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Abstract—Today’s large datacenters house a massive number of machines, each of which is being closely monitored with multivariate

time series (e.g., CPU idle, memory utilization) to ensure service quality. Detecting outlier machine instances with multivariate time

series is crucial for service management. However, it is a challenging task due to the multiple classes and various shapes, high

dimensionality, and lack of labels of multivariate time series. In this article, we propose DOMI, a novel unsupervised model that

combines Gaussian mixture VAE with 1D-CNN, to detect outliermachine instances. Its core idea is to capture the normal patterns of

machine instances by learning their latent representations that consider the shape characteristics, reconstruct input data by the

learned representations, and apply reconstruction probabilities to determine outliers. Moreover, DOMI interprets the detected outlier

instance based on the reconstruction probability changes of univariate time series. Extensive experiments have been conducted on the

dataset collected from 1821 machines with a 1.5-month-period, which are deployed in ByteDance, a top global content service provider.

DOMI achieves the best F1-Score of 0.94 and AUC score of 0.99, significantly outperforming the best performing baseline method by

0.08 and 0.03, respectively. Moreover, its interpretation accuracy is up to 0.93.

Index Terms—Outlier machine instances, multivariate time series, service management, 1D-CNN, GMVAE
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1 INTRODUCTION

MODERN large datacenters usually deploy hundreds of
thousands to millions of machines, including physical

servers, virtual machines, dockers, to support diverse types of
Internet-based services [1], [2]. About 5%�18%1 of these
machines suffer from software bugs and/or hardware fail-
ures per year. The unexpected failures may cause data loss
and resource congestion due to machines being unavailable
[3], which can heavily degrade the quality of services (QoS)
and reduce revenue [4]. Therefore, operation engineers care-
fullymonitormachinemetrics, such as CPU idle, memory uti-
lization, TCP retransmission rate, to obtain a global view of

each machine’s status [5]. The monitoring data of each metric
forms a univariate time series, and thus each machine can be
represented as an entitywithmultivariate time series [6], [7].

A large number of outlier and anomaly detection works
have beenproposed over the years in order to alarm operation
engineers soon after a failure occurs. They usually detect
anomalies of univariate time series [8], [9], [10], [11], [12] or
multivariate time series [5], [6], [13], [14], [15], [16], [17] at each
timestamp. However, a machine anomaly at a time point does
not necessarily lead to a machine/service failure due to the
auto-recovery and load balancing mechanisms of today’s
cloud systems [7]. Therefore, it is of vital importance to detect
“outlier machine instances” whose behaviors deviate from
normal ones over a long period (e.g., one day in our scenario),2

which can help operation engineers find the abnormal
machinesmore likely causingmachine/service failures.

Formally, a machine instance can be denoted as a
“multivariate time series of Machine-X at Day-Y” (M-X@D-
Y for short). Generally, an outlier is a data point that devi-
ates much from other data [18]. Based on our observation,
an outlier machine instance is unexpected and rare (e.g.,
less than 20 percent of machine instances are outliers in our
scenario), and its shape is different from those of normal
ones in the majority. Consequently, detecting outlier machine
instances equals to finding the machine instances whose shapes
deviate from the majority in a dataset (i.e., normal machine
instances). It is inevitable that a datacenter could be unbal-
anced. In this case, the patterns of normal machine instances
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2. The length of this period is empirically determined by operation
engineers.
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(i.e., normal patterns) would be learned from all instances in
this datacenter. In this way, the machine instances which
deviate much from the normal patterns are detected as out-
liers. Then this datacenter would be rebalanced by operation
engineers. The heartbeat mechanism can detect unresponsive
machines and functional machines being not utilized [19].
The failed machines which are turned down can be detected
using logs. However, it is difficult, using logs, to detect the
outlier machines that are not turned down but suffering from
CPU, memory, network, or other problems. Machine instan-
ces can be outliers for different reasons, thus these methods
are limited and the proposed method has to detect various
types of outliermachine instances.

Fig. 1 shows three types of outlier machine instances:
(1) M-X@D-Y has a similar shape with normal instances,
but it has long-term abnormal shapes (which can last less
than 1 day) due to software bugs or hardware failures (e.g.,
M-1@D-1, M-2@D-2) [4]. (2) M-X@D-Y has a regular shape
[20], which however is different from normal ones because
it may run unexpected tasks (e.g., M-2@D-3, M-3 at all three
days). (3) M-X@D-Y has an irregular shape because it is
unmanaged (e.g., M-4 at all three days). As mentioned ear-
lier, the current outlier and anomaly detection methods can
not well solve the problem in our scenario. In this work, we
aim to detect outlier machine instances, which faces the follow-
ing four major challenges:

� Multiple classes and various shapes of multivariate time
series. The datacenter usually supports many differ-
ent classes of services and thus has multiple classes
of metrics of machines. It is desirable but also chal-
lenging to design a generic algorithm that can be
applied to diverse types of multivariate time series
with different shape characteristics [20].

� High dimensionality of multivariate time series. M-X@D-
Y is a RT�N matrix, whose dimension is T �N and
can be much high (typically ranges from 1,000 to
100,000). The curse of dimensionality could greatly
degrade the performance of methods [21], [22].

� The need of interpretation for outlier machine instances.
Outlier interpretation can help analyze outlier instan-
ces and facilitate troubleshooting [5]. It is difficult yet
important for a machine learning model to interpret

outliers, especially for machine instances that are with
variousmultivariate time series.

� Lack of labels. Typically, labeled outlier machine instan-
ces are scarce, because it is labor-intensive and time-
consuming for experienced operation engineers to
label a large number of instances. Therefore, unsuper-
vised algorithms are desirable.

To tackle the above challenges, we present DOMI, an unsu-
pervised model to robustly detect outlier machine instances.
Overall, DOMI is a reconstruction based model, which cap-
tures the normal patterns of machine instances by learning
their latent representations automatically, and reconstructs
the input data by the learned representations. It detects outlier
instances based on the intuition that the outlier machine
instance is difficult to be accurately reconstructed and its
reconstruction probability is thus low [5], [8], [23]. Specifi-
cally, motivated by the idea that the shape features of images
can be effectively extracted using CNN [24], DOMI extracts
the shape features of multivariate time series with one dim-
ensional CNN (1D-CNN) [7], [25], [26]. DOMI then learns
the low-dimensional latent representations of multivariate
time series with multiple normal patterns using Gaussian
mixture variational autoencoder (GMVAE) [22], [23], [27].
Both 1D-CNN and GMVAE facilitate dimension reduction.
To interpret a detected outlier machine instance, we estimate
and rank the contributions (i.e., the changes of reconstruction
probability) of its constituent univariate time series in outlier
determination [5].

Our contributions are summarized as follows:

� This paper formally defines the problem of detecting
outlier machine instances in Internet service manage-
ment, where eachmachine instance is represented as a
multivariate time series over a long period.

� To the best of our knowledge, DOMI is a new unsu-
pervised CNN-VAE based model that integrates
Gaussian mixture prior with 1D convolutional ker-
nels for the first time.

� To better approximate the training loss, we propose a
simple yet effective approximation method, multi-
sample Monte Carlo integration, to improve the train-
ing performance of GMVAE basedmodels.

� To facilitate the interpretable detection of outlier
machine instances, for each outlier, we design a new
interpretation method based on the reconstruction
probability changes of its univariate time series, which
is also applicable for other VAE based models such as
OmniAnomaly[5] andDonut[8].

� Through extensive experiments on the dataset collected
from 1821 machines deployed in ByteDance (a top
global content service provider) with a 1.5-month-
period, DOMI has been demonstrated to achieve the
best F1-Score of 0.94 andAUC score of 0.99, outperform-
ing the best baseline method by 0.08 and 0.03, respec-
tively. The interpretation accuracy ofDOMI is up to 0.93.

� We have already published our code3 and dataset4

on GitHub for better reproducibility of our results.

Fig. 1. Examples of normal and outlier machine instances. Each
machine is with 19-metric 3-day-long multivariate time series (i.e., with 3
machine instances).

3. Online. [Available]: https://github.com/TsingHuasuya/DOMI_code
4. Online. [Available]: https://github.com/TsingHuasuya/DOMI_

dataset
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2 PRELIMINARIES

In this section, we first present the motivation of our work
in Section 2.1, and then formulate the problem of detecting
outlier machine instances in Section 2.2. Lastly, we provide a
basic description of 1D-CNN and GMVAE, which are two
key components in our model, in Section 2.3.

2.1 Motivation

In large Internet companies, a massive number of machines
work as clusters in datacenters to support Internet-based
services [1], [28]. These machines process a great number of
variable requests, and thus their performance is important
to the quality of services (QoS) [4]. However, due to soft-
ware bugs (e.g., thread crash, memory leaking), hardware
failures (e.g., machine aging, hardware breakdown, correct-
able or uncorrectable hardware errors), malicious attacks,
etc., some machines are suffering poor performance and
become outliers [3], [29]. In a modern Internet company
requiring highly stable computing environments, an outlier
machine instance can fail a whole datacenter because of a
chain effect and heavily degrade the performance of serv-
ices [3]. Thus, detecting outlier machine instances so as to
mitigate losses is vitally important. In this paper, we mainly
focus on detecting outlier machine instances, aiming to find
under-performing machine instances for large Internet-
based services.

In order to take a global view on the performance of
machines and provide highly available services, operation
engineers are carefully monitoring various types of
machines’ metrics (e.g., CPU idle, TCP retransmission rate).
Each metric is typically collected in the form of a univariate
time series. Therefore, each machine can be denoted as a
multivariate time series [6], [7], [13]. The goal of detecting
outlier machine instances is to determine whether a
machine with multivariate time series becomes an outlier
over a long period (say a day in our paper).

Since an outlier machine instance can be caused by vari-
ous types of reasons, the interpretation of an outlier instance
affords operation engineers a deep insight into the outlier
detection results. This can facilitate a more rapid root cause
analysis process.

2.2 Problem Statement

Amachine instance, represented asM-X@D-Y, is a 1-day-long
multivariate time series defined as x ¼ fxx1; xx2; . . . ; xxNg
(x 2 RT�N , where T and N are the number of time points in
one day and that of univariate time series, respectively).
xxn ¼ fxY �T

n ; xY �Tþ1
n ; . . . ; xY �TþT�1

n g is a univariate time series
on Day-Y (xt

n 2 R is the measurement data of the nth metric
at time t), representing the monitoring data of a certain
machine metric. Typically, it contains successive observa-
tions that are collected with equal intervals [2], and different
metrics share the same sampling interval [5]. For example,
in our scenario, each machine instance has 19 metrics (i.e.,
N ¼ 19), which are empirically selected by experienced
operation engineers based on their domain knowledge. The
sampling interval of these metrics is 5 minutes, and thus
each day has 288 time points (i.e., T ¼ 288). The detailed
information of the 19 metrics, which can be classified into
five categories, is listed in Table 1. Note that, disk failures

can often fail the machines in practice. At ByteDance, the
operation engineers designed and ran a S.M.A.R.T-based
analysis pipeline (following [30]) to maintain disks’ perfor-
mance specifically. Therefore, from the deployment per-
spective at ByteDance, this work does not consider the disk-
related metrics.

Detecting outlier machine instances is to discover the unex-
pected machine instances that significantly deviate from
normal patterns, so as to identify the anomalous behaviors
or events of machines. That is, it equals to finding the
machine instances that are largely different from the major-
ity based on the shapes of multivariate time series. Outlier
and anomaly detection for univariate/multivariate time
series usually determines whether a univariate time series
is anomalous or not at each time point (i.e., xt

n in xxn) [8], [9],
[10], [12], or whether a vector of multivariate time series is
anomalous or not at each time point (i.e., [xt

1; x
t
2; . . . ; x

t
N ] in

x) [5], [6], [13], [14], [15], [16], [17], based on a short period
of historical data. However, it is a common practice that an
automatically recovered point anomaly [31] may not even-
tually lead to a failure due to the robustness of cloud sys-
tems [7]. Therefore, detecting outlier machine instances focuses
on a collection of anomalies or abnormal segments in a multivari-
ate time series over a long period [31], i.e., formally, determin-
ing whether x is an outlier.

The interpretation of an outlier machine instance can facili-
tate a more rapid troubleshooting process. Generally, opera-
tion engineers usually check which metrics largely deviate
from normal patterns when an outlier instance is detected, so
as to infer the root cause of this outlier. For example, if the
TCP related metrics and network related ones behave more
abnormally than others for a long period, we can deduce that
the outlier machine instance is suffering from network prob-
lems [5]. Therefore, for a detected outlier machine instance x,

TABLE 1
Detailed Information About the 19 Metrics of Machine

Instances Which are Classified into 5 Categories

Metric categories /
count of metrics

Metrics

CPU related / 7 CPU idle (rate), CPU sintr (count of
soft interrupts cycles), CPU wio (io
wait), CPU system (CPU utilization at
system level), CPU user (CPU
utilization at user level), CPU ctxt
(count of context switches), CPU nice
(CPU utilization at user level with nice
priority)

Memory metrics / 1 Memory utilization

VM related / 2 VM pgfault (page faults in the virtual
machine), VM pgmajfault (major faults
in the VM)

TCP related / 5 TCP attempt fails, TCP retransmission
rate, TCP listen drops, TCP insegs
(count of segments received), TCP
outsegs (count of segments sent)

Network related / 4 RX bytes (count of received bytes), RX
packets (count of received packets), TX
bytes (count of transmitted bytes), TX
packets (count of transmitted packets)
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we will interpret it by estimating and ranking the contribu-
tions of its constituent univariate time series in outlier deter-
mination (i.e., xxn in x).

2.3 Basics of 1D-CNN and GMVAE

1D-CNN and GMVAE are two critical components of
DOMI, and the basic knowledge about them is described
below.

Convolutional Neural Network (CNN) is a supervised
model that has three core architecture properties: local
receptive fields, shared weights, and spatial or temporal
sampling [32]. CNN has achieved huge success in image/
video and time series tasks [7], [33], [34] as it is effective in
extracting local shape features within the window of con-
volution. Obviously, for multivariate time series of a
machine instance, there exists no strong and clear depen-
dency among different univariate time series. As a conse-
quence, we employ CNN with 1D convolutional kernels
that move only in the temporal dimension. The main
difference between 1D-CNN and 2D-CNN is that the
former one uses 1D arrays rather than 2D matrices for
both kernels and feature maps. 1D-CNN has shown its
accurate and efficient performance for time series in
the aforementioned studies [25], [26]. Thus, DOMI applies
1D-CNN to capture the shape features of multivariate time
series data.

Variational autoencoder (VAE) is a popular unsuper-
vised non-temporal dimension reduction technique based
on a reconstruction architecture. It is capable of learning
the low-dimensional representations of complex data,
and it has been demonstrated to have excellent perfor-
mance on anomaly detection for time series [5], [8], [35].
Specifically, the prior of latent representation or variable
(i.e., z in Fig. 2a) in regular VAE is assumed as a unimo-
dal Gaussian distribution [23], [36]. With a prior for z, the
input data x can be reconstructed by a decoder network
puðxjzÞ with parameter u. The true posterior distribution
is intractable to compute, and thus VAE approximates it
by an encoder network qfðzjxÞ with parameter f. A better
z can facilitate a more accurate reconstruction [5], [23].
However, the prior assumption of regular VAE is too
simple to approximate the hidden distributions of com-
plex data [23]. Gaussian mixture VAE (GMVAE) [23],
[27], [36] is a variant of VAE model. Its main idea is to
use a Gaussian mixture distribution as the prior with a
stochastic variable (i.e., z in Fig. 2b) dependent on a cate-
gorical variable (i.e., c in Fig. 2b). Specifically, its prior is
multimodal and thus could learn more complex distribu-
tions [36]. GMVAE can be trained by maximizing the
evidence of lower bound (ELBO) on the log-likelihood of
input data, LðxÞ:

log ðpuðxÞÞ � log ðpuðxÞÞ �KL½qfðz; cjxÞjjpuðz; cjxÞ�
¼ LðxÞ
¼

X
c

Z
z

qfðz; cjxÞlogðpuðxÞÞdz

�
X

c

Z
z

qfðz; cjxÞlogqfðz; cjxÞ
puðz; cjxÞdz

¼ �
X

c

Z
z

qfðz; cjxÞlogqfðz; cjxÞ
puðx; z; cÞdz

¼ Eqfðz;cjxÞlog
puðx; z; cÞ
qfðz; cjxÞ

� �
;

(1)

where KL refers to Kullback-Leibler divergence, and it is
used to estimate the difference between two probability dis-
tributions (i.e.,KL½qðxÞjjpðxÞ� ¼ R

qðxÞlogqðxÞpðxÞdx).

3 DESIGN OF DOMI

In this section, we first present the overall framework of
DOMI in Section 3.1. After that, we introduce the network
architecture of DOMI in detail in Section 3.2, followed by
the description of offline model training (Section 3.3), online
detection (Section 3.4), and outlier machine instance inter-
pretation (Section 3.5).

3.1 DOMI Framework

To solve the problem of detecting outlier machine instances,
an unsupervised deep learning method, DOMI, is presented
in this work. The framework of DOMI is shown in Fig. 3,
which consists of an offline training module and an online
detection module. Data Preparation, which is shared by both
two modules, standardizes machine instances by z-score nor-
malization. Model Training captures the normal patterns of
training dataset (e.g., machine instances of a cluster in the
past few weeks). Threshold Selection learns the threshold of
outlier instances according to the scores (i.e., reconstruction
probabilities) of training dataset. The offline training is con-
ducted periodically (e.g., per week, per day) in order to learn
the latest normal patterns, and high-frequency training is not
necessary for stable services. Note that when services have
major updates or all machines of a datacenter suffer from con-
cept drift at some time, which rarely occurs, wewould receive
the update message and DOMI will re-conduct offline train-
ing using the machine instances after the concept drift. Rapid
adaption after concept drift is a challenging job, which is out
the scope of this paper.

For a newmachine instance x, which consists of the moni-
toring data of awhole day, DOMIwill calculate its score using
the trainedmodel. xwill be determined as an outlier machine
instance if its score is below the threshold. In practical applica-
tions, the metrics (i.e., univariate time series) that cause a

Fig. 2. Graphical models of VAE and GMVAE. x is input data, z and c are
stochastic and categorical latent variables, respectively. The solid lines
denote generative process (encoder) and the dash lines denote varia-
tional approximation (decoder).

Fig. 3. Framework of DOMI. The dash lines denote offline training and
the solid lines represent online detection.
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machine instance to be an outlier is useful for troubleshooting
[5]. Therefore, for a detected outlier machine instance x,
DOMI will interpret it by providing a univariate time series
list ranked by their contributions (i.e., reconstruction proba-
bility changes) in outlier determination. The ranked list will
be presented for operation engineers to identify and analyze
the root causes of outliermachine instances.

3.2 Network Architecture

As shown in Fig. 4, DOMI is a reconstruction based model
including an inference net (i.e., qfðz; cjxÞ) which estimates the
posterior probabilities of latent variables, and a generative net
(i.e., puðx; z; cÞ) which measures the likelihood of generating
data instances given latent variables. In the inference net,
DOMI extracts the shape features of input data x with a
convolutional architecture, and models the complex data dis-
tributions of x using a low-dimensional stochastic latent vari-
able z (i.e., representation, which is a set of probability
distributions). The objective of DOMI is to find a good z of x,
because a better z can facilitate amore accurate reconstruction
model [23]. In the generative net, DOMI applies z to recon-
struct x. As there are multiple normal patterns (or classes) of
metrics of machine instances in a datacenter, unlike tradi-
tional assumption that the prior of z is a simple Gaussian dis-
tribution [8], z in DOMI depends on a categorical variable c
and the prior of its z is a Gaussian mixture distribution [27].
The inference net is trained together with the generative net
so as to approximate the posterior distributions.

The inference and generative net are formulated in
Equations (2) and (3), separately:

e1 ¼ Eluðwe1 	 xþ be1Þ ð2aÞ
ek ¼ Eluðwek 	 ek�1 þ bekÞ ð2bÞ
mz ¼ wmzek þ bmz ð2cÞ
sz ¼ Eluðwszek þ bszÞ þ �sz ð2dÞ
c ¼ Catðwcek þ bcÞ ð2eÞ
z � NðmzðcÞ; s2

zðcÞÞ; c � CatðpÞ ð3aÞ
d1 ¼ Eluðwd1zþ bd1Þ ð3bÞ
dk ¼ Eluðwdkdk�1 þ bdkÞ ð3cÞ
mx ¼ wmxdk þ bmx ð3dÞ
sx ¼ Eluðwsxdk þ bsxÞ þ �sx ; ð3eÞ

where 	 and respectively denote a 1D convolutional and
deconvolutional operation, and the convolutional filters
move only in the temporal dimension [32].Elu is an activation
function: EluðaÞ¼aðexpðaÞ � 1Þja< 0 þ aja�0 (where a ¼ 1:0).
Cat is a categorical function and CatðpÞ is a categorical prior
distribution (p represents a J-dimensional probability vector,
where J is the pre-specified number of components in the
Gaussianmixture) [23].Moreover, allw	-s, b	-s are the param-
eters of the corresponding layers, and �	-s are small values to
prevent numerical overflow [5], [8].

Detailedly, as shown in Fig. 4a, the input of the inference
net is x. DOMI first extracts the shape features of each uni-
variate time series of x using k 1D convolution layers [26].
Then, the extracted shape feature, ek in Equation (2), enters
the dense layers to generate a categorical variable c and a

stochastic variable z (with mean mz and standard deviation
sz). In the generative net, as shown in Fig. 4b, DOMI first
generates the stochastic variable z using the categorical vari-
able c (c is the component of Gaussian mixture). It then
decodes the shape features using the deconvolution layers.
Finally, the decoded shape feature, dk in Equation (3), enters
the dense layers to calculate x0, which is the reconstruction
of x, by sampling fromNðmx;s

2
xIÞ. If x is an outlier machine

instance, it will be difficult to be reconstructed accurately
and x0 would differ significantly from the original data x.
Therefore, we can apply the reconstruction probability [5],
[8], [23] of x to detect outlier instances.

3.3 Offline Model Training

As mentioned in Section 2.3, GMVAE model is trained to
maximize the ELBO (Equation (1)) [27]. Similarly, DOMI can
be trained straightforwardly by optimizing the ELBO with
Variational Inference for Monte Carlo Objectives (VIMCO)
following [37], aiming to optimize the parameters of its net-
work (f and u). The training objective (i.e., the loss function)
of DOMI is formulated as

LðxÞ ¼ Eqfðz;cjxÞlog
puðx; z; cÞ
qfðz; cjxÞ

� �

¼ Eqfðz;cjxÞlog
puðcÞpuðzjcÞpuðxjzÞ

qfðzjxÞqfðcjxÞ
� �

¼ Eqfðz;cjxÞlog
puðcÞ
qfðcjxÞ

� �
þ Eqfðz;cjxÞlog

puðzjcÞ
qfðzjxÞ

� �

þ Eqfðz;cjxÞlog ðpuðxjzÞÞ;

(4)

with the mean field approximation (i.e., z and c can be parti-
tioned and are independent) [23]: qfðz; cjxÞ¼qfðzjc;xÞqf
ðcjxÞ¼qfðzjxÞqfðcjxÞ. qfðzjxÞ is obtained from the infer-
ence net, and it is assumed as a multivariate Gaussian
distribution [27]: qfðzjxÞ � N ðmz;s

2
zIÞ, which aims to approx-

imate the true posterior distribution of z. qfðc ¼ ijxÞ ¼
qfðxjc¼iÞqfðc¼iÞPJ

j¼1
qfðxjc¼jÞqfðc¼jÞ

, where qfðxjc ¼ iÞ is the probability of gen-

erating x using the ith Gaussian component, and qfðcÞ could
be taken as c-prior (i.e., puðcÞ).

Fig. 4. Network architecture of DOMI which is composed of two parts:
inference net and generative net. x is the input data, k is the layers of
1D-convolution and 1D-deconvolution, x0 is the reconstruction output, z
and c are stochastic and categorical latent variables, respectively.
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The first and second terms in Equation (4) are the regulari-
zation (i.e., Kullback-Leibler loss) on c and z, respectively. The
goal is to minimize the difference between the posterior distri-
butions (qfðcjxÞ and qfðzjxÞ) and the prior distributions (puðcÞ
and puðzjcÞ). puðcÞ � CatðpÞ follows a categorical prior distri-
bution. z follows a Gaussian mixture distribution and can be
sampled on puðzjcÞ � N ðmzðcÞ; s2

zðcÞÞ [23]. The third term is the
reconstruction probability which aims to maximize the likeli-
hood of x, and it can be calculated as: puðxjzÞ � N ðmx; s

2
xIÞ.

Traditionally, for GMVAE based models, during model
training, the single sample Monte Carlo estimate of the
ELBO is commonly used to approximate the training loss
[38], [39]. To obtain a more reliable and stable representa-
tion, in this paper, we design a simple yet effective approxi-
mation method, multi-sample Monte Carlo integration to
approximate the LðxÞ in Equation (4):

LðxÞ 
 1

L1 � L2

XL1

l1¼1

XL2

l2¼1

�
log

puðcðl2ÞÞ
qfðcðl2ÞjxÞ

� �

þ log
puðzðl1Þjcðl2ÞÞ
qfðzðl1ÞjxÞ

� �
þ log ðpuðxjzðl1ÞÞÞ

�
;

(5)

where zðl1Þ; l1 ¼ 1; 2; . . . ; L1 (L1 is the sample size of z) is
sampled from qfðzjxÞ and cðl2Þ; l2 ¼ 1; 2; . . . ; L2 (L2 is the
sample size of c) is sampled from qfðcjxÞ.

During model training, sxsx and szsz can be very small (i.e.,
very close to zero), which may lead to numerical problems
when calculating the likelihoods of Gaussian variables. To
solve this problem, we adopt the ‘�’ trick in [8]. When back-
propagating gradients through network layers,model param-
eters will result in NaN values (i.e., overflow) once the
gradient value grows extremely large. We use gradient clip-
ping [40] to deal with ‘gradient explosion’, with a limit of 10.0.
Moreover, there could exist some outlier instances in training
data, andwe thus apply early-stopping to avoid over-fitting.

For unsupervised techniques, they are trained to capture
the intrinsic properties within a dataset and then detect out-
liers based on the data characteristics [31]. In our model,
DOMI captures the normal patterns of machine instances
from the majority of training dataset in an unsupervised
way [5], [8]. Typically, the majority of machine instances in
the training dataset (e.g., 81 percent in our scenario) are nor-
mal. Therefore, the learning process is dominated by normal
instances, and DOMI is robust to a small portion of outlier
instances in the training dataset.

3.4 Online Detection

After offline training, DOMI has learned the parameters of
network so as to capture the normal patterns of machine
instances. Nowwe can determine whether an input machine
instance x is an outlier or not using the trained model. The
reconstruction probability of x in DOMI indicates its recon-
struction difficulty [23]: the lower of its value, the harder of x
to be accurately reconstructed. For an outlier instance, it will
be hard to be accurately reconstructed and thus its recon-
struction probability tends to be lower than that of normal
instances [5]. Inspired by [8], in DOMI, we formally use the
reconstruction probability of x as the outlier score: S ¼
Eqfðz;cjxÞlog ðpuðxjzÞÞ. For x, if its outlier score S is below a
threshold TH, it will be determined as an outlier machine

instance; otherwise, it is normal. Detecting outlier machine
instances is critical for operation engineers to find the under-
performingmachine instances and timely fix them.

In DOMI, an outlier score is a continuous value that quanti-
fies the level of “outlierness” of a machine instance. Consider-
ing a large number of machine instances (e.g., hundreds of
thousands per day in our scenario), DOMI learns the threshold
TH automatically, which converts an outlier score into a binary
result (outlier or not). As aforementioned, xwith a lower score
is more likely to be an outlier. Peaks-Over-Threshold (POT),
the second theorem in Extreme Value Theory (EVT), has dem-
onstrated its excellent performance in tuning thresholds [5].
Therefore, we apply the adjusted POT method in [5] to auto-
matically tuneDOMI’s threshold TH.

3.5 Outlier Machine Instance Interpretation

The interpretation is to answer the question of why a
machine instance becomes an outlier. The outlier score S
indicates the overall performance of the whole x. In prac-
tice, the univariate time series (i.e., xxn 2 x, where 1�n �N)
that cause x to be an outlier instance are important for oper-
ation engineers to analyze the outlier and troubleshoot the
root causes [5]. To interpret a detected outlier instance x, we
calculate the contribution (i.e., reconstruction probability) of
each xxn in outlier determination, and xxn with larger contri-
bution is more likely to infer the root cause.

According to puðxjzÞ�N ðmx;s
2
xIÞ, we can get puðxjzÞ ¼QN

n¼1 puðxxnjzÞ and log ðpuðxjzÞÞ ¼
PN

n¼1 log ðpuðxxnjzÞÞ. That is,
S ¼ PN

n¼1 Sn, where Sn ¼ Eqfðz;cjxÞlog ðpuðxxnjzÞÞ and it is the

outlier score (i.e., reconstruction probability) of xxn. The recon-
struction difficulties of x’s different univariate time series are
usually different, thus using the raw scores of univariate time
series [5] is not proper. Consequently, we apply the score
changes (i.e., reconstruction probability changes) of each uni-
variate time series to interpret the detection result. Specifically,
we first calculate the expected score of each univariate time
series in the training dataset: �S1; �S2; . . . ; �SN , where �Sn is the ex-
pected score of xxn. Thenwe calculate the score changes of each
univariate time series xxn: DSn ¼ Sn � �Sn. Finally, for an outlier
machine instance xx, we rank the score changes of itsN univari-
ate time series in ascending order to form the contribution list
DS. For xxn, the higher it ranks in DS, the larger of its score
changes, the greater it contributes to outlier determination.

The top few univariate time series in DS can provide
clues for operation engineers to understand the outlier
machine instances and pinpoint the root cause. Moreover,
our interpretation method is also applicable to other VAE-
based methods such as Donut [8] and OmniAnomaly [5].

4 EVALUATION

In this section, we first introduce the experiment setup includ-
ing dataset, performancemetrics and the hyper-parameters of
DOMI in Section 4.1. We then compare the performance of
DOMI with baseline methods in Section 4.2, followed by the
evaluation of GM prior, multi-sample Monte Carlo integra-
tion and 1D convolutional kernels in Section 4.3. After that,
we show the performance of interpretation in Section 4.4 and
DOMI’s efficiency in Section 4.5. Finally, we discuss the
impact of hyper-parameters in Section 4.6.
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4.1 Experiment Setup

Dataset. To demonstrate the effectiveness of DOMI, all experi-
ments are conducted on a machine dataset collected from
ByteDance, a top global content service provider. It is collected
from 1821 machines in a datacenter with a 45-day-period,
which provides services for four short video related applica-
tions, leading to four classes of machines. The applications
have billions of daily active users and remain relatively stable
with minor updates for sixth months, and thus the studied
datacenter is considered stable over a long period. For each
machine, the monitoring data of 19 metrics (see Table 1 for
more details) is collected every five minutes. The amount of
training data is determined by the length of data and the
number of machines. Thus, we have 81945 (=1821 � 45)
machine instances in total, where each instance is a 19 � 288
(=24� 60/5) matrix.We divide the dataset into two parts: the
former 30 days for training and the latter 15 days for testing.
The ground truth has been labeled by experienced operation
engineers who maintain these machines. The ratios of outlier
instances in the training and testing sets are 0.19 and 0.22,
respectively.

Performance Metrics. We mainly employ two performance
metrics to evaluate DOMI and other baseline methods: AUC
and the best F1-Score (denoted as F1best). (1) Area Under the
ROC Curve (AUC) indicates the overall performance by enu-
merating all possible thresholds. For ROC (receiver operating
characteristic) curve, the closer to the upper left, the larger of
AUC, the better performance of its algorithm. (2) F1best =
2�Precision�Recall
PrecisionþRecall , where Precision ¼ TP

TPþFP , Recall ¼ TP
TPþFN ,

indicates the best possible performance of models with an
optimal global threshold. F1best and AUC are performance
indicators that balance precision and recall, and thus they are
more comprehensive in evaluating methods’ performance
than precision or recall. F1best is consistent with AUC [8] and
can be selected from the Precision-Recall Curve (PRC). The
PRC close to upper right performs better than one close to bot-
tom left. All evaluation experiments are one-off efforts, and
we repeated them 10 times using the same hyper-parameters
to calculate the average AUC and F1best.

Hyper-Parameters. We set the hyper-parameters of
DOMI empirically in our experiments as follows. Both the
convolutional and deconvolutional architectures have four
layers, the kernel sizes and strides of which are {12�1,
12�1, 6�1, 6�1} and {4�1, 4�1, 3�1, 3�1}, respectively.
We apply L2 regularization with a coefficient of 10�4 to all
layers. The dimension of z-space variables is 10 and the
number of components of c is 4. � is set to 10�10. The sam-
ple size L1 and L2 are both 500. For the adjusted POT
method, the low quantile = 0.2 and q = 10�4 [5]. 90 percent
of the training set is used for training and the remaining
10 percent is used for validation. DOMI is trained with
Adam optimizer [41], which is reduced by a factor of 0.5
every 5 epochs, with an initial learning rate of 10�3. We
run 10 epochs for training with early stopping, and the
batch size is 32. More studies about the choice for hyper-
parameters are discussed in Section 4.6.

4.2 DOMI Versus Baseline Methods

To show the effectiveness of DOMI, we carefully choose the
following state-of-the-art outlier and anomaly detection

methods as baselines: Donut [8], OmniAnomaly [5], DAGMM
[21], MSCRED [7], GMM [21], MDDTW+DBSCAN [42], DCN
[43], IForest [44], OCSVM [3] (see Section 6 for more details).
For the methods that cannot handle matrix data, we flatten
the input matrix to vector following [41]. Moreover, to deal
with the high dimensionality of input data, the density esti-
mation and classification based methods (e.g., GMM, IForest,
OCSVM) are improved by a two-stage variant [21]: (1) reduce
the dimensionality of input data by PCA (2) apply the density
estimation and classification based methods on the com-
pressed data. In addition, to make OmniAnomaly work for
detecting outlier machine instances, we adopt an intuitive
rule to define outlier instances that “at least T 0 in T time points
are detected as anomalies (where T 0 can be tuned for best result)”.

Table 2 lists the average precision, recall, F1best, and AUC
of DOMI and baseline methods. The ROC curves and PR
curves shown in Fig. 5 provides more details about the per-
formance of these algorithms. The TP/FP/TN/FN of
DOMI are TP = 5726, FP = 380, FN = 354, TN = 20855,
respectively. The instances having anomalies lasting short
with large fluctuations are more likely to be FPs, and those
having anomalies lasting long with minor fluctuations tend
to be FNs. Overall, none of the baselines can extract shape
features, and DOMI outperforms them because it extracts
the shape features of multivariate time series with 1D-CNN

TABLE 2
Average AUC and F1best of DOMI and Baseline Methods

Methods Precision Recall F1best AUC

DOMI 0.9378 0.9418 0.9398 0.9921

Donut 0.6995 0.9331 0.7995 0.9217
OmniAnomaly 0.6351 0.9241 0.7527 0.9214
DAGMM 0.8279 0.8031 0.8152 0.9641
MSCRED 0.7239 0.8338 0.7749 0.9293

GMM 0.7019 0.8371 0.7636 0.9307
GMM+PCA 0.8750 0.7933 0.8321 0.9562
MDDTW+DBSCAN 0.8069 0.9087 0.8542 N/A
DCN 0.8778 0.7953 0.8323 N/A

IForest 0.9893 0.3954 0.5650 N/A
IForest+PCA 0.8868 0.5157 0.6520 N/A
OCSVM 0.3936 0.9387 0.5548 N/A
OCSVM+PCA 0.3948 0.9427 0.5565 N/A

The AUC of clustering and classification based methods are not available
because they have no thresholds (“N/A” denotes no results and the top 3 met-
rics are highlighted in bold).

Fig. 5. ROC curves and PR curves of DOMI and baseline models (Note
that the clustering and classification based methods are not available
here. Moreover, for GMM, we only select its variant GMM+PCA).
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[7], [26] and successfully captures the normal patterns by
GMVAE. Detailedly, DOMI exceeds the best performing
baseline method by 0.03 on the AUC (i.e., DAGMM) and
0.08 on the F1best (i.e., MDDTW+DBSCAN, whose TP/FP/
TN/FN are TP = 5526, FP = 1322, FN = 554, TN = 19913,
respectively). That is, MDDTW+DBSCAN generates 942
more FPs and 200 more FNs comparing to DOMI. The large
number of FPs will waste operators much more time on
checking false alarms, and the large number of FNs may
cause operators to falsely ignore outlier instances and in
turn lead to bad user experience. Next, we will analyze
these methods in detail.

Extracting Shape Features is Important. For MSCRED, its
inputs are signature matrices constructed by multivariate
time series instead of raw values, which concern about the
shape similarity among different pairs of univariate time series,
rather than the overall shapes of multivariate time series. For
“MDDTW+DBSCAN”, MDDTW calculates pairwise distan-
ces among instances based on their shape similarity, rather
than extracts the shape features. It performs the best among
all baselines, which further proves the importance of con-
sidering shape characteristics of time series. However, its
computational complexity is as high as Oðn2Þ, where n is the
number of instances. Applying it for detecting outliermachine
instanceswill cost lots of computational resources and ismuch
time-consuming.

Dimension Reduction Should beDone in an End-to-EndManner.
Neither GMM nor IForest achieves comparable performance
to their variants (i.e., combine themwith PCA), which demon-
strates the importance of dimension reduction. However, PCA
can not greatly improve the performance of OCSVM. This
could be because that, for two-stagemodels, dimension reduc-
tion in the first step is unaware of the follow-ups, and the key
information of data could be lost during dimension reduction
and in turn lead to suboptimal performance [21]. Different
from the two-stagemodels, DOMI is an end-to-endmodel that
combines dimension reduction and pattern learning simulta-
neously to achieve optimal performance.

VAE-Based Reconstruction is More Robust. Compared with
the AE-based reconstruction methods (e.g., DAGMM and
MSCRED), the VAE-based reconstruction method, DOMI,
infers the variability of distributions in the latent variables
using variational inference [35], which has been proved to
be more principled [23]. Although Donut is based on VAE,
its prior is a simple Gaussian distribution, which degrades
its performance for multivariate time series with diverse
types of distributions [22]. The Gaussian mixture prior of
DOMI enables its latent representations to learn the com-
plex distributions of data well.

Anomaly Detection for Multivariate Time Series is not Proper
for the Problem of Detecting Outlier Machine Instances. OmniA-
nomaly detects anomalies for multivariate time series at
each time point, which mainly focuses on the starting point
rather than the entire segment of long-lasting anomalies [5].
Moreover, even if it could be applied for outlier machine
instance detection, the number of anomalous time points
(e.g., T 0 in our case) is almost infeasible to be accurately pre-
defined in practice.

A Reasonable Latent Representation is Needed. For the density
estimation method (e.g., GMM), it has been demonstrated to
be very difficult to perform reasonable density estimation for

complex data [21], and thus it suffers poor performance in our
scenario. In addition, for a well-trained AE, there may exist
no significant differences among the reduced dimensions,
and thus the clustering method of DCN cannot distinguish
them accurately. On the contrary, the well-learned latent rep-
resentations in DOMI have been demonstrated to be intuitive
and reasonable, so that it achieves good performance (will dis-
cuss later in Section 5.2).

4.3 Evaluation of GM Prior, Multi-Sample Monte
Carlo Integration and 1D Convolutional Kernels

There are three major techniques in DOMI: GM prior, multi-
sample Monte Carlo integration and 1D convolutional ker-
nels. To evaluate their performance, we design five variants
of DOMI: (1) “DOMI without (w/o) GM” denotes that the
Gaussian mixture prior in DOMI is replaced by a simple
Gaussian prior. (2) “DOMI w/o multi-sample” means that
the approximation method is replaced by the single sample
Monte Carlo integration. (3) “DOMI w/o 1D” represents
that the 1D-CNN is replaced by 2D-CNN. (4) “DOMI w/o
CNN” indicates that the convolutional architecture is
replaced by full connected layers. (5) “DOMI with attention
RNN” represents that the 1D-CNN is replaced by an atten-
tion based RNN.

FromTable 3 and Fig. 6, we observe that “DOMIw/oGM”
does not perform as well as DOMI. This could be explained
by the fact that the prior with the Gaussian mixture distribu-
tion, which is more complex than the simple Gaussian distri-
bution, can better model high dimensional data [23], [27].
Without the multi-sample Monte Carlo approximation, one
sample of c is not sufficient for computing the ELBO and the
value of c is neither reliable nor stable. Additionally, unlike
the matrix data of images, there exists no clear dependency
among different univariate time series. Therefore, 1D-CNN is
more intuitive than 2D-CNN for shape feature extraction on

TABLE 3
Average AUC and F1best of DOMI and its Variants

Methods Precision Recall F1best AUC

DOMI 0.9378 0.9418 0.9398 0.9921

DOMI w/o GM 0.9053 0.9336 0.9192 0.9829
DOMI w/o multi-sample 0.9057 0.9316 0.9184 0.9826
DOMI w/o 1D 0.9283 0.8648 0.8954 0.9786
DOMI w/o CNN 0.9102 0.8535 0.8809 0.9753
DOMI with attention RNN 0.9222 0.8523 0.8858 0.9760

Fig. 6. ROC curves and PR curves of DOMI and its variants.
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multivariate time series, and replacing 1D-CNN with 2D-
CNN degrades the performance of DOMI. Besides, compared
with 2D-CNN [25], 1D-CNN has simpler architecture and
lower computational complexity, which makes the model
easier to be trained [26]. “DOMI with attention RNN” leads
to worse performance compared to DOMI. It is because atten-
tion-based RNNs only capture the temporal features of
time series, while 1D-CNN can well capture both temporal
and shape features. Lastly, the improvement of DOMI and
“DOMI w/o 1D” over “DOMI w/o CNN” and “DOMI with
attention RNN” further proves the necessity of shape feature
extraction on time series [7], [26].

In real-world scenarios, it is necessary to automatically
tune the threshold for outlier machine instances. Here we
show the performance of the adjusted POT method [5] for
automatic threshold tuning in DOMI. The F1-Score obtained
through the adjusted POT is 0.9395, which is only slightly
lower than F1best (0.0003), indicating that the adjusted POT
method is practical for threshold tuning in DOMI.

4.4 Evaluation of Interpretation

Interpretation of the detected outlier machine instances is
important for troubleshooting. To achieve this goal,
DOMI applies score changes (i.e., reconstruction probability
changes) rather than raw scores of univariate time series for
interpretation, because the reconstruction difficulty varies
among different univariate time series. For example, the
normal patterns of the 5th metric in Fig. 1 are more difficult
to be learned than the other metrics because it is variable in
nature. Specifically, its expected score �S5 
 1, which is
much lower than others (about 5 to 30).

We apply HitRate@P% (P can be 100 or 120) to evaluate
the interpretation accuracy using raw scores and score
changes, respectively. HitRate@P% indicates the overlap-
ping ratio between GT (ground truth list with the metrics
that indeed lead to outlier instances) and the top bP%�
jGTjc metrics in list DS provided by DOMI, where jGTj is
the length ofGT. Here we give a toy example to understand
HitRate@P%. For an outlier machine instance x with 10 uni-
variate time series (i.e., N = 10), its DS is {2, 7, 3, 6, 8, 9, 1, 5,
10, 4} (the number 1 to 10 means the names of 10 univariate
time series) and GT is {2, 3, 6, 9, 10}. Therefore,
HitRate@100% = 0.6 and HitRate@120% = 0.8.

From Table 4, we observe that DOMI using score changes
provides better interpretation results for outlier instances
than that using raw scores. Moreover, the average interpre-
tation accuracy of DOMI is higher than Donut and OmniA-
nomaly, because its z-space representations better capture
the shape features and complex distributions of multivari-
ate time series. The experiments also show that applying
score changes brings better performance to Donut and
OmniAnomaly than using raw scores, demonstrating that
this idea can be applied to other VAE-based anomaly/out-
lier detection methods beyond DOMI.

4.5 Evaluation of Computational Efficiency

To demonstrate the computational efficiency of DOMI,
we test it on two different servers: (a) a CPU server with
(24-core Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz with
64 GB RAM) and (b) a GPU server: Nvidia GeForce RTX

2080-Ti. The average execution time for offline training and
online testing is shown in Table 5. Specifically, each step in
the model training procedure costs 0.09 and 0.04 seconds on
the CPU server and GPU server, respectively. Because each
epoch has about 1,500 steps for our training set, it consumes
about two minutes and one minute on the CPU server and
GPU server, respectively. Since we run 10 epochs for the
whole training set, the total training time is less than half an
hour. In the online testing procedure, we detect the instan-
ces in a batch fashion and measure the average testing time
per instance (i.e., testing time per instance = testing time for
a batch/batch size). It takes 2.7 and 1.1 milliseconds for the
CPU server and GPU server to test a machine instance,
respectively. That is, DOMI can detect outliers for ten thou-
sand machine instances every 30 seconds using either a
CPU server or a GPU server. The computational complexity
of DOMI is OðmnÞ, where m is the training epoch and n is
the number of instances. Note that, the testing time (i.e., the
inference time) does not cover the data processing proce-
dure including data aggregation and data sending. The data
processing time is about 3.1 milliseconds per instance.
Based on on-site interviews with operation engineers, they
are quite satisfied with DOMI’s computational efficiency.

4.6 Evaluation of Hyper-Parameters

In this section, we mainly discuss three hyper-parameters of
DOMI that can significantly impact its performance: the
dimension of hidden stochastic variables (i.e., z), the num-
ber of components of Gaussian mixture (i.e., c), and the
number of epochs.

z and c are two main components of DOMI. A larger z
can reduce the effect of dimension reduction, while a
smaller z can lead the model to be under-fitting [8]. More-
over, a smaller c can reduce the complexity of the distribu-
tions of z, degrading the performance of z in modeling high
dimensional data. It has been demonstrated that a model’s
performance becomes steady when c is large enough [45].

TABLE 4
Average Interpretation Accuracy of Two Interpretation

Methods for DOMI and Two VAE-Based Models
(Donut and OmniAnomaly)

Interpretation
methods

Raw scores Score changes

HitRate HitRate HitRate HitRate
@100% @120% @100% @120%

DOMI 0.6534 0.8001 0.8953 0.9302
Donut 0.5163 0.7220 0.8039 0.9079
OmniAnomaly 0.6717 0.8080 0.8625 0.9130

TABLE 5
Average Execution Time (Seconds) of DOMI on

CPU and GPU, Respectively

CPU GPU

Training time per step 0.0892 0.0370
Training time per epoch 137.2048 57.7789
Testing time per instance 0.0027 0.0011

Each epoch has about 1500 steps for training.
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Therefore, we first empirically set the number of components
of c as a large value (e.g., 6) to show the impact of z’s scale to
DOMI’s performance. FromFig. 7a, we can see that both F1best
and AUC achieve the best result when the dimension of z is
10, and they become steady when the dimension of z is larger
than 3. It demonstrates that DOMI is quite robust to the
dimension of z. Therefore, we set this hyper-parameter as 10.
Fig. 7b shows the average F1best and AUC of DOMI as a func-
tion of the number of components of c. Obviously, DOMI’s
performance becomes stable when it is larger than 3, demon-
strating that DOMI is also robust to this hyper-parameter. We
thus set it as 4 in the evaluation experiments.

The number of epochs, i.e., the number of complete passes
through the training set, is one of the hyper-parameters of gra-
dient descent. A smaller number of epochs can prevent a
model from being fully trained. However, a larger number of
epochs can bring larger computational complexity. Fig. 7c
shows the average F1best and AUC of DOMI as the number of
epochs varies. Similarly, we can see that when the number of
epochs is larger than 7, the performance of DOMI becomes
steady, and thus DOMI is robust to this number. Therefore,
we set it as 10 in the evaluation experiments to ensure more
robust performance, and its small value indicates that
DOMI can bewell trainedwithin a short time.

Overall, DOMI is robust to the three hyper-parameters,
and thus operation engineers do not have to worry about
how to tune their values. Moreover, we also provide guid-
ance of tuning hyper-parameters: the larger number of
dimensions of input data, the larger of z; the more classes of
machines, the larger of c; the smaller of the training instan-
ces, the larger number of the epoch. Note that tuning hyper-
parameters automatically for DOMI is difficult and out the
scope of this paper.

5 DISCUSSION

In this section, we first discuss the model fit of DOMI in
Section 5.1, and then explain how DOMI works for detect-
ing outlier machine instances through visualizing z-space
representations in Section 5.2. After that, we present the
deployment architecture and three case studies of DOMI in
ByteDance in Section 5.3. Finally, we conclude some lessons
learned from DOMI in Section 5.4.

5.1 Model Fit

It is necessary for a deep learningmodel to be appropriately fit
in the training procedure, the goal of which is to capture gen-
eral patterns of training data and not simply memorize the
dataset. A deep learning model can be under-fitting when the

loss of training set� the loss of validation set.On the contrary,
it is over-fitting if the loss of training set
 the loss of valida-
tion set. Fig. 8 shows the loss curves of DOMI on the training
set and validation set in the training procedure, respectively.
We can see that, when the number of steps is smaller than
about 4,000, both the two loss curves keep decreasing, which
meansDOMI is learning patterns in the training set and gener-
alizing better but not well enough on the validation set. After
that, the loss of DOMI on both training set and validation set
becomes stable, which not only proves that DOMI converges
well on the dataset and successfully learns a generalized
model, but also indicates that DOMI indeed maximizes ELBO
during model training [11] and the training data is sufficient.
In addition, the loss on the training set and validation set is
roughly equal for each step, intuitively demonstrating that
DOMI is an appropriate-fitmodel.

5.2 Visualization of z-Space Representations

Here we try to demonstrate how DOMI works by analyzing
its latent representations. As aforementioned, DOMI is a
reconstruction based method. In the training procedure, it
captures the normal patterns of training data by learning
their low-dimensional representations. Specifically, for a
machine instance x, DOMI first compresses it to a low-
dimensional representation z, and then reconstructs it (i.e.,
x0) based on the learned z. Whether x is an outlier or not,
this learned z is as “normal” as possible [5], [8]. Therefore,
for an outlier x, its x0 is greatly different from it and its
reconstruction probability is thus low, based on which
DOMI can successfully perform the outlier detection for
machine instances. In Fig. 9, we visualize the 3-dimensional
z-space representations of the testing set. All representa-
tions are sampled from qfðz; cjxÞ. As shown in Fig. 9a, the z
representations of normal and outlier instances generated
by DOMI are “overlapped” and appeared to be identical,
demonstrating that they share very similar distributions.
That is, an outlier x’s z and x0 are “normal”, and its recon-
struction probability is thus low.

Fig. 7. The average F1best and AUC results of DOMI by varying three hyper-parameters.

Fig. 8. The loss curves of DOMI on the training set and validation set.
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To further understand the z-space representations of DOMI,
we compare them with the z representations of “DOMI w/o
GM” as shown in Fig. 9b. Obviously, the distributions of
DOMI’s z are more complex than those of “DOMI w/o
GM”’s. That is because the Gaussian mixture prior of z in
DOMI is more complex than the simple Gaussian prior in
“DOMIw/oGM”. This further explainswhyDOMI performs
better than “DOMI w/o GM”: the isotropic distribution of
simple Gaussian fails to model the intrinsic multimodality of
high dimensional data [22].

5.3 Deployment and Case Study

In ByteDance, the SystemTechnologies andEngineering (STE)
team is responsible for the reliability of machines. To help
the operation engineers in STE find the under-performing
and unmanaged machine instances, we implemented the
prototype of DOMI in Python v3.6 and Tensorflow v1.14.0.
DOMI has been deployed in 19 datacenters housing 90,000+
machines in ByteDance formore than 4months, and it has suc-
cessfully detected about 450 outlier machine instances per
day. These datacenters are with diverse types of workloads.
DOMI achieves an excellent precision of 0.91, demonstrating
that it is generic enough to be applied to other datacenters.We
acknowledge that it is difficult to obtain the recall of DOMI
because labeling a large number of false negatives, which is
key to calculate recall, requires very significant human efforts
and is impractical.

Fig. 10 presents the deployment framework of DOMI.
The machines support online services in the companies.
Their metrics are carefully being monitored and collected as
the format of multivariate time series, then processed and
stored by Kafka in a streaming manner, and created a data
API for easy access. We train one DOMI model for each
datacenter, which runs a variety of services and houses
thousands of machines with multiple classes. For different
datacenters, the hyper-parameters of DOMI were set the
same without any tuning. Moreover, to avoid the negative
impact of outlier instances during model training, we adopt
an outlier skipping strategy, that first recorded the outlier
instances detected by the trained DOMI model and then
retrained a new model based on the dataset with these out-
lier instances being filtered out. During online detection,
operation engineers would receive the detected outlier
results with their interpretations via emails, and can see
them on a visualization platform. In Fig. 11, we present
three real-world cases that happened in ByteDance.

In Case A, as shown in Fig. 11a, the machine instance
machine-A@13-March-2020 was detected by DOMI as an

outlier. Its score was -90.82 (while the scores of other machine
instances from 09-March-2020 to 12-March-2020 ranged from
150 to 200), which was lower than the threshold 117.05 that
was automatically selected by the adjusted POT method. The
top 5 metrics in DS provided by DOMI were {CPU wio, CPU
sintr, CPU idle, Memory utilization, CPU ctxt}, which were
mainly CPU and Memory related metrics. More specifically,
comparedwith the top 5metrics, bothNetwork relatedmetrics
and TCP related ones behaved more normal and they ranked
latter in DS. After investigating this case, operation engineers
found that an uncorrectable ECC memory error happened on
that machine at 13-March-2020. The DS of DOMI provided
operation engineers clues to analyze this accident.

In Case B, as shown in Fig. 11b, the machine instance
machine-B@12-March-2020 was detected as an outlier with
the score of -585.21. Moreover, mostly all metrics were
abnormal based on DS. Operation engineers found, based
on investigations, that no services were running on this
machine and it became unmanaged during that period.
DOMI successfully detected this machine instance because
it believed that the metric patterns of this instance deviated
from the normal patterns for a long period.

In Case C, as shown in Fig. 11c, the machine instance
machine-C@18-June-2020 was detected as an outlier with the
score of -81.32. Detailedly, the TCP and network related met-
rics were abnormal based on DS, indicating that the machine
was suffering a network problem. The ground truth was that
there occurred network congestion at switches at 18-June-
2020. The DS provided by DOMI helped operation engineers
troubleshoot this failuremore quickly.

Fig. 9. 3-dimensional z-space representations of (a) DOMI and (b)
“DOMI w/o GM”, where red and blue points represent outlier and normal
instances, respectively.

Fig. 10. Deployment framework of DOMI.

Fig. 11. Three real-world cases about outlier machine instances
detected by DOMI in ByteDance.
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From these three cases, we learn that DOMI could be applied
to detect outlier machine instances for real-world services,
and its interpretation can provide operation engineers a
deeper insight into the root causes of outlier instances.

5.4 Lessons Learned

In this section, we show the following five lessons learned
from DOMI. (1) Compared with 2D-CNN, 1D-CNN is more
effective in capturing the shape features of multivariate
time series because of its 1D convolutional kernels and fea-
ture maps, which also reduces computational complexity
for model training and makes the model easier to be trained.
(2) VAE-based models with Gaussian mixture prior perform
better than those with simple Gaussian prior, especially on
the dataset with complex characteristics, because they can
well model the intrinsic multimodality of data by obtaining
complex latent representations. (3) Due to the curse of
dimensionality for multivariate time series, it is necessary to
reduce the dimensionality of high dimensional data. (4) An
end-to-end model is better than a two-stage model in our
scenario, because it deals with dimension reduction and
pattern capturing simultaneously so as to achieve optimal
performance. (5) For VAE-based models, using reconstruc-
tion probability changes of univariate time series can better
interpret outlier machine instances compared with using
construction probability itself.

6 RELATED WORKS

Generally speaking, both outlier and anomaly detection
methods aim to determine whether a data instance stands
out as being dissimilar to all others and deviates from nor-
mal patterns [31]. In recent years, outlier/anomaly detec-
tion, particularly for time series, has emerged as a widely
researched problem in both machine learning and deep
learning area [31]. Moreover, it has become one of the fun-
damental problems in the field of Artificial Intelligence for
IT Operations (AIOps). Among these detection methods,
supervised models usually need manual labels, which are
difficult to obtain, for model training [12], and their perfor-
mance is usually sub-optimal due to class imbalance [31]
and can only identify the outliers of known types. As a con-
sequence, they are hard to be applied in practice and unsu-
pervised methods are generally preferred. Although no
specific work was designed for detecting outlier machine
instances previously, a collection of unsupervised outlier/
anomaly detection algorithms [3], [5], [7], [8], [15], [16], [17],
[21], [42], [43], [44] have been proposed, which can be
adopted or improved to solve this problem. They can be
divided into three categories as follows.

(1) Reconstruction methods are based on an encoder-decoder
architecture and apply reconstruction errors or probabilities
to perform outlier/anomaly detection. [8] proposed Donut, a
VAE-based model, to detect anomalies for seasonal univariate
time series in web applications, and it used stochastic latent
variables to learn the normal patterns of input data. OmniA-
nomaly [5] detected anomalous time points in multivariate time
series for industry devices using stochastic Recurrent Neural
Network. MSCRED [7] proposed a multi-scale convolutional
recurrent encoder-decoder, and constructed signature matri-
ces to represent the shape similarity among different pairs of

univariate time series in complex systems. Itmainly focuses on
the inter-correlations rather than the overall performance of
multivariate time series, which is different from detecting
outlier machine instances by definition. DAGMM [21]
detected anomalies in high dimensional data, which used an
autoencoder to reduce dimensionality and applied aGaussian
mixture model to estimate the density distribution of low-
dimensional space. Both OmniAnomaly and Donut applied
reconstruction probabilities to detect anomalies, while
MSCRED and DAGMM used reconstruction errors as detec-
tion scores.

(2) Density estimation and clustering based methods. Gaussian
MixtureModel (GMM) [21] estimated the density of instances,
and determined those in low density as outliers. “MDDTW
+DBSCAN” [42] used a multi-dimensional dynamic time
warping (DTW) to measure the shape similarity among
instances, and applied DBSCAN to cluster these instances.
Deep Clustering Network (DCN) [43] combined AE for
dimensionality reduction and K-means for clustering. Those
small and outlier clusters were determined as outliers.

(3) Classification based methods, as detecting outlier machine
instances is a binary classification problem. Isolation Forest
(IForest) [44] isolated instances by partitioning the value of
features, and believed that outliers were those close to the
root. One Class Support Vector Machines (OCSVM) [3]
learned a boundary surrounding normal instances, and those
outside the boundarywere considered as outliers.

In comparison, none of the above methods can well
address the challenges lying in detecting outlier machine
instances, i.e., multivariate time series with various shapes
and high dimensionality, and DOMI performs better than
them, as discussed in Section 4.2.

7 CONCLUSION

This paper formally defines the problem of detecting outlier
machine instances, which plays a critical role inmonitoring sys-
tems and is extremely important for Internet service manage-
ment. To solve this problem, we propose a novel end-to-end
unsupervised method, DOMI, which combines GMVAEwith
1D-CNN. It learns the normal patterns of machine instances
by learning their low-dimensional representations, fully cap-
turingmultivariate time series’ shapes and variousdata distri-
butions.Moreover, to better approximate the training loss, we
propose a multi-sample Monte Carlo integration approxima-
tion method for GMVAE based models. For detected outlier
machine instances, DOMI further provides an effective inter-
pretation based on the reconstruction probability changes of
univariate time series. Extensive experiments have been car-
ried out on a real-world dataset collected from ByteDance
(a top global content service provider), demonstrating
DOMI’s excellent performance. The code of DOMI and the
dataset used in our experiments have been publicly published
onGithub for the reproducibility of our results.

The ultimate objective of machine management is failure
detection, localization, and mitigation in a real-time fashion
automatically. This paper mainly focuses on the first step, i.e.,
outlier detection, and automatic mitigation is our further
work. In our efforts to contribute to this field, we plan to con-
struct a failure library containing the detailed information,
such as failure types, root causes, and solutions (such as
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turning down the bad machines, or migrating the processes
running in a bad machine to other machines), of historical
machine failures. With this library, for each detected outlier
machine instance, we will build models to automatically learn
the correlations between failure patterns, root causes, and solu-
tions.Note thatDOMI can be considered as a generic approach
to outlier detection for entities with multivariate time series
beyond machines. In the future, we would like to apply it to
other areas, e.g., robot (with multiple monitored sensors) fail-
ure detection, healthmonitoring (using biomedical signals).
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