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Abstract—Conducting stress testing is essential to ensure
the stability and performance of software systems post-launch.
Among its various aspects, the real-time identification of the
“Smooth Load Area” (SLA) is crucial for establishing perfor-
mance benchmarks, identifying bottlenecks, guiding optimization
strategies, and strategically allocating resources. However, exist-
ing methods are incapable of real-time inflection point detection
or require manual intervention. This paper proposes Auto-
PIP, an automated identification framework for performance
inflection points based on key performance indicators (KPIs)
during performance stress tests. Auto-PIP integrates trend test-
ing algorithms with unsupervised anomaly detection algorithms
to identify optimal operating points and estimate maximum
capacity. Auto-PIP has been deployed in Huawei Cloud, and
the evaluation results show that Auto-PIP demonstrated 100%
accuracy in optimal inflection point detection, a 41.7% leap over
baselines, and 83.9% accuracy in maximum point identification,
a 10.7% gain. Additionally, we have released the dataset to the
public to promote ongoing research.

Index Terms—stress testing, performance status identification,
performance inflection point, SLA

I. INTRODUCTION

Stress testing is a crucial component of an organization’s
process before deploying a new version of a software system,
to ensure that the system can withstand the anticipated load
and user demand [1], [2]. It verifies system robustness by
simulating a high-load environment and identifying load-
related issues that may affect performance [3], [4].

Among various stress testing analysis methodologies, the
real-time identification of the “Smooth Load Area (SLA)”
is particularly crucial [5], as shown in Fig. 1. This phase
represents the optimal operational range where the system
maintains high performance and stability as the load increases
incrementally. Identifying the SLA is essential for setting
performance benchmarks, uncovering potential bottlenecks,
assessing system resilience, guiding optimization strategies,
and planning resource allocation effectively [6]. Recognizing
SLA is fundamentally about automated identification of both
the optimal and maximum inflection points (see section 2
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Fig. 1. The performance turning point model in a software stress testing.

for more details). Note that, operators do not actually want
to push the software system to collapse during the stress
test since repairing the test environment afterward would be
costly. Therefore, the real-time on-line identification of critical
performance inflection points is essential for making prompt
decisions.

Research on identifying the maximum and optimal inflec-
tion points remains relatively scarce. The existing approach [7]
for identifying the maximum inflection point uses a nonlinear
least squares method to fit a quadratic function representing the
trend of throughput as the number of concurrent users changes.
The extreme value of this quadratic function is considered
the maximum inflection point. This approach assumes a direct
relationship between throughput and the number of concurrent
users, which can be more complex in actual applications.
More importantly, it is an offline algorithm that identifies the
maximum inflection point only after post-processing key per-
formance indicators (KPIs) following stress tests. This delay
can lead to system crashes during stress testing, increasing the
subsequent recovery costs.

To overcome the above limitations, we plan to automatically
and in real-time determine the system’s optimal and maximum
inflection points based on changes in KPIs during stress
testing. The key ideas of this method are: 1) Identifying the
optimal inflection point when throughput stops increasing with
the number of concurrent users, transforming this identifi-
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cation into a trend detection of throughput; 2) Identifying
the maximum inflection point when response time begins
to surge, transforming this identification into an anomaly
detection problem for response time. However, in the planned
exploration, we face the following challenges:

(1) Insufficient quality of KPIs. Inaccuracies or errors
during the collection and recording of KPIs can introduce
data noise and missing values. Some methods are susceptible
to the effects of outliers or missing KPI data, increasing the
risk of drawing incorrect conclusions [8]. Additionally, some
methods require KPIs to follow specific data distributions
[9]. If the actual distribution of KPIs does not match the
assumed distribution, the reliability of the test results may be
compromised.

(2) Insufficient quantity of KPIs. Advanced anomaly
detection methods based on KPIs mostly use deep neural
networks, which require extensive training data to achieve
the desired performance. However, the duration of individual
software system stress tests is typically short, and the resulting
KPIs may lack the periodicity and regularity required to
effectively train deep learning models.

(3) Selection of KPI thresholds. Testers often need to man-
ually set the threshold for each KPI according to traditional
methods [10], which is time-consuming, labor-intensive, and
prone to errors. A more automated and dynamic approach for
generating KPI thresholds would be a more practical solution.

In this paper, we propose a robust performance status
identification method for software systems, namely Auto-PIP,
which can identify the optimal and maximum inflection points
during stress testing in real-time, accurately, and efficiently.
The main contributions of this paper are as follows:

1) To robustly handle data noise and unknown data distri-
butions, Auto-PIP involves Mann-Kendall test to iden-
tify the optimal inflection points, which is insensitive
to noise and suitable for various data distributions,
addressing the first challenge. Additionally, Auto-PIP
uses the statistically-based SPOT to identify the max-
imum inflection points, which dynamically determine
KPI thresholds with only a small number of initial data
points, overcoming the the second and third challenges.

2) To evaluate the performance of Auto-PIP, we collect
data from the industrial environment of Huawei Cloud.
Our results show that the accuracy for identifying the
optimal and maximum inflection points reaches 100%
and 83.9%, respectively, outperforming existing baseline
methods. Additionally, to facilitate further research, we
have also released our labeled dataset 1.

3) Auto-PIP has been deployed in the industrial environ-
ment of Huawei Cloud for one month, significantly
improving the efficiency of test engineers in analyzing
the performance of the software systems. To better
understand the effectiveness of Auto-PIP, we analyze
three real-world stress testing cases.

1https://doi.org/10.5281/zenodo.13337204

II. BACKGROUND AND RELATED WORKS

A. Performance Inflection Point Model

Performance Inflection Point Model (PIPM) is an essential
tool for evaluating the performance of software systems [5]. As
shown in Fig. 1, PIPM demonstrates how system KPIs, such
as throughput, response time, and success rate, change as the
number of concurrent users increases. This model is crucial
for determining software systems’ optimal and maximum
inflection points. As the number of concurrent users rises, the
service performance of the software system transitions from
high to low. Within the PIPM, this performance change can
be categorized into three distinct stages [5]:

• Light load area: When the system handles a small number
of concurrent users, the system’s processing capacity
(throughput) exhibits the fastest growth trend. At this
stage, the system can quickly respond to user operations
and meet various user requests fully and promptly.

• Smooth load area (SLA): As the number of concurrent
users reaches a moderate level, the growth of system
throughput stagnates compared to the low concurrency
stage. Nevertheless, the system can still process user
requests at a reasonable speed, keeping response waiting
times within an acceptable range for users. Recognizing
SLA is undamentally identification of optimal and max-
imum inflection points.

• Heavy load area: As the number of concurrent users in-
creases, system resources reach the maximum and remain
unchanged, and system throughput begins to drop sharply.
Concurrently, due to resource constraints, the response
time for user requests significantly increases, with some
requests potentially taking a long time to be processed sor
failing entirely, leading to a decline in user experience.

The focus of this paper is to identify the optimal number
of concurrent users (i.e., the optimal inflection point) that
maximizes system performance, situated between the light
load area and the smooth load area. Additionally, the paper
aims to identify the maximum number of concurrent users
(i.e., the maximum inflection point) near the fault state of
the system, situated between the smooth load area and the
heavy load area. Identifying the optimal inflection point helps
reduce the waste of computing resources while ensuring user
experience. Conversely, identifying the maximum inflection
point is crucial for operators to ascertain system capacity and
efficiently implement traffic limiting, service degradation and
other service protection measures.

B. Related Work

KPI trend detection. Statistical methods are commonly
used for KPI trend detection, often accompanied by confidence
intervals or p-values to quantify their reliability [11]. The slope
method [12] measures trend direction by calculating changes
in the slope of KPIs over time, identifying trends when slope
changes exceed a threshold. However, it assumes linearity
and may not capture nonlinear trends accurately, especially in
highly variable data. The Cox-Stuart test [13] evaluates trends
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by comparing positive and negative differences in KPI data
from two distinct periods. An upward trend is indicated if later
data significantly exceeds earlier data; otherwise, a downward
trend is identified. Nonetheless, this test does not account for
the temporal nature of the data, relying solely on sign testing,
which can overlook time-related complexities.

KPI anomaly detection. In the rapidly evolving field of
software development, detecting anomalies in software sys-
tems is critical. KPI anomaly detection methods are catego-
rized into supervised and unsupervised approaches.

a) Supervised KPI anomaly detection: Supervised meth-
ods, such as Support Vector Machines (SVM) [14] and deci-
sion trees [15], learn patterns from labeled datasets to distin-
guish between normal and abnormal data. These methods are
effective with sufficient labeled data but struggle in industrial
environments where labeled anomaly data is scarce and may
fail to detect unknown anomaly types.

b) Unsupervised KPI anomaly detection: Unsupervised
methods are more suitable when labeled data is scarce, learn-
ing normal patterns from the data without requiring labels.

• Statistical-Based Methods: Approaches like k-sigma [16]
and box plot [17] assume KPI distribution and apply
statistical inference to detect anomalies. They are compu-
tationally efficient and calculate thresholds dynamically,
but their outcomes depend heavily on the selection of
methodological parameters.

• Deep Learning-Based Methods: Techniques such as
Donut [18], Bagel [19], and Buzz [20] use Variational
Autoencoders (VAE) [21] to reconstruct KPIs and iden-
tify anomalies. However, the opacity of these models
and their prolonged initialization phase pose challenges
in scenarios requiring high computational efficiency and
data interpretability.

In summary, while supervised methods are effective with
sufficient labeled data, the challenges in obtaining such data
make unsupervised methods more practical in many real-world
scenarios. However, both approaches have limitations, and the
choice of method should consider the specific requirements
and constraints of the application.

III. APPROACH

A. Overview

As shown in Fig. 2, the framework of Auto-PIP consists of
two main components: optimal and maximum inflection point
identification. In the optimal inflection point identification
part, Auto-PIP detects trends in the preprocessed throughput
data, determining if the optimal inflection point occurs during
the stress testing process. For the maximum inflection point
identification part, Auto-PIP preprocesses the response time
and success rate data, then performs the anomaly detection
in the response time and success rate data, identifying the
concurrent user number corresponding to the abrupt change
as the maximum inflection point.

Realtime Stress 

testing KPIs
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Response Time 

and Success Rate

Anomaly Detection

Trend Detection Optimal 

Inflection Point

Maximum 

Inflection Point

Data 

Preprocessing

Data 

Preprocessing

Fig. 2. The framework of Auto-PIP.

B. Data Preprocessing

In the complex stress testing environments of large modern
software systems, data noise is inevitable due to network
instability and potential hardware and software failures. This
noise can obscure KPI and abnormal signals. Therefore, data
smoothing and differencing are applied before performing KPI
trend and anomaly detection.
Smoothing. The goal of smoothing is to remove random
fluctuations and reveal the trends and patterns in the data more
clearly. Smoothing is achieved by calculating the mean of
consecutive data points within a window, effectively reducing
random fluctuations mean(x) = 1

n

∑n
i=1 xi. It helps identify

and understand the underlying trends more clearly.
Differencing. Differencing aims to remove the trend and
seasonal components in the response time data. It involves
calculating the difference between consecutive observations:
diff(xi) = xi − xi−1, where xi is the observation at the ith
time point in the time series, xi−1 is the observation at the
previous time point, and diff(xi) is the difference between
these two consecutive observations.
By implementing these preprocessing steps, Auto-PIP effec-
tively mitigates the impact of noise, enhancing the detection
of meaningful performance trends and mutations during stress
testing.

C. Optimal Inflection Point Identification

Mann-Kendall test. The Mann-Kendall test [22] is a non-
parametric test that does not require the sample to follow a
specific distribution and is robust against outliers. The null
hypothesis of the Mann-Kendall test states that the data shows
no trend, while the alternative hypothesis posits that the data
shows an upward or downward trend.

In time series analysis, the Mann-Kendall test identifies
monotonic trends (increasing, decreasing, or stable) by com-
paring the value of each data point with previous points. Each
data point (except the first) is compared with previous points,
and differences are recorded as 1 (positive), -1 (negative), or
0 (equal). The sum of these differences, S, is calculated as
follows:

S =

n−1∑
k=1

n∑
j=k+1

sgn(xj − xk) (1)

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

(2)

A positive S indicates an increasing trend, while a negative
S indicates a decreasing trend. For n ≥ 8, S approximately
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follows a normal distribution with mean E(S) = 0 and vari-
ance V ar(s) = n(n−1)(2n+5)

18 . The standardized test statistic
Z is calculated as follows:

Z =


S−1√
V ar(S)

S > 0

0 S = 0
S+1√
V ar(S)

S < 0
(3)

The p-value is then calculated from the standard normal
distribution. If the p-value is less than the chosen significance
level, the null hypothesis is rejected, indicating a trend. Oth-
erwise, the null hypothesis is accepted, suggesting the data is
stable.

The optimal inflection point identification process. As
shown in Fig. 3, the optimal inflection point identification
process involves acquiring throughput from the most recent
specified stress testing step and performing the Mann-Kendall
test after smoothing the data. The optimal inflection point is
identified if the test result indicates a stable trend. This method
ensures robust trend detection by mitigating the influence of
outliers and providing a reliable assessment of the throughput
data during stress testing.

Realtime 
Throughput

Mann-KendallSliding 
Window

Data 
Smoothing

Optimal 
Inflection Point

Not Stable

Stable

Fig. 3. The process of the optimal number of concurrent users identification.

D. Maximum Inflection Point Identification

SPOT [23]. SPOT is an algorithm based on extreme value
theory, dynamically sets anomaly thresholds for KPIs. SPOT
consists of two primary components: calibration and detection.
During the calibration phase, the anomaly threshold zq and the
peak threshold t are calculated based on the first n values of
the entire sequence. During this phase, the first n data points
and a predefined risk probability q are input into the POT
model [24] to determine zq and t. In the subsequent detection
phase, any Xi exceeding zq is considered an anomaly. Data
points falling between zq and t are regarded as peaks and are
used to dynamically update the Generalized Pareto Distribu-
tion (GPD) model and the threshold zq in a streaming manner.
Data points below t are considered normal.

Maximum inflection point identification process. The
process of identifying the maximum inflection point involves
analyzing both the success rate and response time data. The
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Fig. 5. The process of the maximum inflection point identification.

process begins with smoothing the incoming data window,
followed by these analyses:

1) Success rate analysis: When the success rate falls below
a certain threshold, the concurrent user number at that point
is identified as a potential maximum inflection point.

2) Response time analysis: Simultaneously, SPOT is em-
ployed to detect any sudden shifts in the response time, which
could indicate a potential maximum inflection point.

A customized alarm rule is used to mitigate interference
caused by system jitter. It involves maintaining two queues to
track recently detected suspicious maximum inflection points,
as shown in Fig. 5. The maximum inflection point is confirmed
when the proportion of suspicious points in the window
reaches the threshold k within a specified period. At this
point, a signal is sent to stop the stress testing. This structured
approach ensures the accurate identification of significant in-
flection points by leveraging both statistical anomaly detection
and customized alarm rules to handle potential data noise and
system instability.

IV. EVALUATION

In this section, we evaluate the performance of Auto-PIP
using a dataset collected from the industrial environment of
Huawei Cloud. We aim to answer the following research
questions (RQs):
RQ1: How does the performance (accuracy and efficiency) of
Auto-PIP compare to the baseline methods?
RQ2: Does each component of Auto-PIP significantly con-
tribute to its performance?

A. Experiment Setup

Datasets. Based on past experience, identifying the optimal
and maximum inflection points requires manual labeling,
which is time-consuming and laborious. In order to evaluate
the accuracy of Auto-PIP identifying the optimal and maxi-
mum inflection points, we invite experienced test experts to
manually label the user intervals of the optimal and maximum
inflection points. A total of 128 cases constitute the test data
set, denoted as D.

Baseline methods and evaluation metrics. Due to the
scarcity of methods directly related to inflection point identi-
fication, we primarily selected baselines from the transformed
problems. In the optimal inflection point identification process,
we compared Auto-PIP with the slope method [12] and the
Cox-Stuart test [13], both of which are KPI trend detection
algorithms. For identifying the maximum inflection point, we
compared Auto-PIP with the k-sigma method [16], the box
plot [17], and Bagel [19], which are all KPI anomaly detection
algorithms. Accuracy and efficiency metrics were employed to
evaluate Auto-PIP:
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Accuracy =
1

|A|
∑
aϵA

I(f(a)ϵYa) (4)

A denotes the test case set. Ya denotes the interval range of
the number of concurrent users corresponding to the inflection
point of the test case, annotated by test experts with five years
of experience. f(a) denotes the optimal or maximum inflec-
tion point predicted by Auto-PIP. I (·) denotes the indicator
function. Efficiency refers to the algorithm’s runtime during a
10-minute stress test data session.

B. Auto-PIP vs. Baseline Methods (RQ1)

Table I demonstrates that the time consumption of the three
methods in the optimal inflection point identification is similar.
However, considering the accuracy, Auto-PIP outperforms the
other two methods. During the maximum inflection point
identification phase, although Auto-PIP consumes more time
than the baseline methods, it achieves higher accuracy within
an acceptable time.

Given the critical importance of identifying the maximum
inflection point for determining system capacity, we also
evaluate the performance of Bagel, a representative deep
learning-based KPI anomaly detection method. Experimental
results show that Bagel’s accuracy is lower than that of
Auto-PIP, and its execution time is considerably longer. This
discrepancy may be due to deep learning models’ challenges
in learning effective knowledge from short-term stress testing
data. Moreover, the method’s inefficiency could hinder the
timely identification in practical scenarios, increasing the risk
of system crashes.

TABLE I
OVERALL PERFORMANCE OF Auto-PIP AND BASELINE METHODS

Detection Type Method Accuracy Efficiency

Optimal
Slope method [12] 53.3% 0.231s
Cox-Stuart test [13] 58.3% 0.220s

Auto-PIP 100% 0.228s

Maximum
K-sigma [16] 73.2% 2.085s
Box plot [17] 21.4% 1.398s

Bagel [19] 66.1% 5.830s
Auto-PIP 83.9% 2.229s

C. Contribution of Key Components (RQ2)

To identify the maximum inflection point, Auto-PIP con-
siders sudden drops in success rates and uses SPOT to detect
abrupt increases in response time data. Table II shows that
Auto-PIP without SPOT achieves higher execution efficiency
but lacks accuracy. Additionally, Auto-PIP without a success
rate threshold results in lower accuracy for maximum in-
flection point identification and increased reporting time due
to the relaxed condition restrictions, leading to higher time
consumption. Therefore, monitoring the decline in success
rates while using SPOT to identify anomalies in response time
data is necessary.

TABLE II
CONTRIBUTION OF KEY COMPONENTS

Model Accuracy Efficiency
Auto-PIP 83.9% 2.229s

Auto-PIP w/o SPOT 60.7% 0.359s
Auto-PIP w/o success rate 21.4% 2.790s

User Web Service Load Balancing Service Scheduler Service

Data Center ServiceAlgorithm Service Data Monitor Service

Request

Response

Fig. 6. The workflow of Auto-PIP in Huawei Cloud’ industrial environment.

V. DEPLOYMENT

A. Workflow of Auto-PIP’s Deployment

As shown in Fig. 6, the workflow of Auto-PIP in the in-
dustrial environment of Huawei Cloud includes the following
steps. First, the test user initiates a stress test request via the
front-end web service. This request is routed to the scheduler
service by the load balancer HAProxy [25]. The scheduler
service then allocates the necessary computational resources
for the stress test task and instructs the data center service
to push KPI data to the algorithm service (i.e., Auto-PIP).
Finally, the algorithm service analyzes the real-time KPI data
to identify performance inflection points and returns the results
to the front-end web service.

B. Case Study

To better understand the workflow and practical effective-
ness of Auto-PIP, we present three cases from the dataset D,
as shown in Fig. 7.
(1) Optimal inflection point. As shown in Fig. 7(a), when
the system transitions from a light load to a smooth load, the
throughput ceases to increase as the number of concurrent
users rises. Auto-PIP successfully identifies this transition
point, determining that 32 concurrent users represent the
optimal inflection point.
(2) Maximum inflection point due to success rate drop.
As shown in Fig. 7(b), when the number of concurrent users
linearly increases to 1512, a significant number of user re-
quests fail. Due to the sharp drop in the success rate, Auto-PIP
promptly reports the occurrence of the maximum inflection
point.
(3) Maximum inflection point due to response time surge.
As shown in Fig. 7(c), in the light and smooth load areas,
the response time gradually increases with the growth in
concurrent users. However, when the number of concurrent
users reaches 2082, the response time suddenly surges from
1400 ms to 4000 ms and subsequently fluctuates significantly.
Auto-PIP accurately identifies this phenomenon and reports
the maximum inflection point.

Based on the above analysis, it is evident that Auto-PIP can
accurately identify critical performance inflection points, of-
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Fig. 7. The Cases of optimal in and maximum inflection points: the
red rectangle represents the identified optimal inflection and the red point
represents the identified maximum inflection points.

fering valuable insights into system capacity and performance
optimization.

VI. CONCLUSION

Conducting stress testing is crucial to ensuring the reliability
of software systems. In this paper, we propose Auto-PIP, a
novel approach that combines trend testing and unsupervised
anomaly detection to identify optimal and maximum inflection
points during stress testing. Experiments conducted on a real-
world dataset of Huawei Cloud demonstrate the effectiveness
and efficiency of Auto-PIP. Moreover, Auto-PIP has been
successfully deployed and verified within Huawei Cloud,
demonstrating its practicability. In the future, we intend to
integrate Auto-PIP into our product service CodeArts PerfTest
2, aiming to deliver an intelligent full-link stress testing
experience to a broader user base.
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