
Interpretable Failure Localization for Microservice Systems Based on
Graph Autoencoder

YONGQIAN SUN, Nankai University, China
ZIHAN LIN, Nankai University, China
BINPENG SHI, Nankai University, China
SHENGLIN ZHANG∗, Nankai University, China
SHIYU MA, Nankai University, China
PENGXIANG JIN, Alibaba (Beijing) Software Services Co., Ltd., China
ZHENYU ZHONG, Nankai University, China
LEMENG PAN, AI Application Research Center, Huawei Technologies Co., China
YICHENG GUO, AI Application Research Center, Huawei Technologies Co., China
DAN PEI, Tsinghua University, China

Accurate and efficient localization of root cause instances in large-scale microservice systems is of paramount importance.
Unfortunately, prevailing methods face several limitations. Notably, some recent methods rely on supervised learning which
necessitates a substantial amount of labeled data. However, labeling root cause instances is time-consuming and laborious,
especially with multiple modalities of data including logs, traces, metrics, etc. Moreover, some approaches favor deep learning
for localization but lack interpretability and continuous improvement mechanisms.

To address the above challenges, we propose DeepHunt , a novel root cause localization method based on multimodal data
analysis. Firstly, DeepHunt introduces Root Cause Score (RCS) by integrating reconstruction errors and failure propagation
patterns (upstream-downstream relationships), imparting interpretability to the localization of root causes. Then, it embraces
Graph Autoencoder (GAE) to address the limitation imposed by scarce labeled data. It employs data augmentation to mitigate
the adverse effects of insufficient historical training samples. We evaluate DeepHunt on two open-source datasets, and
it outperforms existing methods when facing a zero-label cold start. DeepHunt can be further improved by continuously
fine-tuning through a feedback mechanism.
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Fig. 1. The multimodal data of a microservice system. S1 - S7 are different microservice instances. The values in the trace
represent the latency of an invocation.

1 INTRODUCTION
With the rising popularity of cloud-native applications, microservice architecture has emerged as an increasingly
attractive choice due to its reliability and scalability [11]. However, the inherent complexity and dynamism of
microservices make failures an unavoidable challenge. A single failure in a microservice instance can propagate
to other interconnected instances, gradually amplifying its impact, potentially resulting in significant financial
losses [56]. An illustration case is the failure of the microservice instances on Amazon Web Services in December
2021, which reverberated throughout the entire network. It took more than four hours to pinpoint the root cause,
leading to substantial economic repercussions [4]. Consequently, it is critical to localize microservice system
failures promptly and effectively. As businesses expand and demand increases, the microservice system’s scale
and complexity also escalate. This evolution renders traditional root cause localization methods reliant on human
labor increasingly inadequate to meet the requirements. Thus, the adoption of automated methods becomes
imperative.

Extensive research has been dedicated to the automatic localization of failure root causes, aiming to quickly
identify the system instance responsible for failures. The monitoring data used for this task encompasses three
distinct modalities, namely traces [11, 24, 29, 52], logs [9, 28, 54, 57], and metrics [27, 33, 34, 40]. Traces record
invocations between microservices. Logs contain runtime messages and warnings. Metrics monitor resource
usage and performance indicators. Fig. 1 shows examples of these three modalities. We use unimodal to refer to
a single data modality, while multimodal means combining two or more data modalities. Earlier methods rely
primarily on unimodal data for failure localization. However, recent studies have revealed that more valuable
insights can be obtained by combining all three modalities, as they provide a complete view of the overall system
status [56]. Consequently, an increasing number of approaches [22, 56] fused multimodal data to localize root
causes more effectively.

Nonetheless, unimodal and multimodal approaches encounter a significant limitation: striking a balance
between performance and the manual labeling overhead. Existing methods can achieve impressive performance
but usually require extensive high-quality labeled data. For example, DiagFusion [56] and Déjàvu [26] need to
label each historical failure’s root cause and failure type. However, obtaining sufficient labeled data is highly
challenging for two main reasons. First, deep learning-based approaches typically necessitate prolonged data
collection to acquire enough training data. This challenge is amplified by the frequent changes in microservice
systems due to software and hardware updates, causing frequent data distribution shifts. Second, manually
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annotating such a large volume of training data requires intensive effort from the operator. A similar work
RCLIR [6] shows that labeling 1000 root cause cases requires four experienced operators to spend nearly a
month. No current approach can simultaneously guarantee high performance while reducing manual effort
satisfactorily. Overcoming this limitation is imperative for effective root cause localization in continuously
evolving microservice systems.

A promising method to address this limitation is to employ self-supervised learning (SSL) [31]. SSL enables
models to extract supervisory signals from large amounts of unlabeled historical data through pretext tasks,
reducing dependence on manual labels [19]. Common SSL tasks include reconstruction tasks, contrastive learning,
prediction tasks, etc. (more details can be seen in Section 2.2). SSL has been successfully employed inmany domains,
including computer vision, natural language processing, and graph learning [18, 32]. Given the straightforward
implementation and adaptation of reconstruction tasks, along with the advantages of graph neural networks
for modeling the structure of microservice systems, we choose to use a Graph Autoencoder (GAE), which is a
reconstruction task (more details can be seen in Section 3.1). However, to the best of my knowledge, SSL has
not yet been effectively applied for localizing root cause instances of microservice failures due to three major
challenges:

(1) Challenge 1: Lack of an interpretable method to quantify root causes. The results of failure
root cause localization need to be interpretable to help operators take appropriate measures for failure
mitigation. However, the SSL models (e.g., GAE) often lack interpretability, which hinders operators from
making the right decisions and reduces their trust in the localization results.

(2) Challenge 2: The models lack continuous learning capability. Once deployed, existing approaches
cannot continuously learn and adapt to new data or tasks. However, new failures persistently emerge as
the system operates, evolves, upgrades [38], receives maintenance [37], and undergoes changes [36]. As
the system changes gradually, the performance of deployed models will become increasingly misaligned,
eventually necessitating full retraining to restore efficacy. According to our investigations, operators can
provide incremental feedback to the root cause localization system. This enables on-the-job learning to
improve model performance dynamically. However, current methods are static and cannot effectively
leverage operator feedback.

(3) Challenge 3: The requirement of graph autoencoders for a large amount of historical training
data. Training a specific GAE model typically requires a significant amount of historical data, although
these data do not require labeling. We have verified this in Fig. 3. Insufficient training samples make
it challenging to ensure the model’s effectiveness, consequently impacting the quality of the features.
However, obtaining such data can be challenging in real-world scenarios, particularly when a system is
newly online or undergoes substantial changes.

To address the aforementioned challenges, we proposeDeepHunt , an interpretable failure root cause localization
method based on GAEs. We devise an interpretable and learnable root cause score, which provides a quantified
root cause probability for each instance, addressing Challenge 1. Furthermore, a feedback mechanism has been
incorporated to tackle Challenge 2. During online localization, operators can contribute valuable feedback
labels based on diagnostic results. DeepHunt can then fine-tune its parameters based on the feedback, enabling
continuous learning. Lastly, in the GAE training process, we introduce a data augmentation module to address
Challenge 3.

Our contributions are summarized as follows:
(1) We proposeDeepHunt , a GAE-based method for failure root cause instance localization.DeepHunt achieves

a zero-label cold start and demonstrates commendable performance without necessitating an abundance of
labeled failure samples for training. Moreover, it enhances its generalization capabilities by incorporating
a data augmentation module during training.
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(2) We design a root cause score that combines reconstruction error and failure propagation pattern to
execute an interpretable process for quantifying root causes. This overcomes the challenge of SSL’s lack
of interpretability.

(3) We design a feedback mechanism to ensure continuous fine-tuning of DeepHunt through operators’ feed-
back. This addresses the challenge of the SSL model’s lack of continuous learning capability. Additionally,
we propose a ranking-oriented loss function, which performs better when dealing with the imbalance
between the root cause instances and non-root cause instances.

(4) Extensive experiments on the datasets collected from two benchmark microservice systems demonstrate
DeepHunt ’s effectiveness and efficiency. The outcomes demonstrate that DeepHunt achieves a 90+% A@5
accuracy in both datasets, even when trained with merely 1% of labeled failure samples. DeepHunt ’s
implementation is publicly available1 to promote transparency and reproducibility. We make the dataset
D1 used in our work publicly available2.

2 BACKGROUND

2.1 Microservice Systems and System Behavior Graphs
Microservice systems divide a large application into several small, autonomous services, with each service
dedicated to fulfilling a specific business function. Each service can be independently deployed, extended, and
managed, and communicate with each other through lightweight communication mechanisms such as remote
procedure calls (RPC).

Referring to the example in Fig. 2 , we introduce some essential terms and concepts:
System instance. A microservice system consists of multiple types of instances, including microservice

instances and host instances. We refer to them collectively as system instances (or instances for short). These
system instances collectively constitute a microservice system and serve as a foundation for achieving high
availability, scalability, and failure tolerance.

Dependency relationship. There are various dependencies between system instances, such as invocation
relationships between microservice instances, deployment relationships between microservice instances and host
instances, etc. The impact of a failure can propagate along the direction of dependency relationships, resulting in
cascading failures and making online failure root cause instance localization more challenging.

Multimodal feature. To identify the root cause instances of failures, operators meticulously monitor the
system and record monitoring data. Traces, logs, and metrics are three common modalities of monitoring data
that stand as the three pillars of microservice systems’ observability [56]. In this paper, we concentrate on these
three modalities since they collectively encompass more extensive and comprehensive failure information. To
fuse the three modalities together, we extract a unified vector representation from them as the multimodal feature
for each system instance (see Section 4.2 for details).

System behavior graph. To depict the attributes of system instances and the diverse interdependencies among
them, we conceptualize a microservice system utilizing a system behavior graph (SBG). A SBG is a directed graph,
� = (+ , �, � ). + is the set of all candidate instances in a microservices system. An edge (E8 , E 9 ) ∈ � indicates an
actual invocation or deployment from instance E 9 to instance E8 , which can be interpreted as E 9 depending on E8 .
� is the feature vectors extracted from the multimodal monitoring data of each instance (see Section 4.2.2). In
our work, we aggregate monitoring data on a minute-by-minute basis. This allows us to model the microservice
system as an SBG every minute, taking into account various monitoring data and the relationships involving
invocation and deployment. Considering that the features of nodes and edges in SBG vary over time, we construct
an SBG every minute. Fig. 2 shows how to construct an SBG from a microservice system when a failure occurs.

1https://github.com/bbyldebb/DeepHunt
2https://github.com/bbyldebb/Aiops-Dataset
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Fig. 2. A demonstration of constructing a system behavior graph (SBG) from a microservice system. In this illustration, the
microservice system is simplified. The SBG’s dependencies originate from invocation and deployment relationships. The
instances within the SBG denote either microservice instances or host instances, each instance has a feature vector extracted
from monitoring data as attributes.

SBGs provide valuable insights into the interactions and dependencies between various instances, helping to
understand the system’s overall behavior and potential points of failure.

Root cause instance. Root cause instances are the primary system instances that trigger system failures,
such as (4 in Fig. 2. These instances are responsible for system performance degradation, functional failures, or
other issues. Given the intricate dependencies between system instances, the failure of a root cause instance can
propagate to some other cases through these relationships, leading to widespread failures. Promptly identifying
the root cause instance when a system failure occurs is crucial, enabling appropriate measures to be taken to
resolve the issue and enhance system performance. We aim to identify the real root cause instances for failures
in microservices systems.

2.2 Self-Supervised Learning and Graph Autoencoders
Self-supervised learning (SSL) is a machine learning paradigm that leverages the inherent information within data
for training models, eliminating the need for manual labeling. In contrast to supervised learning, SSL does not
depend on external labels; instead, it designs pretext tasks that enable model learnings [19]. These tasks generate
pseudo-labels automatically, compelling the model to extract meaningful features from the data to address the
problem. Common SSL tasks include reconstruction tasks [44], prediction tasks (e.g., language modeling [42],
image inpainting [41]), generative adversarial networks [10], and contrastive learning [43].

Among them, graph autoencoders (GAEs) are effective tools for handling graph data. GAEs combine graph
neural networks (GNNs) and autoencoders (AEs) for representation learning and reconstruction of graph data.
The training process of GAEs is accomplished by minimizing the reconstruction error, which measures the
difference between the reconstructed and original graphs. Benefiting from the graph convolution mechanisms of
GNNs (e.g., GCN [21], GraphSAGE [12], GAT [47]), GAEs enable vertices to learn representations not only of
themselves but also of their neighbors by aggregating and propagating information. This allows for capturing the
dependency relationships within the graph structure.
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In this paper, we model a microservice system as an SBG and employ GAEs to learn the underlying dependency
patterns within and between the system instances. When a failure occurs, the reconstruction error of each system
instance can serve as a crucial indicator for identifying the culprit system instances.

2.3 Problem Statement
A formal description of localizing the root cause instances of a failure in microservice systems is as follows. For a
failure F, given the trace data T, log data L, metric data M, and deployment data D in time window before and
after the failure, we extract the multimodal data’s features and dependencies to construct a system behavior
graph � = (+ , �, � ), where + is the collection of system instances, � is the collection of dependencies, and �
is the multimodal data’s feature matrix. The objective is to find the set of root cause instances {+A2 } which are
responsible for this failure. To address the challenges outlined, the localization approach should 1) possess an
interpretable root cause localization method, 2) be continuously upgraded and optimized based on operators’
feedback, and 3) not require too much labeled historical data. In addition, please note that failure detection is not
within our research scope in this paper, and there are already many methods available [11, 39, 56].

3 MOTIVATIONS
In this section, we introduce the motivation behind DeepHunt .

3.1 Why GAE?
To reduce the dependence of model training on manual labeling, we employ SSL [31]. As mentioned in Section 2.2,
common SSL tasks include reconstruction tasks, prediction tasks, generative adversarial networks, and contrastive
learning. Among them, prediction tasks require the manual design of complex and difficult tasks that may require
domain expertise and experience [32]. Generative adversarial networks encounter challenges such as unstable
training process, potential mode collapse, and high training complexity [45], all of which necessitate careful
manual adjustments. As for contrastive learning, the method of selecting negative samples is likely to affect the
performance of the model, requiring complex designs of sampling strategies [31]. In contrast, reconstruction
tasks such as autoencoders do not require task-specific guidance and do not necessitate intricate task design,
making their implementation and adaptation more straightforward [31].

Autoencoders are commonly used self-supervised learning models, and their reconstruction errors have been
widely applied for metric anomaly detection [1, 2, 8, 16, 25, 50, 60]. Since microservice systems exhibit a graph
structure, we employ GAE to capture complex structures and dependencies effectively.

3.2 Observation
When a failure occurs in a microservice system, it will not only affect one instance (i.e., the root cause instance),
but it can also propagate to other instances in multiple ways [48]. Thus, the root cause instance in a microservice
system should exhibit both local and global features. We will demonstrate this idea through an empirical study of
63 failure cases collected from a microservice system for e-commerce.

3.2.1 Reconstruction Error. As mentioned earlier, the reconstruction error is commonly employed for anomaly
detection as it indicates the extent to which data deviates from the expected normal pattern. Therefore, in this
work, we explore whether it could be beneficial for root cause instance localization.We find that the reconstruction
errors of the root cause instances indeed rank higher.

Specifically, we utilize the collected historical data to construct SBGs to train a GAE and reconstruction errors
for each instance. Subsequently, we rank instances in descending order based on their reconstruction errors and
obtain the ranking information for root case instances. The results are displayed in Fig. 3, where the root cause
instances show high rankings (within the top five) in most failure cases, suggesting that the reconstruction error

ACM Trans. Softw. Eng. Methodol.

 



Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder • 7

1 2 3 4 5 6-10 11+
Ranking of root cause instances

0
10
20
30
40
50

Co
un

t

Fig. 3. The distribution of root cause instances according to reconstruction errors in 63 failure cases. GAE is trained using
SBG samples constructed from normal uptime data.

is an effective feature for root cause instance localization. Additionally, in approximately 30% of failure cases we
collected, the root cause instance is not ranked first. Therefore, accurately localizing the root cause using only
reconstruction errors is challenging.

3.2.2 Failure Propagation Pattern. As previously discussed, failures demonstrate a propagation behavior within
microservice systems, where an initial failure in a root cause instance may extend to some other instances.
Consequently, when a failure occurs, the monitoring data of multiple instances may exhibit anomalies, leading to
elevated reconstruction errors that can complicate the process of identifying the root cause instance. For example,
consider a partial SBG of a certain failure F depicted in Fig. 4, where nodes denote system instances, values
adjacent to instances denote reconstruction errors, edges between instances denote dependencies, and arrows
denote the direction of failure propagation. The root cause instance of this failure is (4. However, instances (1, (2,
(3, and (5 also exhibit abnormal behavior, influenced by the propagation of the failure. To make things worse, (2
and (5 exhibit higher reconstruction errors due to the more pronounced anomalies they present. This highlights
that relying solely on reconstruction error for localizing the root cause instance is inadequate, as it does not
account for failure propagation. To enhance the accuracy of root cause instance localization, it is imperative to
further investigate the role of failure propagation pattern in conjunction with reconstruction error.

In real-world microservice systems, SBG is much more complex than what is shown in Fig. 4. Therefore, to
accurately localize failure root causes, we need to combine reconstruction error and failure propagation pattern
efficiently and effectively to jointly model them. Additionally, operators expect good interpretability, such as
which instance becomes anomalous earlier, and how a failure propagates across different instances. This aids
them in promptly determining whether the result is correct and taking corresponding measures to mitigate the
failure.
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Fig. 4. An example of a partial SBG for a certain failure F, where the truth root cause instance is (4.
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Failure Root Cause Instances
{(4}F

Fig. 5. The feedback label provided for failure F.

3.2.3 Feedback. GAE is trained by reconstructing the SBGs constructed from historical data, a process that does
not require manual labeling. However, the method will inevitably mislocalize for some failures, and it remains
difficult to correctly localize the root cause instances of similar failures without feedback to help the method
make corrections. Therefore, we expect the method can leverage labeled failure cases to enhance performance.
For instance, in the failure case described in Fig. 4, providing the root cause instance label, such as Fig. 5, as
supervisory information can help extract useful insights. Due to the small number of labeled historical failure
cases in most scenarios, operators’ feedback on root cause instances can help improve the method’s performance.

4 DESIGN

4.1 Design Overview
To precisely and interpretably localize the root cause of the microservice system, we propose a multimodal-data
based approach, DeepHunt . The framework of DeepHunt , as shown in Fig. 6, consists of four components: SBG
construction, offline training, interpretable online localization, and feedback.

In SBG construction,DeepHunt unifies and fuses logs, metrics, and traces information, and then constructs SBGs
by using the deployment topology. For interpretable online localization, DeepHunt proposes a root cause score to
combine reconstruction error and failure propagation pattern (addressing challenge 1). In offline training, to solve
the problem of insufficient labeled failure cases and normal training data (challenge 3), DeepHunt adopts GAE,
a typical SSL method for graph data, and performs data augmentation. At last, DeepHunt achieves continuous
learning and optimization through a feedback mechanism (addressing challenge 2).

4.2 SBG Construction
Current studies commonly employ two methods to fuse multimodal data: unifying them into standard events [55?
, 56], or unifying them into vectors through feature extraction [22, 58]. Considering that events in various
works have varying definitions and additional embedding operations are required before feeding them into
the neural network, the latter approach is adopted in our work to ensure simplicity and generalization. In the
SBG construction phase, DeepHunt commences with multimodal serialization to standardize data from diverse
modalities into a time series, followed by a modal-wise feature extraction process. Finally, SBGs are constructed.

4.2.1 Multimodal Serialization. Inspired by the work [22], we serialize different data modalities with the following
rules.

Traces. The trace data consists of chain-structured records of user request paths, including details like latency
and status codes. Inspired by previous work [30, 51], we extract features including latency, request count, and
status codes for each callee instance. The structural information of the traces is extracted as dependencies that are
used as partial edges of the SBG. These data are transformed into multivariate time series by computing metrics
such as the average latency per minute, the total number of requests per minute, and the frequency of various
status codes per minute. We extract the trace multivariate time series � (8 )

trace for each instance 8 .
Logs. The logging behavior of microservices can be highly variable and dependent on developers’ expertise,

presenting challenges in ensuring consistent log semantics [14]. Moreover, extracting log semantics often requires
computationally intensive natural language processing, which may hinder real-world applicability [22]. To
maintain lightweight preprocessing, we focus on modeling log template occurrences rather than semantics. We
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Fig. 6. The framework of DeepHunt .

utilize Drain [13] to parse logs into templates, removing variables from logs. To avoid excessive templates and
sparse features, we group log templates based on frequency and fluctuation. Templates with low frequency and
minimal fluctuations are consolidated, while high-frequency or highly fluctuating ones remain separate. For log
templates that did not appear in the historical records, we handle them as follows. Given the infrequency of
new templates in most scenarios, we pre-define a time series to track the frequency of occurrences of new log
templates. However, if an abundance of new templates arises, it may necessitate retraining to update the feature
engineering component accordingly. We then treat the occurrences per minute of a template group as a time
series to construct a multivariate log time series. For each instance 8 , we extract the log time series � (8 )

log . This
provides a compact representation capturing log-based temporal patterns and dynamics without heavy natural
language processing.

Metrics. The metric data is inherently represented as a time series of performance indicators. We employ
resampling and nearest-neighbor interpolation to standardize all metric intervals to one minute. Constructing
multivariate time series simply involves aligning all metric data by timestamp. We extract the metric multivariate
time series � (8 )

metric for each instance 8 .

4.2.2 Modal-wise Feature Extraction. We perform I-score standardization [46] using a sliding historical window
on multivariate time series � (8 )

modal, where modal ∈ {trace, log,metric}, to normalize different magnitudes. To
simplify feature extraction and avoid excessive overhead, we directly treat the standardized data �̂ (8 )

modal as features.
Specifically, for each instance 8 at time C , the feature vector � (8 )

modal = �̂
(8 )
modal (C). We take the union of all features.

Next, we concatenate the features into a fused feature vector � (8 ) =
(
�
(8 )
trace

� (8 )
log

� (8 )
metric

)
. This achieves preliminary

fusion across metrics, logs, and traces. Further inter-modality relationships are learned through the GAE model.

4.2.3 SBG Construction. As shown in Fig. 6, we extract the topology from the deployment relationships within
the deployment data and the invocation relationships within the trace data to form the nodes and edges of
the SBG. The feature vectors extracted from multimodal monitoring data for each instance are utilized as node
attributes in the SBG. The SBG represents the state of a microservices system within a short period and evolves
dynamically.
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4.3 Offline Training
Consequently, GAE is designed to learn the system’s normal patterns, generating elevated reconstruction errors
as indicative features for root cause localization. During the offline training phase, DeepHunt trains a GAE using
SBGs constructed from historical data.

4.3.1 Model Structure. The GAE in DeepHunt consists of an encoder and a decoder, each comprising several
layers of graph neural networks. The operation of the :-th layer (: = 1, 2, . . . , # ) of the encoder or decoder is
formulated as

ℎ
(: )
N(8 ) = 066

(
ℎ
(:−1)
9

,∀9 ∈ N (8)
)
,

ℎ
(: )
8

= =>A<

(
f

(
, (: ) · 2>=20C

(
ℎ
(:−1)
8

, ℎ
(: )
N(8 )

)))
.

(1)

where ℎ (: )
8

is the :-th layer’s representation of instance 8 , N(8) is the set of neighbors of instance 8 , 066 is the
operation of aggregating the features of the neighbors (e.g., calculating the mean value), 2>=20C is the operation
of concatenating the feature vectors of the current instance, and =>A< is the normalization operation,, (: ) is the
weight matrix of the :-th layer, and f is the LeakyReLU activation function [35].

In each layer of the encoder and decoder, information about the neighbors of each instance is obtained
through neighbor sampling and aggregation. The encoder takes the SBG as input and performs graph convolution
operations to capture the dependencies within and between instances. The encoder gradually reduces the
dimensionality of the instance representation and finally maps it to a low-dimensional latent space. The decoder
takes the feature representations from the latent space and the structural information of the SBG as input. It then
applies graph convolution operations to reconstruct the features of each instance.

4.3.2 Data Augmentation. Usually, increasing the number of training samples for GAE makes the reconstruction
error more helpful in determining anomalous behaviors [3]. However, in certain scenarios, like newly deploying
a system or undergoing significant changes, it is challenging to acquire adequate historical data for training in
the short term. Enhancing the model’s performance with limited training data is an important consideration, and
data augmentation emerges as a common practice in this scenario.

Unlike traditional augmentation techniques used for images, such as rotation or cropping, SBGs, being graph
data, require consideration of structural and feature modifications within the graph. In DeepHunt , GAE primarily
focuses on instance features, thus leading towards augmenting the information within these instance features.
Additionally, we conduct data augmentation aiming to introduce scenarios that might occur but are not included
in the training set. However, altering the graph structure might introduce improbable scenarios that could mislead
the model, like establishing invocation dependencies between entirely unrelated instances. Consequently, our
choice learns towards augmenting changes in instance features.

To conduct data augmentation, we randomly mask features of each instance in the SBGs before feeding them
into GAE. The data agumentation process is controlled by a probability called the masking rate. Obviously, the
masking rate is an important parameter, and it should be neither too low nor too high. So, we demonstrate the
effect of different masking rates on the model’s performance in Fig. 10. Our core idea for augmentation is to
mimic data absence by masking input features, reducing the possibility of the model overly relying on specific
features during training, which compels the model to learn more robust and generalized features. The evaluation
experiments in Section 5.3 validated the effectiveness of data augmentation.

4.3.3 Training. The training objective of GAE is to reconstruct feature vectors of instances in SBGs while
minimizing reconstruction error. We use mean squared error (MSE) to measure the reconstruction error. Because
microservice systems are typically stable most time, GAE learns the normal patterns of the systems through
training.
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4.4 Interpretable Online Localization
Even though we recognize that reconstruction error and failure propagation pattern can serve as features
indicating the root cause (see in Section 3.2), quantifying how these two types of features relate to the root
cause remains unknown. In this section, we introduce how DeepHunt provides an interpretable approach to
localize the root cause. Our core idea is to calculate a root cause score for each instance and subsequently rank
the instances based on it. This process consists of two parts: calculating reconstruction error and quantifying
failure propagation pattern.

4.4.1 Calculate Reconstruction Error. When a failure occurs, the entire system has likely undergone some minor
changes. Therefore, we typically analyze root causes not only at the moment of failure but also consider the data
preceding the failure. This allows us to obtain reconstruction errors for multiple time intervals. Therefore, our
initial consideration is to aggregate the reconstruction errors from multiple time intervals to obtain local features
reflecting the state of instances. A simple and common method is to take the average of the reconstruction
errors across all time intervals. However, the contribution of features from different time intervals to root cause
determination may not be equal. Therefore, a more effective method is to apply weighted averaging to the
reconstruction errors of each time interval using different importance weights. This can be achieved by employing
a fully-connected layer (denoted as ��1) in the process.

4.4.2 Quantify Failure Propagation Pattern. As mentioned in Section Section 3.2.2, the failure propagation pattern
contributes to achieving more accurate root cause instance localization. Fortunately, regardless of the SBG’s
structural complexity, any anomalous instance has only four potential first-order upstream and downstream
conditions, as depicted in Fig. 7. We remove the self-loop in the SBG because it does not significantly contribute to
failure propagation analysis. These four conditions also apply to certain special scenarios of anomalous instances:

1) Instances lacking upstream or downstream instances can be regarded as having an upstream or down-
stream instance with a reconstruction error of 0;

2) Instances with bidirectional dependencies (such as (7 and �3 in Fig. 7) can be considered as having the
same instance for both upstream and downstream;

3) Instances with multiple upstream or downstream instances (such as (5, (2 in Fig. 7) can be consolidated
into one, with the reconstruction error being the maximum value, indicating the most anomalous part of
the upstream or downstream instances.

After operators’ confirmation, anomalous instances in �>=38C8>=1 and �>=38C8>=2 are more likely to be the
root cause than those in�>=38C8>=3 and�>=38C8>=4, as the anomalies in the former two conditions are not caused
by failure propagation.

Consequently, we can quantify the failure propagation pattern through the anomaly degrees (reconstruction
errors) of each instance itself, its first-order upstream and first-order downstream instances, enhancing the root
cause probabilities of the anomalous instances in �>=38C8>=1 and �>=38C8>=2. We combine the local features
of each instance itself, its first-order upstream instance, and its first-order downstream instance into a three-
dimensional vector. A graph aggregation layer (denoted as ��) is designed to quantify the failure propagation
pattern of the SBG. Subsequently, we use another fully-connected layer (denoted as ��2) to combine each
dimension of ��’s output with different importance weights, calculating the root cause score. ��1, ��, and ��2

mentioned above collectively form the root cause scorer.

4.4.3 Root Cause Score. As mentioned earlier, we require an interpretable approach to integrate reconstruction
errors and failure propagation patterns for improved localization accuracy. Consequently, we employ a root

ACM Trans. Softw. Eng. Methodol.

 



12 • Yongqian Sun and Zihan Lin, et al.

Fo-
cused

Anoma-
lous
In-

stance

Up-
stream

In-
stance

Down-
stream

Instance

�>=38C8>=1�>=38C8>=2 �>=38C8>=3�>=38C8>=4

(1

(2

(3

(4

(5

(6

(7

�1

�2

�3

Fig. 7. The four possible states for any anomalous instance in an SBG. Operators consider that the focused anomalous
instances in (C0C41 and (C0C42 are more likely to be the root cause instances.

cause scorer (comprising layers ��1,��, ��2) to calculate the root cause score for each instance, facilitating later
interpretability in the localization process. Throughout the learning procedure, DeepHunt ensures that the root
cause score is positively associated with the root cause probability of each instance. Finally, DeepHunt performs
online localization by sorting each instance in descending order based on their root cause scores. Specifically, the
calculation of the root cause score '�( (8 ) of instance 8 is as follows:

� (8 ) =,1 · �AA>ABF8=3>F (8 ) ,

�
(8 )
?A>?060C8>=

=
©«
� (8 )

�
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ª®®¬ =
©«
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�66

(
! ( 9 ) ,∀9 ∈ + (8 )
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�66
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) ª®®®¬ ,
'�( (8 ) = B> 5 C<0G (,2 · � (8 )

?A>?060C8>=
) .

(2)

where,1 and,2 represent the weight matrix of ��1 and ��2 respectively. �AA>ABF8=3>F (8 ) and � (8 ) denote the
sequence of reconstruction errors in the time window we take and the overall reconstruction error of instance 8 ,
respectively. �66 denotes the method of aggregating the features of the upstream or downstream instances. In
this study, we select the<0G function as we focus on the most anomalous parts during the feature aggregation
process. + (8 )

3>F=
and + (8 )

D? denote the sets of first-order downstream and upstream instances in the SBG. � (8 )
3>F=

and
�
(8 )
D? represent the features aggregated from the features of instances in + (8 )

3>F=
and + (8 )

D? , respectively. � (8 )
?A>?060C8>=

denotes the quantified failure propagation pattern.

4.4.4 Interpretability of Online Localization. We elucidate the significance of each parameter within the root
cause scorer to render the process of root cause score calculation transparent. ��1 is employed to compute the
reconstruction errors across multiple time intervals, reflecting the state of an instance within a time window.
Consequently, the number of parameters in the weight matrix,1 of ��1 is equal to the length of the window (a
hyperparameter Window_Size), with each parameter individually denoting the importance weight of different
time intervals within that window. The role of ��2 is to calculate the root cause score from the failure propagation
pattern. Thus, the weight matrix,2 of ��2 contains three parameters, representing the importance weights of the
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Table 1. A toy example of the initialization of,1 and,2.

Window_Size ,1 ,2

10 [0.1, 0.1, 0.1, . . . , 0.1, 0.1]10 [1, 0, 0]

reconstruction error of each instance, its first-order upstream instance, and its first-order downstream instance
when calculating root cause score.

It is worth noting that for the calculation of the root cause score for each instance,,1 and,2 are shared. Under
the initial conditions, we adopt a fixed initialization for,1 and,2 instead of random initialization, and a toy
example is shown in Table 1. The fixed initialization serves as the foundation for DeepHunt to achieve a zero-label
cold start. When no labels are available, DeepHunt computes root cause scores using initialized parameters. In this
scenario, we assume uniform importance for each time interval within the time window and do not consider the
upstream and downstream components in the failure propagation pattern when calculating root cause scores. At
this stage, DeepHunt resembles an “inexperienced operator.” Subsequently, through feedback, it learns and adjusts
weights from feedback samples provided by operators, gradually becoming “experienced.” After receiving the
operator’s feedback, DeepHunt continues to update,1 and,2. The refined,1 and,2 after feedback fine-tuning
are presented in Section 5.6.

4.5 Feedback
We implement a feedback mechanism that enables operators to interact with DeepHunt , providing valuable
input to progress its performance. For a failure case, the operator can provide feedback information based on
the output of DeepHunt : confirming correctly localized cases and correcting wrongly localized ones. For cases
where DeepHunt fails to localize the root cause, the operator can point out the real root cause instance(s) of the
failure, as shown in Fig. 5. DeepHunt then translates the feedback information from operators into a label vector
. = [0, 0, . . . , 1, . . . , 0], and the value of the 8-th dimension indicates whether the 8-th instance is a root cause (1
denotes root cause, and 0 denotes non-root cause). Note that the feedback phase can be periodically triggered or
manually initiated.

Our training objective is to maximize the root cause score for root cause instances. However, in real systems,
the number of non-root cause instances is significantly larger than the number of root cause instances. A typical
cross-entropy loss function struggles to address such an imbalanced ratio of instance quantities. Although
DéjàVu [26] introduced a weighted binary cross-entropy, it doesn’t fully mitigate this issue. To address this, we
propose a ranking-oriented loss function (referred to as ranking loss) that ignores the influence of irrelevant
instances on the optimization direction:

!B = − 1
#

#∑
9=1

 9∑
8=1

max{'�( (8 )
9

− '�( 9 · .9 , 0}. (3)

where # denotes the total number of fine-tuned cases,  9 denotes the number of instances of the 9-th case, .9
denotes the true labels of the 9-th case, '�( 9 denotes the root cause score vector for all instances in the 9-th case,
and '�( (8 )

9
denotes the root cause score for the 8-th instance within that case.

A loss function based on cross-entropy calculates the deviation between the output value and the true label
(0 or 1) of each instance, resulting in the domination of loss values for non-root cause instances due to their
overwhelming number. Consequently, the model tends to predict all instances as non-root causes.The ranking loss
addresses this issue by calculating loss values only for instances ranked before the true root cause instances, and
not for instances ranked after the true root cause instances, thus mitigating the impact of non-root instances that
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Table 2. Detailed information of datasets.

Dataset # Instances # Normal # Failure # Records Failure Types

D1 46 3,714 210
trace 44,858,388

Container hardware failure

log 66,648,685
Container network failure

metric 20,917,746
Node CPU failure
Node disk failure
Node memory failure

D2 18 12,297 133
trace 214,337,882

JVM memory failure

log 21,356,870

JVM CPU failure

metric 12,871,809

Container memory failure
Container CPU failure
Container network failure
Container disk failure

are numerically dominant. By minimizing the ranking loss, the model gradually optimizes towards prioritizing
the ranking of root cause instances before non-root cause instances, aligning with the objective of our work.

5 EVALUATION
In this section, we evaluate the performance of DeepHunt using the datasets collected from two microservice
systems. We aim to answer the following research questions (RQs):
RQ1: How effective is DeepHunt in failure root cause instance localization?
RQ2: Does each component of DeepHunt have significant contributions to DeepHunt ’s performance?
RQ3: Is the computational efficiency of DeepHunt sufficient for failure diagnosis in the real world?
RQ4: What is the impact of different hyperparameter settings?
RQ5: How do the parameters of DeepHunt ’s interpretability module change after fine-tuning with feedback?

5.1 Experimental Setup
5.1.1 Dataset. To evaluate the performance of DeepHunt , we conduct extensive experiments on two datasets
D1 and D2 collected from two microservice systems under different business backgrounds and architectures.
Detailed information is listed in Table 2. The systems that produce D1 and D2 are as follows:
(1) D1. D1 is collected from a simulated e-commerce systemwith microservice architecture.The system comprises

46 system instances, including 40 microservice instances and 6 virtual machines. Its pattern of user requests
is consistent with that of a real-world e-commerce system. Additionally, the failure cases in this dataset are
derived from real-world failures and are replayed in batches. The recorded failures were then labeled with
their respective root cause instances. We have opened source the raw data and root cause labels of failures
for D13.

(2) D2. D2 is collected from the management system of a top-tier commercial bank. The system comprises 18
system instances, including web servers, application servers, databases, and dockers. Due to the non-disclosure
agreement, we cannot make this dataset publicly available. Two experienced operators examined the failure
records from January 2021 to June 2021 and labeled the root cause instances of each failure. The labeling
process was conducted separately by each operator, and they cross-checked their labels with each other to
ensure consensus. This dataset has been used in the International AIOps Challenge 2022 4.

3https://github.com/bbyldebb/Aiops-Dataset
4https://aiops-challenge.com/
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5.1.2 Baseline Methods. We select nine advanced methods as the baseline methods, including non-deep learning-
based methods (i.e., MicroHECL [29], MicroRank [52], AutoMAP [34], TraceRCA [24], Microscope [27], RCD [17]),
which employ techniques such as traditional machine learning, statistical models, or graph algorithms; and three
supervised deep learning-based methods (i.e., DéjàVu [26], Eadro [22], DiagFusion [56]). More details can be
found in Section 7. Among the baseline methods, MicroHECL, MicroRank, and TraceRCA utilize trace, AutoMAP,
RCD, Microscope, and DéjàVu utilize metric, and Eadro and DiagFusion utilize the three modalities of data
including trace, log, and metric. We configure the parameters (e.g., significance level, feature dimension) of all
these methods according to their original settings depicted in the above works.

5.1.3 Evaluation Metrics. As stated in Section 2.3, DeepHunt aims to localize the root cause instances for failures.
We carefully choose evaluation metrics to better reflect the comprehensive performance of all selected methods.
More specifically, we employ Top-k accuracy (A@k) and Top-5 average accuracy (Avg@5) as the evaluation metrics.
A@k quantifies the probability that the top-k instances output by each method indeed contain the root cause
instance. Formally, given � as the test set of failures, |�| as the size of the test set, '�0C as the ground truth root
cause instance of failure 0, '�0? [:] as the top-k root cause instances set of failure 0 generated by a method, A@k
is defined as:

�@: =
1
|�|

∑
0∈�

{
1, if '�0C ∈ '�0? [:] ,
0, otherwise.

(4)

Avg@5 evaluates a method’s overall capability in localizing the root cause instance. In practice, operators often
examine the top five results. Avg@5 is calculated by:

�E6@5 =
1
5

∑
1≤:≤5

�@:. (5)

5.1.4 Implementation. We implement DeepHunt and baselines with Python 3.9.13, PyTorch 1.12.1, scikit-learn
1.1.2, and DGL 0.9.0 respectively. We run the experiments on a server with 12 × Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.20GHz and 128G RAM (without GPUs). We repeat every experiment five times and take the average result to
reduce the effect of randomness.

5.2 Overall Performance (RQ1)
In DeepHunt , we utilize the data from non-failure periods to train the GAE. The failure cases with root cause
labels are utilized to evaluate the effectiveness (test set) and simulate the feedback information provided by
operators (training set). We split the failure cases into training and test sets chronologically. Specifically, for the
evaluation in Table 3, we allocate the first 30% of failure cases as the training set and the remaining 70% as the
test set. To demonstrate the effectiveness of DeepHunt , we compare its performance on both D1 and D2 with the
baseline methods. The performance comparison result is shown in Table 3.

The labeling ratio in the table indicates the percentage of samples used for supervised learning. DeepHunt
achieves the best performance overall. Without the utilization of labels (the labeling ratio is 0%), DeepHunt has
already achieved good performance. With a labeling ratio as low as 1%, DeepHunt performs closely rivals or even
surpasses most baseline methods. As mentioned earlier, DeepHunt does not necessarily require a large amount of
labeled data to start and even can initiate with a zero-label cold start (see in Section 4.4.4). As the number of
feedback samples increases, the localization accuracy of DeepHunt gradually improves. Take 30% labeling ratio as
an example, supervised methods begin to exhibit a certain level of root cause instance localization capability.
DeepHunt outperforms all baseline methods, demonstrating an improvement in A@5 ranging between 16% to
455%.

Compared to baseline methods that do not utilize supervised information, DeepHunt learns from historical
runtime data and failure cases to enhance the accuracy of root cause localization. Additionally, the limitations
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Table 3. Effectiveness of root cause instance localization. (“-” means this method does not need labeled samples for training.)

Method D1 D2

Labeling ratio A@1 A@3 A@5 Avg@5 Labeling ratio A@1 A@3 A@5 Avg@5

DeepHunt
0% 0.780 0.898 0.959 0.889 0% 0.445 0.772 0.903 0.716
1% 0.795 0.905 0.966 0.894 1% 0.498 0.781 0.910 0.741
25% 0.797 0.902 0.966 0.895 25% 0.783 0.935 0.944 0.900
30% 0.803 0.912 0.966 0.898 30% 0.785 0.936 0.946 0.901

DéjàVu 30% 0.473 0.701 0.793 0.670 30% 0.583 0.733 0.817 0.714
Eadro 30% 0.310 0.446 0.484 0.413 30% 0.214 0.386 0.454 0.361
DiagFusion 30% 0.333 0.500 0.648 0.493 30% 0.398 0.552 0.750 0.532
MicroHECL - 0.091 0.232 0.386 0.236 - 0.068 0.240 0.414 0.242
MicroRank - 0.144 0.218 0.259 0.209 - 0.208 0.365 0.541 0.369
AutoMAP - 0.279 0.574 0.729 0.531 - 0.128 0.271 0.421 0.283
TraceRCA - 0.243 0.310 0.338 0.302 - 0.241 0.368 0.459 0.362
Microscope - 0.074 0.113 0.227 0.127 - 0.030 0.078 0.241 0.117
RCD - 0.095 0.124 0.174 0.128 - 0.106 0.167 0.220 0.170

in robustness to noise restrict the accuracy of these unsupervised methods. In scenarios with limited labels,
DeepHunt offers the following two advantages compared to supervised baseline methods: 1) it utilizes SSL to
learn normal patterns from historical runtime data and extracts reconstruction errors as effective features for root
cause instance localization; 2) its parameters of both the GAE (trained through SSL) and the root cause scorer are
well-initialized, relying less on supervised manual labels of historical failure cases.

Since DeepHunt is a deep learning-based method, we pay extra attention to how it compares with other deep
learning-based methods. We focus on two main points:

1) How does each method perform under different labeling ratios? We conduct experiments using
supervised samples ranging from 0% to 50% and present the results for Avg@5 in Fig. 8. The experimental results
reveal that DeepHunt achieves remarkable performance with limited supervised information. As the labeling
ratio increases, DeepHunt shows an upward trend in its performance. However, the improvement becomes less
significant once the labeling ratio reaches a certain threshold, such as 1% in D1 and 25% in D2. This suggests
that DeepHunt does not necessarily require a large number of supervised information for optimal performance.
Moreover, DeepHunt consistently delivers higher accuracy with the same labeling ratio compared to other
methods. This indicates that DeepHunt is highly effective in failure root cause instance localization, making it a
valuable option for practical deployment, particularly in scenarios where obtaining a large amount of labeled
data is challenging or time-consuming.

2) How stable is each method’s performance in multiple experiments on the same training data? We
repeat the experiments for each method five times without setting the random seed. To ensure the effectiveness
of supervised baseline methods, we set the supervision rate to 30%. We then visualize the results using box plots
in Fig. 9. It clearly indicates that the stability of DeepHunt is significantly higher than that of the other methods.
We attribute this higher stability to the fact that, unlike other methods that rely on random initialization, the
large number of uptime data used to train the GAE provides good initialization parameters for DeepHunt . As a
result, when the training sample size is limited, the model experiences notably less uncertainty from stochastic
operations like stochastic gradient (SGD) compared to other methods. This robustness and stability further
highlight the effectiveness and reliability of DeepHunt in failure root cause instance localization.
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Fig. 8. Performance of the deep learning-based methods with different labeling ratios.
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5.3 Ablation Study (RQ2)
To evaluate the effects of the five key technique contributions of DeepHunt : 1) the data augmentation module;
2) the GAE; 3) the feedback phase; 4) the root cause scorer; 5) the ranking loss, we create five variants of DeepHunt .
C1: Remove the data augmentation module. C2: Replace GAE with an autoencoder built upon non-graph neural
networks. C3: Remove the feedback phase. C4: Replace our root cause scorer with random forest regression [5].
C5: Replace our ranking loss with loss function proposed in DéjàVu [26].

Table 4 lists that DeepHunt outperforms all the variants on D1 and D2, demonstrating each component’s
significance. In C1, the decrease in accuracy highlights the effectiveness of the data augmentation module. In
C2, the replaced autoencoder disregards the inter-instance dependency information while learning the system’s
normal pattern, resulting in a decline in feature quality and ultimately impacting DeepHunt ’s performance. C3
demonstrates the continuous learning capability of DeepHunt , enabling it to fine-tune itself through feedback
from operators continually. C4 shows that the necessity of providing interpretability to DeepHunt is affirmed, as
other interpretable traditional methods (such as random forest) fail to deliver satisfactory performance. In C5,
our proposed ranking-oriented loss function exhibits superior advantages in handling the imbalance between
root cause instances and non-root cause instances compared to the loss function proposed in DéjàVu.
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Table 4. Contributions of components.

Method A@1 A@3 A@5 Avg@5

D1

DeepHunt 0.795 0.905 0.966 0.894
C1 0.759 0.901 0.961 0.882
C2 0.488 0.770 0.814 0.706
C3 0.780 0.898 0.959 0.889
C4 0.544 0.829 0.891 0.776
C5 0.776 0.898 0.959 0.888

D2

DeepHunt 0.498 0.781 0.910 0.741
C1 0.426 0.774 0.871 0.699
C2 0.447 0.726 0.873 0.687
C3 0.445 0.772 0.903 0.716
C4 0.138 0.436 0.776 0.457
C5 0.432 0.765 0.896 0.706

Furthermore, DeepHunt can adapt to the dynamic addition and removal of instances. To verify this, we conduct
additional experiments in which we manually introduce changes in the number of instances. Specifically, we
randomly remove 20% of the instances in the training set to simulate the addition of instances in the test set
and randomly remove 20% of the non-root cause instances in the test set to simulate the removal of instances in
the test set. We create other four variants of DeepHunt . C6: Randomly remove 20% of instances in the training
set. C7: Remove the feedback phase in the context of C6. C8: Randomly remove 20% of instances in the test set.
C9: Remove the feedback phase in the context of C8. For each variant, we repeat the experiment five times and
average the results.

Table 5. Performance under the dynamic addition and removal of instances.

Method A@1 A@3 A@5 Avg@5

D1

DeepHunt 0.795 0.905 0.966 0.894
C6 0.788 0.904 0.966 0.892
C7 0.781 0.898 0.959 0.890
C8 0.806 0.918 0.978 0.908
C9 0.801 0.913 0.966 0.904

D2

DeepHunt 0.498 0.781 0.910 0.741
C6 0.473 0.766 0.886 0.721
C7 0.439 0.768 0.901 0.715
C8 0.523 0.815 0.916 0.763
C9 0.482 0.807 0.925 0.757

The results are shown in Table 5. The outcomes of C6 and C8 indicate that the dynamic addition and removal
of instances have little impact on the accuracy of DeepHunt . Notably, removing instances in the test set (C8)
reduces the number of candidate instances, thereby decreasing the difficulty of localization, which increases
accuracy instead. The accuracy of C7 and C9 is lower than that of C6 and C8, respectively, suggesting that the
feedback phase positively affects DeepHunt ’s adaptation to the dynamic deletion of instances.
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Table 6. Training time (Offline) and average time to diagnose a failure case (Online). (“-” means this method does not need
training)

Method
D1 D2

Offline(s) Online(s) Offline(s) Online(s)

DeepHunt 629.892 0.169 1961.616 0.262
DéjàVu 429.048 0.318 381.421 0.192
Eadro 1126.162 5.370 399.251 0.432

DiagFusion 613.919 4.145 308.020 3.297
MicroHECL - 12.233 - 4.193
MicroRank - 42.540 - 28.877
AutoMAP - 3.845 - 0.667
TraceRCA - 34.731 - 92.956
Microscope - 26.685 - 8.548

RCD - 27.072 - 19.283

5.4 Efficiency (RQ3)
We record the running time of all methods and compare them in Table 6. It shows that DeepHunt can localize the
root cause instances of a failure within 1 second on average online. This demonstrates that DeepHunt can meet
the needs of online diagnosis.

Offline training time is not sensitive because it does not need to be retrained frequently. However, we note
a significant difference in DeepHunt ’s offline training time between the two datasets. Offline training time is
typically affected by feature engineering, model structure, optimization algorithms, and hyperparameter settings.
We use the same model structure, optimization algorithm, and similar hyperparameter settings on datasets D1
and D2, so they cannot be the key factors. Specifically, we use the same model structure for both datasets to
ensure consistent model complexity. We choose Adaptive Moment Estimation (Adam) [20] as the optimization
algorithm for its adaptive learning rate, reducing the need for hyperparameter tuning and ensuring efficient
and stable model convergence. Feature engineering time mainly depends on data volume and complexity, which
differs between datasets. As presented in Table 2, there is a significant difference in the number of samples used
for GAE training (# Normal) between the two datasets. Additionally, the amount of trace data in D2 is an order of
magnitude larger than that in D1. These result in a greater time overhead for constructing SBG samples on the
D2 dataset. In summary, feature engineering is the key factor influencing DeepHunt ’s offline training time.

It’s worth noting that Microscope has been analyzing online for longer than DeepHunt , even though it’s
a simple metric-based approach. The computational complexity of the PC algorithm used by Microscope is
exponentially related to the number of nodes. When the number of metrics increases, the PC algorithm needs to
perform more conditional independence tests and graph searches, which increases the computational burden.
There are quite a number of metrics in datasets D1 and D2, and the possible combinations of graph structures
increase with them, which increases the complexity of the search and causes the algorithm to take more time to
find the optimal graph structure. So the online time of Microscope is longer compared to DeepHunt .

5.5 Hyperparameter Sensitivity (RQ4)
We discuss the effect of six hyperparameters of DeepHunt . Fig. 10 shows how Avg@5 changes with different
hyperparameters.
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Fig. 10. The effectiveness of DeepHunt under different hyperparameters.

The number of neurons in the hidden layer (Hidden_Dim). The performance of DeepHunt demonstrates
relative stability when varying the number of neurons in the hidden layer. It is not a sensitive parameter for
DeepHunt .

The ratio of masked features (Noise_Rate). Randomly masking a certain proportion of features indeed
leads to an improvement in the performance of DeepHunt . However, when the proportion of injected noise is
excessively high, it can compromise the characteristics of the original samples, resulting in a notable decline in
performance.

The number of hidden layers in encoder/decoder (Num_layers). As the number of hidden layers in-
creases, the model becomes more complex, resulting in overfitting with limited samples. DeepHunt experiences a
degradation in performance when this parameter becomes excessive. This parameter needs to be set based on the
specific sample conditions, and we set it to 1 in our study.

The size of the data time window around the failure occurrence used for root cause localization
(Window_Size). DeepHunt exhibits an overall trend of performance improvement followed by a decline with
varying window sizes. Clearly, a window that is too small fails to encompass complete failure information, while
an excessively large window contains too much irrelevant data. In our study, setting it to 10 proves to be a suitable
choice.

The maximum number of epochs for fine-tuning during feedback (Max_Epoch). We implement an
early stop strategy during fine-tuning, which might lead to the performance of DeepHunt being insensitive to
Feedback_Epoch. Nevertheless, we still advise against setting this parameter excessively high, especially when
dealing with small sample sizes.

The initialization learning rate for fine-tuning during feedback (Init_LR). We employ the adaptive
learning rate algorithm Adam [20] during fine-tuning. Nonetheless, the init_LR remains a critical hyperparameter,
influencing the speed and effectiveness of convergence in fine-tuning. In our study, a learning rate setting of 0.01
is deemed an appropriate choice.
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5.6 Interpretation of Localization Results (RQ5)
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Fig. 11. The heatmap of weights,1 of ��1 layer within a window. Values within cells represent reconstruction errors, while
color shades illustrate weight magnitude. T-/+8 represents the 8-th minute before/after the failure. “RC” denotes root cause
instances, “Non-RC” denotes non-root cause instances.

We have described the interpretability of DeepHunt for root cause instance localization in Section 4.4.4. In this
section, we show in detail the parameters,1 and,2 obtained by fine-tuning the root cause scorer in D1 and D2
during feedback respectively, whereF8=3>F_B8I4 is set to 10.

The ��1 layer of the root cause scorer, used to calculate the overall reconstruction error of each instance,
initializes each parameter in,1 to 0.1. In Fig. 11, we present the heatmaps of the fine-tuned parameters for the
two datasets, each exhibiting a failure case. Intriguingly, the results differ: in D1, the largest weight appears at the
first minute after the failure onset, whereas in D2, the largest one appears at the fifth minute the failure occurs.
We analyze that this scenario relates to the observational characteristics inherent in the datasets. In D1, most root
cause instances exhibit anomalous fluctuations earlier than the non-root cause instances. Conversely, in D2, most
root cause instances tend to persist in anomalies for an extended period compared to the non-root cause ones.

Table 7. The parameters,2 of ��2 layer in the root cause scorer after fine-tuning.

Dataset U V W

D1 1.000 0.020 0.009
D2 1.000 0.133 -0.002

The �� layer and the ��1 layer quantify the failure propagation pattern for each instance. They utilize three
parameters,2 = (U, V,W), representing the importance weight of self, downstream, and upstream dependencies,
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respectively. They are initialized as (1, 0, 0), respectively, signifying no aggregation of dependencies by default.
We froze the parameter U and exclusively fine-tune V and W . Table 7 shows the fine-tuned parameters for the two
datasets. The outcomes indicate a higher significance of downstream dependencies over upstream dependencies,
and the weight of the upstream ones even displays negativity in D2. This suggests that the local features of
upstream instances are less important for quantifying root causes, to the extent that higher ones diminish the
probability of being a root cause.

6 DISCUSSION

6.1 Limitations and Future Works
When a failure occurs, it is crucial to swiftly localize the instance of the culprit. Operators often require accurate
and detailed information to pinpoint the root cause of the failure. This includes not only identifying the location
of the root cause instance but also obtaining more specific results, such as the failure type. However, DeepHunt
cannot currently determine the failure type. This limitation arises because the reconstruction errors extracted by
the GAE reflect the anomalies of the instance as a whole, but it’s difficult to capture the nuanced failure details
within the instance. Addressing this limitation would be an important area for future improvements in DeepHunt .

Based on the work of DeepHunt , a potential avenue for future work could involve training a failure-type
classifier using a smaller amount of labeled data. The accurate localization provided by DeepHunt helps narrow
down the scope of determining the root cause, ideally requiring only the data from the root cause instance to train
the classification model rather than the data of the entire system. Additionally, the GAE serves another purpose
of performing feature dimensionality reduction, allowing for the extraction of a high-quality, low-dimensional
representation of the initial features. This dimensionality reduction can help reduce the number of parameters
required for the failure type classifier.

6.2 Concerns about Deployment and Validity
Deploying DeepHunt in real-world microservice systems may encounter some concerts: (1) DeepHunt needs to
adapt to dynamic microservice architectures. DeepHunt utilizes GraphSage layers in the GAE model that can
learn the aggregation of neighboring nodes. GraphSage enables individual nodes to update their representations
by leveraging information from neighboring nodes while facilitating the model’s adaptation to diverse neighbor
structures and characteristics across nodes. This flexibility enables DeepHunt to handle the dynamic increase
and decrease of instances in real-world deployments. (2) Incomplete monitoring of modalities. Some production
systems may not monitor all three modalities (trace, log, and metric) simultaneously. DeepHunt integrates the
various modalities into a unified time-series data representation and subsequently extracts features for fusion.This
approach ensures that DeepHunt is not reliant on any specific modal data and can accommodate any combination
of the three modalities. However, it is important to note that the lack of monitoring data from certain modalities
could compromise the observability of failures and subsequently reduce the accuracy of localization.

This study faces two main threats. Firstly, the limited size of the D1 and D2 datasets used in this study. These
datasets may be less complex and dynamic compared to real-world industrial microservice systems. Secondly, we
evaluate DeepHunt on two datasets, which cannot represent all microservice systems. However, it is important to
note that the two datasets are still valuable for evaluation. The datasets are sourced from different systems with
diverse architectures and business operations. The validity and generalizability of DeepHunt are supported by the
successful results obtained in our experiments. So, we believe that DeepHunt holds promise for application in
larger industrial microservice systems with more complex failure scenarios.
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Table 8. Comparison of existing representative methods. DL-based is short for deep learning-based. M, L, and T are short for
Metric, Log, and Trace.

Method DL-based Modality Pros Cons

DéjàVu Ø M • Providing fine-grained failure diagnosis for recurring failures; • Requiring a large number of labeled failure cases for training.
• An interpretable module is provided. • Not fusing the multimodal data.

Eadro Ø M, L, T • Fusing multimodal data; • Requiring a large number of labeled failure cases for training.
• Investigating the close connection between detection and localization. • The number of output layer neurons must be equal to that of system instances.

DiagFusion Ø M, L, T • Fusing the multimodal data; • Requiring a large number of labeled failure cases for training.• Overcoming the challenge of unbalanced types of failures.

MicroHECL × T
MicroRank × T
AutoMAP × M • Not requiring labeled failure cases for training. • Lack of a learning process from historical data, limited accuracy;
TraceRCA × M • Based on interpretable methodologies. • Not fusing the multimodal data.
Microscope × M

RCD × M

7 RELATED WORK
Non-deep learning-based methods. Many studies aim to capture the interactions between system components
during failures by proposing dependency graphs. Examples of such works include MicroRCA [49], MS-Rank [33],
and its extension AutoMAP [34]. Some works construct more fine-grained graphs to capture causal relationships
between metrics, e.g., MicroCause [39], Microscope [27], and RCD [17]. However, the effectiveness of these
approaches heavily relies on the accuracy of the relational graphs and the appropriate setting of parameters. This
reliance on graph accuracy and parameter tuning reduces their applicability and limits their effectiveness in
real-world scenarios. MEPFL [59], TraceRCA [24], MicroHECL [29], and MicroRank [52] utilize trace information
to localize the root cause service. However, these approaches often focus more on the global characteristics of
the system and may overlook the local characteristics of individual service instances. PDiagnosis [15] combines
metrics, logs, and traces to identify root causes. It employs lightweight anomaly detection in all three modalities
to detect anomalous patterns. Based on a voting strategy, the most severe component is selected as the root
cause. However, PDiagnosis does not take into account the topological characteristics of the microservice
system. Nezha [53] converts multimodal data into a unified event representation and extracts event patterns
by constructing and mining the event graph. It then compares event patterns between failure-free and failure-
occurrence phases to localize the root cause interpretively. Nezha primarily localizes root causes in code regions
and resource types, differing somewhat from the instance-level localization approach in this paper. ShapleyIQ [23]
employs multimodal data to build a causal graph for root cause localization via counterfactual evaluation and
Shapley values. It utilizes a first principles model based on physical laws and historical observations to evaluate
counterfactual effects. However, this method relies on constructing physical law-based models, whose accuracy
hinges on precise assumptions about system behavior. Deviations from these assumptions may result in inaccurate
estimations of causal relationships.

Deep learning-basedmethods. In recent years, there has been a growing trend in using graph neural networks
(GNNs) to capture and learn the topological features of microservices. DéjàVu [26] learns metrics features and
topological features of microservice systems using Gated Recurrent Unit (GRU) [7] and Graph Attention Networks
(GAT) [47] for fine-grained diagnosis of recurring failures. Eadro [22]unifies data of different modalities into
vectors and performs joint training for anomaly detection and root cause localization. DiagFusion [56] unifies
data from different modalities into events, performs unified embedding representation, and learns from historical
failure cases to identify root cause instances and failure types. However, all these methods have a limitation in
that they require a large number of high-quality labeled failure cases for method training; otherwise, it is difficult
to achieve good performance. Furthermore, Eadro and DiagFusion have a specific requirement where the number
of output neurons should equal the number of instances in the system. This constraint limits their applicability in
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scenarios where the number of nodes dynamically changes, such as in systems with dynamic scaling or evolving
architectures.

We compare existing representative methods in Table 8, summarizing their classification, data modalities used,
pros, and cons. DeepHunt refines the cons of these methods, summarized as 1) learning from historical unlabeled
data and feedback from failure cases; 2) reducing the requirement for large amounts of labeled data; 3) adapt to
the dynamic increase and decrease of instances; 4) providing interpretability for results.

8 CONCLUSION
In this work, we conduct an extensive study aiming to enhance the effectiveness of failure root cause instance
localization while reducing reliance on heavily labeled data. Leveraging the principles of self-supervised learning,
particularly Graph Autoencoder (GAE), we propose DeepHunt . By integrating reconstruction errors and failure
propagation patterns (upstream-downstream relationships), DeepHunt introduces the root cause score to mea-
sure root causes interpretably. Furthermore, DeepHunt achieves zero-label cold start and continuous ongoing
refinement through a feedback mechanism we designed. Experimental results on two datasets demonstrate that
DeepHunt is more effective, stable, and less reliant on labeled failure cases than prevailing deep learning-based
methods.
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