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Abstract—AIOps algorithms play a crucial role in the mainte-
nance of microservice systems. Many previous benchmarks’ per-
formance leaderboard provides valuable guidance for selecting
appropriate algorithms. However, existing AIOps benchmarks
mainly utilize offline static datasets to evaluate algorithms. They
cannot consistently evaluate the performance of algorithms using
real-time datasets, and the operation scenarios for evaluation are
static, which is insufficient for effective algorithm selection. To
address these issues, we propose an evaluation-consistent and
scenario-oriented evaluation framework named AIOpsArena. The
core idea is to build a live microservice benchmark to generate
real-time datasets and consistently simulate the specific operation
scenarios on it. AIOpsArena supports different leaderboards
by selecting specific algorithms and datasets according to the
operation scenarios. It also supports the deployment of various
types of algorithms, enabling algorithms hot-plugging. At last, we
test AIOpsArena with typical microservice operation scenarios to
demonstrate its efficiency and usability. Platform and a video
demonstrating the functioning of AIOpsArena is available from
https://github.com/AIOpsArena/aiopsarena.

Index Terms—microservice system, AIOps benchmark, algo-
rithm hot-plugging

I. INTRODUCTION

Microservice architecture, which utilizes loosely coupled
and independently scalable services, has revolutionized the
development and deployment of web applications [1]. This
architectural model is widely adopted due to its ability to
enhance agility, improve scalability, and facilitate continuous
deployment, making it ideal for businesses that need to update
and scale components frequently. However, due to the complex
structure of microservice systems, the volume of monitoring
data has grown exponentially, making it unrealistic to rely
solely on manual efforts to detect or identify system failures.
Therefore, researchers have utilized three types of data that
reflect system states: logs, metrics, and traces, to develop many
AIOps algorithms [2]–[6] for the maintenance of the systems.

Microservice management consists of several tasks, in-
cluding anomaly detection, root cause localization, and fail-
ure classification, and etc. The selection and evaluation of
algorithms for these tasks are crucial. This paper defines
an operation scenario as the fault orchestration within the
dataset. For example, if an evaluator wants to assess the

performance of anomaly detection algorithms under network
faults, the operation scenario for this evaluation is network
faults. Alternatively, if an evaluator wants to evaluate the
performance of anomaly detection algorithms in a real pro-
duction environment, which may encounter various faults, the
operation scenario is a combination of different faults.

The current standard process for evaluating an algorithm
typically involves collecting data that suits the specific opera-
tion scenario, selecting multiple baseline algorithms, reproduc-
ing these algorithms, and finally comparing their performance
on the dataset using representative evaluation metrics. Among
these steps, researchers are compelled to invest significant
efforts in complex and time-consuming tasks like data col-
lection, data cleaning, and reproducing baseline algorithms in
addition to their primary focus on algorithm evaluation, which
significantly diminishes research efficiency. Furthermore, se-
lecting the appropriate algorithm poses certain complexities,
as different groups have varying algorithmic needs. For in-
dividuals not well-versed in algorithms, determining whether
to select supervised or unsupervised methods, deep learning,
reinforcement learning, or other approaches is particularly
challenging.

Regarding the automation of operations such as data sim-
ulation, data collection, and model integration, the MicroOps
platform proposed in [7] focuses on microservice data sim-
ulation and AIOps model development. Researchers can eas-
ily deploy microservices on the platform, flexibly construct
datasets through load testing and fault simulation, and con-
duct offline training and cloud-based real-time AIOps model
testing. However, the limitation of MicroOps lies in the fact
that, although it is capable of model development, it lacks
systematic evaluation mechanisms for different AIOps tasks
after the model is developed. Furthermore, it does not provide
unified evaluation metrics for comparing algorithms applied to
the same AIOps task. Besides, some benchmark works define
the unified evaluation metrics with an evaluation leaderboard,
such as TimeSeriesBench, a time series anomaly detection
benchmark. The issue of TimeSeriesBench is that it only uses
static datasets and does not conduct evaluations tailored to
various operation scenarios in microservices (such as fault
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types), limiting its applicability in real-world microservice
environments. Therefore, we aim to implement a platform
that automates the three stages of data collection, model
integration, and model evaluation, and propose a novel mech-
anism for consistent scenario-oriented evaluation in operation
scenarios.

Implementing the above evaluation platform faces the fol-
lowing challenges: 1) Maintaining different algorithms on the
platform may encounter dependency environment conflicts. 2)
Numerous types of operation scenarios make it impractical to
generate a separate leaderboard for each scenario. Therefore,
a mechanism is required to flexibly generate leaderboards for
any operation scenario.

Based on these challenges, we provide the industry with
a scenario-oriented, evaluation-consistent evaluation platform
AIOpsArena, offering targeted and practical evaluation solu-
tions. AIOpsArena has two main features: 1) Algorithm Hot-
plugging: We develop an algorithm hot-plugging function.
By deploying algorithms in containers, we achieve one-click
deployment and removal, perfectly resolving the environment
conflicts. 2) Multiple Leaderboards: The user can define
different operation scenarios and generate different leader-
boards. We build a testbed to automatically inject faults into
the microservice system, collect datasets, and provide them
for evaluation applications, which eliminates the limitations
of operation scenarios of offline datasets and saves manual
time costs. Moreover, AIOpsArenautilizes a unified multi-
modal dataset scheme that can reduce the complexities of data
preprocessing, thereby enabling more effective training and
evaluation of AIOps algorithms.

The paper’s main contributions are as follows:
1) We develop a comprehensive framework AIOpsArena 1.

AIOpsArena facilitates fault injection, data collection,
and the upload and execution of various types of al-
gorithms. It also deploys an evaluation application that
can use real-time datasets and select algorithms inte-
grated into the platform for evaluation, then display the
evaluation leaderboard.

2) We design a scenario-oriented, evaluation-consistent
evaluation solution, which enables consistently evaluat-
ing specific operation scenarios thus being more practi-
cal.

3) We release datasets collected from AIOpsArena2 that
include typical operation scenarios and propose a unified
multimodal dataset scheme for microservice systems.
Our commitment to maintaining and updating these
datasets supports ongoing research and development
efforts in the field.

II. TYPICAL AIOPS TASKS

A. Anomaly Detection
Anomaly detection aims to identify anomalies, outliers,

or events that deviate from the norm. In AIOps, anomaly

1The source code is available at https://github.com/AIOpsArena/aiopsarena,
and the system is deployed and can be accessed by https://microservo.aiops.cn.

2Dataset available at: https://github.com/AIOpsArena/dataset

detection is widely used to detect various abnormal system
behaviors. To identify these anomalies, detectors need to uti-
lize different telemetry data, such as metrics, logs, and traces.
As a result, anomaly detection can be further categorized into
handling one or more specific telemetry data sources, including
metric anomaly detection, log anomaly detection, and trace
anomaly detection. Additionally, multi-modal anomaly detec-
tion techniques can be employed if multiple telemetry data
sources are involved in the detection process [8].

B. Root Cause Localization

Existing methodologies predominantly utilize Key Perfor-
mance Indicators (KPIs), application logs, and distributed
traces to analyze the root causes. Some approaches directly
process these data sources to identify which services are
experiencing anomalies. Others utilize this data to construct
graphs or topological models that depict the dependencies
among services within the system [9].

C. Failure Classification

This process involves studying the patterns or fingerprints
[10] of past failure cases. When a new anomaly is encountered,
the system compares it with the learned patterns, thereby
categorizing it into a known failure type or identifying it as a
new type.

III. SYSTEM DESIGN

In this section, we introduce the design and implementation
of AIOpsArena.
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Fig. 1: Architecture of AIOpsArena.

A. Resources Isolation

To provide users with an isolated environment, AIOpsArena
leverages Kubernetes [7] to orchestrate microservices systems
and Docker to manage algorithms. To achieve user isolation,
AIOpsArena identifies users based on their email addresses.
All resources belonging to a user, including microservices,
data, and algorithms, are associated with their respective
email addresses. Users are granted permission solely to access
public resources and manage their own resources. AIOpsArena
provides users with several selectable microservices systems.
The microservices deployed by the user, referred to as the
testbed, are allocated to a unique namespace, thereby avoiding

2



interference between different users. Additionally, the algo-
rithms used by users run in containers, which inherently
provide environmental isolation.

B. Data Collection

Once a user creates a testbed, AIOpsArena automatically
collects and aggregates multimodal data, including metrics,
logs, and traces. We employ Logstash [7], Prometheus [7],
and Jaeger [7] to collect system logs, metrics, and microser-
vice traces, respectively. Subsequently, we initiate separate
collection services for each testbed, efficiently writing into
Elasticsearch, with all data stored in indices named after the
corresponding namespaces. To facilitate model evaluation with
AIOpsArena, we provide an extractor for each data type. These
extractors export raw data from the database, preprocess it
according to our designed schema, and save it as CSV files.
For example, concerning metric data, we can customize the
data sampling interval and save the data for all microservice
instances according to the metric names.

C. Algorithm Evaluation

There are three modules used to evaluate algorithms: the
Chaos Module is used for fault injection to simulate operation
scenario, the Algorithm Module is used to integrate algorithms
into AIOpsArena, while the Evaluation Module is used to
select algorithms and evaluate their results.

Algorithm Module. we release a AIOpsArena-SDK3 that
implements a Django framework that user-developed algo-
rithms need to implement RESTful interfaces for the two
phases of model training and model testing. After the user
submits the SDK, AIOpsArena runs the code in a docker
container and sends the user request to the SDK. For training
request, the SDK use the extractors to pull the specified data
from Elasticsearch for the training method to use and stores
the trained model; for testing request, the SDK also pulls the
data for the testing method and stores the test results for each
request. We store all the information of algorithm containers,
such as IP address, port, and email address, in the database.

Chaos Module. Current research commonly uses Chaos
Mesh [7], ChaosBlade, or ChaosMeta for fault simulation.
Considering that Chaos Mesh supports scheduled tasks and
can inject various Kubernetes faults, we choose to develop
the chaos module based on ChaosMesh. In Chaos Mesh, faults
in Kubernetes are defined by custom YAML files. Therefore,
to facilitate user interaction, AIOpsArena provides a series of
YAML templates for common faults. These templates allow
users to generate fault instances by filling in basic, easily
understandable fields. AIOpsArena stores all fault information
in MySQL, ready for subsequent algorithm evaluation.

Evaluation Module. We design a consistent and dynamic
scenario-oriented evaluation mechanism that assists users in
evaluating the best-performing algorithms in specific operation
scenarios. Consistency is reflected in the fact that the testbed
used for evaluation is not one-time; users can continuously

3We design a template called AIOpsArena-SDK for algorithm integration,
available at https://github.com/AIOpsArena/hot-plugging

simulate operation scenarios on the testbed and evaluate the
performance of different algorithms. Dynamism is demon-
strated through real-time data collection and algorithm selec-
tion.

Before evaluation, the user needs to create a fault injection
plan and inject it into the testbed. After fault injection, the
period during which the fault occurred is exported as a dataset,
and the algorithms to be evaluated are selected. AIOpsArena
will run all the selected algorithms using this dataset and
aggregate the results into a leaderboard for the user to review.

We provide three common evaluation metrics for anomaly
detection algorithms: Point-based, Range-based, Event-based
[11], three evaluation metrics for fault classification: Ac-
curacy@k, Avg@k(Average Accuracy), MAR(Mean Average
Rank) and three evaluation metrics for root cause localization:
Micro-F1, Macro-F1, Weighted-F1.

IV. DATASET SCHEME
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Fig. 2: Observability Dataset Scheme.

The core concept of designing an observable dataset scheme
lies in using operational objects and topologies as the frame-
work, integrating multi-modal data such as metrics, logs, and
traces to support AIOps tasks. When an IT object’s metric
triggers an alert, we need to analyze the impact of the fault
by tracing upwards and downwards to identify the root cause
and retrieving the object’s log information for further fault
diagnosis. Similarly, when a microservice invocation (trace)
experiences latency or failure, we can analyze the key health
metrics and contextual log information of the associated object
through metrics and logs.

Based on the above concept, we develop an abstracted,
observable data model as shown in Fig.2. We construct a
vertical layered object model relationship from top to bottom
(microservices, instances, systems, virtualization, hardware)
according to the deployment context of microservices systems.
Horizontally, we build the invocation relationships between
services and instances based on APM invocation relationships.
Each instance’s status information can be monitored through
various collection tools, gathering relevant metrics, logs, and
trace data. Then, multi-modal data can be organically aggre-
gated based on the instance ID to facilitate AIOps tasks.
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V. CASE STUDY

In this section, we illustrate the practical application of
AIOpsArena through a detailed case study. First, we present
the minimum overhead required to deploy the entire system.
Then, we provide a presentation to a typical user workflow.
Subsequently, we conduct an in-depth analysis based on the
results obtained from this case demonstration.

A. System Overhead

To deploy this system running on a Linux operating system,
a server must be configured with 64GB of RAM, a 32-core
CPU, and 150GB of disk space. A stable, high-speed network
connection is essential to ensure seamless deployment. Under
optimal network conditions, the deployment is expected to take
approximately 30 minutes.

B. User Workflow

1) Microservice Deployment: We choose to deploy the On-
line Boutique integrated by AIOpsArena on the Home-
page page. Once deployed, the user load is injected into
the testbed. AIOpsArena automatically collects data from
the testbed and displays it on the DataDisplay page.

2) Algorithm Upload: We implement training and test-
ing interfaces for the Diagfusion algorithm within the
AIOpsArena-SDK. Subsequently, we upload the SDK
to AIOpsArena via the AlgorithmMarket page and start
the algorithm container.

3) Algorithm Training: On the AlgorithmMarket page, we
select the Diagfusion algorithm we previously uploaded
and train it using eight hours of data collected from the
testbed. Since Diagfusion is a multimodal fault diagnosis
algorithm, we select three data types: logs, metrics,
and trace data, focusing on periods in which we have
simulated faults.

4) Fault Simulation: To evaluate the performance of the
root cause localization algorithm in operation scenarios
characterized by high network latency, we inject multiple
network delay faults through the FaultInjection page.
These faults last 10 minutes each, with varying delays
between 2 to 3 seconds.

5) Dataset Collection: After the injected faults conclude,
we extract the corresponding time-period data named
NetworkDelay via the Dataset page.

6) Algorithm Evaluation: On the Leaderboard page, we ini-
tiate an evaluation of root cause localization algorithms.
We select the uploaded Diagfusion algorithm and several
other algorithms already deployed on AIOpsArena, using
NetworkDelay as the evaluation dataset. We can view
the performance of the algorithms on various evaluation
metrics after the experiment finishes.

C. Result Analysis

Fig.3 presents the evaluation leaderboard of anomaly detec-
tion algorithms including Deeplog [4], USAD [3], TimesNet
[2], DLinear [5], and Autoformer [6]. Fig.3a shows the ex-
perimental results on the NetworkDelay dataset, while Fig.3b

displays the outcomes on the DiskFull dataset. NetworkDelay
impacts system operations by increasing network latency be-
tween microservices, whereas DiskFull affects the system by
filling up the disk of a microservice instance. On both datasets,
TimesNet shows the best performance due to its capability to
effectively convert one-dimensional time series data into two-
dimensional data, thereby more efficiently learning features
within and across data cycles. Conversely, Deeplog performs
the worst on the NetworkDelay dataset, as network-related
failures are not very apparent in log data, making fault detec-
tion ineffective. However, this does not imply that Deeplog’s
overall performance is poor. In Fig.3b, Deeplog demonstrates
a higher F1 score than USAD. This advantage is due to the
more apparent manifestations of DiskFull-type failures in logs,
which allow Deeplog to utilize its strong log parsing capabil-
ities. Moreover, Deeplog’s model, with its powerful pattern
recognition ability, can learn key anomaly patterns from vast
amounts of log data and adapt to changing log patterns, which
is particularly crucial for large systems that handle massive
datasets. These experimental results validate the effectiveness
of our scenario-oriented evaluation mechanism, where each
algorithm has its suitable scenario. We aim to provide more
granular evaluations to help researchers and practitioners find
the most appropriate algorithms.

VI. RELATED WORK

Previous related work can be categorized as microservice
systems, evaluation leaderboard, and AIOps platforms.

A. Evaluation Leaderboard

TimeSeriesBench [11] is a benchmark platform for time
series anomaly detection, evaluating the performance of uni-
variate anomaly detection algorithms. TimeSeriesLibrary [12]
provides a leaderboard for five time-series-related tasks: long-
term and short-term forecasting, imputation, anomaly detec-
tion, and anomaly classification, showcasing the top three
performing models. Although the datasets used in the above
evaluations are representative, they are still limited, and the
results only offer a rough estimate of overall performance.
We are more focused on algorithms’ performance in specific
operational scenarios. Therefore, the evaluations provided by
AIOpsArena are dynamically adjusted based on changing
operation scenarios.

B. AIOps Platforms

[13] proposes a multi-dimensional, metric-driven microser-
vice fault simulation system that can create on-demand fault
scenarios within customizable service topologies and automat-
ically collect complex performance metrics. [14] introduces
a model update and management pipeline framework that
continuously trains, packages, and deploys models based on
the current system state. [7] proposes a more comprehensive
AIOps platform that covers the entire lifecycle of microser-
vice AIOps research, including microservice deployment, data
simulation, data collection, and model integration, providing
users with consistent and seamless automation support. In
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(a) Run experiments on the NetworkDelay dataset. (b) Run experiments on the DiskFull dataset.

Fig. 3: Evaluation Leaderboard of Anomaly Detection.

comparison, AIOpsArena offers comprehensive automation
support similar to [7]. However, while [7] focuses on model
development, AIOpsArena concentrates on the evaluation after
model development, effectively reducing the workload of
researchers during evaluation and enabling them to focus more
on model improvement.

VII. CONCLUSION AND FUTURE PROSPECTS

In this paper, we propose AIOpsArena, an algorithm-
dynamic and scenario-oriented algorithm evaluation frame-
work. To provide evaluations tailored to specific operation
scenarios, AIOpsArena automates processes from fault in-
jection, data collection and cleansing, to algorithm evalu-
ation. Additionally, AIOpsArena supports deploying various
algorithms, enabling one-click deployment and removal. To
demonstrate the functionality of scenario-oriented evaluations,
we conducted evaluations in typical operation scenarios, pre-
senting the corresponding evaluation leaderboards. In future
work, we commit to deploying more state-of-the-art open-
source algorithms on the platform. Additionally, we plan to
add the capability to upload offline datasets, further enriching
the evaluation functionality.
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