
LabelEase: A Semi-Automatic Tool for Efficient
and Accurate Trace Labeling in Microservices

Shenglin Zhang†∥, Zeyu Che†, Zhongjie Pan†, Xiaohui Nie‡, Yongqian Sun∗‡‡†, Lemeng Pan§, Dan Pei¶
†Nankai University, {zhangsl, sunyongqian}@nankai.edu.cn, {chezeyu, zhongjie}@mail.nankai.edu.cn

‡Computer Network Information Center, Chinese Academy of Sciences, xhnie@cnic.cn
§Huawei, panlemeng@huawei.com

¶Tsinghua University, Beijing National Research Center for Information Science and Technology, peidan@tsinghua.edu.cn
∥Haihe Laboratory of Information Technology Application Innovation

‡‡Tianjin Key Laboratory of Software Experience and Human Computer Interaction

Abstract—Trace data is crucial for system observability and
maintainability within microservices architectures, and many
operation algorithms depend heavily on trace data, including
anomaly detection, root cause analysis, etc. However, the actual
performance of these algorithms might be unsatisfactory due to
the absence of high-quality labeled datasets for effective training
and evaluation. Since billions of traces could be generated daily
for large-scale microservices, labeling overhead is the main
hurdle to obtaining high-quality trace datasets.

In this paper, we propose LabelEase, a novel semi-automatic
trace labeling tool, which uses active learning techniques to
achieve efficient and accurate trace labeling. For anomaly trace
labeling, LabelEase clusters similar traces with a graph-based
trace representation technique and selects a few representative
traces for human labeling, avoiding labeling most of the traces.
For root cause labeling, LabelEase aggregates the labeled anoma-
lous traces and identifies the service’s failures for operators to
label. Our systematic experiments on two large-scale datasets
show that LabelEase achieves over 0.98 F1-score in anomaly
trace labeling and 0.89 precision of failure detection in root cause
labeling, LabelEase can reduce operators’ labeling overhead by
more than 99.9%. To the best of our knowledge, we are the
first to propose a semi-automatic trace labeling tool capable of
achieving efficient and accurate trace labeling.

Index Terms—Data labeling tool, Trace anomaly detection,
Root cause localization

I. INTRODUCTION

Nowadays microservices architecture has emerged as a
leading paradigm for building modern software systems, de-
composing applications into a collection of loosely coupled,
independently deployable services [1]–[3]. Large-scale mi-
croservice systems could contain tens of thousands of service
modules [4]. Trace data of microservices is crucial for under-
standing system behavior, diagnosing performance issues, and
ensuring reliability. By analyzing traces, operators can gain
insights into service interactions, identify bottlenecks, detect
anomalies, and optimize system performance [5]–[7].

Many anomaly detection and root cause analysis algorithms
based on trace data have been proposed for efficient system
maintenance [3], [8]–[11]. However, evaluating and selecting
the appropriate algorithm for application in practice is a

∗ Yongqian Sun is the corresponding author.

Login

User

Payment Cart Logout

Redis

Login

Cart

Redis

Trace 1 Trace 2 Trace 3

Microservice

Login

Cart

Redis

Login

Logout

Trace n

…

…

…

Trace data

generate

Anomaly Trace Labels= [Trace 1, Trace 2]

Root Cause Labels = [{

"duration " : [𝑡1, 𝑡2],
" service" : " Redis ",

" fault type " : " memory "

}]
Trace Labels

label

Fig. 1. An toy example of the trace labeling process for a simple e-commerce
microservice system. A memory fault happened at the Redis service, the trace
labels should contain the anomaly traces and root cause information of Redis.

challenging task. On the one hand, there are only a few public
trace datasets (e.g., train ticket dataset [12], NetManAIOps
dataset [13]) can be found, which are not only limited in
the number of traces but also in the types of faults. On the
other hand, it should be evaluated by the data specific to that
scenario, since the characteristics of trace data vary across dif-
ferent scenarios. Furthermore, although many current anomaly
detection and root cause analysis algorithms are unsupervised
or semi-supervised, the availability of high-quality labeled data
could aid in their training process and potentially enhance their
performance. Unfortunately, there is currently no efficient tool
available for trace labeling. Therefore, the development of an
efficient and accurate trace labeling tool is an urgent need.
Such datasets would greatly benefit trace anomaly detection
and root cause analysis research and practice, similar to
the impact of ImageNet [14] on computer vision and deep
learning.

Generally, in combination with human expertise, operators
manually label all traces to acquire a high-quality dataset.
Fig. 1 shows a toy example of the trace labeling process.
Labeling trace involves examining the trace data to identify
anomalous traces and summarizing their root causes. Un-
fortunately, completely manually labeling a trace dataset is
not a simple task. Previous manual trace labeling methods
require observing traces’ call structure and latency character-
istics individually and comparing them with similar requests.

1

Therefore, manually labeling trace data for system analysis
requires significant time and labor. Due to the huge amount
of the trace dataset and the complex structural information of
the traces, operators cannot manually label the entire dataset.
State-of-the-art unsupervised anomaly detection models are
not up to the task, which will be discussed in § V-B.

To reduce the overhead of manual labeling, our goal is to
build a semi-automatic trace labeling tool to help operators la-
bel anomaly traces and root causes efficiently and accurately.
Three challenges are encountered in building this tool:

1) Massive traces: Microservice systems could generate a
massive amount of trace data every day for labeling. For
instance, within eBay’s infrastructure, the microservices
system generates approximately 150 billion traces on a
daily basis [15]. It is impossible to label all of the traces
manually.

2) Complex trace structures: Traces are characterized by
complex and rich structures [16]. How to model the traces
is a problem. A trace exhibits a complex structure arising
from the hierarchy of service invocations, as well as
parallel and asynchronous invocations [6]. Typically, a
trace manifests as a complex graph structure and may
encompass numerous service operations, ranging from
dozens to hundreds in number [10].

3) Hard-to-determine root cause: The root cause is challeng-
ing to label even after trace anomalies are identified. Gen-
erally, root cause labeling needs to consider multiple traces
over a while. It is challenging to check all the anomalous
trace data and conclude the root cause information.

In this paper, we propose LabelEase, a semi-automatic tool
for efficient and accurate trace labeling in microservices. (1)
To address the first challenge, we use active learning, which
allows us to obtain a high-quality trace dataset by labeling
only a small number of traces. After labeling the anomalies
of all the traces, we aggregate the anomalous period traces to
visually provide reference information for operators to label
the root cause. (2) To address the second challenge, we train
a graph neural network to encode all trace data, ensuring that
similar traces possess similar vector representations. (3) To
address the third challenge, we design a trace aggregation and
root cause localization technique to aggregate the anomalous
traces and identify failure periods for operators to label. Our
contributions can be summarized as follows:

1) To the best of our knowledge, this is the first work to
focus on reducing the labeling workload for trace labeling.
It integrates algorithmic approaches with operators’ exper-
tise and can assist operators in labeling trace anomalies
efficiently and accurately.

2) We propose LabelEase, a novel tool that consists of three
components: graph-based trace representation, anomaly
labeling, and root cause labeling. It clusters massive
amounts of trace data into a few groups and selects the
most representative traces for operators to label, which
significantly reduces the label overhead.

3) We conduct a series of experimental studies to evaluate La-

belEase’s effectiveness and efficiency using two datasets.
The results show that our approach labels trace anomalies
in the microservices system with an average F1-score of
0.99 and 0.98 with an extraordinarily small amount of
traces that need to be labeled, respectively.

4) A high-quality dataset on trace anomaly detection is pub-
lished, which not only identifies whether each trace is
anomalous or normal but also shows the root cause of
each anomalous trace. Moreover, we have made our source
code of LabelEase and the labeled trace dataset openly
accessible 1, helping readers better understand our work.

II. PRELIMINARY

Login

Cart Payment

Redis Wallet

Span 1

Span 3Span 2

Span 4 Span 5
Latency

Anomaly

Structural

Anomaly

 Information of Span 4

Span id 06679e8f36286279

Trace id 2c624a8ed3df65537…
Parent span id 2c624a8ed3df6553

Timestamp 1703000007734377

Duration 422 (ms)

Status code 200

Operation name GetProduct

Span id 06679e8f36286279

Trace id 2c624a8ed3df65537…
Parent span id 2c624a8ed3df6553

Timestamp 1703000007734377

Duration 422 (ms)

Status code 200

Operation name GetProduct

！！

User

Fig. 2. An example of the trace in microservice system.

A. Microservice System

Microservice system is a software development approach
characterized by decomposing applications into small, inde-
pendent services [17]. This architectural decomposition fa-
cilitates enhanced flexibility, scalability, and maintainability,
rendering the microservice system an increasingly favored
choice among organizations striving to deliver robust and
resilient software solutions [18].

For instance, the microservice system shown in Fig. 2
consists of five distinct services denoted, including “Login”,
“Cart”, “Redis”, “Payment” and “Wallet”. Through the de-
coupling of services, the microservice system enables inde-
pendent development, deployment, and scaling, empowering
organizations to promptly respond to evolving business needs
and technological advancements [19].

B. Trace

A trace represents the sequence of service interactions
in response to a single user request or transaction in the
microservice system [20]. For example, Fig. 2 shows a trace
of the microservice system, consisting of Span 1 through 5.

A span refers to a specific unit of work or operation within a
trace [15]. For instance, as shown in Fig. 2, the span contains
essential information such as the timestamp, service name,
operation name, duration, etc.

Trace anomalies can be categorized into two primary types:
latency anomaly and structural anomaly. For example, as
shown in Fig. 2, when “Cart” calls “Redis”, Span 4 has

1https://doi.org/10.5281/zenodo.13338156

2

a relatively high duration, resulting in a latency anomaly.
Furthermore, if the anticipated invocation sequence between
“Payment” and “Wallet” fails to materialize within the trace,
it indicates a disruption, i.e., a structure anomaly occurs.

C. Anomaly Detection and Root Cause Localization

Anomaly detection identifies potential anomalies in service
execution and generates timely alerts [21]. It reports abnor-
mal traces, offering context for further troubleshooting. By
examining these traces, one can investigate the upstream and
downstream services associated with the anomaly’s location.

Root cause localization identifies the components affected
by a particular fault. It involves isolating the issue to the
specific component or subsystem responsible for the failure
and then conducting a detailed examination to determine the
exact sources of errors [22]. This process is indispensable
for effectively diagnosing and resolving issues inherent to
complex and distributed systems.

III. LABELEASE APPROACH

A. Design Overview

Upload
unlabeled trace

data

Data
Preprocessing

Vectorized
Representation

GNN Training

Root Cause
Localization

Trace
Aggregation

Human
Feedback

Hybrid
Representative

Selection

All traces
have been

labeled
accurately?

Root Cause
Labeling

Anomaly
Labeling

Graph-based
Trace

Representation

Operators

true

false

Fig. 3. The overview framework of LabelEase.

The overall framework of LabelEase is illustrated in Fig. 3.
It comprises three principal components: the graph-based trace
representation module, the anomaly labeling module, and the
root cause labeling module. This tool enables operators to
conduct anomaly labeling and root cause identification on raw
traces, thereby producing a high-quality trace dataset.

In the graph-based trace representation module, the unla-
beled trace data uploaded by operators is first preprocessed
into graph-structured data. Subsequently, we train a Graph
Neural Network (GNN) to differentiate between various traces
based on their representations. The trained model then encodes
the trace data into representation vectors.

In the anomaly labeling module, we utilize a hybrid repre-
sentative selection approach to cluster the trace representation
vectors into multiple classes. Operators then employ their
expertise to identify anomalies at the center points of each
cluster. With human feedback, active learning is applied to
label the remaining traces accurately.

In the root cause labeling module, traces from abnormal
intervals are aggregated. Operators can more effectively deter-
mine the root cause by analyzing the frequency of access to
each service and examining the associated calling information.

B. Graph-based Trace Representation
1) Data Preprocessing: During the trace analysis process,

we primarily focus on the semantic information (e.g., service
name and operation name), temporal features, status codes
within the span, and the calling relationships between different
services. We convert the raw trace data into a graph data format
following the methodology outlined by Zhang et al. [23].

For semantic information within a span, we use common
separators in microservice systems (e.g., ‘/’, ‘-’, ‘:’) to split
the textual information. All words are then converted to
lowercase, and non-character tokens (e.g., punctuation marks,
numbers) are removed. For out-of-vocabulary (OOV) or new
compound words, we employ WordPiece tokenization [24],
which involves breaking down words into individual characters
and iteratively identifying the most common character combi-
nations until the desired vocabulary is achieved. Subsequently,
we utilize the feature extraction capabilities of a pre-trained
BERT model to obtain semantic vectors [25], representing the
span’s service and operation names.

For time features within a span, the start time and duration
of a service invocation provide valuable insights into the
performance and behavior of the microservice system. By
analyzing the duration, waiting time, local execution time, and
relative start time of each span [23], we can comprehensively
understand service interactions and performance within the
system. The high dimensionality of the previous semantic
encoding can lead to the neglect of time features in span
representation. Additionally, the substantial variation in dura-
tion across different traces complicates model training conver-
gence. To address these issues, we consolidate these four time-
related features into a vector for time information extraction
and project them into a high-dimensional vector [26].

Status codes within a span pertain to the numeric codes
employed by servers in response to client requests within
the HTTP protocol. These codes are typically classified into
five categories: informational, success, redirection, client error,
and server error codes, with each code representing a distinct
outcome. For instance, the code “200” indicates a successful
request. Incorporating status codes aids in comprehending the
outcomes of requests and facilitates the adoption of appropri-
ate actions. In our work, we encode the status codes using
one-hot encoding methodology.

Intuitively, a trace exhibits a complex hierarchical structure
of calling relationships, rendering it suitable for representation
as a directed acyclic graph. Within this graph, each node
corresponds to a span, while the edges denote the parent-
child relationship between spans. The vector representation
of each span encompasses three fundamental components of
information encoding: semantic information, time features,
and status code in span.

2) GNN Training: We employ GNN to capture the struc-
tural and relational intricacies within the trace data. Upon
training the GNN, we utilize it to encode each trace into a
fixed-size vector representation. This representation succinctly
encapsulates the trace’s salient features while encoding its
inherent structure and inter-span relationships. Specifically,

3

we utilize the Graph Attention Network (GAT) [27], a GNN
variant grounded on the multi-head self-attention mechanism.
GAT offers a more adaptive and expressive approach to
learning representations from graph-structured data.

Graph Contrastive Learning (GCL) represents a standard
methodology for training GNN. The primary objective of GCL
is to incentivize the model to converge representations of
similar graphs towards each other within the embedding space
while simultaneously driving representations of dissimilar
graphs apart.

To achieve similar vector representations for analogous
traces, we train the GNN utilizing preprocessed traces while
integrating trace-specific domain knowledge, as outlined in He
et al. [28]. The model’s input comprises a triplet consisting
of three traces (denoted as A, B, and C), intending to
predict their relative relationships. Specifically, the task entails
discerning that trace A bears greater similarity to trace B than
to trace C.

At first, following He et al. [28], we produce a large number
of trace triplets. We mainly focus on the structural differences
and time latency between different traces. On the one hand, we
generate for each trace a path ID that can uniquely identify a
calling path to determine whether the traces have the same
structure [15]. The same structure implies that every node
position in two traces must have the same span names and
caller-callee relations. On the other hand, the trace latency
represents the duration of end-to-end requests. Intuitively,
there are different time latencies between normal traces and
abnormal traces.

Initially, the GNN independently encodes each trace, yield-
ing representations GA, GB , and GC for traces A, B, and
C, respectively, with shared parameters across all traces.
By learning their relative similarities, GNN training aims to
accurately capture trace representations by encoding similarity
information. The similarity for measuring the distance of
two traces, d(x,y), is computed with cosine similarity by
Equation 1:

d(x,y) = 1− x · y
∥x∥∥y∥ (1)

We train the model with the triplet loss [29] to minimize the
distance between GA and GB while maximizing the distance
between GA and GC . The loss function L(A,B,C) is defined
by Equation 2:

L(A,B,C) = max {d(GA, GB)− d(GA, GB) +margin, 0} (2)

where margin is a fixed value to control the gap of two
distances. By minimizing the triplet loss via backpropagation,
the GNN’s ability to represent and distinguish different traces
is gradually satisfying.

3) Vectorized Representation: Leveraging the trained GNN,
we exploit its capacity to generate diverse vector representa-
tions for individual traces. By preserving each trace’s intricate
structure and attribute information, similar traces exhibit closer
proximity within the vector space.

We input preprocessed graph data representing each trace
into the trained GNN. This process generates a 64-dimensional

vectorized representation for each trace. These representations
encapsulate each trace’s distinctive features, facilitating sub-
sequent analysis and comparison tasks.

C. Anomaly Labeling Module

At this stage, the unlabeled trace data undergo a labeling
process incorporating operators’ knowledge and expertise. Our
objective is to minimize the labeling effort while ensuring
high-quality data labels. In this regard, active learning [30], a
machine learning paradigm, is particularly well-suited. Active
learning seeks to optimize performance gains while minimiz-
ing the number of labeled samples required for training. It
selects the most informative data points from an unlabeled
dataset for labeling through human feedback. It reduces label-
ing costs while preserving performance levels.

Following graph-based trace representation, all traces under-
went vectorization via GNN. Consequently, for certain similar
traces, selecting the most representative trace for labeling
suffices to ensure the correct labeling of other traces within
the same cluster. We partitioned traces into different classes
utilizing clustering algorithms. For the traces in each class, the
cluster center point is selected as the most representative trace
for operators to label.

In practical terms, if an operator opts to label k traces, the
trace data will be clustered into k distinct clusters using a
clustering algorithm. Intuitively, as human feedback and the
number of labeled traces increase, it is anticipated that the
accuracy of the labeled dataset will progressively converge
towards 100%. We will discuss this in § V-E.

However, with the expansion of total data size and the
increasing number of labeled traces, the clustering process
may incur significant space and time overhead. Traditional
clustering algorithms often struggle to handle large-scale data
efficiently [31]. To address this challenge, we draw insights
from Huang et al. [32] and employ hybrid representative
selection. Specifically, we sample one-tenth of the data from
the entire dataset, ensuring that the distribution characteristics
of the sampled data in the vector space remain consistent with
those of the original dataset. Subsequently, we apply the k-
means method to derive k clusters, utilizing the resulting k
cluster centers as the set of representatives.

We provide operators with a visual representation of the
topology diagram illustrating the interactive relationships be-
tween spans. Simultaneously, to ensure a precise understand-
ing of span delay and its severity, we offer a corresponding
timeline for each span, depicting its temporal latency and
calling level. In summary, LabelEase facilitates operators in
intuitively and clearly labeling trace anomalies.

D. Root Cause Labeling

Once all trace data are labeled, the subsequent task involves
identifying the root cause of traces during abnormal periods.
This process entails partitioning the trace data into abnormal
periods based on the outcomes of abnormal labeling.

A service characterized by a higher frequency of abnormal
traces and a lower occurrence of normal traces passing through

4

Fig. 4. Interface of trace anomalies labeling

it is more likely to be identified as the root cause service [2],
[33]. To ascertain the likelihood of a service being the
root cause, we employ the spectrum-based fault localization
(SBFL) technique. This method computes the suspicious score
of each service within a service set P based on the presence
of normal and abnormal traces. In SBFL, we focus primarily
on four distinct statistics for a given service O ∈ P : Oef , Oep,
Onf , and Onp. Here, Oef represents the count of abnormal
traces covering service O, while Oep signifies the count of
normal traces covering service O. Conversely, Onf denotes
the count of abnormal traces not covering service O, and Onp

indicates the count of normal traces not covering service O.
Based on the above statistics, we leverage Equation 3 to

calculate suspicious score ScoreO of service O, and prior
work has proved its effectiveness [34].

ScoreO =
Oef√

(Oef +Oep) ∗ (Oef +Onf)
(3)

Nevertheless, spectrum analysis solely accounts for abnor-
mal and normal traces for each service, disregarding service
latency and dependency relationships. Consequently, it may
fail to accurately identify the true culprits in scenarios where
multiple services with closely interdependent relationships are
implicated in anomalous requests [34].

Henceforth, we integrate the visualization of service depen-
dency topology and service latency information on the front
end. It aims to provide operators with an intuitive perceptual
experience, facilitating rapid labeling tasks. By presenting
these insights, we strive to better leverage operators’ profes-
sional knowledge to enable actionable root cause localization.

IV. IMPLEMENTATION

We have seamlessly integrated the LabelEase approach into
a bespoke labeling tool. Fig. 4 shows the interface of trace
anomalies labeling and Fig. 5 shows the interface of root cause
labeling.

A. Trace Anomalies Labeling

After LabelEase selects representative traces for labeling,
the operators will label the given traces on the page shown
in Fig. 4. It presents trace and span-related information in a
visual and intuitive manner, encompassing structural topology
diagrams, duration, status codes, operation names, hierarchical
relationships, etc. Additionally, LabelEase also provides the
average value, standard deviation, and other information about

Fig. 5. Interface of root cause labeling

each similar call path in the entire dataset as a labeling refer-
ence. In providing this comprehensive environment, LabelEase
facilitates operators in efficiently labeling anomalies.

In the trace list displayed on the left side of the page,
each trace is visually distinguished: green signifies a label
of “normal”, red indicates a label of “abnormal”, and black
denotes traces awaiting labeling. Operators can label each
trace by selecting either the “abnormal” or “normal” buttons,
guided by structural information at the top right and delay
information at the bottom right of the page. Operators can
customize the number of traces to be labeled according to
the situation that will be discussed in § V-E. This adaptive
approach ensures efficient and tailored labeling processes to
suit varying circumstances.

Upon completion of labeling for the provided traces, Labe-
lEase can automatically label the remaining unlabeled traces,
reducing the workload of manual labeling. Moreover, all trace
labels can be exported directly with extremely high accuracy.

B. Root Cause Labeling

After all traces are labeled, operators will go to the page of
labeling root cause in Fig. 5. LabelEase will merge the periods
when the faults occurred based on the time when the labeled
anomaly trace occurred. Traces within each period will then
be aggregated. Leveraging SBFL, LabelEase will compute a
suspicious score for each server.

However, SBFL overlooks important factors such as service
latency and service dependencies. To address this limitation,
the interface will incorporate additional information, including
the average latency of the aggregated traces for passing
through each service and the invocation relationship between
the services in each period, etc. Meanwhile, the average
latency and standard deviation of traces passing through each
service across the entire dataset will be calculated as a
reference for labeling information. As a result, operators can
utilize their initiative and professional knowledge to correctly
label the root cause of anomalous traces.

For each period, a microservice system relationship diagram
is featured prominently in the center of the page. The higher
the suspicious score, the more likely the root cause is, and the
darker the service will be displayed on the interface. Upon
selecting a service, detailed information about it is displayed
in the right box. Operators can set the type of fault to label
the root cause. Then, the service labeled as the root cause is

5

highlighted in red. Eventually, the dataset’s ground truth can
be exported, and this high-quality trace dataset can be used
for other scientific tasks.

V. EVALUATION

In this section, we first introduce the experimental setup
of LabelEase. Then, we conduct extensive experiments to
evaluate the performance of LabelEase and aim to answer the
following research questions (RQs) :
RQ1. How does the effectiveness and efficiency of LabelEase
compare to baseline methods in terms of trace anomaly
detection?
RQ2. How effective is LabelEase in graph-based trace rep-
resentation compared with baseline trace vectorization ap-
proaches?
RQ3. How well does the hybrid representative selection with
active learning compare to other clustering methods?
RQ4. How do the number of traces operators need to label
influence the performance?
RQ5. How effective is labeling the root cause?

A. Experiment Setup

Datasets: We conducted experiments to evaluate the
performance of LabelEase using two datasets, denoted as
Dataset 1 (D1) and Dataset 2 (D2). The traces and root
causes within these datasets were meticulously labeled by
professional operators. D1 is collected from a benchmark
microservice system that we developed, utilizing the open-
source e-commerce application Online Boutique [35]. This
dataset includes user activities such as browsing items, adding
items to the cart, and making purchases. Various faults were
deliberately injected into the system using Chaos Mesh [36],
such as pod failure, delay, packet loss, memory issues, etc. We
use a set of 103078 normal traces and 27285 anomaly traces
to conduct experiments. D2 is collected from a large-scale
microservice system operated by a top-tier global commercial
bank. It includes services such as account managements, bill
payments, fund transfers and personal financial plans. This
dataset emulates a real-world production environment of a
large-scale life service application, incorporating end-to-end
full-link logs, multivariate time series (MTS), and traces. We
utilize a total of 112,786 traces from this dataset, compris-
ing 19,207 anomaly traces, to evaluate the performance of
anomaly labeling of LabelEase.

Environment and Hyperparameters: All experiments are
run on a server with two 16C32T Intel(R) Xeon(R) Gold 5218
CPU @ 2.30 GHz, one NVIDIA(R) Tesla(R) V100S, and 192
GB RAM. The implementation of LabelEase is in Python
3.7.0, with PyTorch 1.5.0 serving as the primary deep learning
framework. During the GNN training phase, we employed a
batch size of 32, a learning rate of 0.0001, and conducted
training over 15 epochs.

Baselines: To evaluate the performance of LabelEase on
anomaly labeling, we employ six recently proposed trace unsu-
pervised anomaly detection methods as baseline methods, in-
cluding MultimodalTrace [37], TraceAnomaly [8], CRISP [9],

TraceCRL [10], TraceVAE [11] and TraceSieve [3]. These
unsupervised algorithms use the given trace data for training
and labeling to suit our application scenario of labeling traces.
By comparing with LabelEase, we aim to evaluate whether
these state-of-the-art anomaly detection models exhibit similar
proficiency in dataset labeling even if numerous anomalous
traces are present in the training data.

Performance Metrics: In the root cause labeling task,
operators are provided with a visually enriched labeling en-
vironment, facilitating rapid and accurate labeling. Operators’
professional expertise is pivotal in locating root causes, with
their subjective initiative often guiding the process. Ideally,
root cause labeling aims for 100% accuracy. Consequently,
we focus on evaluating the effectiveness of anomaly detection
labeling for the entire dataset, assuming the correctness of
trace anomalies labeled by operators. The task of labeling
trace anomalies can be framed as a binary classification for
each trace, with the F1score serving as a widely accepted
performance metric, which is given by Equation 4. Here,
TP represents true positives, FP represents false positives,
and FN represents false negatives. Precision denotes the
proportion of predicted positive samples that are true posi-
tive samples. Recall denotes the proportion of true positive
samples that are correctly predicted as positive. Consequently,
F1score provides a balanced assessment by computing the
harmonic mean of precision and recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score = 2×
Precision×Recall

Precision+Recall

(4)

B. LabelEase vs. Baseline Algorithms (RQ1)

The results of trace anomaly labeling of LabelEase and the
baseline approaches are shown in Table I. LabelEase exhibits
superior performance over all baseline approaches across both
datasets, achieving F1 scores of 0.99 and 0.98, respectively.
Notably, this performance is attained with operators labeling
only 35 traces in D1 and 67 traces in D2.

Among the baseline methods, MultimodalTrace achieves the
lowest performance. MultimodalTrace trains an LSTM-based
model based on the operation sequences of traces, primarily
utilizing recorded timestamps for reconstruction. However, its
feature extraction process is relatively simplistic and limited,
leading to inadequate discrimination between normal and
abnormal data.

TraceAnomaly and CRISP utilize a service trace vector
(STV) representation to characterize traces and detect anoma-
lies through Variational Autoencoder (VAE) reconstruction.
However, they solely incorporate service sequences and re-
sponse times from traces, neglecting the status code infor-
mation. Due to the presence of more normal data and sim-
pler service calls on D1 than on D2, TraceAnomaly and
CRISP can learn more accurate normal pattern features on
D1, achieve higher precision than on D2. This variance in

6

dataset complexity accounts for the differences in performance
between D1 and D2.

TraceCRL constructs an operation invocation graph for each
trace and employs a contrastive learning mechanism to train a
graph neural network-based model. However, while TraceCRL
learns the features of traces through graph structure and data
augmentation strategies, proper feature selection is still crucial
for anomaly detection. If the model fails to capture all the
features associated with anomalies, it may lead to missed or
false alarms.

TraceVAE employs a dual-variable graph VAE architecture
and an innovative dispatching layer to separately encode the
structure of traces and the time consumption of nodes. Trace-
VAE proposes techniques to reduce the entropy gap, but the
effectiveness may vary depending on specific data distributions
and anomaly types. Hence, adaptation or further optimization
may be necessary in different application scenarios.

TraceSieve integrates the Variational Graph Auto-Encoder
(VGAE) with Elastic Weight Consolidation (EWC) to formu-
late an unsupervised trace anomaly detection method. It uti-
lizes an auto-encoder architecture within an adversarial train-
ing framework to filter out noise data. Thereby, TraceSieve
is more accurate in identifying anomalies and reduces the
number of false alarms with high precision on D1. Unfortu-
nately, the sensitivity of noise filtering impacts the features and
patterns learned by the model. Excessive sensitivity may cause
the model to overlook the key information, misclassify real
data as noise, and fail to filter noise effectively. Consequently,
this affects the model’s generalization ability and prediction
performance, leading to a subpar performance on D2.

In summary, the results presented in Table I underscore
the inadequacy of existing unsupervised trace anomaly detec-
tion methods in effectively labeling the dataset. The subpar
performance of these baseline approaches can be attributed
primarily to the substantial presence of anomalous data in
the training set, hindering the models from learning accurate
feature representations. Consequently, none of these methods
can accurately differentiate between normal and anomalous
traces.

Regarding efficiency, we evaluate the time cost of trace
anomalies labeling with all baseline methods and LabelEase.
As depicted in Table I, we present the time overhead incurred
during the testing and labeling processes with the trained base-
line models. LabelEase exhibits superior efficiency compared
to the baseline methods, boasting the shortest time overhead
and highest labeling efficiency. The baseline methods are
characterized by intricate neural network architectures, which
entail complex forward propagation operations, resulting in
significant time overhead. In contrast, LabelEase leverages
active learning, relying on the efficient hybrid representa-
tive selection, and acquires all trace labels through human
feedback. As a result, LabelEase outperforms other baseline
methods with extremely high effectiveness and efficiency.

(a) Anomaly Labeling on 10.75

0.80

0.85

0.90

0.95

1.00

F1
-s

co
re

(b) Anomaly Labeling on 20.75

0.80

0.85

0.90

0.95

1.00

F1
-s

co
re

LabelEase using STV using SCVP using TFM

Fig. 6. The effects of graph-based trace representation in comparison with
different trace vectorization approaches on two datasets

C. The Effects of Graph-based Trace Representation (RQ2)

We conduct a series of experiments to evaluate the effects of
graph-based trace representation on two datasets compared to
other trace vectorization approaches. Fig. 6 shows LabelEase
with the graph-based representation can outperform other trace
vectorization methods.

In LabelEase using STV, we change the graph-based trace
representation into STV [8]. A specific trace’s STV is con-
structed with the call path list. Within this representation, the
value of each dimension signifies the response time associated
with a particular invocation path for a given trace. Notably,
when a dimension’s value is -1, it signifies the absence of
this specific call path. However, STV may not capture the
intricate interactions and dependencies prevalent in complex
systems. Consequently, it risks overlooking crucial invocation
information between spans, potentially undermining model
performance or leading to erroneous outcomes.

In LabelEase using SCVP, the graph-based trace representa-
tion is replaced with service critical path vectors (SCVP) [9].
CRISP encodes only on the call paths for those on the critical
path spans. Compared with the STV, SCPV encoding reduces
the feature dimensions and decreases the inference time.
However, this selective encoding strategy raises concerns.
First, by exclusively considering call paths on the critical
path, SCPV may overlook essential information, particularly
regarding paths not on the critical path that could nonetheless
impact system performance. Second, accurate identification
and definition of critical paths are imperative for SCPV.
This often necessitates domain knowledge and experience and
potentially relies on assumptions about the system’s structure
and operation.

In LabelEase using TFM, we replace the graph-based trace
representation used in the existing method with trace feature
matrix (TFM) [3]. TFM stores extracted features, encompass-
ing both execution and waiting times from traces. However,
despite TFM’s inclusion of additional temporal features, it
remains deficient in adequately capturing the invocation re-
lationships between services and the dependency associations
between spans.

In LabelEase, we leverage trained GNN to generate a vec-
torized representation for each trace to measure the distance
between different traces. The graph-based trace representation
approach promises to accurately capture the intricate structure
and attributes of traces in a microservice system. Conse-

7

TABLE I
THE EFFECTS OF LabelEase IN COMPARISON WITH DIFFERENT APPROACHES ON TWO DATASETS

Approach D1 D2
Precision Recall F1-score Time Precision Recall F1-score Time

LabelEase 1 0.98 0.99 6.53s 0.96 0.99 0.98 21.68s
MultimodalTrace [37] 0.2 0.15 0.17 1.9min 0.17 0.15 0.16 1.6min

TraceAnomaly [8] 0.94 0.67 0.78 27.2min 0.21 0.2 0.2 22.2min
CRISP [9] 0.8 0.57 0.67 26.1min 0.24 0.21 0.23 17.3min

TraceCRL [10] 0.39 0.28 0.33 8.9h 0.48 0.43 0.45 7.2h
TraceVAE [11] 0.4 0.3 0.35 1.7h 0.14 0.77 0.23 51.3min
TraceSieve [3] 1 0.74 0.85 7.6min 0.17 0.15 0.15 9.8min

quently, adopting this approach enables the acquisition of
richer and more comprehensive trace information, potentially
leading to improved F1-score.

D. Effectiveness of Clustering Strategies (RQ3)

We leverage the hybrid representative selection strategy
to select the most representative data for active learning. In
particular, after filtering out a part of the trace collection
refer to [32], clustering methods are employed to identify
cluster centroids. Our experimental evaluation encompasses
four classical clustering algorithms to determine the most
effective and efficient approach for this task.

K-means is an iterative clustering algorithm that partitions
data into k clusters by minimizing the sum of squared
distances from data points to cluster centroids. Hierarchical
clustering constructs a hierarchical structure by evaluating the
similarity between objects. DBSCAN, a density-based cluster-
ing method, groups closely situated points together based on a
defined minimum number of points within a specified radius.
Spectral clustering partitions data into clusters by analyzing
the eigenvectors of a similarity matrix derived from the data.

Table II presents the performance and efficiency of Labe-
lEase employing various clustering algorithms. The results
indicate generally satisfactory performance across most clus-
tering methods evaluated. Notably, the K-means algorithm
exhibits superior effects and the shortest computational time
among the considered algorithms, indicating heightened ef-
ficiency compared to alternatives. Consequently, we opt for
the K-means algorithm as the preferred clustering method for
LabelEase.

In addition, we conducted a comparison by randomly se-
lecting traces for labeling to assess the effectiveness of the
hybrid representative selection strategy. Table II demonstrates
the worst results of using random selection. As traces are
chosen randomly as representatives, their selection time is not
factored into the analysis. On the one hand, after using graph-
based trace representation in the previous step, similar traces
have similar embedding representations, so the precision of
LabelEase using random selection is not low. On the other
hand, the proportion of normal traces is relatively large, and
random selection makes it easy to select normal samples,
resulting in inferior recall. In conclusion, adopting random
selection to replace clustering shows unsatisfactory results,
underscoring the importance of accurately selecting the most
representative trace data.

0 25 50 75 100 125 150 175 200
Number of Labels

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

1
2

Fig. 7. The effect of different numbers of traces to be labeled

E. Sensitivity of the Number of Traces to be Labeled (RQ4)

We focus on the impact of the sensitivity of different
numbers of traces to be labeled on the overall labeling results
with LabelEase. Fig. 7 shows how the F1-score of LabelEase
changes with different trace numbers of labels. In LabelEase,
We employ K-means to cluster the data into k clusters,
selecting the trace at the center of each cluster for manual
labeling. Operators can determine the number of traces to be
labeled, significantly enhancing flexibility and initiative.

As the number of labels increases, the F1 score of Labe-
lEase improves. However, It also leads to higher time and
cost overhead. Therefore, to balance the labeling workload and
achieve satisfactory results, referring to the red dotted lines in
Fig. 7, we choose 35 as the number of labels for D1 and 67
as the number of labels for D2. In this case, the F1-score on
the two datasets will be 0.99 and 0.98, respectively.

The number of traces to be labeled can be increased if higher
performance is required. As shown in Fig. 7, the F1-score
grows slowly and gradually converges to 1 when the number of
labels reaches a certain threshold. Our experimental evaluation
results indicate that for any dataset, operators can use 0.1%
of the total number of traces as the labeling threshold. By
adopting this threshold, we demonstrate the universality of
LabelEase, significantly reducing operators’ labeling overhead
by more than 99.9% while acquiring a high-quality dataset.

F. Effectiveness of Labeling Root Cause (RQ5)

After labeling all anomalies, we evaluate the effectiveness
of root cause localization. We use LabelEase to aggregate
anomaly traces and determine the period during which faults
occurred. Since operators’ expertise is employed for labeling,
we believe they have correctly identified the root cause for

8

TABLE II
THE EFFECTS OF THE DIFFERENT CLUSTER METHODS ON TWO DATASETS

Approach D1 D2
Precision Recall F1-score Time(s) Precision Recall F1-score Time(s)

using K-means 1 0.98 0.99 6.53 0.96 0.99 0.98 21.68
using hierarchical clustering 0.99 0.98 0.99 96.9 0.96 0.95 0.96 51.98

using DBSCAN 0.99 0.92 0.95 116.07 0.83 1 0.91 97.55
using Spectral clustering 0.99 0.98 0.98 200.84 0.96 0.93 0.94 264.24
using random selection 0.8 0.2 0.32 - 0.95 0.33 0.49 -

each fault period. Consequently, it is essential to ensure that
all fault periods in the dataset are accurately identified.

Since D2 doesn’t contain abundant fault cases, we only used
D1 for the experiments. We compared the aggregated fault
periods identified by LabelEase with the ground truth labeled
in the dataset. To evaluate the effectiveness of LabelEase in
detecting fault periods, we used point-wise PA, which can give
an inflated score if some anomaly segments persist for a long
duration [38]. The experimental results show that the precision
of fault period detection is 0.89. This indicates that as long as
an abnormal trace can be labeled, it is possible to accurately
and efficiently identify the period in which the corresponding
fault occurred, thus enabling precise root cause labeling.

However, there are many false negatives when locating the
fault period, with a recall of 0.44. This discrepancy arises
from two main issues. Firstly, anomalies in the unreported
fault periods are not reflected in the traces but primarily in
the multivariate time series (MTS). Secondly, in D1, the unre-
ported periods predominantly occur during pod failures. Other
faults, such as “loss”, “delay”, “CPU”, and “memory”, do not
crash the program but degrade its performance. These faults
still allow traces to be recorded, with anomalies evident in
latency and call patterns. In this case, if the pod failure occurs,
the anomalies will be reflected in traces only when the root
cause is on the recommendation service instance. Therefore,
we conclude that the factors affecting trace anomalies are the
type of fault and the instance where it is in effect.

VI. RELATED WORK

Distributed tracing plays a crucial role in the microservice
system. In recent years, various open-source distributed trace
recording infrastructures have been developed and integrated
into the modern microservice system, including Jaeger [39],
Zipkin [40] and SkyWalking [41]. As fundamental tools, they
are used to troubleshoot programs but cannot label data.

In other areas of operations and maintenance within the
microservice system, Zhao et al. [42] introduces a semi-
automatic labeling tool Label-Less for the MTS. It employs
robust and rapid anomaly similarity search to save operators
from scanning and checking the long KPIs back and forth
for abnormal patterns or label consistency, improving labeling
efficiency. However, there is a lack of such a labeling tool to
promote the field of trace analysis in the microservice system.

Although numerous trace anomaly detection [3], [8]–[11],
[37] and root cause localization algorithms [2], [3], [8], [33],
[34], [43] have been proposed, none can reduce the workload
of trace data labeling and still obtain a high-quality dataset.

Therefore, a semi-automatic, trace-specific labeling tool that
can reduce costs while achieving high-quality labels is urgently
needed.

To our knowledge, LabelEase represents the initial effort in
this direction. Serving as the inaugural semi-automatic labeling
tool, it is designed to mitigate the labeling overhead associated
with trace datasets through algorithmic approaches.

VII. CONCLUSION

In this paper, we argue that traces with labels hold sig-
nificant importance in training and evaluating trace anomaly
detection and root cause localization. However, manual trace
labeling will generate a considerable workload and cost over-
head due to the extensive volume and the rich and complex
structure of traces. To address this issue, we propose a semi-
automatic trace labeling tool LabelEase. We evaluate Labe-
lEase using two datasets, achieving F1-score of 0.99 and 0.98
with a small number of traces manually labeled, respectively.
We reduce the workload of manual labeling by at least 99.9%
while ensuring the acquisition of the high-quality trace dataset.
Furthermore, we also exhibit that employing unsupervised
trace anomaly detection models for training and labeling raw
data is not feasible.

In future work, we aim to leverage transfer learning to
optimize model training and reduce the time cost of model
training before the labeling process. Additionally, we intend
to deploy LabelEase onto a server, thus enabling accessibility
for individuals requiring its functionalities online. We believe
that access to high-quality trace datasets will surely contribute
to the rapid development of intelligent AIOps in academia and
industry.

VIII. ACKNOWLEDGEMENT

This work is supported by the Natural Science Foundation
of China (62272249, 62302244, 62072264).

REFERENCES

[1] T. Bi, Y. Pan, X. Jiang, M. Ma, and P. Wang, “Vecrosim: A versatile
metric-oriented microservice fault simulation system (tools and artifact
track),” in 2022 IEEE 33rd International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2022, pp. 297–308.

[2] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang,
L. Yan, Z. Wang et al., “Practical root cause localization for microservice
systems via trace analysis,” in 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS). IEEE, 2021, pp. 1–10.

[3] S. Zhang, Z. Pan, H. Liu, P. Jin, Y. Sun, Q. Ouyang, J. Wang, X. Jia,
Y. Zhang, H. Yang et al., “Efficient and robust trace anomaly detection
for large-scale microservice systems,” in 2023 IEEE 34th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2023,
pp. 69–79.

9

[4] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou,
and Z. Wu, “Microhecl: High-efficient root cause localization in large-
scale microservice systems,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2021, pp. 338–347.

[5] L. Huang and T. Zhu, “tprof: Performance profiling via structural
aggregation and automated analysis of distributed systems traces,” in
Proceedings of the ACM Symposium on Cloud Computing, 2021, pp.
76–91.

[6] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “Deeptralog: Trace-log combined microservice anomaly de-
tection through graph-based deep learning,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 623–634.

[7] Z. Zeng, Y. Zhang, Y. Xu, M. Ma, B. Qiao, W. Zou, Q. Chen,
M. Zhang, X. Zhang, H. Zhang et al., “Traceark: Towards actionable
performance anomaly alerting for online service systems,” in 2023
IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2023, pp. 258–
269.

[8] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang,
L. Mo, J. Zeng, W. Xue et al., “Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2020, pp. 48–58.

[9] Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and
M. Chabbi, “{CRISP}: Critical path analysis of {Large-Scale} mi-
croservice architectures,” in 2022 USENIX Annual Technical Conference
(USENIX ATC 22), 2022, pp. 655–672.

[10] C. Zhang, X. Peng, T. Zhou, C. Sha, Z. Yan, Y. Chen, and H. Yang,
“Tracecrl: contrastive representation learning for microservice trace
analysis,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 1221–1232.

[11] Z. Xie, H. Xu, W. Chen, W. Li, H. Jiang, L. Su, H. Wang, and D. Pei,
“Unsupervised anomaly detection on microservice traces through graph
vae,” in Proceedings of the ACM Web Conference 2023, 2023, pp. 2874–
2884.

[12] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software
Engineering, vol. 47, no. 2, pp. 243–260, 2018.

[13] Z. Li, N. Zhao, S. Zhang, Y. Sun, P. Chen, X. Wen, M. Ma, and
D. Pei, “Constructing large-scale real-world benchmark datasets for
aiops,” arXiv preprint arXiv:2208.03938, 2022.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[15] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 1387–1397.

[16] C. Zhang, Z. Dong, X. Peng, B. Zhang, and M. Chen, “Trace-based
multi-dimensional root cause localization of performance issues in mi-
croservice systems,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1–12.

[17] Y. Cai, B. Han, J. Li, N. Zhao, and J. Su, “Modelcoder: A fault model
based automatic root cause localization framework for microservice
systems,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS). IEEE, 2021, pp. 1–6.

[18] V. Velepucha and P. Flores, “A survey on microservices architecture:
Principles, patterns and migration challenges.” IEEE Access, 2023.

[19] P. Vitharana and S. A. Daya, “Adopting and sustaining microservice-
based software development: Organizational challenges can be more
difficult than technical ones.” Communications of the ACM, 2024.

[20] Z. Xie, C. Pei, W. Li, H. Jiang, L. Su, J. Li, G. Xie, and D. Pei,
“From point-wise to group-wise: A fast and accurate microservice trace
anomaly detection approach,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023, pp. 1739–1749.

[21] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
your observability: an industrial survey of microservice tracing and
analysis,” Empirical Software Engineering, vol. 27, pp. 1–28, 2022.

[22] P. Notaro, J. Cardoso, and M. Gerndt, “A survey of aiops methods
for failure management,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 12, no. 6, pp. 1–45, 2021.

[23] K. Zhang, C. Zhang, X. Peng, and C. Sha, “Putracead: Trace anomaly
detection with partial labels based on gnn and pu learning,” in 2022
IEEE 33rd International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2022, pp. 239–250.

[24] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in
2012 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2012, pp. 5149–5152.

[25] V.-H. Le and H. Zhang, “Log-based anomaly detection without log pars-
ing,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2021, pp. 492–504.

[26] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and unified
deep learning based log anomaly detection for diverse faults,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2020, pp. 92–103.

[27] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[28] S. He, B. Feng, L. Li, X. Zhang, Y. Kang, Q. Lin, S. Rajmohan,
and D. Zhang, “Steam: Observability-preserving trace sampling,” in
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2023, pp. 1750–1761.

[29] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking.” Journal of Machine
Learning Research, vol. 11, no. 3, 2010.

[30] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang, “A survey of deep active learning,” ACM computing surveys
(CSUR), vol. 54, no. 9, pp. 1–40, 2021.

[31] Y. Zhou, “Scalable clustering: Large scale unsupervised learning of
gaussian mixture models with outliers,” Ph.D. dissertation, The Florida
State University, 2023.

[32] D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, and C.-K. Kwoh, “Ultra-
scalable spectral clustering and ensemble clustering,” IEEE Transactions
on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1212–1226,
2019.

[33] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng,
X. Sun, and X. Li, “Microrank: End-to-end latency issue localization
with extended spectrum analysis in microservice environments,” in
Proceedings of the Web Conference 2021, 2021, pp. 3087–3098.

[34] G. Yu, Z. Huang, and P. Chen, “Tracerank: Abnormal service localization
with dis-aggregated end-to-end tracing data in cloud native systems,”
Journal of Software: Evolution and Process, vol. 35, no. 10, p. e2413,
2023.

[35] “Online boutique.” [Online]. Available: https://github.com/
GoogleCloudPlatform/microservices-demo

[36] “Chaos mesh,” 2022. [Online]. Available: https://chaos-mesh.org
[37] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection from

system tracing data using multimodal deep learning,” in 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE,
2019, pp. 179–186.

[38] H. Si, C. Pei, H. Cui, J. Yang, Y. Sun, S. Zhang, J. Li, H. Zhang, J. Han,
D. Pei et al., “Timeseriesbench: An industrial-grade benchmark for time
series anomaly detection models,” arXiv preprint arXiv:2402.10802,
2024.

[39] Jaegertracing.io, “Jaeger,” 2022, last accessed 1 August 2022. [Online].
Available: https://www.jaegertracing.io/

[40] Twitter, “Zipkin,” 2022, last accessed 1 August 2022. [Online].
Available: https://zipkin.io/

[41] A. SkyWalking, “Skywalking,” 2022, last accessed 30 July 2022.
[Online]. Available: https://skywalking.apache.org/

[42] N. Zhao, J. Zhu, R. Liu, D. Liu, M. Zhang, and D. Pei, “Label-less: A
semi-automatic labelling tool for kpi anomalies,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 1882–1890.

[43] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
135–151.

10

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://chaos-mesh.org
https://www.jaegertracing.io/
https://zipkin.io/
https://skywalking.apache.org/

	Introduction
	Preliminary
	Microservice System
	Trace
	Anomaly Detection and Root Cause Localization

	LabelEase Approach
	Design Overview
	Graph-based Trace Representation
	Data Preprocessing
	GNN Training
	Vectorized Representation

	Anomaly Labeling Module
	Root Cause Labeling

	Implementation
	Trace Anomalies Labeling
	Root Cause Labeling

	Evaluation
	Experiment Setup
	LabelEase vs. Baseline Algorithms (RQ1)
	The Effects of Graph-based Trace Representation (RQ2)
	Effectiveness of Clustering Strategies (RQ3)
	Sensitivity of the Number of Traces to be Labeled (RQ4)
	Effectiveness of Labeling Root Cause (RQ5)

	Related work
	Conclusion
	Acknowledgement
	References

