Diagnosing Performance Issues for Large-Scale
Microservice Systems With Heterogeneous Graph
Lei Tao ", Xianglin Lu", Shenglin Zhang”, Member, IEEE, Jiaqi Luan"”, Yingke Li"?, Mingjie Li"”¥, Zeyan Li",
Qingyang Yu"’, Hucheng Xie ", Ruijie Xu ", Chenyuan Hu"”, Canqun Yang“,
and Dan Pei”, Senior Member, IEEE

Abstract—The availability of microservice systems is critical to
business operations and corporate reputation. However, the dy-
namics and complexity of microservice systems introduce signifi-
cant challenges to the performance issue diagnosis of large-scale
microservice systems. After investigating hundreds of real-world
performance issue cases in Tencent, we find that previous trou-
bleshooting approaches fail to accurately localize root causes be-
cause they overlook the inconsistency between causality and calling
relationships. Therefore, we propose a novel approach, MicroDig,
to diagnose performance issues for large-scale microservice sys-
tems. Specifically, MicroDig constructs a heterogeneous propaga-
tion graph to capture the causal relationships between calls and mi-
croservices. It then conducts a heterogeneity-oriented random walk
(HORW) to pinpoint the culprit microservice. Extensive evaluation
experiments have been conducted to evaluate MicroDig’s perfor-
mance on 60 real-world performance issues collected from Tencent,
80 manually injected ones collected from a widely used open-source
microservice system and 128 performance issues collected from an
e-commerce system used by a top-tier global commercial bank.
MicroDig achieves 94.1%, 85.5% and 93.8 % top-3 accuracy on the
three datasets, respectively, significantly outperforming six popular
baseline methods. Additionally, we have shared our success stories
and learned lessons from the deployment of MicroDig in Tencent.

Index Terms—Heterogeneous propagation graph, microservice
systems, performance issue diagnosis.

Manuscript received 25 October 2023; revised 23 March 2024; accepted 27
April 2024. Date of publication 17 May 2024; date of current version 9 October
2024. This work was supported in part by the Advanced Research Project of
China under Grant 31511010501 and in part by the National Natural Science
Foundation of China under Grant 62272249 and Grant 62072264. (Lei Tao and
Xianglin Lu contributed equally to this work.) (Corresponding author: Shenglin
Zhang.)

Lei Tao, Jiagi Luan, and Yingke Li are with Nankai University,
Tianjin 300192, China (e-mail: leitao@mail.nankai.edu.cn; jiagiluan@mail.
nankai.edu.cn; yingkeli @mail.nankai.edu.cn).

Xianglin Lu, Mingjie Li, Zeyan Li, Qingyang Yu, and Dan Pei are with
Tsinghua University, Beijing 100190, China, and also with Beijing National
Research Center for Information Science and Technology, Beijing 100084,
China (e-mail: lux120@mails.tsinghua.edu.cn; Imj18 @mails.tsinghua.edu.cn;
zy-1118 @mails.tsinghua.edu.cn; yqyl7 @mails.tsinghua.edu.cn; peidan@tsing
hua.edu.cn).

Shenglin Zhang is with the College of Software, Haihe Laboratory of
Information Technology Application Innovation, Nankai University, Tianjin
300192, China, and also with the Tianjin Key Laboratory of Software Ex-
perience and Human Computer Interaction, Tianjin 300192, China (e-mail:
zhangsl @nankai.edu.cn).

Chenyuan Hu is with the National Supercomputing Center of Tianjin, Tianjin
300456, China (e-mail: cheneyhu@tencent.com).

Hucheng Xie, Ruijie Xu, and Canqun Yang are with Tencent, Inc., Beijing
100080, China (e-mail: toraxie@tencent.com; rjxu@tencent.com; canqun@
nudt.edu.cn).

Digital Object Identifier 10.1109/TSC.2024.3402172

I. INTRODUCTION

ICROSERVICE architecture is a scheme to develop
Ma single application into a set of small services [1].
Each microservice is developed and runs independently and
communicates with each other through lightweight communi-
cation mechanisms. However, with the rapid evolution and scale
expansion of microservice systems, reliability, and availability
maintenance are challenging due to the inherent dynamics and
complexity [2], [3], [4]. Nevertheless, powerful system perfor-
mance and high-quality user experience are critical to underpin-
ning the reputation and profitability of the enterprise, otherwise
may cause significant losses. For example, the estimated cost
of Amazon’s downtime for an hour during the most prominent
promotional event is as high as 100 million dollars [5].

Therefore, operators make great efforts to maintain sys-
tem performance. They monitor system health by configuring
and collecting SLIs (Service Level Indicators) such as QPS
(Queries Per Second), response time, and success rate. They
also configure the corresponding SLOs (Service Level Objects)
for user-facing microservices to evaluate system performance,
e.g., keeping response time under 10 ms while handling 1000
QPS [6]. When the status of a user-facing service fails to meet
the predefined SLO, the microservice system is considered
anomalous, and a performance issue will be generated. Since
different operation teams usually manage different services, it
is necessary to localize the culprit microservice when a perfor-
mance issue happens, so as to assign the performance issue ticket
to the right operation team. However, a microservice system
consists of a large number of services (In this paper, we use
“microservice” and “service” interchangeably). For example,
the e-commerce system of Alibaba contains more than 30,000
services [2]. In addition, the internal relationships of the services
are dynamic and complex [7], [8], [9]. Anomalies can propagate
among services, causing availability issues of different ser-
vices simultaneously. Thus, manual localization is laborious and
time-consuming. According to IBM’s statistics [10], root cause
localization takes the longest time in the entire performance
issue handling period, which needs to be optimized urgently.
Therefore, our work focuses on efficiently localizing the culprit
(i.e., the root cause service) when a performance issue (i.e., an
SLO violation) occurs in the microservice system.

Some existing works [11], [12], [13] proposed to localize the
root cause service via trace analysis. The service-level traces

1939-1374 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0007-1282-3089
https://orcid.org/0000-0002-8822-5663
https://orcid.org/0000-0003-0330-0028
https://orcid.org/0009-0005-4720-2675
https://orcid.org/0009-0009-8069-9424
https://orcid.org/0000-0002-4778-4098
https://orcid.org/0000-0002-3529-5879
https://orcid.org/0000-0003-3900-655X
https://orcid.org/0000-0003-4729-1565
https://orcid.org/0009-0005-9122-6121
https://orcid.org/0009-0008-9092-7227
https://orcid.org/0009-0008-4757-2475
https://orcid.org/0000-0002-5113-838X
mailto:leitao@mail.nankai.edu.cn
mailto:jiaqiluan@mail.nankai.edu.cn
mailto:jiaqiluan@mail.nankai.edu.cn
mailto:yingkeli@mail.nankai.edu.cn
mailto:luxl20@mails.tsinghua.edu.cn
mailto:lmj18@mails.tsinghua.edu.cn
mailto:zy-li18@mails.tsinghua.edu.cn
mailto:yqy17@mails.tsinghua.edu.cn
mailto:peidan@tsinghua.edu.cn
mailto:peidan@tsinghua.edu.cn
mailto:zhangsl@nankai.edu.cn
mailto:cheneyhu@tencent.com
mailto:toraxie@tencent.com
mailto:rjxu@tencent.com
mailto:canqun@nudt.edu.cn
mailto:canqun@nudt.edu.cn

2224

are collected from the distributed tracing framework, which
records the complete service invocation process of each request
execution in the microservice system. However, with the increas-
ing number of microservices and requests, the storage require-
ments also tremendously increase, which brings about signifi-
cant overheads. For example, in eBay, the microservice systems
produce nearly 150 billion traces per day [14]. Therefore, more
and more enterprises, including Tencent, choose to retain the
end-to-end aggregated calls between every two services instead
of the entire traces.

Some works are carried out on the aggregated call data.
The method proposed in [15] recommends the most similar
historical anomalies through pattern matching for root cause
localization. However, it depends heavily on sufficient samples
of historical performance issues and the high coverage of is-
sue types, leaving it impractical. Other works employ causal
graph-based methods for root cause localization. However,
calling relationships (used in [2], [7], [16]) are insufficient to
build causal graphs (see Section IV for more details), while
causality mining algorithms (used in [17], [18]) suffer from
high computational cost and low accuracy when the number
of microservices is enormous. Therefore, a more practical root-
cause localization approach for microservice systems is urgently
needed.

In this paper, we propose an accurate and efficient method,
MicroDig, to localize the root cause for large-scale microservice
systems. The foundation of MicroDig is that dynamic calling
relationships are not equivalent to causality, which will be further
elaborated on in Section IV. When a performance issue occurs
in MicroDig, we first identify its association calls to avoid
the interference of irrelevant microservices. Then, since the
relationship between microservices is complex and dynamic,
we build a causal graph based on the calling relationships near
the occurrence time of the performance issue. To address the
inconsistency between causality and calling relationships, we
apply both microservices and their calls as nodes to build a
heterogeneous propagation graph through causal relationships,
whose edges represent causal relationships. Usually, a ranking
algorithm is used on a causal graph to get the root cause. How-
ever, traditional ranking algorithms cannot be directly applied
to heterogeneous causal graphs. Thus, we propose a novel rank-
ing algorithm, Heterogeneity-Oriented Random Walk (HORW),
combining correlation coefficient and anomaly detection results
for candidate culprits ranking.

Extensive evaluation experiments have been conducted to
evaluate the performance of MicroDig using 60 real-world
performance issues collected from Tencent, a top-tier global
multimedia service provider serving over 1 billion daily active
users, 80 manually injected performance issues collected from a
widely used open-source microservice system Train-Ticket [19]
and 128 performance issues collected from an e-commerce
system used by a top-tier global commercial bank. Experimental
results show that MicroDig ranks the root-cause microservices
at the top 3 in 94.1%, 85.5% and 93.8% performance issues on
the real-world and simulated datasets, respectively, significantly
outperforming six popular baseline methods by 16.0%, 32.2%
and 88.5%. Furthermore, we also discuss the success stories and

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

lessons learned from the deployment of MicroDig in Tencent.
To facilitate follow-up studies, our code is released at [20].

To sum up, our work has the following main contributions:

e After investigating hundreds of performance issue cases
of Tencent, we identified a valuable problem, i.e., the
inconsistency of causality and calling relationships.

® We propose MicroDig to localize the root cause of perfor-
mance issues for large-scale microservice systems. Its core
technologies include the construction of the heterogeneous
graph and HORW. The former aims to accurately model
causality based on calling relationships. The latter is de-
signed to rank the suspicious services on the heterogeneous
graph to find the culprit.

® We deploy the prototype of MicroDig in Tencent. The
deployment demonstrates the superior performance of Mi-
croDig in root cause localization for large-scale microser-
vice systems.

II. RELATED WORK

Some work utilizes microservice invocation traces for root
cause localization. TraceRank [21] calculates the suspiciousness
of each service based on the anomalous traces associated with the
service, and conducts random walk on the service call graph to
pinpoint anomalous services. TraceAnomaly [11] first performs
anomaly detection on traces based on Variational Autoencoder
(VAE) and then identifies the service corresponding to the
longest anomalous call as the root cause. TraceRCA [12] applies
aunified indicator to measure the possibility of service becoming
the root cause according to the number of anomalous traces
that pass through the service. Sage [13] builds an impact graph
between services based on domain knowledge and applies deep
learning algorithms to perform counterfactual reasoning on the
graph. However, with the dramatic increase in the number of
services, storing data in the form of a trace is prohibitively
expensive. Therefore, the above methods are inappropriate for
Tencent’s large-scale microservice systems, and we did not
compare them in the evaluation experiments.

Some researchers work on the aggregated invocation data of
pairwise services. We divide the related work into the follow-
ing categories. The first category is based on fault similarity
matching. For example, the method proposed in [15] localizes
the root cause service by calculating the similarity between the
new fault graph and historical fault graphs and recommends the
most similar fault graphs labeled by experts. Although this type
of method is unsupervised, it still needs enough historical fault
samples of different types for pattern matching which is hard to
obtain in practice. Therefore, this type of method is impractical,
and it is not considered in our comparative evaluation.

Other localization methods consist of two key steps: causal
graph construction and ranking on the graph. In terms of graph
construction, some methods utilize the calling relationship to
construct. FChain [22] pinpoints the culprit component by an-
alyzing the anomalous change points of different components
and the invocation topology, which catches the inter-component
dependency information. MonitorRank [16] achieves ranking by
implementing the personalized PageRank algorithm on the call

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: DIAGNOSING PERFORMANCE ISSUES FOR LARGE-SCALE MICROSERVICE SYSTEMS WITH HETEROGENEOUS GRAPH

graph. MicroRCA [7] constructs an anomaly graph based on
the calling relationship and deployment relationship between
services and employs Personalized Pagerank to localize the
root cause service on the anomaly subgraph. It heavily relies
on the information of real-time service deployment, which is
dynamically changing and cannot be easily obtained in our
scenario. Therefore, we did not take it as a baseline method
in our evaluation experiments. MicroHECL [2] first detects ser-
vice anomalies and then analyzes possible anomaly propagation
paths according to different types of fault propagation modes
on the call graph, and ranks candidate root causes through
correlation analysis. However, calling relationship and causality
are not completely equivalent as mentioned in Section I'V so that
itis inaccurate for such methods to construct causal relationships
directly by calling relationships. Furthermore, some methods
employ causality mining algorithms to build causal graphs and
perform localization. MS-Rank [23], CloudRanger [3], and Ser-
viceRank [17] utilize conditional independence tests for mining
dynamic causal relationships between services for impact graph
building and rank the services on the graph based on the random
walk. Specifically, ServiceRank constructs the impact graph
based on PC algorithm and identifies the root cause based on
the second-order random walk. Nevertheless, when the number
of services in a microservice system is enormous, using causality
mining algorithms will be less efficient and accurate. After
construction, most of the above methods apply random walk or
pagerank algorithms on the graph to get the root cause, and also
some methods determine the root cause by searching directly on
the causal graph. Causelnfer [18] collects connection informa-
tion to build a service dependency graph, uses depth-first search
to find the leaf nodes along the anomalous path, and calculates
the anomaly score based on Z-Score to get the final ranking.
Microscope [24] constructs the causal graph with calling rela-
tionships and causal mining algorithms, searches all boundary
nodes as candidate services along the reverse direction, and ranks
them according to their similarity with the performance metric.
It is difficult for such methods to guarantee the effectiveness of
root cause localization when the causality mining algorithm or
anomaly detection algorithm is inaccurate or untrustworthy.

Considering the practicability of the algorithm and the fair-
ness of the evaluation, we choose the latest or most influential
algorithm for each type of method as the baseline comparison
in the experimental part.

III. BACKGROUND

A. Microservice System

A microservice system decomposes large applications into
multiple independent microservices, each with its area of re-
sponsibility. It is designed to handle discrete tasks and enables
independent development, deployment, and maintenance of ser-
vices. When processing a user request, a microservice-based
application may invoke many internal services to collectively
generate its response to provide business support for the appli-
cation.

The microservices in the system are loosely coupled. They
communicate with each other through simple interfaces or

2225
call return
A Pre-ca o Call microservice B og
B B Call microservice C [-
@ Process
Fig. 1. A toy example of the call process in the microservice system.

protocols such as RESTful (Representational State Transfer)
APIs (Application Programming Interfaces) and RPCs (Remote
Function Calls). In general, the communication relationship
of microservices presents a mesh structure. Thus, we model
the communications as a graph, where the vertices represent
the microservices and the edges point from the caller to the
callee providing the service. An example of the call process
is shown in Fig. 1, which depicts a basic synchronous service
request. The example involves three microservices, A, B, and C,
whose relationships are represented with arrows, i.e., A calls B
(denoted as A —°?! B), and B calls C (denoted as B —°* ().
The processing logic of service A consists of three parts. The
first is the pre-call logic, and then the downstream service is
called. After the call returns, the post-call logic is executed. So
do services B and C.

The anomaly of a particular service in the microservice system
can propagate to and affect other services. The main reason is
that the return result of the upstream call is determined by that
of the downstream call. For example, in the case of Fig. 1, when
the performance of service C degrades, it will cause an increase
in response time, the duration of B —call ¢ increases, and so
does the duration of A —¢e!! B, Similarly, if service C cannot
handle B’s request due to overloading and returns an exception, it
usually results in an exception of A —°* B. This does not mean
that the downstream call will cause the anomaly of the upstream
call in every performance issue, but the anomaly of the upstream
call may be caused by the anomaly of the downstream call.

B. Performance Monitoring

1) Data Record: There are many solutions for distributed
tracing of service calls, such as Jaeger [25], Zipkin [26], and
OpenTelemetry [27]. However, as the number of microservices
increases, the cost of storing all traces becomes unbearable. To
mitigate the storage pressure, only storing aggregated end-to-
end call data has become a better choice for some enterprises,
including Tencent. For end-to-end pairwise call records, multi-
ple call fields are reserved within each predefined period (e.g.,
1 minute). The most basic collection items are the number of
anomalous calls, including exception calls and timeout calls,
and the total number of calls. In the call information retained by
Tencent, in addition to the service names of the caller (client) and
callee (server), the corresponding ports are also recorded. One
microservice can communicate with others through different
ports which are responsible for different types of functions,
e.g., functions supporting different protocols. For example, as

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

2226

Pi Number of anomalous calls of A->B

& \

Ps 1180 1200 1220 1240 1260 1280
(s I (B o
s
\$ Number of anomalous calls of B->C
O O
1180 1200 1220 1240 1260 1280
Time

(a) Calls between microservices (b) A real performance issue case

Fig. 2. An example of port-level calls and the related performance issue.

shown in Fig. 2(a), Service A and B have three and two different
ports, respectively. Service A calls Service B via py —° p,
and p; —°* ps. This type of port-level call data collected by
the monitoring system in Tencent is used in the remaining parts.

2) Performance Issue Diagnosis: In a real-world produc-
tion environment, the primary performance concern of a mi-
croservice is its high latency and low availability, which can
be perceived from the number of timeout calls and exception
calls, respectively. Performance issues can arise for various
reasons, e.g., limited host resources, hardware availability, and
network instability. When a service has performance issues,
the anomalies will propagate along the calling topology, which
may eventually affect the external services provided by the
microservice system. To guarantee superior user experience,
operators configure SLIs and SLOs to monitor the availability of
microservice systems. When a service running state fails to meet
the SLO standard, a performance issue will be detected. Due
to the large number of services, complex and dynamic relation-
ships, and the inconsistency between the calling relationship and
the causal relationship in the microservice system, determining
the root cause remains challenging.

IV. MOTIVATION
A. Motivating Example

Some works take the calling relationship as the causality of
anomaly propagation [2], [7], [16], which is oversimplified in
our scenario. Fig. 2(b) shows a real performance issue where A,
B, and C represent three microservices, respectively.

The number of anomalous calls of both A —°* B and
B —°4 O increase as shown in Fig. 2. However, as operators
dug into the details, they found no meaningful error reports of
C.. On the other hand, those calls from B (i.e., B —°*" C) are
anomalous. This is because B had exhausted the file descriptors
and failed to set up new connections to C. As calling data is
recorded by callers in Tencent, such anomalies contributed to the
anomaly rate of B —°2 (' as well. In conclusion, the anomaly
rates of A —°“ B and B —°*' C are confounded by the system
resources of B [28]. Hence, B is the root cause service in this
case, which cannot be localized by searching along the calling
relationship. After investigating hundreds of performance issues
of Tencent, we found that over 35% of performance issues suffer
from such problems.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

R(A,B) «— R(B,C) «— R(C, D)

A R A R 7z R

Fig.3. The graphical model of A - B —call ¢ call D R(A, B) rep-

resents the anomaly rate of A —°*! B and R(A) is the anomaly rate of the
service A itself.

Microservice system

Monitoring : Service-level Heterogeneous . Treatment
Component Trigger Association Graph_ P ion Graph Ranking Result reatmen
e 7 = P
-8 —-%—-[F—> &
L Heterogeneous .
SLO violation Assocl.atmn_Call Propagation Graph Root Caulse Servnce Operators
Identification Construction Localization
Fig. 4. The framework of MicroDig.

B. Heterogeneous Propagation Graph

Based on the above observations, we found that a call’s
anomaly cannot be just directly attributed to the downstream
service. Instead, both the caller and the callee can contribute
to this situation. Therefore, it is not sufficient to capture the
anomaly propagation only with the calling relationship. In this
paper, we propose a graphical model [28], i.e., a heterogeneous
propagation graph, to describe the causal relationship more
precisely than the calling relationship. As shown in Fig. 3, a
heterogeneous propagation graph considers both observed vari-
ables for each call (e.g., the anomaly rate R(A, B) of A —<2! B)
and unobserved ones for services (e.g., the anomaly rate R(A)
of the service A itself).

Based on the call and return mechanism of the microservice
system, we can easily identify the causal relationship between
upstream and downstream calls. Specifically, R(A, B) describes
all the possible anomalies after the invocation starts, which
consist of those in B (i.e., R(B)) or the subsequent callings from
B. Besides, the motivating example mentioned in Section IV-A
illustrates that such an anomaly can also arise in A. Hence, we
propose to link all services torelated calls (i.e., the dashed arrows
in Fig. 3).

The missing edges in Fig. 3 encode our assumptions. As
the anomaly rates of services are unobserved in this work, we
assume that services are deployed independently to simplify our
model, e.g., R(A) and R(B) are independent. Furthermore, we
assume that two calls without a joint node are not directly related,
e.g., there is no arrow from R(C, D) to R(A, B) in Fig. 3. We
leave a complete model for future work.

V. MICRODIG
A. Overview

Fig. 4 shows the core framework of MicroDig. When the
monitoring component of the microservice system detects an
SLO violation, MicroDig is triggered to localize the culprit.
Three key phases make up MicroDig. First, in the associa-
tion calls identification phase, MicroDig search from the issue

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: DIAGNOSING PERFORMANCE ISSUES FOR LARGE-SCALE MICROSERVICE SYSTEMS WITH HETEROGENEOUS GRAPH

(a) Port-level call graph (only
anomalous and associated calls)

Fig. 5. The construction process of heterogeneous propagation graph.

microservice to find candidate microservices associated with
the performance issue (Section V-B). Second, a heterogeneous
propagation graph is constructed with inter-microservice calls
and candidate microservices as nodes in the heterogeneous
propagation graph construction phase (Section V-C). Third, in
the phase of culprit service localization, a heterogeneity-oriented
random walk algorithm is proposed to perform microservice
ranking on the heterogeneous graph (Section V-D).

B. Association Call Identification

Large-scale microservice systems usually generate plenty of
service calls in a short time. As mentioned in Section III-B, only
core fields, including the number of calls, exception calls, and
timeout calls per minute, are stored. When a performance issue
(i.e., an SLO violation) is detected, there are lots of calls near
the issue. Analyzing all recorded calls is not only inefficient but
also leads to poor root-cause localization accuracy. The main
reason is that a large number of service calls are irrelevant to the
performance issue, so we need to identify related microservice
calls.

As discussed in Section III-B, the data provided by Tencent
contains the calling port of each microservice (i.e., on the port
level), but our objective is to select the culprit microservice (i.e.,
on the service level). In order to more accurately ascertain the
microservices associated with the performance issue, we first
choose to build a calling graph of port level. Then we retain re-
lated calls and corresponding microservices by performing BFS
(Breadth-First Search) and anomaly detection on the graph. As
shown in Fig. 5(a), a circle represents a port-level node, the ports
in the same dotted ellipse belong to the same microservice, the
orange port-level nodes are issue-irrelevant, and calls denoted by
dashed lines denote non-anomalous ones. Finally, the port-level
nodes in the graph are aggregated to the service level, as shown in
Fig. 5(b). We detect anomalous ports first because if we perform
port aggregation first, an anomalous port-level call may be over-
whelmed by the normal calls of the same microservice, which
may cause the root cause services to be filtered out at this step.

1) Construction of Association Graph: Since the recorded
data encode the calling relationship among microservice ports, a
call graph with service ports as nodes can be easily constructed.
Then, we consider all port-level nodes on the call graph that

(b) Service-level call graph
(aggregated from the previous graph)

2227

Cys Cae
(c) Service-level Heterogeneous
Propagation Graph

belong to the microservice may suffer from the performance
issue. Starting from these nodes, two BFSes are performed along
and against the direction of the calling edges. The sub-graph
consisting of all traversed port-level nodes associated with the
issue service is the port-level association graph.

To capture the propagation pattern of the performance issue
and further, narrow down the number of candidate root causes,
we perform anomaly detection using an efficient and widely
used anomaly detection method (called k-sigma) for each edge
(i.e., call) in the association graph. It learns parameters p and
o from historical data and treats the value exceeding (u — k *
o, it + k x o) as anomalies. In this work, we take k as 3, because
the system in Tencent also has some fluctuations in the normal
state.

We consider a call anomalous when the value of the call’s
exception rate or timeout rate is detected as anomalous. Given
an issue starting at time point ¢, we use each call’s exception rate
or timeout rate from ¢ — ¢ to ¢ + ¢ for anomaly detection. Data
within [t — ¢ — d,¢ — ¢) are used to learn the parameters of the
normal pattern.

2) Data Merge: We conduct anomaly detection based on
the port-level data instead of the service-level data because
an anomaly at the port level, which indicates that the service
containing the port experiences anomalous behavior, may be
overwhelmed if we conduct anomaly detection based on the
service-level data aggregated from the port-level data. Based on
the above steps, edges with anomalies in the association graph
are retained. Since the graph we get is a port-level association
graph, and our objective is to localize the culprit service, we need
to merge the call data of ports and construct the service-level
association graph.

Let p be a node of the port-level association graph. We denote
all the ports of a given service S as P(.S). To construct the
service level graph, we merge all the port-level nodes of the
same service S to one node denoted as S = {p € P(S)}. The
anomaly rate R(S, ') of an edge S —<*!! " at the service level
integrates the number of anomalous calls F'(p, p’) and that of the
total calls N (p,p’) for each related port-level edge p —°2! p/.
For time point ¢, R;(.S,S") is calculated as:

Z;DES,p’ES’ Ft (p7 p/)

Ri(S,58") =
t() Zpes,p’GS’ Nt (p7p/)

ey

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

2228

Finally, the association graph at the service level whose nodes
are all relevant to the issue service is constructed. Meanwhile,
we can obtain a time series of anomaly rates for S —¢*! '
R(S, S/) = (Rt_¢, Rt_¢+1, vy Rt_,_w).

C. Heterogeneous Propagation Graph Construction

The association graph constructed is directed, and the di-
rection of its edges represents the calling relationship between
services. However, as mentioned in Section IV, the calling rela-
tionship is not equivalent to the causal relationship. Therefore,
the association graph cannot be directly used as a causal graph
for root cause localization. We propose to build a heterogeneous
propagation graph that reflects the causal relationship between
the calls and the services based on the association graph.

As shownin Fig. 5(c) and line 2 and line 10 in Algorithm 1, we
first abstract the edges in the association graph (i.e., edge S1 —
So, edge So — Ss, ...) as call nodes (denoted as Co, Coas, . ..)
and the nodes in the association graph as service nodes (denoted
as 51,59, ...). Then, we add edges between these nodes in the
causal graph as follows.

The edge between a call node and a service node: Since the
caller and callee of one service call are the immediate cause
of the call, we add two edges from both the caller and callee
service nodes to each call node, respectively, as shown by the
green dashed edges in Fig. 5(c) and line 11-15 in Algorithm 1.

The edge between two different call nodes: Our key insight is
that the anomaly of the downstream call can cause the anomaly
of the upstream call. Therefore, for adjacent calls on the service
call chain, we argue that the downstream call is the direct cause of
the upstream call and we thus add an edge from the downstream
call node to the upstream call node, as shown by the solid blue
edges in Fig. 5(c). For instance, as shown in Fig. 5(b) and line
3-9in Algorithm 1, edge Sz — Sy and edge Sy — S35 are direct
downstream calls of edge S; — S in the association graph, so
an edge from the call node Co4 to the call node C5 and an edge
from the call node Cs3 to the call node C45 are added to the
propagation graph, respectively.

Since the calling relationships and their corresponding metric
data do not reflect the causal relationship between service nodes,
we do not add edges between different service nodes in the
propagation graph. Finally, a heterogeneous propagation graph
with different types of nodes and edges is constructed.

Note that in a propagation graph, the edges point from the
causes to the effects. To perform root cause localization, we flip
every edge in the propagation graph and make the edges point
from the effects to their causes.

D. Root Cause Service Localization

To localize the culprit (root cause) service in the heteroge-
neous propagation graph, we propose a novel method called
Heterogeneity-Oriented Random Walk (HORW) which fully
considers the characteristics of heterogeneity, and innovates in
the calculation of transition probability.

1) Transition Weight Calculation: There are two types of
edges in the heterogeneous propagation graph: (1) edges that

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

Algorithm 1: Heterogeneous Propagation Graph Construc-

tion.

Input: G: association graph at service level.

Output: GG},: Heterogeneous propagation graph.

: G}, < initialize the heterogeneous propagation graph

: Gp.addNodes(G.edges())

:for all S € G.nodes() do

for all C,,,; € G.outEdges(S)
for all C;,, € G.inEdges(S)

Gp.addEdge(Cout, Cin)

end for

end for

: end for

10: Gj.addNodes(G.nodes())

11: for all C € G.edges() do

12: caller, callee < splitCall(C)

13: Gj.addEdge(caller,C')

14: Gp.addEdge(callee, C)

15: end for

do
do

A A T

Nel

connect two different call nodes and (2) those that connect one
call node and one service node.

For the first type of edges, suppose the start and end nodes of
an edge are (12 and Cly3, respectively. Since we have already
obtained the time series data of the anomaly rates of C72 and
Cas, ie., R(S1, S2) and R(S2,.S3), respectively, we apply the
correlation coefficient of R (S, S3) and R (S5, S3) as the weight
of the edge from C5 to Cas.

For the second type of edges, it seems impossible to determine
which service node has a larger causal influence on a given
call node since we only have monitoring data of service calls.
To address this problem, we use all service call information
related to a service node (not only the node on the service-level
association graph) to calculate the anomaly score of the service
node, and assign different transition wights for the edges from
the calling node to the caller/callee service node according
to their service anomaly scores. The details are described as
follows.

For a given service .S, we denote its upstream service set
as Sy = {9 | ' = S} and its downstream service set as
Sp ={8"| § = S} Let 6(S') be the anomaly indicator
of S’. When any related port-level call between S and S’ is
detected as anomalous, 6(S") = 1. Otherwise, 6(S’) = 0. Fi-
nally, the anomaly score of the given service S, ag measures
the anomalous ratio of its related services as:

{88 €Sy USp.0(S') = 1}]
|SUUSD|

as 2

Given a call node C' connecting two service nodes S.q1¢- and
Scaliee in the heterogeneous propagation graph, let weqzer be the
weight of the edge from C' to S¢qjjer and weqiiee be the weight
of the edge from C' to S.uc.. Recall that we have obtained
the weights between different call nodes according to the first
type of edges. We sum the weights of all the out (in) edges
between C' and its associated call nodes, denoted as 7,,¢ (7in)-
Intuitively, we will partition A, = 1, — ou: between weaiier

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: DIAGNOSING PERFORMANCE ISSUES FOR LARGE-SCALE MICROSERVICE SYSTEMS WITH HETEROGENEOUS GRAPH

Algorithm 2: Heterogeneity-Oriented Random Walk.

Input: G: weighted heterogeneous propagation graph with
M call nodes and L service nodes, T': transition
probability matrix of G, e(C'): the initial score of call
node C', and «: the number of iterations.

Output: P: The root cause probability of each node.

1: for all call nodes C'in G do

2 A(C) () M e(Cy)

3: end for

4:'V < 0 {the number of times each node is visited}
S:fori=1tox do

6: n < Randomly pick a call node according to A
7. forj=1to M + Ldo

8: n <— Randomly pick the next node according to
T(n)
9: V(n)+ V(n)+1
10: end for
11: end for

12:P=V/3 v,

and weqllee equally when Aoc = a(Scaller) - a(Scallee) =0
and more (less) for weqier when A, > 0(A, < 0). B is apreset
hyperparameter, which is related to the accuracy of anomaly
service detection. It can well mitigate the impact of wrong
anomaly. Finally, weqizer and weqiiee are calculated using (3),
where sgn zis —1,0,1 whenz < 0,z = 0,z > 0, respectively.

Wealler = maX(Ov An) * [05 + Bsgn(Aaﬂ
Wealtee = Max(0, Ay) * [0.5 — Ssgn(A,)] 3)

2) Heterogeneity-Oriented Random Walk (HORW): We now
get an initial weighted heterogeneous graph. But it cannot be
directly used for root cause localization yet, because a native
random walker may be stuck in a node without out-edges, no
matter how irrelevant those nodes are to the performance issue.
Therefore, we add an additional backward edge to each pair of
nodes linked by only one directed edge in the heterogeneous
propagation graph, whose weight is p times the weight of the
original edge, so that the random walker can flexibly explore the
nodes with high pattern similarity. We also add a self-loop edge
to each service node in the graph, whose weight is the max of
all the in-edge weights of the node. After all the steps above,
the weighted heterogeneous graph is finally constructed, and
we can get a transition probability matrix T by normalizing the
out-edge weights of each node. Then, we propose Algorithm 2
to rank the root cause services.

Before sorting, we take the call nodes related to the issue
service as the random walk entry nodes. The initial scores of
these nodes are set to 1, and the others are set to 0. In Algorithm 2,
we first normalize the initial score of each call node to their
initialization probability (line 1-3). Then, we apply HORW on
graph GG and get the final probability vector P (line 4-12). Finally,
we can sort all the nodes in the heterogeneous graph according
to P. We filter out the call nodes in the sorting results, and
the remaining is the root cause ranking result of the candidate
service nodes.

2229

VI. EXPERIMENT

We conduct a variety of experimental studies to answer the
following research questions.

RQI: How accurate is MicroDig in performance issue diag-
nosis?
Can MicroDig efficiently diagnose a performance issue
for large-scale microservice systems?
Whether the core components of MicroDig signifi-
cantly contribute to the performance of MicroDig?

RQ2:

RQ3:

A. Dataset

We evaluate the performance of MicroDig using 60 real-world
performance issues collected from Tencent, a top-tier global
multimedia service provider housing services for over 1 billion
daily active users, 80 manually injected ones collected from
Train-Ticket [19], a widely used open-source microservice sys-
tem and 128 performance issues collected from an e-commerce
system used by a large bank. To help readers further extend this
work in the future, we release our code at [20].

1) Real-World Production Microservice System: The opera-
tors of Tencent have configured SLOs for important user-facing
services. We collected 60 real-world performance issues accord-
ing to SLO violations in a subsystem of Tencent’s video business
with more than 8,000 microservices. Each case was examined
by professional operators of Tencent to point out the root cause.
The time span of the data collection ranged from December
2021 to July 2022. The data recorded the number of anomalous
calls (including timeout calls and exception calls) and the total
calls per minute. The cumulative distribution function (CDF)
of the number of port-level and service-level nodes are shown
in Fig. 6. We can observe that 80% of performance issues
associated with 20,000+ port-level nodes and 4,000+ service-
level nodes. We denote the real-world dataset of Tencent as A
hereinafter.

2) Open-Source Microservice System: Train-Ticket [19] is
a Web-based online ticket booking microservice system, con-
taining 41 microservices. It has been widely used in previous
works [11], [12], [19]. We used Kubernetes [29] for container
orchestration and management on 7 physical machines. We in-
jected 6 types of performance issues (i.e., network loss, network
corruption, network delay, memory stress, CPU stress, and pod
failure). Each performance issue lasted for about five minutes.
We collected a total of 80 performance issues injected on differ-
ent services. We denote the dataset collected from Train-Ticket
as B hereinafter.

3) E-Commerce Microservice System: The dataset is derived
from a simulated e-commerce system built upon a microservice
architecture by the China Construction Bank Corporation, a
top-tier global commercial bank. This system mirrors authentic
business traffic and encompasses performance issues extrap-
olated from real-world scenarios, including various types of
performance issues such as CPU, memory, disk, network, and
process-related issues. We collected a total of 128 performance
issue cases covering 15 types of performance issues. We denote
the dataset collected from e-commerce microservice system as
C hereinafter.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

2230

1.01

0.8

0.6

0.4+

0.2

0.0

0 10000 20000 30000 40000 50000

The number of port-level nodes

(a) Port-level

1.0

0.8

0.6

0.4

0.2

0.0

0 2000 4000 6000 8000

The number of service-level nodes

(b) Service-level

Fig. 6. CDF of the number of port-level and service-level nodes in .A.

TABLE I
THE PROPORTION OF CASES WITH INCONSISTENCIES BETWEEN CAUSALITY
RELATIONSHIPS AND CALLING RELATIONSHIPS

Dataset | #Inconsistency | #Total | Proportion

A 21 60 35%
B 20 80 25%
C 19 128 15%

Table I presents the quantity and proportion of cases with
inconsistent causality and calling relationships mentioned in
Section IV-A in datasets A, B and C. It is evident that A,
B and C are significantly affected by these problems, with A
experiencing a higher prevalence of such problems.

B. Performance Metric and Baselines

Following existing works [2], [12], [16], [30], we select three
metrics for evaluation.

1) Performance Metric: Top-k Accuracy (AC@k). AC@k
represents the probability that the true root causes of a per-
formance issue case are covered by the top-k recommended
root causes. When k is small, the higher the AC@k, the more
accurate the method is in identifying the root cause. Due to the
small search space, a method with a higher AC@k can greatly
improve operators’ efficiency in troubleshooting. Given a set of
performance issue cases A, AC@k is calculated by (4), where
U, is the ranked root cause list of case a output by a given
method, and V,, is the correct root cause set of case a. Here we

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

choose k = 1, 3, 5, respectively.

3 [{i | Uyli] € V4,0 < i <k}

min(k,|V,|) “)

1
ACQk = —
|A‘ acA

Average Top-k Accuracy (Avg@k): Avg@k represents the
overall performance of a method in terms of AC@k, calculated
by AvgQk = £ 3., ., ACQn,

Mean Reciprocal Rank (MRR): MRR focuses on the position
of the correct root cause in the list of the ranked root causes
output by a method. If the correct answer is not in the ranked list,
the rank can be considered positive infinity [2]. The calculation
of MRR is shown in (5).

MRR = o 0 1/T,, L = (i Ul € Va)
| ‘ acA (5)

2) Baselines: For a comprehensive evaluation, we compare
MicroDig with several state-of-the-art baseline approaches. We
select six approaches for comparison, namely Microscope [24],
ServiceRank [17], MicroHECL [2], MonitorRank [16], Trac-
eRCA [12] and TraceRank [21]. These approaches are all related
to causal relationship or calling relationship mining and have
achieved superior root cause localization performance in their
scenarios. In our experiment, we set each method’s parameter
best for accuracy. For example, the threshold of the p-value is set
t0 0.02 in Microscope, the hyperparameter o of the PC-algorithm
and [of the second-order random walk used in ServiceRank are
set to 0.01 and 0.7, respectively. We set the detection window of
MicroHECL to 10 minutes after the performance issue occurs,
and the correlation threshold is set to 0.5. The weight of the
backward edges and the hyperparameter o in MonitorRank are
set to 0.2 and 0.85, respectively. We set the main parameters,
0fs, 0qd, and k, in TraceRCA to 0.1, 1, and 100, respectively,
to achieve optimal results. Meanwhile, in TraceRank, both d
and p are configured to 0.5. These methods conduct root cause
localization through the performance metrics of each service.
Since our dataset only contains the monitoring data of calls,
we aggregate each service’s call data to obtain its metric data.
Specifically, we take the anomaly rate of service as the perfor-
mance metric of the service, which can be calculated as:

> pes [ZS/QSD,pfes/ Ey(p, D) + Y siesy pes Ft(p/vp)}

> pes {ZsregD,pres/ Ne(p:p') + D gresy pes Nt(l’ﬂP)}

C. Localization Accuracy of MicroDig (RQ1)

To evaluate the effectiveness of MicroDig, we conduct a series
of experimental studies on the above three datasets. The overall
performance is listed in Table II. Experimental results show that
MicroDig outperforms existing baselines conspicuously. Specif-
ically, on dataset A, MicroDig is better than MicroHECL, the
best-performed baseline, by 4%, 18.3%, and 23.5% on AC@1,
AC@2, and AC@3, respectively. The Avg@3 of MicroDig is
81.9%, 16% higher than the second place. In addition, MicroDig
ranks correct root causes high in the ranking lists, and its MRR
reaches 0.78, which is 9.9% higher than other methods at least.
On dataset B, MicroDig achieves at least a 44.6% improvement

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: DIAGNOSING PERFORMANCE ISSUES FOR LARGE-SCALE MICROSERVICE SYSTEMS WITH HETEROGENEOUS GRAPH

2231

TABLE II
THE ACCURACY OF MICRODIG AND THE BASELINE METHODS

THE AVERAGE ELAPSED TIME IN DIAGNOSING A PERFORMANCE ISSUE

Time (s) of | Time (s) of | Time (s) of
Method dataset A dataset B dataset C

MicroScope 3712.93 0.43 14.9
ServiceRank 552.09 0.10 101.2
MicroHECL 81.61 0.06 1.30
MonitorRank 79.63 0.11 1.51
TraceRCA 420.6 0.09 1.45
TraceRank 821.5 0.19 14.1
MicroDig w/o AD 549.10 0.22 1.81
MicroDig 24.72 0.18 1.32

on AC@1 over other baselines. The most commonly used in-
dicators in comprehensive evaluation are Avg@3 and MRR,
where MicroDig achieves 32.2% and 29.8% improvement over
baseline methods at least, respectively. On dataset C, MicroDig
demonstrates significantly superior performance compared to
other baselines, showcasing its stability and robustness in root
cause identification.

Since the baseline methods refers to the overall performance
indicators of each service, anomalies of a few calls may be
submerged in a large number of normal calls, resulting in
misdiagnosis. In addition, Microscope’s strategy of searching
along anomalous paths and retaining only marginal anomalous
services is imperfect. When mistakes occur in anomaly detection
or the causality mining process, the localization effect can be
greatly affected. As for ServiceRank, the causal relationship be-
tween services relies entirely on the mining of the PC-algorithm.
However, the efficiency and accuracy of the algorithm are low
when there are a large number of nodes. The first step in
both TraceRCA and TraceRank involves detecting anomalous
calls, where the accuracy of call anomaly detection significantly
impacts their performance. Over-reliance on call anomaly de-
tection can reduce their adaptability across other Trace datasets.
MicroHECL searches the call graph based on the propagation
patterns of different types of anomalies. MonitorRank mainly
uses calling relationships to construct causal relationships. The
localization performances of MicroHECL and MonitorRank are
poor due to the inconsistency between calling relationships and
causality, as discussed in Section IV.

D. Localization Efficiency of MicroDig (RQ2)

To evaluate the execution efficiency of each method, we give
the average elapsed time of each method on datasets A, B
and C, respectively. As listed in Table III, MicroDig achieves
the best efficiency on dataset .4 with 24.72 seconds per case.

Method Dataset A Dataset B Dataset C

AC@l AC@ AC@3 Avg@3 1{Avg@ MRR | AC@l AC@ AC@ Avg@3 { Avg@ MRR | AC@l AC@ AC@ Avg@ 1 Avg@3 MRR

ServiceRank | 50.8% 55.7% 57.4% = 54.6% 50.0% 055 | 31.8% 409% 56.1% 42.9% 741% 049 | 184% 402% 58.6% 39.1% 88.5% 0.41
MonitorRank | 49.2% 619% 714% 60.8% 34.7% 0.62 | 34.8% 50.0% 59.1% 48.0% 55.6% 051 | 164% 289% 414% 289% 155.0% 0.37
TraceRCA 615% 727% 75.8% 70.0% 17.0% 070 | 12.0% 169% 229% 17.3% 331.8% 022 | 156% 254% 318% 243% 203.3% 0.29
TraceRank 169% 203% 20.3% 192% 326.6% 020 | 12.0% 242% 40.7% 25.6% 191.8% 031 | 25.0% 30.0% 364% 30.5% 141.6% 0.40
Microscope | 50.8% 704% 754% 65.5% 25.0% 064 | 364% 57.6% 682% 54.1% 38.1% 055 | 133% 39.1% 43.0% 31.8% 131.8% 0.40
MicroHECL | 619% 738% 762% 70.6% 16.0% 071 | 424% 53.0% 742% 56.5% 32.2% 057 | 141% 305% 305% 25.0% 194.8% 0.34
MicroDig 64.4% 87.3% 941% 81.9% - 0.78 61.3% 774% 855% 74.7% - 0.74 49.2% 781% 93.8% 73.7% - 0.70

TABLE III

The main reason for the efficiency is the construction of the
association graph and the applied anomaly detection, which
filters out most of the irrelevant service-port items. The low
time complexity of the heterogeneous graph construction also
contributes a lot. Dataset B and C are collected from different
systems with fewer microservice instances, resulting in notably
shorter average elapsed time for all the approaches. The elapsed
time of MicroDig is influenced by both the number of microser-
vice instances and the anomalous calls per case. Specifically,
the quantity of microservice instances affects the size of the
call graph and the computational overhead of random walks.
Moreover, the number of anomalous calls impacts the size of
the anomalous association graph. For dataset .4, collected from
Tencent’s truly Internet-scale microservice deployments, each
case comprises over 8000 real-world microservice instances,
resulting in many anomalous calls. Consequently, MicroDig and
the baseline methods exhibit longer processing times on dataset
A than on datasets B and C, with MicroDig notably faster than
baseline methods in comparison. It demonstrates MicroDig’s
scalability in truly Internet-scale microservice deployments.
Through the above analysis, the efficiency of MicroDig satisfies
the requirement to localize the root cause quickly in online
large-scale microservice systems.

E. Ablation Study (RQ3)

In order to evaluate the impact of heterogeneous causal graph,
hyperparameter /3, and anomaly detection on the accuracy and
time consumption of MicroDig, we conduct the following abla-
tion experiments.

1) Performance of Heterogeneous Propagation Graph: To
show the importance of the heterogeneous propagation graph
(HPG) in improving the accuracy of root cause localization,
we conduct the following ablation experiments. We replace the
HPG from MicroDig with a homogeneous propagation graph
(with services as nodes and calling relationships as edges). The
accuracy of MicroDig and MicroDig without HPG are listed in
Table IV, which shows the importance of the proposed HPG.
Specifically, the HPG brings at least 5.6%, 14.4%, 6.8%, 9.1%,
and 5.4% improvements on AC@1, AC@2, AC@3, Avg@3,
and MRR for MicroDig on dataset A, respectively. On dataset
B, MicroDig achieves a 22.6% improvement on AC@1 over
MicroDig without HPG. In the most commonly used Avg@3
and MRR, MicroDig with HPG is 17.8% and 13.8% higher than
MicroDig without HPG, respectively. On dataset C, MicroDig
without the HPG exhibits decreases of 2.3%, 14.8%, 19.6%,
12.2%, and 0.06 in AC@1, AC@2, AC@3, Avg@3, and MRR,
respectively, compared to MicroDig. The HPG abstracts the

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

2232

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

TABLE IV
THE ACCURACY OF MICRODIG WHEN THE HETEROGENEOUS PROPAGATION GRAPH (HPG) OR ANOMALY DETECTION (AD) 1S REMOVED

Method Dataset A Dataset B Dataset C
AC@l AC@2 AC@3 Avg@3 {Avg@3 MRR | AC@1 AC@2 AC@3 Avg@3 fAvg@3 MRR | ACOl AC@2 AC@3 Avg@3 1{ Avg@3 MRR
MicroDig w/o HPG | 61.0% 763% 881% 75.1% 9.1% 074 | 500% 661% 742% 634% 17.8% 0.65 | 469% 633% 742% 615% 198% 0.64
MicroDigw/0o AD | 305% 610% 712% 542% 511% 051 | 468% 726% 839% 67.8% 102% 0.66 | 475% 650% 75.0% 625% 179% 0.65
MicroDig 644% 87.3% 941% 819% - 078 | 613% 77.4% 855% 747% - 074 | 492% 781% 93.8% 73.7% - 0.70
o AC@I AC@2 -7 AC@3 -+ Avg@3 eoro= o .
HEE -8
¥ ¥ v I Microservices ‘I
* > T T Agents MQ(Kafka) Storage
R . qun
e ——
N
[l [. . |
@ Trigger 1 @ MicroDig |
— s -
;) ; ; ; Service Input !
0.00 0.05 0.10 0.15 0.20 L 1 Server 0“;1’“‘ puty
(a) Dataset A SLO Violation I\ kus]
S -
DB(Mysql) MQ(Kafka) Alerter
} push push push
. Web UI Mail Message
0.00 0.05 0.10 0.15 0.20
(b) Dataset 3 Fig. 8. The deployment environment and running process of MicroDig.

041 P— o - ®
0.00 0.05 0.10 0.15 0.20
(c) Dataset C
Fig. 7. The accuracy of MicroDig as (3 varies on three datasets.

call edge as a node, which preserves the data integrity of the
call edge, and avoids the inconsistency between causality and
calling relationships, achieving more accurate root cause service
localization.

2) Impact of Hyperparameter 3 to HORW: In this part, we
will discuss the impact of hyperparameter 5 in our method.
In a complex microservice system, anomaly service detection
accuracy cannot be fully guaranteed. At this time, the hyper-
parameter [3 is required. It can mitigate the impact of wrong
anomaly service detection results on the root cause localization
results. From Fig. 7, we can obtain that the best AC@1, AC@2
and AC@3 of MicroDig are achieved when [is set to 0.1 on
dataset A. For dataset B, the highest level, i.e., AC@1, AC@3
and Avg@3 of MicroDig reaches 61.3%, 85.5% and 74.7% when
B is set to 0.1, respectively. On dataset C, when [is set to 0.1
and 0.15, MicroDig’s AC@1, AC@2, AC@3, and Avg@3 are
generally close, although slightly higher when f is set to 0.1.

As demonstrated in Section V-D, the value of [is related to
data quality, where higher data quality corresponds to greater
anomaly service detection accuracy, and 3 tends to approach 0,
and vice versa. The value of 8 may vary for different datasets.
We set 5=0.1 for datasets A, 5, and C, respectively, because
MicroDig achieves the best accuracy across all three datasets
when 3=0.1.

3) Performance of Anomaly Detection: MicroDig detects
anomalies before building the heterogeneous propagation graph.
Service nodes without anomaly will be removed and will not
participate in the subsequent root cause localization steps. As
shown in Table IV, anomaly detection evidently affects the
results of MicroDig on dataset A. MicroDig completely sur-
passes MicroDig without anomaly detection (AD) on dataset .A.
Although the accuracy of these two approaches are comparable
on datasets B and C, the number of service nodes in B and C
is much smaller than that in A, and the calling relationship is
much simpler. As shown in Table III, the operation efficiency
of MicroDig is much higher than that of MicroDig without
anomaly detection. The reason for the above results is that
anomaly detection helps MicroDig avoid the interference of
normal service nodes, which greatly reduces the time of building
heterogeneous propagation graphs and the HORW.

VII. DISCUSSION
A. Success Story

The approach we proposed has been successfully applied in a
system of Tencent’s video business. This system includes more
than 8000 microservices housing services for tens of millions of
users with more than 1 billion requests per day. The deployment
environment is shown in Fig. 8.

The agents are responsible for collecting call data in microser-
vices in real time and handing it over to storage. When the
monitoring component of the microservice system generates an
SLO performance issue, MicroDig is triggered. It first requests
the calling data from the storage. After analysis and diagnosis,
MicroDig provides possible root cause services and then sends
them to the Message Queue (MQ). Finally, the system sends the

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

TAO et al.: DIAGNOSING PERFORMANCE ISSUES FOR LARGE-SCALE MICROSERVICE SYSTEMS WITH HETEROGENEOUS GRAPH

i\(Root cause

[Alarm node 3 Output

Fig. 9. The root cause localization result of a real case according to a hetero-
geneous propagation graph (left) or a call graph (right).

performance issue and candidate root cause list to operators in
the form of web pages, emails, and messages.

Before deploying our approach, root cause localization is
labor-intensive and error-prone. Usually, it takes operators 30-60
minutes to manually localize the root cause. Therefore, perfor-
mance issues cannot be mitigated in a timely and accurate man-
ner, which may cause user complaints. After applying MicroDig,
operators are freed from the complicated troubleshooting work.
They can accurately diagnose the root cause and greatly shorten
the root cause localization time to less than one minute.

Take a real-world performance issue that occurred at 20:42 on
December 22, 2021, as an example. The sudden traffic increase
on S3 leads to a service performance issue. Since there are a
large number of service nodes related to this performance issue,
Fig. 9 only shows part of the nodes. The star symbol and the gray
mark in this figure represent the real root cause and issue service,
respectively. In addition, the dashed ellipse represents the root
cause output by the root cause localization method. It can be seen
from the right picture of Fig. 9 that the calling relationship-based
methods are more inclined to approach downstream nodes to
find the root cause according to the transition probability. This
is why it skips the real root cause S; and walks toward S
repeatedly. The heterogeneous graph constructed by MicroDig
is shown in the left picture of Fig. 9. Because each call is
abstracted as a call node, three issue nodes are related to S3
in the heterogeneous propagation graph. MicroDig takes the
issue call node (i.e., Ca3, C'34) as the entry node of root cause
localization. With the call nodes, neither (S4, S7) nor (Sy, Sg) is
upstream/downstream causal relationships. Although there are
some false positives in anomaly detection, MicroDig finds the
correct root cause by evaluating the similarity of the calling
nodes during the random walk. This case is associated with a
total of 5740 services. MicroDig pinpointed the root cause of
the performance issue in 58 seconds, proving that our solution
is effective and efficient.

B. Lessons Learned

After applying MicroDig in Tencent, we notice a real case due
to parameter transmission between two downstream calls sent
by the same service. Specifically, denote the upstream service
as A and it calls two services in turn, namely B and C. In
this case, A transmitted the value returned by A —°* B as a
parameter for A —° C. Unfortunately, although A —°*! B

2233

did not throw exceptions, the return result of A —call B wag
invalid or broken, which caused an anomaly of A —call &' The
effect of such an anomaly is not reflected in the calling relation-
ship. As aresult, MicroDig only localized the performance issue
service C, because C' was the service that produced an anomaly
directly. In the follow-up troubleshooting, operators continued to
check the error log supplemented by prior knowledge and found
that the root cause was an error in the incoming parameters.
Although this situation is rare, in the future, we will gather more
information and knowledge to further enhance MicroDig.

Theoretically, integrating more data sources, like metrics and
logs, could enhance MicroDig’s accuracy. For now, MicroDig
can incorporate metrics, in addition to traces, as crucial inputs for
constructing its anomalous association graph. We will expand
the model to integrate more data sources, such as logs, to further
improve MicroDig’s accuracy in future work.

C. Threats to Validity

The major threat to interval validity lies in our implemen-
tation of the four baseline methods, which are based on our
understanding as they are not publicly available. To mitigate
this threat, several authors have carefully checked the code.

The threat to external validity mainly lies in the two adopted
datasets, which may not represent various microservice systems.
In the future, we will apply MicroDig to more different compa-
nies to mitigate this threat. On the other hand, as we focus on the
root cause localization at the service level, detailed data, such as
metrics of physical machines, are omitted. We leave the in-depth
root cause localization of fusing multiple types of data as future
work.

The threat to construction validity mainly lies in the used
hyper-parameters and metrics. To reduce this threat, on the
one hand, we select the hyper-parameters of MicroDig and the
baseline methods through grid search. On the other hand, we
apply the most widely used effectiveness and efficiency metrics
following the existing works [2], [23], [30], [31].

VIII. CONCLUSION

In this paper, we propose an approach named MicroDig for
automatic root cause localization of performance issues in large-
scale microservice systems. MicroDig identifies the association
calls and builds a heterogeneous propagation graph based on
the dynamic microservice invocations. It then applies HORW
to find the patterns of anomaly propagation and pinpoint the
culprit service. The effectiveness and efficiency of MicroDig are
proved using both real-world performance issues collected from
Tencent and manually injected ones collected from Train-Ticket
and China Construction Bank Corporation. MicroDig achieves
superior performance compared to four popular root cause local-
ization methods. Moreover, we have shared our success stories
and learned lessons from MicroDig’s deployment in Tencent.
Specifically, MicroDig significantly shortens the performance
issue diagnosis time from 30-60 minutes to less than one minute.
In future work, metrics and logs of microservices can be fused
to pinpoint the root cause more accurately.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

2234

(1]
[2]

[3]

(4]

(3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 5, SEPTEMBER/OCTOBER 2024

REFERENCES

J. Lewis and M. Fowler, “Microservices,” 2014, [Online]. Available: https:
//martinfowler.com/articles/microservices.html

D. Liu et al., “MicroHECL: High-efficient root cause localization in large-
scale microservice systems,” in Proc. 43rd IEEE/ACM Int. Conf. Softw.
Eng., Madrid, Spain, May 25-28, 2021, pp. 338-347.

P. Wang et al., “CloudRanger: Root cause identification for cloud native
systems,” in Proc. 18th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput.,
Washington, DC, USA, May 1-4, 2018, pp. 492-502.

L. Weng, Y. Hu, P. Huang, J. Nieh, and J. Yang, “Effective performance
issue diagnosis with value-assisted cost profiling,” in Proc. 18th Eur
Conf. Comput. Syst., G. A. D. Luna, L. Querzoni, A. Fedorova, and D.
Narayanan, Eds, Rome, Italy, May 8-12, 2023, pp. 1-17.

J. Chen et al., “An empirical investigation of incident triage for online
service systems,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., Montreal,
QC, Canada, May 25-31, 2019, pp. 111-120.

B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability Engi-
neering: How Google Runs Production Systems. Sebastopol, CA, USA:
O’Reilly Media, Inc, 2016.

L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root cause
localization of performance issues in microservices,” in Proc. IEEE/IFIP
Netw. Operations Manage. Symp., Budapest, Hungary, Apr. 20-24, 2020,
pp. 1-9.

L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Causal inference techniques
for microservice performance diagnosis: Evaluation and guiding recom-
mendations,” in Proc. IEEE Int. Conf. Autonomic Comput. Self-Organizing
Syst., Washington, DC, USA, Sep. 27 - Oct. 1, 2021, pp. 21-30.

R. Wang and S. Ying, “SaaS software performance issue diagnosis us-
ing independent component analysis and restricted boltzmann machine,”
Concurr. Comput. Pract. Exp., vol. 32, no. 14, 2020, Art. no. e5729.

Y. Han, “Enterprise operation’s top 3 factors of lengthy MTTR and
ways to reduce them,” 2019, [Online]. Available: https://community.
ibm.com/community/user/aiops/blogs/yok-han1/2019/06/12/enterprise-
operations-top- 3-factors-of-lengthy-mitt

P. Liu et al., “Unsupervised detection of microservice trace anomalies
through service-level deep Bayesian networks,” in Proc. 31st IEEE Int.
Symp. Softw. Rel. Eng., Coimbra, Portugal, Oct. 12—15, 2020, pp. 48-58.
Z.Li et al., “Practical root cause localization for microservice systems via
trace analysis,” in Proc. 29th IEEE/ACM Int. Symp. Qual. Service, Tokyo,
Japan, Jun. 25-28, 2021, pp. 1-10.

Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: Practical and
scalable ML-driven performance debugging in microservices,” in Proc.
26th ACM Int. Conf. Architectural Support Program. Lang. Operating
Syst., USA, Apr. 19-23, 2021, pp. 135-151.

X. Guo et al., “Graph-based trace analysis for microservice architecture
understanding and problem diagnosis,” in Proc. 28th ACM Joint Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., USA, Nov. 8-13, 2020,
pp. 1387-1397.

A. Brandén, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and V. Munt
és-Mulero, “Graph-based root cause analysis for service-oriented and
microservice architectures,” J. Syst. Softw., vol. 159,2020, Art. no. 110432.
M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” in Proc. ACM SIGMETRICS/Int. Conf. Meas.
Model. Comput. Syst., Pittsburgh, PA, USA, Jun. 17-21, 2013, pp. 93-104.
M. Ma, W. Lin, D. Pan, and P. Wang, “ServiceRank: Root cause identifi-
cation of anomaly in large-scale microservice architectures,” IEEE Trans.
Dependable Secur. Comput., vol. 19,no. 5, pp. 3087-3100, Sep./Oct. 2022.
P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causelnfer: Automatic and dis-
tributed performance diagnosis with hierarchical causality graph in large
distributed systems,” in Proc. IEEE Conf. Comput. Commun., Toronto,
Canada, Apr. 27 - May 2, 2014, pp. 1887-1895.

X. Zhou et al., “Fault analysis and debugging of microservice systems:
Industrial survey, benchmark system, and empirical study,” IEEE Trans.
Softw. Eng., vol. 47, no. 2, pp. 243-260, Feb. 2021.

MicroDig, 2022, [Online]. Available: https://github.com/hburning/
MicroDig

G. Yu, Z. Huang, and P. Chen, “TraceRank: Abnormal service localization
with dis-aggregated end-to-end tracing data in cloud native systems,” J.
Softw., Evol. Process, vol. 35, 2021, Art. no. e2413.

H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “FChain: Toward black-box
online fault localization for cloud systems,” in Proc. IEEE 33rd Int. Conf.
Distrib. Comput. Syst., Philadelphia, Pennsylvania, USA, Jul. 8-11, 2013,
pp- 21-30.

[23]

[24]

[25]
[26]
[27]
[28]

[29]
[30]

[31]

M. Ma, W. Lin, D. Pan, and P. Wang, “MS-Rank: Multi-metric and self-
adaptive root cause diagnosis for microservice applications,” in Proc. IEEE
Int. Conf. Web Serv., Milan, Italy, Jul. 8-13, 2019, pp. 60-67.

J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,” in Proc. 16th Int. Conf.
Service-Oriented Comput., Hangzhou, China, Springer, Nov. 12-15, 2018,
pp- 3-20.

Jaeger, 2022, [Online]. Available: https://www.jaegertracing.io/

Zipkin, 2022, [Online]. Available: https://zipkin.io/

OpenTelemetry, 2022, [Online]. Available: https://opentelemetry.io/

J. Pearl, Causality: Models, Reasoning, and Inference,2nd ed., Cambridge,
U.K.: Cambridge Univ. Press, 2009.

Kubernetes, 2022, [Online]. Available: https://kubernetes.io/

M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:
Diagnose your microservice-based web applications automatically,” in
Proc. Web Conf., Taipei, Taiwan, Apr. 20-24, 2020, pp. 246-258.

Y. Meng et al., “Localizing failure root causes in a microservice through
causality inference,” in Proc. 28th IEEE/ACM Int. Symp. Qual. Service,
Hangzhou, China, Jun. 15-17, 2020, pp. 1-10.

Lei Tao received the MS degree in software engineer-
ing from Nankai University, Tianjin, China, in 2022.
He is currently working toward the PhD degree with
the College of Software at Nankai University, Tianjin,
China. His research interests include anomaly detec-
tion and failure diagnosis.

Xianglin Lu received the BS degree in information
security from the School of Cyberspace Security,
Beijing University of Posts and Telecommunications,
Beijing, China, in 2020. She is currently working
toward the MS degree with the Institute for Network
Sciences and Cyberspace, Tsinghua University, Bei-
jing, China. Her research interests include anomaly
detection and failure diagnosis.

Shenglin Zhang (Member, IEEE) received the BS
degree in network engineering from the School of
Computer Science and Technology, Xidian Univer-
sity, Xi’an, China, in 2012 and the PhD degree in
computer science from Tsinghua University, Beijing,
China, in 2017. He is currently an associate professor
with the College of Software, Nankai University,
Tianjin, China. His current research interests include
failure detection, diagnosis, and prediction for service
management.

Jiaqi Luan is currently working toward the senior
undergraduate degree with the College of Software,
Nankai University, Tianjin, China. Her research in-
terests include anomaly detection, root cause local-
ization, and data security.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://community.ibm.com/community/user/aiops/blogs/yok-han1/2019/06/12/enterprise-operations-top-3-factors-of-lengthy-mtt
https://community.ibm.com/community/user/aiops/blogs/yok-han1/2019/06/12/enterprise-operations-top-3-factors-of-lengthy-mtt
https://community.ibm.com/community/user/aiops/blogs/yok-han1/2019/06/12/enterprise-operations-top-3-factors-of-lengthy-mtt
https://github.com/hburning/MicroDig
https://github.com/hburning/MicroDig
https://www.jaegertracing.io/
https://zipkin.io/
https://opentelemetry.io/
https://kubernetes.io/

Yingke Li received the BS degree in software engi-
neering from the School of Information Engineering,
Minzu University of China, Beijing, China, in 2018.
She is currently working toward the MS degree with
the College of Software, Nankai University, Tianjin,
China. Her research interests include anomaly detec-
tion and failure diagnosis.

Mingjie Li received the BS degree in computer sci-
ence from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China, in
2018. He is currently working toward the PhD de-
gree with the Department of Computer Science and
Technology, Tsinghua University, Beijing, China. His
research interests include root cause localization and
software engineering.

Zeyan Li received the BS degree from Tsinghua
University, Beijing, China, in 2018. He is currently
working toward the PhD degree with the Department
of Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His primary research focuses
on artificial intelligence for IT operations.

Qingyang Yu received the BS degree in software
engineering from Shandong University, Jinan, China,
in 2014 and the MS degree in computer technology
from the University of Chinese Academy of Sciences,
Beijing, China, in 2017. He is currently working
toward the PhD degree with the Department of Com-
puter Science and Technology, Tsinghua University,
Beijing, China. His research interests lie in anomaly
detection and failure diagnosis.

Hucheng Xie received the BS and MS degrees in
computer science from Harbin Institute of Technol-
ogy, Harbin, China, in 2013 and 2015, respectively.
His research interests include DevOps observation
and telemetry. He is currently an engineer with Ten-
cent, Inc., Shenzhen, China.

I
L

ACM senior member.

TAO et al.: DIAGNOSING PERFORMANCE ISSUES FOR LARGE-SCALE MICROSERVICE SYSTEMS WITH HETEROGENEOUS GRAPH 2235

Ruijie Xu received the BS degree in computer science
from Lingnan Normal University, Zhanjiang, China,
in 2016. His research interests include AIOps obser-
vation and telemetry. He is currently an algorithm
researcher with Tencent, Inc., Shenzhen, China.

Chenyuan Hu received the BS degree in computer
science from the East China University of Technol-
ogy, Nanchang, China, in 2012. His research interests
include cloud-native observability and service man-
agement in general. He is currently a senior engineer
with Tencent, Inc., Shenzhen, China.

Canqun Yang received the MS and PhD degrees
from the National University of Defense Technology
in 1995 and 2008, respectively. He is currently a
researcher with the College of Computer Science, Na-
tional University of Defense Technology, and serves
as the director of the National Supercomputing Center
in Tianjin. His primary research areas include high-
performance computing and industrial software.

Dan Pei (Senior Member, IEEE) received the BE
and MS degrees in computer science from the De-
partment of Computer Science and Technology, Ts-
inghua University, Beijing, China, in 1997 and 2000,
respectively, and the PhD degree in computer science
from the Computer Science Department, University
of California, Los Angeles (UCLA) in 2005. He is
currently an Associate Professor with the Department
of Computer Science and Technology, Tsinghua Uni-
versity, Beijing, China. His research interests include
network and service management in general. He is an

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on December 31,2024 at 06:57:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

