts
since the learning-based anomaly detection models trained
on data before the change become invalid. This is because
the fundamental assumption in deep learning that the data
distribution remains consistent between the training and test
sets is violated [17].

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0007-1282-3089
https://orcid.org/0000-0002-6303-1731
https://orcid.org/0000-0003-0330-0028
https://orcid.org/0009-0008-4757-2475
https://orcid.org/0000-0002-5113-838X

2 IEEE TRANSACTIONS ON NETWORKING

Fig. 1. The MTS (selected as examples) of a network device before and
after a software change. The red segment is labeled anomalous.

To address this issue, the learning-based approaches need
to be retrained to adapt to the new data distribution. However,
the retraining process can be time-consuming, ranging from
tens to hundreds of days [6], [7], before the models reach
a steady state. This prolonged retraining duration adds to the
challenges and limitations of applying learning-based methods
in practice. To quantitatively measure how long it takes to
“initialize” a MTS anomaly detection model, we first define
initialization time, as the time lag between when the model is
launched and when it becomes well trained, and conduct an
empirical study on the initialization time of multiple learning-
based methods.

For time series characterized by pronounced periodic pat-
terns, the spike of local anomalies during idle periods may
be much lower compared to the high values observed during
busy periods [18]. Consequently, there exists a necessity for
the adaptability of MTS anomaly detection algorithms to effec-
tively accommodate periodic time series. However, usually the
non-learning-based methods are not good at detecting anoma-
lies for periodic MTS. Furthermore, the temporal duration
essential for discerning potential issues directly influences user
satisfaction such as our proposed method, JumpStarter [19].
Alarm strategies marked by prolonged latency often precipitate
augmented financial losses.

Therefore, the endeavor to monitor a plethora of metrics
within network devices undergoing frequent hardware or soft-
ware changes, with the objective of promptly identifying latent
issues and making informed decisions to enhance service
quality, entails the following three challenges:

1) Frequent changes lead to changes in the patterns of
metrics: existing methodologies fall short in concurrently
achieving rapid initialization, elevated accuracy in detec-
tion, and low computational cost.

2) Unearthing anomalies hidden within periodic time series
is challenging: a growing array of time series manifests
periodicity, harboring an escalating count of anomalies
concealed amidst localized periods.

3) In production environments, high-latency alarm strategies
often increase enterprise losses: expeditious anomaly
identification and immediate alerting can effectively cur-
tail losses and mitigate the impact on the services.

In tackling these challenges, we present VersaGuardian,
an extension of JumpStarter [19]. VersaGuardian is a versatile
method, proficient in rapid initialization, high computational
efficiency, and adept at detecting anomalies within periodic
time series. Leveraging techniques such as seasonal-trend
decomposition using loess (STL) [20] and dynamic mode
decomposition with control (DMDc) [21], VersaGuardian
offers a comprehensive solution.

The contributions of this paper are summarized as follows:
• To the best of our knowledge, VersaGuardian stands as a

pioneering approach, employing dynamic mode decom-
position to extract essential low-dimensional primary
modes and temporal dynamics from intricate high-
dimensional MTS. This strategic extraction facilitates the
prediction of time series evolution, ultimately leading to
rapid online anomaly detection and the attainment of
low-latency alerting capabilities.

• VersaGuardian introduces a novel integration by embed-
ding both the seasonal and remainder components,
derived from the MTS’ seasonal-trend decomposition,
into the DMD framework. This ingenious fusion empow-
ers VersaGuardian with the competence to identify
anomalies within periodic time series, thereby enhancing
the accuracy of anomaly detection.

• VersaGuardian represents a data-driven approach to MTS
anomaly detection, seamlessly integrating rapid initial-
ization, minimal computational overhead, and the profi-
ciency to identify anomalies within periodic time series.

• We conducted a comprehensive study to evaluate the
performance of VersaGuardian based on four datasets
from three companies, including China Mobile Commu-
nications Corporation (CMCC), a top-tier global Internet
Service Provider (ISP). The average F1 score of Ver-
saGuardian is 94.42%, while those of the other fice
approaches are 38.87%, 82.61%, 53.42%, 83.34%, and
86.22% respectively. VersaGuardian achieves good accu-
racy with an initialization time of 20 minutes and a
detection time as short as 15.28 milliseconds, open
sourced at https://github.com/stonebegin/
VersaGuardian. Engineered to cater to real-time
anomaly detection within large-scale network devices,
VersaGuardian embodies a robust solution.

II. RELATED WORK AND PRELIMINARIES

A. MTS Anomaly Detection

MTS anomaly detection has gained significant attention
in various domains due to its importance in detecting and
mitigating abnormal patterns and events. Over the years,
researchers have proposed several approaches to tackle this
challenging problem. We can classify these approaches into
three categories.

Traditional method. These methods leverage statistical
techniques such as mean, standard deviation, and probability
distributions to model the normal behavior of time series
data. Deviations from these statistical models are then con-
sidered as anomalies. Popular statistical methods include the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: REAL-TIME ANOMALY DETECTION FOR LARGE-SCALE NETWORK DEVICES 3

time series analysis [22], RRCF [23] and clustering-based
LESINN [24],which do not need training data thus the ini-
tialization time is short.

Deep learning-based method. Deep learning-based meth-
ods in time series anomaly detection aim to identify anomalies
based on the inherent structure and patterns present in the data.
MSCRED [10], USAD [11], DOMI [25], OmniAnomaly [7]
and InterFusion [13] build anomaly detection models by
learning the anomaly patterns using a large span of historical
data. These methods suffer from long initialization time for
training the model.

Others. Some anomaly detection methods employ rule-
based or alternative methods [26]. One representative work
is our previously proposed method JumpStarter [19], which
introduces the compressed sensing technique to reconstruct
data. It is known for its fast initialization, but it requires
significant computational overhead and lacks the ability to
detect anomalies within periodic MTS.

B. Dynamic Mode Decomposition

The DMD is an innovative algorithm within the field of
dynamical systems, initially introduced in the fluid dynamics
community [27]. It provides the eigenvalues and eigenvectors
of the best-fit linear system that connects a snapshot matrix
with its time-shifted version at a later time. DMD excels in
handling voluminous and streaming datasets [28], effectively
extracting modal structures from both numerical simulations
and experimental data [29]. Its ability to model and predict
high-dimensional data further enhances its versatility [30].
Moreover, DMD holds promise for potential application in
the domain of fault diagnosis in rotating machinery [31].

Consider the following data snapshot matrices:

X =

 | | |
x0 x1 · · · xm−1

| | |

 ,X′ =

 | | |
x1 x2 · · · xm

| | |

where xk ∈ Rn is the kth snapshot and typically n < m. The
DMD involves the decomposition of the best-fit linear operator
A relating the matrices above [27]:

X′ = AX (1)

Here we provide a quick introduction to the time series
prediction step in DMD, using this anomaly detection problem
as the context. The objective of DMD is to “solve” evolution
matrix A, and the calculation steps are as follows [32]:

1) Find the truncated SVD of X:

X = UΣV∗

2) Compute Ã, the projection of the full matrix A onto U:

Ã = U∗AU = U∗X′VΣ−1

3) Compute the eigenvalues and eigenvectors of Ã:

ÃW = WΛ

4) Solve for the dynamic modes of A:

AΦ = ΦΛ,Φ = X′VΣ−1W

5) Predict the next time step:

Xt
′ = AXt (2)

III. BACKGROUND AND MOTIVATION

A. Background

Multivariate time series. In large-scale network devices,
operators continuously collect monitoring data of multiple
metrics or extract numerical values from logs [33]. An net-
work performance metric (e.g., line card crashes), or network
health metric (e.g., CPU utilization, memory utilization) [5],
is usually collected by equal interval, forming a univariate
time series. Any univariate time series alone, however, cannot
capture performance issues across all devices [7]. Because a
device typically has a collection of monitoring metrics, it can
be denoted as a MTS [34], which includes diverse types of
univariate time series and thus track various aspects of per-
formance issues. With the scale and complexity of the device
increasing, it is becoming more difficult to manually inspect
device anomalies. Therefore, MTS anomaly detection is of
great importance [7], [10]. We denote a MTS at time t as Xt =
[x1

t ,x
2
t . . . ,xn

t]T, where xi
t = [xi

t−w+1, x
i
t−w+2, . . . , x

i
t] is the

univariate time series of the ith monitoring metric, n is the
number of metrics, and w is the observation window size.
We apply the sliding window, which is a common practice in
time series anomaly detection [6], to construct xt.

Anomaly detection. Anomaly detection using MTS [7] is
important in large-scale network devices. In previous anomaly
detection works [7], [10], [14], [35], operators have a rough
consensus on the following points: 1) A MTS anomaly is
a data point or a data segment that significantly deviates
from operators’ expectations of normal behavior, and it can
be visually observed (e.g., in Figure 1). 2) An anomaly
indicates something might have gone wrong, although further
investigation may still be needed for verification. 3) Anomaly
detection is often used as a failure discovery mechanism.
Formally, we define MTS anomaly detection: for time t,
given its MTS Xt, we determine whether an anomaly occurs
(e.g., jitter, sudden drop or surge), which is denoted by
yt = 1 if yes and yt = 0 otherwise.

B. Motivation for Initialization Time

Anomaly detection initialization time. With a new net-
work device being deployed or updated, operators usually
launch an anomaly detection approach for it. The initial-
ization time of the anomaly detection approach is the time
lag between when it is launched (t1) and when it becomes
effective (t2), as shown in Figure 2. Many prior approaches,
e.g., [7], [10], and [35], use a learning-based workflow
to detect anomalies. Typically, they are periodically trained
based on historical data [36]. The initialization time of these
approaches, e.g., tens of days, is relatively long, because
they usually need to offer a lot of historical data for train-
ing. In Table I we list the suggested initialization time of
five learning-based anomaly detection approaches on dif-
ferent datasets used in their evaluation experiments. For
example, OmniAnomaly [7] used two robot system datasets

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NETWORKING

Fig. 2. The initialization time of an anomaly detection approach.

TABLE I
COMPARISON OF THE INITIALIZATION TIME (DAYS) ON DIFFERENT
DATASETS (S1∼S3) USED IN THEIR EVALUATION EXPERIMENTS.

* DENOTES UNIVARIATE TIME SERIES ANOMALY DETECTION
APPROACH, WHICH CAN BE USED FOR MTS BY COMBINING

IT WITH MAJORITY VOTE [7]

(denoted as S1, S2, respectively) and a server dataset
(S3, which also used in our experiment as D1). From the last
column of Table I, we can see that the average initialization
time of these approaches ranges from 10 days to more than
one hundred days, indicating that it is unsuitable to use these
approaches for newly deployed or updated systems.

Incremental retraining. Considering the long initialization
time of learning-based anomaly detection approaches, one may
suggest incremental retaining, i.e., gradually (incrementally)
adding a short-period (say one day) of data to train these
approaches. In this way, we can improve the performance of
these approaches step by step. Adding one day’s data each
time is because these learning-based approaches need at least
thousands of data points to converge [6]. We then try to apply
incremental retraining to two popular MTS anomaly detection
approaches, i.e., OmniAnomaly [7] and MECRED [10]. The
dataset is the same as what is used in OmniAnomaly (see
section V for more details). We gradually enlarge the training
set from one day’s data to 13 days’ data (i.e., the largest
training set of this dataset), and the testing set remains as
the data collected after the 13th day.

This sounds ideal, but anomaly detection using incremental
retraining cannot ensure satisfactory performance. Figure 3
shows the average F1 score and training time of OmniAnomaly
and MECRED as the period of training data increases (day
by day), respectively. From Figure 3(a), we can see that
the average F1 scores of both OmniAnomaly and MECRED
increase along with more training data being used, and they
do not converge until 10 days’ data is used for training.
One primary reason is that these learning-based approaches
have to explicitly learn the probability distribution of a MTS
from a large amount of training data to capture its normal
behavior. Figure 3(b) shows that the training time of both
OmniAnomaly and MECRED increases linearly with the size

Fig. 3. Performance of OmniAnomaly [7] and MECRED [10] by incremental
retraining.

Fig. 4. VersaGuardian approach consists of offline processing and online
processing, of which output is whether anomaly or not.

of training data. When the training dataset contains 10 days
of data, it takes about 35 minutes to train OmniAnomaly or
MECRED. Therefore, these approaches are not suitable for
newly deployed or updated systems due to their non-robustness
and considerable training cost.

IV. VersaGuardian APPROACH

A. Overview of VersaGuardian

The VersaGuardian methodology, depicted in Figure 4,
encompasses both offline and online processing procedures.
In the offline processing phase, a periodicity segmentation
method is adopted to enhance the accuracy of time-series
decomposition and optimize anomaly detection efficiency.
Each univariate time series within the MTS undergoes Fourier
transformation, followed by grouping into multiple clusters
based on their respective periods. In the online anomaly
detection phase, for non-periodic time series, DMD is directly
employed for forecasting the subsequent time step. Conversely,
for time series manifesting periodic patterns, a seasonal-
trend decomposition using loess (STL) is performed based on
their respective periods, yielding trend components, seasonal
components, and remainder components. These seasonal and
remainder components are subsequently integrated as control
factors into the DMD for time series forecasting. Subsequently,
the forecasted time series are concatenated, the disparity
between the original and forecasted MTS is quantified as an

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: REAL-TIME ANOMALY DETECTION FOR LARGE-SCALE NETWORK DEVICES 5

anomaly score, and anomaly detection is executed through
EVT threshold applied to the anomaly score.

B. Periodicity Segmentation

Before detecting anomalies concealed within periodic time
series, it is imperative to distinguish whether the time series
exhibits periodicity. Periodicity segmentation enables the for-
mation of MTS with similar patterns by grouping univariate
time series with comparable period sizes. This not only pre-
serves the overall state of network devices but also enhances
the efficiency of subsequent anomaly detection.

The Fourier transform (FT) [37] is a technique employed
for the conversion of time-domain data into frequency-domain
data. In periodicity detection, FT identifies the primary fre-
quency peaks within a signal’s spectrum, which correspond
to the dominant cycles or periodic elements of the data.
By examining these frequency peaks, the signal’s main period
can be calculated as the inverse of the peak frequency. This
method is widely used in applications such as failure detection,
vibration analysis, and speech recognition for analyzing and
extracting periodic patterns [38].

The application of the FT serves to ascertain the presence
of periodicity in time series and facilitates the computation
of period sizes. Univariate time series within the multivariate
dataset devoid of periodic patterns are grouped into one cluster,
while those manifesting periodicity are grouped into distinct
clusters contingent upon the sizes of their respective periods.

C. Seasonal-Trend Decomposition

In order to enhance our understanding of the patterns
and characteristics underlying the temporal evolution of time
series, facilitating more accurate predictions and analyses,
it is essential to decompose MTS. The components obtained
through decomposition provide clearer guidance for anomaly
detection [18].

Performing STL on each time series based on their respec-
tive periods, we decompose them into trend components τt,
seasonal components st, and remainder components rt. The
decomposition of the univariate time series xi

t is shown as
follows:

xi
t = τ i

t + sit + rit (3)

As shown in Figure 5, the original time series acquired from
large-scale network devices is illustrated as the composite of
three components. Typically, the trend component of a MTS is
characterized by its inherent smoothness, with anomalies often
discernible in the remainder. This property proves advanta-
geous in facilitating subsequent anomaly detection processes.
Against the backdrop of network devices, where these time
series originate, this analytical approach becomes particularly
relevant in discerning anomalies within the system.

As shown in Figure 6, we utilize the grouping obtained
from the periodicity segmentation along with their corre-
sponding period sizes as inputs to STL. The decomposition
process generates components, including trend, seasonal, and
remainder. Subsequently, the remainders that potentially con-
tain extreme values are subjected to a smoothing operation,

Fig. 5. An example of using STL to decompose the original time series into
trend component, seasonal component, and remainder component.

Fig. 6. The flowchart of STL used in VersaGuardian.

and the smoothed remainders, along with the seasonals reflect-
ing periodic variations, are saved as intermediate outputs. The
seasonal components and smoothed remainders obtained from
STL enable subsequent DMD to generate the predicted MTS
with enhanced accuracy.

D. Dynamic Mode Decomposition With Control

DMD adeptly isolates temporal patterns, enabling the identi-
fication of dominant dynamics in MTS. By inherently reducing
data dimensionality through the identification of significant
modes, DMD streamlines analysis and bolsters computational
efficiency. This technique captures the temporal evolution
of MTS, offering insights into how different indicators change
over time. As a data-driven method, DMD unveils inher-
ent patterns and structures without reliance on predefined
models, rendering it suitable for diverse and complex MTS.
By computing the eigenvectors and eigenvalues, the frequen-
cies and amplitudes of the modes can be determined and
utilized for data reconstruction and future behavior prediction.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NETWORKING

Algorithm 1 DMDc Used in VersaGuardian
Input: Dt(k∗w): original time series obtained through sliding

window, St(k ∗w): seasonal component obtained through
STL of Dt, Rt(k ∗ w): smoothed remainders obtained
through STL of Dt, r: the number of main modes that
DMD needs to retain.

Output: A: evolution matrix for predicting the next time step
MTS.

1: X1 ← St[:, : −1]
2: B(k ∗ k)← Identity matrix
3: Υ← Rt[:, : −1]
4: X2 ← Dt[:, 1 :]−BΥ
5: U, Σ, V ∗ ← SVD(X1)
6: Ã = U [:, : r]∗X2V [: r, :]Σ[: r]−1

7: Λ, W ← Perform eigenvalue decomposition on Ã
8: Ψ = X2V [: r, :] Diag(Σ[: r])W
9: A = ΨDiag(Λ)Ψ†

10: return A

Therefore, DMD aids in enhancing our understanding and
forecasting of MTS behavior.

Due to the inherent nature of DMD in predicting MTS based
on primary modes, it tends to overlook anomalies concealed
within periodic time series. In such instances, a more precise
control over the prediction methodology of DMD is required,
referred to as DMDc [21]. DMDc is an extension of the
standard DMD method that incorporates control inputs or
external forcing into the analysis. It aims to capture the
influence of these control inputs on the dynamics of a MTS.
Eq. (1) has been rewritten as follows:

X′ = AX + BΥ (4)

Here, we set X as the seasonal components, B as the
identity matrix, and Υ as the remainder components obtained
from STL, which has undergone extreme values smoothing.
Setting B as the identity matrix in DMDc simplifies the
modeling process by allowing each control input in Υ to
directly influence the corresponding state variable in X with-
out any transformation or scaling. This choice is particularly
beneficial in scenarios where Υ represents the direct influence
of anomalies or external factors on the primary dynamics of
the time series (captured by X). Smoothing extreme values is
a common procedure in handling MTS [19], [39]. Specifically,
it involves removing the top 5% of data points with the largest
deviations from the mean and employing linear interpolation
to fill the gaps. We describe the specific calculation steps
in Algorithm 1. This approach enables accurate prediction of
the evolution of normal mode time series while suppressing
anomalies in periodic time series. It amplifies the discrepancies
between real MTS and predicted MTS, thereby enhancing the
accuracy of anomaly detection.

Anomaly score. We first reconstruct the time series for each
cluster of univariate time series to approximate the original
MTS. We then concatenate these reconstructed univariate time
series to form a new multivariate time series X′

t. Note that the
original and predicted MTS have the same order of univariate
time series. Intuitively, an anomaly score is needed to measure

the similarity between the original and the predicted MTS.
We measure the differences of the n time series between Xt

and X′
t using euclidean distance [36]: di

t = |xi
t−x′it|, where

x′it is the predicted univariate time series of xi
t. To avoid an

anomaly score being dominated by a single significant spike
in a univariate time series, we calculate st using the harmonic
mean of di, i.e., st = n/(

∑n
i=1 di

t
−1).

Choosing threshold. To properly generate anomaly alerts,
we need to accurately choose a threshold to determine
whether an anomaly score is high enough to trigger an alert.
A static threshold does not work well since the data distri-
bution changes over time. Because an extreme value of the
anomaly score generated by VersaGuardian usually represents
an anomaly, we adopt the widely used Extreme Value Theory
(EVT) [40] to tailor the anomaly threshold automatically.
EVT is a statistical theory aiming to find the law of extreme
values, and it does not assume data distribution. It has been
demonstrated to accurately choose the threshold for anomaly
detection methods [7], [34]. Note that using EVT for choosing
threshold is not the main contribution of our work.

V. EXPERIMENT

In the study, we address the following research questions:
RQ1: How well does VersaGuardian perform in MTS

anomaly detection?
RQ2: How VersaGuardian copes with the challenge of

computational efficiency?
RQ3: How does VersaGuardian detect anomalies hidden in

periodicity?

A. Experimental Setup

1) Dataset: We conduct experiments on four real-world
datasets, including one public dataset1 – D1 from the pro-
duction environment of a top-tier global content provider A
offering services for over 500 million daily active users, two
datasets (D2, D3) collected from the production environment
of a top-tier global content platform B providing services for
over 800 million daily active (over 1 billion cumulative) users,
and one dataset – D4 from the production environment of a
top-tier global Internet Service Provider (ISP) C.

Specifically, D1 is a five-week-long dataset collected from
28 servers, and it is sampled once per minute. D2 and D3
are two datasets collected from 30 servers over two different
seven-week-long periods, respectively. They are both sampled
once every five minutes. D4 is collected from 200 wireless
base stations over fourteen-day-long periods and sampled once
every fifteen minutes.

This work studies metrics of network devices. These metrics
are equally important and have no hierarchy among them. The
ground truth of anomalies in all the four datasets are manually
labeled by operators based on performance issues and failure
tickets. The point-wise anomaly rates (# anomaly data points

total data points)
are diverse in these datasets. For example, the anomaly rate
of D3 (20.26%) is much higher than those of D1 (4.16%),
D2 (5.25%) and D4 (5.18%), mainly because D3 contains

1https://github.com/NetManAIOps/OmniAnomaly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: REAL-TIME ANOMALY DETECTION FOR LARGE-SCALE NETWORK DEVICES 7

Fig. 7. The average F1 score for the four datasets D1, D2, D3, and D4 as a function of the training dataset size in segments.

TABLE II
THE DETAILED INFORMATION OF THE DATASETS

a severe outage that lasted a long time. Table II lists the
detailed information of each dataset, including the number
of metrics (n) in each MTS, the scale of the training and
test sets, and the anomalies ratio. For each network device,
the monitoring metrics constitute its MTS. The number of
metrics monitored in D1, D2,D3 and D4 are 38, 19, 19 and
25 respectively. Monitoring tens of metrics is a typical setting
for large-scale network devices.

2) Compared Approaches: We compare VersaGuardian
with two learning-based unsupervised approaches for anomaly
detection in MTS: MSCRED [10] and OmniAnomaly [7].
Additionally, we evaluate VersaGuardian against three other
anomaly detection algorithms: robust random cut forest
(RRCF [23]), least similar nearest neighbors (LESINN [24])
and JumpStarter [19]. We exclude the comparison with base-
line methods designed for univariate time series, as it has
been demonstrated that these approaches are not suitable
for detecting anomalies in MTS [7]. We implement these
baselines using the default hyperparameters provided in the
corresponding open-source code.

3) Implementation: We implement VersaGuardian and
baselines methods with Python 3.8, and run them on a Dell
R420 server with 16 * Intel Xeon E5-2420 CPUs and a 64GB
memory

4) Evaluation Metrics: The output of a MTS anomaly
detection approach for a specific timestamp is either anoma-
lous or not. We use True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) to label an
anomaly detection result according to the ground truth. A TP
is an anomaly both confirmed by operators and detected
by the approach. If an anomaly is labeled by operators but
not detected by the approach, we label the item as an FN.
An FP is an “anomaly” that is detected by the approach
but is actually normal. We use three metrics for evaluating
the performance of VersaGuardian and related approaches:
Precision = TP / (TP + FP), Recall = TP / (TP + FN),

F1 score = 2 * Precision * Recall / (Precision + Recall).
The accounting of the three metrics is point-adjusted. That is,
if any point in an anomalous segment in the ground truth is
detected, we consider the entire segment, or all anomalous
points therein, as detected correctly. Point-adjusted metrics are
widely adopted in anomaly detection [6], [7], since operators
care more about anomalies in a contiguous segment than
point-wise anomalies.

B. RQ1: Performance of VersaGuardian

We evaluate two aspects of the performance of anomaly
detection each using a different partitioning of training and test
sets. First, we conduct network device anomaly detection in the
online mode and evaluate it as an online experiment. Second,
in the offline experiment, we adopt the same experiment
settings as used in previous work [7], [10], [19], [23], [24].

Online experiment. We evenly split the training set of
D1 into 13 segments (1)-day-long data per segment and
each has a similar number of anomalies), D2 and D3 each
into 5 segments (4)-day-long data per segment and each
has a similar number of anomalies), and D4 into 7 segm-
ents (2)-day-long data per segment and each has a similar num-
ber of anomalies). D2 and D3 have a longer segment because
they have fewer anomalies per day. For each dataset, the test
set remains the same for a fair comparison (see Table II).
Figure 7 shows the average F1 score of VersaGuardian and
five baseline methods as the amount (scale) of training data
increases from 1 segment to 13 consecutive segments for D1,
to 5 consecutive segments for D2 and D3, and to 7 consecutive
segments for D4. As for VersaGuardian, RRCF, LESINN
and JumpStarter, they conduct anomaly detection without any
training data. Therefore, their performance stays the same
when the scale of training data varies.

We can see that VersaGuardian and JumpStarter performs
significantly better than the four baseline approaches across all
segments on all the four datasets. RRCF is less accurate than
the other approaches because it aims to detect the anomalous
behavior of a single data point, which is not suitable in our
scenario where the anomalous behavior of a time series seg-
ment is studied. The F1 scores of learning-based approaches,
namely OmniAnomaly and MSCRED, increase as the scale of
training set increases, and approach 90% and 60% respectively
toward the end. OmniAnomaly achieves higher accuracy than
LESINN when the amount of training data is sufficient.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NETWORKING

TABLE III
AVERAGE PRECISION (P), RECALL (R), AND F1 SCORE (F) OF VersaGuardian AND BASELINE METHODS

TABLE IV
THE AVERAGE INITIALIZATION TIME (IT) AND DETECTION TIME (DT) OF VersaGuardian AND BASELINE APPROACHES

MSCRED does not perform well because it mainly focuses
on the inter-correlations rather than the overall performance of
MTS. The F1 Scores of VersaGuardian on D1, D2, and D3 are
slightly higher than those of JumpStarter, while on D4, the F1
Score is significantly superior to JumpStarter. This discrepancy
arises from the fact that D4 comprises a greater number of
MTS with periodicity, a capability that JumpStarter lacks in
detecting anomalies concealed within periodic MTS. For all
approaches except RRCF, they achieve the best performance
on D3 because the anomalous patterns in D3 are easier to
capture than those in the other three datasets.

Offline experiment. Now we study the potential perfor-
mance in the offline setting using best F1 score. Since we
need a long time to train models of learning-based anomaly
detection approaches, we split the dataset into training and test
set following the settings in [7]. Then, we calculate the best
F1 score of each approach by grid searching their parameters
and anomaly thresholds. Table III lists the average best F1
scores of VersaGuardian and baseline approaches on each
dataset, as well as their corresponding Precision and Recall.
The average best F1 score of VersaGuardian across the four
datasets is 94.42%, significantly higher than those of the other
five approaches, which are 86.22%, 83.34%, 53.42%, 82.61%,
and 38.87%, respectively. This is because D2 contains a large
quantity of noises, and none of the other four approaches
besides VersaGuardian and JumpStarter is robust to such
noises. In contrast, VersaGuardian and JumpStarter reconstruct
an anomaly-free time series with smoothing extreme values,
making it robust to such noises in each dataset. In addi-
tion, D4 contains a significant number of anomalies hidden
within periodic patterns, while the other datasets contain
only a small number of similar anomalies. The capability
of VersaGuardian in detecting anomalies for periodic metrics
gives it a better performance on D1, D2 and D3 compared
to JumpStarter. Moreover, VersaGuardian outperforms the
other five methods, including JumpStarter, by a significant
margin on D4.

Efficiency. Table IV lists the average initialization time
and detection time of the five approaches across the four
datasets. The initialization time of VersaGuardian is only

TABLE V
THE DETECTION TIME (ms) OF VersaGuardian AND JUMPSTARTER

twenty minutes, much shorter than those of the deep learning-
based methods, i.e., OmniAnomaly and MSCRED. Although
RRCF, LESINN and JumpStarter achieve the same initializa-
tion time as VersaGuardian, they suffer from lower accuracy
as shown in Table III. The detection time of VersaGuardian for
each MTS window is 15.28 ms, which is significantly shorter
than the detection time of other approaches. The specific
reasons for the efficiency improvement will be explained in
section V-C. Among the six approaches, only VersaGuardian
simultaneously achieves rapid initialization, high detection
accuracy, and short detection time.

C. RQ2: Secret to Accelerating Detection Speed

From Table III, it can be observed that JumpStarter’s
performance is slightly worse than VersaGuardian, and Jump-
Starter can also achieve rapid initialization, within 20 minutes,
just like VersaGuardian. However, as shown in Table V,
VersaGuardian requires significantly less online detection time
compared to JumpStarter. The main reason for JumpStarter’s
slow online detection speed is the relatively slow speed of the
compressive sensing reconstruction it utilizes. Additionally,
as the time detection window increases, the likelihood of
reconstruction failure also increases, further slowing down the
detection speed.

In contrast, VersaGuardian utilizes DMD, which is a dimen-
sionality reduction technique that extracts low-dimensional
structures from high-dimensional data. It inherently tackles
the challenge of slow detection speed and has enhanced the
detection speed by a factor of 8 compared to JumpStarter. This
significant improvement enables the realization of low-latency
alarms, making it possible to achieve rapid alerting.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: REAL-TIME ANOMALY DETECTION FOR LARGE-SCALE NETWORK DEVICES 9

Fig. 8. The F1 Score of VersaGuardian when the DMDc is removed.

D. RQ3: Treatment on Anomalies Hidden in Periodicity

The MTS obtained from network devices may exhibit
varied temporal characteristics, including the presence of
periodic patterns, thereby introducing challenges in the
detection of concealed anomalies within periodic MTS. Versa-
Guardian mitigates this challenge by employing STL on time
series with periodic patterns, where anomalies are frequently
discerned in the remainder component. The seasonal com-
ponent and the smoothed remainders (obtained after extreme
values smoothing) serve as control inputs for DMDc.

By effectively suppressing anomalies hidden in periodic
time series while accurately predicting the evolution of nor-
mal mode time series, VersaGuardian significantly enhances
anomaly detection performance. As shown in Figure 8,
we compared VersaGuardian with and without the DMDc
component, which is responsible for detecting anomalies for
periodic MTS data. The results indicate that DMDc achieved a
6.18% increase in F1 Score. The incorporation of DMDc and
STL significantly improves the accuracy of VersaGuardian.

VI. DEPLOYMENT AND DISCUSSION

A. Success Story

Case study. We applied VersaGuardian into 30 servers in
ByteDance, a top-tier global content platform having more
than 800 million daily active users around the world. Opera-
tors can register a MTS monitoring task by extracting these
time series from influxDB and Kafka. From the monitoring
dashboard of these devices, we can see the MTS. Figure 9
shows some time series of two technical outages.

Case I: Long response time caused by network issue.
As illustrated in Figure 9a, we observed jitters in time series
tcpext_listendrops and tcp_attemptfails. In the
meantime, time series such as cpu_user and load_one
drastically dropped. VersaGuardian successfully pinpointed
this anomaly and generated an alert. After diagnosing the
anomaly, operators found that it was a network issue of a
database node.

Case II: Service hang-up due to software change. As ill-
ustrated in Figure 9b, time series tcp_retrans_
percentage witnessed significant jitters and cpu_idle
plunged to zero. After that, cpu_sintr, cpu_ctxt,
rx_byptes_eth0 and tx_pkts_eth0 increased signifi-
cantly. VersaGuardian detected and reported this anomaly
to operators. Operators conducted software changes and a
configuration error occurred in the new version. Thanks to

VersaGuardian, operators found out this error in time and
quickly rolled out the software change.

Case III: Request failure due to link switching issue.
As illustrated in Figure 10, all these time series exhibit
periodicity. Time series erab_nbrsuccestab_1 and
ho_attoutintraenb exhibit a significant increase in the
middle period compared to others. VersaGuardian rapidly
detected and reported this anomaly to operators. Operators
promptly identify network devices with associated anomalies
and optimize link switching.

Help with root cause diagnosis. VersaGuardian can help
with root cause diagnosis in two aspects. First, hundreds of
MTS need to be monitored. After periodicity segmentation
in VersaGuardian, operators can focus on limited time series
groups with a similar period size. Second, VersaGuardian
respectively calculates the distance between the original uni-
variate time series and the reconstructed ones. Therefore, it can
output a rank list of time series’ contributions to the overall
anomaly. For example, tcpext_listendrops in Figure 9
is detected as the most anomalous time series in this figure.
It can explicitly indicate the issue was caused by the network
component.

B. Lessons Learned

Different network devices may prefer precision and
recall differently. With collaboration with different opera-
tors, we found that their preferences on precision and recall
are diverse. For example, recall weighs more than precision
does in a device responsible for user communication since
operators do not want to miss any potential anomaly that can
negatively impact the user experience. In addition, precision
is more valuable in a data analysis job because operators
would better detect anomalies precisely than to obtain a lot
of false alerts. Therefore, the F1 score alone is not a suitable
metric for all network devices. Going forward, we can provide
operators with an interface to choose their precision and recall
preference level. Specifically, VersaGuardian can accordingly
set the anomaly score using different parameters of the EVT
algorithm to guide the sensitivity of detection output. We also
observe that severe faults (examples in Figure 9) rarely happen
in network devices but performance issues do happen a lot.
We aim to reduce mean time to restore for severe failures in
future work.

Alert system is not just anomaly detection. Our Versa-
Guardian for robust and quickly initialized anomaly detection
is not the end of the story. Building an intelligent alert system
based on anomaly detection results is also a complex task in
both engineering and academic aspect. Some anomalies may
have no or little signal in the monitored time series. Therefore,
VersaGuardian may miss these anomalies. For this scenario,
we aim to collect more types of monitoring data, e.g., logs,
traces, to build a more comprehensive anomaly detection
model. We believe VersaGuardian can be easily extended
for localizing the anomalous metrics, however, there is a
significant gap between anomalous metrics and the root causes
of anomalies [41], [42]. An intelligent alert system needs to
merge similar anomalous cases, pinpoint more sharply to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NETWORKING

Fig. 9. Two anomaly cases with selected time series (service performance metrics, e.g., average response time, error rate, are hidden for the confidential
reason). Time (X-axis) is shown in days. The alert is generated by VersaGuardian.

Fig. 10. An anomaly case of periodic time series collected from CMCC.
Time (X-axis) is shown in days. The alert is generated by VersaGuardian.

root causes of anomalies. It also had better learn the priority
of different anomalous cases [9]. Besides, adeptly integrating
domain knowledge into the alert system is also of great
importance since the system needs feedback from operators.
Therefore, apart from VersaGuardian, we will improve the
alert system behind it.

C. Threats to Validity

Anomaly labeling. In this work, we use four datasets
from real-world network devices in production environment.
All the labels in these datasets are provided by operators
based on performance issues and incident reports. Manually
labeling anomaly points in the timeline may introduce noise

(false positives or negatives) because no clear boundaries lie
in anomalies and normal patterns. However, domain operators
with profound experience suggest the noise in those labels
accounts for a very small portion. Besides, operators design
evaluation metrics that utilize contiguous anomaly segments
instead of point-wise anomalies. Adopting these widely used
metrics [6], [7], [34], we can also eliminate labeling noises.

Subject systems. In our experiments, we use D1, D2,
D3 and D4 from large-scale real-world network devices. The
granularity of the time series of these datasets is one, five, five
and fifteen minutes, respectively. The efficacy of our algorithm
is not influenced by the granularity. With fine-grained granu-
larity, say one second, we believe our algorithm can still work
without additional efforts. Since VersaGuardian’s versatility
has been demonstrated using four datasets collected from
288 different network devices, it should be easy for Versa-
Guardian to work with a new dataset. Admittedly, the number
of subject services is still limited. We will test VersaGuardian
on a variety of network devices in the future.

VII. CONCLUSION

In this paper, we present an end-to-end approach named
VersaGuardian for anomaly detection in MTS. This approach
is designed for rapid initialization, robust performance and
high computational efficiency, aiding operators in detecting
anomalies in network devices. VersaGuardian employs Fourier
transform and periodicity segmentation for periodicity detec-
tion and categorization, leveraging clustering to enhance the
efficiency of subsequent anomaly detection. By comparing the
predicted MTS from DMDc with the original sequence, Ver-
saGuardian identifies anomalies. This approach significantly
accelerates anomaly detection, achieving low-latency alerts.
The incorporation of seasonal and remainder components,
extracted through STL of MTS data, enriches VersaGuardian’s
DMD. This enhancement empowers the method with the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: REAL-TIME ANOMALY DETECTION FOR LARGE-SCALE NETWORK DEVICES 11

ability to detect anomalies hidden in periodic time series, fur-
ther elevating its detection accuracy. One remarkable aspect of
VersaGuardian is its reduced dependency on extensive training
data. It rapidly detects deviations from expected patterns using
available data. As a result, VersaGuardian ensures prompt
anomaly detection and facilitates stable large-scale network
devices. The effectiveness and efficiency of VersaGuardian
are proved using four real-world datasets from production
environment. VersaGuardian achieves superior performance
compared to five popular MTS anomaly detection methods.

REFERENCES

[1] M. A. Qureshi, L. Qiu, A. Mahimkar, J. He, and G. Baig, “Multi-
dimensional impact detection and diagnosis in cellular networks,” in
Proc. 16th Int. Conf. Mobility, Sens. Netw. (MSN), Tokyo, Japan,
Dec. 2020, pp. 561–568.

[2] L. Tao et al., “Diagnosing performance issues for large-scale microser-
vice systems with heterogeneous graph,” IEEE Trans. Services Comput.,
vol. 17, no. 5, pp. 2223–2235, Oct. 2024.

[3] V. Ganatra et al., “Detection is better than cure: A cloud incidents per-
spective,” in Proc. 31st ACM Joint Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., San Francisco, CA, USA, S. Chandra, K. Blincoe, and
P. Tonella, Eds., Nov. 2023, pp. 1891–1902.

[4] Z. Li et al., “Gandalf: An intelligent, end-to-end analytics service for safe
deployment in large-scale cloud infrastructure,” in Proc. 17th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), Santa Clara, CA, USA,
Feb. 2020, pp. 389–402.

[5] Y. Chen et al., “ImDiffusion: Imputed diffusion models for multivariate
time series anomaly detection,” 2023, arXiv:2307.00754.

[6] H. Xu et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal KPIs in Web applications,” in Proc. World Wide
Web Conf., 2018, pp. 187–196.

[7] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2019, pp. 2828–2837.

[8] L. Tao et al., “Giving every modality a voice in microservice failure diag-
nosis via multimodal adaptive optimization,” in Proc. 39th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE), Nov. 2024, pp. 1107–1119.

[9] Y. Chen et al., “Identifying linked incidents in large-scale online service
systems,” in Proc. 28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., Nov. 2020, pp. 304–314.

[10] C. Zhang et al., “A deep neural network for unsupervised anomaly
detection and diagnosis in multivariate time series data,” in Proc. AAAI
Conf. Artif. Intell., vol. 33, 2019, pp. 1409–1416.

[11] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: Unsupervised anomaly detection on multivariate time series,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., R. Gupta,
Y. Liu, J. Tang, and B. A. Prakash, Eds., Aug. 2020, pp. 3395–3404.

[12] A. Deng and B. Hooi, “Graph neural network-based anomaly detection
in multivariate time series,” in Proc. 35th AAAI Conf. Artif. Intell., 33rd
Conf. Innov. Appl. Artif. Intell., (IAAI), 11th Symp. Educ. Adv. Artif.
Intell., (EAAI), May 2021, pp. 4027–4035.

[13] Z. Li et al., “Multivariate time series anomaly detection and interpreta-
tion using hierarchical inter-metric and temporal embedding,” in Proc.
27th ACM SIGKDD Conf. Knowl. Discovery Data Mining, Singapore,
F. Zhu, B. C. Ooi, and C. Miao, Eds., Aug. 2021, pp. 3220–3230.

[14] H. Ren et al., “Time-series anomaly detection service at Microsoft,” in
Proc. 25th SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2019,
pp. 3009–3017.

[15] C. Zhao et al., “Robust multimodal failure detection for microservice
systems,” in Proc. 29th ACM SIGKDD Conf. Knowl. Discovery Data
Mining, Long Beach, CA, USA, A. K. Singh, Y. Sun, L. Akoglu,
D. Gunopulos, X. Yan, R. Kumar, F. Ozcan, and J. Ye, Eds., Aug. 2023,
pp. 5639–5649.

[16] E. B. Gulcan and F. Can, “Unsupervised concept drift detection
for multi-label data streams,” Artif. Intell. Rev., vol. 56, no. 3,
pp. 2401–2434, Mar. 2023.

[17] Q. Xiang, L. Zi, X. Cong, and Y. Wang, “Concept drift adaptation
methods under the deep learning framework: A literature review,” Appl.
Sci., vol. 13, no. 11, p. 6515, May 2023.

[18] Q. Wen, J. Gao, X. Song, L. Sun, H. Xu, and S. Zhu, “Robust-
STL: A robust seasonal-trend decomposition algorithm for long time
series,” in Proc. AAAI Conf. Artif. Intell., vol. 33, no. 1, Jul. 2019,
pp. 5409–5416.

[19] M. Ma et al., “Jump-Starting multivariate time series anomaly detection
for online service systems,” in Proc. 2021 USENIX Annu. Tech. Conf.
(USENIX ATC), Jul. 2021, pp. 413–426.

[20] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning,
“STL: A seasonal-trend decomposition procedure based on loess,” J. Off.
Statist., vol. 6, no. 1, pp. 3–73, 1990.

[21] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposi-
tion with control,” SIAM J. Appl. Dyn. Syst., vol. 15, no. 1, pp. 142–161,
2016.

[22] D. R. Choffnes, F. E. Bustamante, and Z. Ge, “Crowdsourcing service-
level network event monitoring,” in Proc. ACM SIGCOMM Conf.,
Aug. 2010, pp. 387–398.

[23] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust random
cut forest based anomaly detection on streams,” in Proc. Int. Conf.
Mach. Learn., 2016, pp. 2712–2721.

[24] G. Pang, K. M. Ting, and D. Albrecht, “LeSiNN: Detecting anomalies
by identifying least similar nearest neighbours,” in Proc. IEEE Int. Conf.
Data Mining Workshop (ICDMW), Nov. 2015, pp. 623–630.

[25] Y. Su et al., “Detecting outlier machine instances through Gaussian
mixture variational autoencoder with one dimensional CNN,” IEEE
Trans. Comput., vol. 71, no. 4, pp. 892–905, Apr. 2022.

[26] D. Li et al., “An empirical analysis of anomaly detection methods for
multivariate time series,” in Proc. IEEE 34th Int. Symp. Softw. Rel. Eng.
(ISSRE), Oct. 2023, pp. 57–68.

[27] S. L. Brunton, J. L. Proctor, J. H. Tu, and J. N. Kutz, “Compressed
sensing and dynamic mode decomposition,” J. Comput. Dyn., vol. 2,
no. 2, pp. 165–191, Jan. 2015.

[28] M. S. Hemati, M. O. Williams, and C. W. Rowley, “Dynamic mode
decomposition for large and streaming datasets,” Phys. Fluids, vol. 26,
no. 11, Nov. 2014, Art. no. 111701.

[29] P. J. Schmid, “Dynamic mode decomposition of numerical and experi-
mental data,” J. Fluid Mech., vol. 656, pp. 5–28, Jul. 2010.

[30] Z. Bai, E. Kaiser, J. L. Proctor, J. N. Kutz, and S. L. Brunton, “Dynamic
mode decomposition for compressive system identification,” AIAA J.,
vol. 58, no. 2, pp. 561–574, Feb. 2020.

[31] Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode
decomposition in fault diagnosis of rotating machinery,” Mech. Syst.
Signal Process., vol. 35, nos. 1–2, pp. 108–126, Feb. 2013.

[32] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and
J. N. Kutz, “On dynamic mode decomposition: Theory and applications,”
J. Comput. Dyn., vol. 1, no. 2, pp. 391–421, 2014.

[33] X. Zhang et al., “Robust log-based anomaly detection on unstable
log data,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., Aug. 2019, pp. 807–817.

[34] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,” in
Proc. IEEE 29th Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2018,
pp. 13–24.

[35] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Söderström, “Detecting spacecraft anomalies using LSTMs and non-
parametric dynamic thresholding,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Min., Jul. 2018, pp. 387–395.

[36] D. Liu et al., “Opprentice: Towards practical and automatic anomaly
detection through machine learning,” in Proc. Internet Meas. Conf.,
Oct. 2015, pp. 211–224.

[37] E. Koç and A. Koç, “Fractional Fourier transform in time series
prediction,” IEEE Signal Process. Lett., vol. 29, pp. 2542–2546, 2022.

[38] R. Bracewell, The Fourier Transform and its Applications. New York,
NY, USA: McGraw-Hill, 2000.

[39] S. Zhang et al., “Robust system instance clustering for large-scale Web
services,” in Proc. ACM Web Conf., Lyon, France, F. Laforest, R. Troncy,
E. Simperl, D. Agarwal, A. Gionis, I. Herman, and L. Médini, Eds.,
Apr. 2022, pp. 1785–1796.

[40] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet, “Anomaly
detection in streams with extreme value theory,” in Proc. 23rd ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 1067–1075.

[41] M. Ma et al., “Diagnosing root causes of intermittent slow queries in
cloud databases,” Proc. VLDB Endow., vol. 13, no. 8, pp. 1176–1189,
2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NETWORKING

[42] Z. Ren, C. Liu, X. Xiao, H. Jiang, and T. Xie, “Root cause localization
for unreproducible builds via causality analysis over system call tracing,”
in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2019, pp. 527–538.

Lei Tao received the M.S. degree in software
engineering from Nankai University, Tianjin, China,
in 2022, where he is currently pursuing the Ph.D.
degree with the College of Software. His research
interests include anomaly detection and failure
diagnosis.

Minghua Ma (Member, IEEE) received the Ph.D.
degree in computer science from Tsinghua Uni-
versity. He is currently a Senior Researcher with
the Microsoft 365 Research Team, Microsoft. His
research spans software engineering, systems, and
artificial intelligence. His research interests are pri-
marily focused on AI for IT Operations (AIOps)/
cloud intelligence.

Shenglin Zhang (Member, IEEE) received the B.S.
degree in network engineering from the School of
Computer Science and Technology, Xidian Univer-
sity, Xi’an, China, in 2012, and the Ph.D. degree in
computer science from Tsinghua University, Beijing,
China, in 2017. He is currently an Associate Profes-
sor with the College of Software, Nankai University,
Tianjin, China. His current research interests include
failure detection, diagnosis, and prediction for ser-
vice management.

Junhua Kuang is currently pursuing the degree
with the School of Software, Nankai University.
He is participating in the AIOps Laboratory, Nankai
University, and has been awarded the National
Scholarship.

Xiao-Wei Guo received the master’s and Ph.D.
degrees from the National University of Defense
Technology in 2011 and 2015, respectively. He is
currently an Associate Professor with the School of
Computer Science and Technology, National Uni-
versity of Defense Technology. His research focuses
on interdisciplinary studies, such as computational
fluid dynamics, parallel algorithms, and AI for
science (AI4S).

Canqun Yang received the M.S. degree from the
National University of Defense Technology in 1995
and the Ph.D. degree in 2008. He is currently a
Researcher with the College of Computer Science,
National University of Defense Technology. He is
also the Director of the National Supercomputing
Center in Tianjin. His primary research interests
include high-performance computing and industrial
software.

Dan Pei (Senior Member, IEEE) received the B.E.
and M.S. degrees in computer science from the
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 1997
and 2000, respectively, and the Ph.D. degree
in computer science from the Computer Science
Department, University of California at Los Angeles
(UCLA), in 2005. He is currently an Associate
Professor with the Department of Computer Science
and Technology, Tsinghua University. His research
interests include network and service management
in general. He is a Senior Member of ACM.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 24,2025 at 04:17:25 UTC from IEEE Xplore. Restrictions apply.

