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Timely anomaly detection of multivariate time series (MTS) is of vital importance for managing large-scale software systems.
However, many deep learning-based MTS anomaly detection models require long-term MTS training data to achieve optimal
performance, which often conflicts with the frequent pattern changes observed in software systems. Moreover, the training
overhead of vast MTS in large-scale software systems is unacceptably high. To address these issues, we design OmniTransfer ,
a model-agnostic framework that combines weighted hierarchical agglomerative clustering with an adaptive transfer learning
strategy, making many state-of-the-art (SOTA) MTS anomaly detection models efficient and effective. Extensive experiments
using real-world data from a large web content service provider and a network operator show that OmniTransfer significantly
reduces the model initialization time by 46.49% and the training cost by 74.51%, while maintaining high accuracy in detecting
anomalies.

CCS Concepts: • Software and its engineering →Maintaining software.

Additional KeyWords and Phrases: Transfer Learning, Multivariate Time Series, Multivariate Time Series Clustering, Anomaly
Detection

1 INTRODUCTION
With the rapid development of the Internet, the scale of software systems has grown exponentially. There are
thousands of entities such as containers, virtual machines, and physical machines deployed in IT infrastructure[4,
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Fig. 1. The MTS of entities in large-scale IT infrastructure.

11, 25, 27, 43, 44]. Anomaly detection is critical to the quality of service (QoS) management since it helps operators
identify anomalous behaviors, improve system stability, and reduce economic losses[27, 34, 41, 47]. Operators
configure multiple monitoring metrics for each entity to monitor the running status. These metrics are usually
collected continuously at predefined intervals. As shown in Fig. 1, the monitored metrics of an entity form a
multivariate time series (MTS), including system metrics (e.g., CPU load, memory usage, network throughput,
and disk I/O) and user-perceived metrics (e.g., average response latency, page visits, and access error rates).

Recently, a series of deep learning-based MTS anomaly detection models have been proposed[2, 7, 9, 22,
23, 33, 38, 53], but they suffer from some limitations. First, they need a long initialization time 1 to perform
well. For instance, OmniAnomaly [33] and InterFusion [23] require several weeks of training data. However,
operators want to reduce the initialization time when there is a pattern change, such as configuration upgrades
or adding new entities. Second, training a model for each entity is impractical as large-scale IT infrastructures
have massive entities. Third, the optimal algorithm varies for different scenarios. For example, GDN [9] focuses
on the correlation between metrics, while InterFusion [23] also considers temporal dependencies. Therefore, a
framework that can effectively reduce initialization time and training overhead and be effective for all models is
needed.

There have been some works trying to address the challenges above. CTF[35] utilizes clustering and transfer
learning to reduce the training overhead of large-scale MTS anomaly detection. Nevertheless, CTF still requires a
long model initialization time and only works for the RNN+VAE models[33]. OmniCluster[45] is a model-agnostic
framework for large-scale MTS anomaly detection that reduces the training overhead by clustering. However, it
is suitable for long-term MTS (i.e., seven days), resulting in a longer initialization time for anomaly detection.
Additionally, CTF and OmniCluster only train the final fine-grained model at the cluster level, which may not
apply to all entities within a cluster due to minor shape differences.

1MTS’s model initialization time[28] is defined as the time lag between when the model is launched and when it becomes well trained, mainly
influenced by the length of historical data the model needs.
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Fig. 2. An example of MTS phase shifts: two MTS are similar in shape but have a time lag.

Nevertheless, clustering combined with transfer learning is a promising approach to solve these problems
[46]. By reducing the number of models through clustering, the training overhead is reduced. Then, fine-tuning
the pre-trained model to a new pattern with short-term data can reduce the initialization time. Note that we
denote the MTS and models in the source domain as the base MTS and base models, respectively, and the MTS
and models in the target domain as the target MTS and target models. However, there are still some challenges
when applying clustering and transfer learning.

(1) High diversity of MTS. As shown in Fig. 1 and Fig. 2, the diversity of MTS includes patterns, irregular
noise, anomalies, and phase shifts. MTS can be generated by various entities with diverse patterns (i.e., different
periodicity, amplitude, trend, etc.). Large-scale software systems use different servers to serve users across a wide
geographical area, resulting in similar MTS patterns with a time delay. These diversities can affect the distance
calculation of MTS and lead to poor clustering performance.

(2)Aperiodic metrics may reduce the clustering performance. Fig. 1 displays the MTS of different entities.
The metrics in the top MTS are with different strengths of periodicity. Many user-perceived metrics and system
metrics related to user behavior exhibit periodicity. However, there are also aperiodic metrics that are unrelated
to user behavior. The first three metrics have regular shapes and strong periodicity, which are important for
identifying patterns and clustering. The last three metrics do not have regular shapes and contain frequent noise,
which will interfere with distance calculation. OmniCluster[45] uses a fixed empirical threshold to remove weak
periodicity metrics and keep strong periodicity metrics directly. It may delete metrics with key information and
keep metrics with interference. For example, the fourth and fifth metrics in Fig. 1 are challenging to define the
strength of periodicity they are. It is vital to keep as much information as possible while reducing the interference
of aperiodic metrics on clustering.

(3) Selection of transfer strategy. There are various strategies for transferring parameters from the base
model to the target model. Full parameter transfer and partial parameter transfer strategy are two typical strategies.
In most cases, we have the following three observations: (a) The distances between the base and target MTS are
various, making the optimal transfer strategy of each target MTS different. (b) The optimal transfer strategies for
different models are diverse for the same dataset. (c) The optimal transfer strategies for different datasets are
diverse for the same model. Therefore, we need to use adaptive transfer strategies to achieve better detection
performance.
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In this paper, we propose OmniTransfer , an efficient, unsupervised, and model-agnostic framework for MTS
anomaly detection. In the offline training stage, OmniTransfer uses a weighted hierarchical agglomerative
clustering (W-HAC) method to cluster the data. It can handle data diversity issues and mitigate the impact of
aperiodic metrics. Then, OmniTransfer trains a base model for each cluster. When transferring the model to a
new pattern MTS, OmniTransfer assigns it to the nearest cluster and fine-tunes the base model by an adaptive
transfer strategy.

The main contributions of our work are as follows:
(1) We propose OmniTransfer , an efficient, unsupervised, and model-agnostic framework for MTS anomaly

detection that can significantly reduce the initialization time and the training overhead for large-scale IT
infrastructure. OmniTransfer uses clustering and transfer learning techniques to transfer the knowledge from
well-trained base models to target models. To the best of our knowledge, this is the first model-agnostic framework
based on transfer learning for state-of-the-art (SOTA) MTS anomaly detection models.

(2) We propose innovative strategies to improve the effectiveness of diversified MTS clustering. We weight
metrics based on periodicity to reduce the impact of non-periodic metrics and use phase alignment to eliminate
the impact of phase shifts.

(3) We propose an adaptive transfer strategy. It can automatically select either full or partial parameter transfer
strategy according to the distance between the target MTS and the base MTS cluster centroid.

(4) We apply OmniTransfer on ten SOTA anomaly detection models and conduct experiments with real-world
datasets from two top-tier enterprises. Experimental results show thatOmniTransfer reduces the initialization time
by 46.49% and the training cost by 74.51% on average while maintaining high accuracy in detecting anomalies.
Furthermore, we make our source code and the labeled datasets publicly available[1] to make it easier for
researchers to understand our work.

The rest of this paper is organized as follows. Section 2 introduces our motivation for proposing this framework,
Section 3 discusses the background, Section 4 discusses the details of the method, Section 5 describes our
experimental approach and results, and Section 6 introduces the related work in the same field. Section 7
summarizes lessons learned, future work, and limitations.

2 MOTIVATION
This section elaborates on our motivations by answering the following three questions:

(1) Why do we need to reduce training overhead?
(2) Why do we need to reduce model initialization time?
(3) Why do we need to provide a general framework?

2.1 Why do we need to reduce training overhead
Deep learning requires the same distribution between the training and test data, and it is necessary to train a
model for each entity because of different data distributions. It will generate a large number of models and a
huge training overhead. Such an unacceptable training overhead prevents deep learning-based MTS anomaly
detection models from being applied to large-scale software systems.

2.2 Why do we need to reduce model initialization time?
Due to the rapid expansion of the Internet, additions and changes of web service entities become more and
more frequent[21, 29, 48, 50]. The additions of web service entities generally refer to the horizontal expansion of
the service, deploying the original service to a new node, and the monitoring data on the new node lacks the
historical training data in a short period. The change of the web service entity includes the release, upgrade, and
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Table 1. MTS anomaly detection models’ training overhead.

Model Training Time(1M Entities)

OmniAnomaly[33] 1.57 years
InterFusion[23] 1.41 years
SDFVAE[7] 5.28 weeks
DAGMM[53] 6.09 months
USAD[2] 5.72 weeks
GDN[9] 2.19 weeks

TranAD[38] 4.89 weeks
DOMI[34] 5.15 weeks

SLA-VAE[15] 6.07 weeks
MTAD-GAT[49] 3.22 months
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Fig. 3. An example of the impact of addition and change of software systems on model initialization time.

configuration modification of the service, which will lead to changes in the service running status. Changes, such
as less traffic and lower CPU usage due to configuration modifications, are expected.

We use two cases to illustrate the impact of the addition and change of software systems on model initialization
time in Fig. 3. Fig. 3a shows a typical entity which uses sufficient data for five days to train the model. For the first
case, Fig. 3b simulates the scenario of insufficient training data when a new entity is added, which starts on the
fifth day and has only one day of data for training. Generally, we use �1 to evaluate the anomaly detection (§5.1
for details). We use OmniAnomaly[33] to get �1 corresponding to the three types of entities corresponding to
Fig. 3 a, b, and c on the entire dataset. The �1 of the entities of type a is 0.99, while the �1 of the entities of type b
is only 0.70. Therefore, the model training is insufficient due to the lack of training data. For the second case, the
entities of type c have a shift change in the training data, resulting in the inconsistency between the distribution
of some training data and test data. Correspondingly, the �1 of this type is 0.31, which is particularly poor.
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Fig. 4. Five common anomaly types and the result of six SOTA MTS anomaly detection performances for different anomaly
types.

Table 2. MTS anomaly type.

Anomaly Type Characteristic

Global Anomalies Exhibiting extreme values compared
to all the remaining data.

Contextual Anomalies Deviating from the neighboring time points.

Pattern Anomalies Having different basic patterns
compared to normal patterns.

Frequency Anomalies Displaying unusual frequency compared
to the overall frequency.

Trend Anomalies Deviating from the underlying
trend of the time series.

The above two cases fully illustrate the problem of poor detection performance due to the long model initial-
ization time in the scenarios of addition and change of software systems. Thus proving the necessity of reducing
the model initialization time for anomaly detection.

2.3 Why do we need to provide a general framework?
Different deep models use dedicated designs to detect MTS anomalies in different scenarios. Existing experi-
mental results show that many SOTA models perform differently on different MTS anomaly types. We cite the
experimental results of empirical research [10] on many public datasets. The research introduces five anomaly
types, shown in Table 2. The upper part of Fig. 4 shows a demo of different anomaly types. The lower part of Fig.
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4 shows the detection performance of six SOTA models on five anomaly types. The best-performing model is
different for each anomaly type. These anomaly types may correspond to different business scenarios. Global
anomalies often correspond to obvious business interruptions. For example, excessive traffic causes the service to
be temporarily unavailable, often accompanied by an abnormal increase in global resource indicators such as
CPU and memory. Trend anomalies may indicate resource configuration changes, modifying the JVM heap and
stack configuration, causing the memory size occupied by the new service to steadily increase compared to the
occupancy before the change.

Differentmodels have distinct characteristics, making each one suitable for handling different types of anomalies.
Therefore, the primary objective of this paper is not to investigate the detection capabilities of various anomaly
detection models for different types of anomalies. Instead, it aims to propose a general framework that can
enhance the transfer learning capabilities of each anomaly detection algorithm.

3 BACKGROUND

3.1 MTS Anomaly Detection and Clustering
MTS anomaly detection. The collected data of each entity forms an MTS with M metrics and N time points as a
matrix - ∈ '"×# . Observing longer data segments reveals discernible specific patterns within MTS. Whenever
data deviations from the patterns, it signals an anomaly, potentially indicating a fault in the entity. For each time
C , it is necessary to determine whether -C ∈ '" is an anomaly. To quickly catch these anomalies, we usually take
a data segment -ℎ = (-C−, , -C−, +1, ..., -C ) of length, to assist in studying the patterns and further identifying
whether -C is an anomaly [9, 33]. Note that both predicted-based and reconstruction-based methods can be
represented by such data segments.
MTS anomaly detection models. There have been many SOTA MTS anomaly detection models proposed,

which we can categorize based on their structures. The first type is models consisting of fully connected layers
(i.e., Dense layers) [2, 53], typically using a reconstruction-based architecture as depicted in Fig. 5a. The second
type is models consisting of specialized layers such as recurrent neural network (RNN), convolutional neural
network (CNN), graph neural network (GNN), and attention [7, 9, 15, 23, 33, 34, 38, 49]. These models usually use
either a reconstruction-based or predicted-based architecture and are shown in Fig. 5b and Fig. 5c. The specialized
layers can capture more effective features for anomaly detection. For instance, CNN, attention, and GNN help
capture inter-metric dependence, while RNN can capture the temporal dependence of MTS.
MTS clustering methods. There have been many studies on MTS clustering, which can be categorized

into two types: traditional clustering methods and deep learning-based methods. The first type of method
typically employs either the original MTS or low-dimensional representations extracted by traditional machine
learning techniques such as principal component analysis (PCA) and inverse correlation variance transformation
[13, 19, 20, 40]. Dynamic time warping (DTW), shape-based distance (SBD), and Euclidean distance are often
used to measure the difference between MTS. However, these methods usually can not handle the interference
of aperiodicity. Meanwhile, DTW and SBD require high computation overhead. The second type of method
[35, 45] uses low-dimensional representations extracted by deep learning-based models for clustering. The low-
dimensional representations are usually free of noise and can improve clustering efficiency [35, 45]. However,
these low-dimensional features lose much information and are usually relevant to subsequent tasks, for example,
anomaly detection. Moreover, training deep learning-based models requires significant computing and time
resources. To overcome these limitations, we propose a task-agnostic clustering method, which ensures the
efficiency, effectiveness, and robustness of clustering.

ACM Trans. Softw. Eng. Methodol.

 



8 • Yongqian Sun, et al.

'x

Dense6

Dense5

Dense4

Dense3

Dense2

Dense1

x

z

Decoder

Encoder

(a)

x

'x

RNN or

CNN or

Attention

Dense

z

RNN or

CNN or

Attention

Dense

Decoder

Encoder

(b)

y

x

GNN

Attention

or RNN

or CNN 

Dense

(c)

Fig. 5. The neural network architecture of MTS anomaly detection models. (a) Reconstruction-based models with the same
modules. (b) Reconstruction-based models with different modules. (c) Prediction-based models with different modules.

3.2 Transfer Learning
Transfer learning, which focuses on transferring knowledge across domains, is a promising machine learning
methodology to solve problems such as insufficient training data and time-consuming training processes[52].
Transfer learning utilizes the knowledge from sufficient source domain data to help the task on the target domain
lacking training data. Surveys[31, 52] summarize approaches to transfer learning into four approaches based on
“what to transfer”. They are the instance-transfer approach, the feature-representation-transfer approach, the
parameter-transfer approach, and the relational-knowledge-transfer approach. The instance-transfer approach
reuses part of the source domain’s data by reweighting or sampling importance in the target domain. The
feature-representation-transfer approach improves the performance of the target task by learning a good feature
representation from the source domain to the target domain.The parameter-transfer approach aims to share model
parameters and prior distributions between the source and the target domains. The relational-knowledge-transfer
approach aims to discover the statistical correlation between the source and the target domain data.

This paper uses the parameter-transfer approach, combining pre-training and fine-tuning. Transferring the
pre-trained model to the target task is usually better than training from scratch[37], which has three main reasons:
(1) The performance of the initial model is generally better than that of the randomly initialized model; (2) The
learning speed of the fine-tuning is faster than learning from scratch, and the convergence is better; (3) The final
performance of the model has better generalizability than training only with target domain data.

However, fully transferring parameters may lead to negative transfer due to the differences in the prior
distributions of the source and target domains [5]. To address this, AT-GP [5] and AnoTransfer [46] propose
adaptive transfer strategies to automatically select between full parameter transfer and partial parameter transfer
strategy. AnoTransfer uses the normalized cross-correlation to measure the distance among the KPIs. AT-GP
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Fig. 6. The overview of OmniTransfer .

formulates the transfer learning problem as a unified Gaussian Process model. They both avoid negative transfer
during the transfer learning and achieve better generalizability.

4 APPROACH

4.1 Overview
We propose a model-agnostic framework, namedOmniTransfer , to reduce initialization time and training overhead
of MTS anomaly detection. Fig.6 shows the overview of OmniTransfer , which includes three main stages: offline
training, transfer learning, and online detection.

The offline training stage comprises two steps: weighted hierarchical agglomerative clustering (W-HAC) and
base model training. Fig. 7 illustrates the process of W-HAC. To reduce interference from aperiodic metrics,
we weigh the contribution of metrics to clustering based on their strength of periodicity. Besides, we address
the problem of the MTS phase shifts. Thus, W-HAC can group MTS with similar shapes, addressing the first
and second challenges. In the base model training stage, OmniTransfer trains a base model that can be used for
transfer learning by using several MTS segments near the cluster centroid.

The target MTS undergoes transfer learning and online detection stages sequentially. First, we match the
short-term data of the target MTS to an appropriate cluster and then use an adaptive transfer strategy to fine-tune
the corresponding base model. The adaptive transfer strategy selects the best transfer strategy based on the
distance between the target MTS and its corresponding cluster centroid, which solves the third challenge. Finally,
in the online detection stage, we use the fine-tuned model to detect anomalies in the target MTS.

4.2 Preprocessing
Data preprocessing is crucial for offline training, transfer learning, and online detection stages since it is hard to
guarantee that all monitoring data is ideally collected in large-scale IT infrastructure. According to the previous
experience [46], the proportion of missing points is typically less than 5%. We can fill in these missing points
directly by utilizing linear interpolation. Another widely used preprocessing step for time series is standardization,
which is useful for eliminating the impact of amplitude by scaling the data to a standard normal distribution. The
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process of standardization is given by (1),

X
′ 9 =

X9 −<40=(X9 )
BC3 (X9 ) (1)

where - 9 ∈ '# is the 9th metric after filling in the missing value, and X
′ 9 ∈ '# is the 9th metric after

standardization.

4.3 Offline Training
4.3.1 Weighted Hierarchical Agglomerative Clustering. The W-HAC (illustrated in Fig. 7) aims to reduce the
diversity of MTS and thus lower the training overhead of anomaly detection models. The specific steps of W-HAC
are as follows:

Baseline extraction. Noise and anomalies can significantly impact the normal pattern of MTS and increase the
diversity of MTS patterns, as mentioned in the first challenge. To address this issue, we extract the baselines
(normal patterns) of MTS by removing extreme values and applying a moving average. Extreme values are more
likely to be anomalies and their ratio is often less than 5%[24, 45, 46]. Therefore, W-HAC removes the top 5% data
that deviates from the mean value and then uses linear interpolation to fill the vacancies. Then, W-HAC applies
the moving average to reduce the impact of noise.

Periodic weights. To determine the strength of periodicity of each metric in MTS, we use the cumulative mean
normalized difference (�"#�)[8], which is an improved version of the autocorrelation-based approach and well
suited for long-term data.�"#� is given by (2), where g is an empirical candidate periodicity value, such as one
hour, one day, one week, or one month.

3 (g) =
#−g∑
8=1

(u8 − u8+g )2

�"#� (g) = 3 (g)
[(1/g)∑g

9=1 3 ( 9)]

(2)

For each metric in the MTS, we calculate the �"#� and then average them across the entity dimension to
obtain P ∈ '" , where " is the number of metrics in the MTS. The smaller P9 , the stronger the periodicity of
the 9th metric. We aim to assign high weights to strong periodic metrics in clustering. Thus, we compute the
periodic weight PW ∈ R" by PW = P−U , where U is a hyperparameter. A larger value of U leads to a greater
weight difference between metrics with different levels of periodicity.

Segmentation of MTS.After computing the baseline and periodic weights, we sliceMTS into short-term segments,
denoted as MTSB46 ∈ '"×= , that match the length of the target MTS. Here, = represents the time points after
segmentation.

Instead of MTS entities, we use MTS segments as input for clustering and transfer learning to reduce model
initialization time and training cost. The use of shorter MTS segments allows for the selection of suitable clusters

ACM Trans. Softw. Eng. Methodol.
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corresponding to the base model. When performing anomaly detection for a new MTS data segment, the models
can be fine-tuned well with less data. Moreover, using complete entities for transfer learning requires longer data
for cluster matching and model fine-tuning. Additionally, the entity data needs to be as consistent in length as
possible. Clustering entities of different lengths tend to be less accurate.

Phase alignment. We then combine PW to align the phase shift because discussing the phase shift for aperiodic
metrics is less meaningful.

First, we get the pivot PVT of the entire offline segments D according to (3). The weighted Euclidean distance
between two MTSB46 can be calculated by (4).

PVT = arg min
A∈D

∑
B∈D

�D2F (A,B) (3)

�D2F (A,B) = (A − B)2 × PW (4)
Next, we use weighted normalized cross-correlation (#��F) to estimate the best phase shift for all MTSB46 to
align to PVT. B ∈ [−= + 1, = − 1] denotes the possible phase shifts. To retain short-term information, we use (5) to
wrap round MTS.

A(B) = (A1,A2, . . . ,A=)

B(B) =
{

(B=−B+1, . . . ,B=,B1, . . . ,B=−B ) B ≥ 0,
(B−B+1, . . . ,B=,B1, . . . ,B−B ) B < 0.

(5)

#��F reaches the maximum value when B is close to the real phase shift, which is given by (6).

��F (A,B, B, 9) =
=∑
8=1

A(B) 9
8
· B(B) 9

8
· PW9

#��F (A,B, B) =
"∑
9=1

��F (A,B, B, 9)
| |A(B) 9 | |2 · | |B(B) 9 | |2

(6)

The best phase shift B∗ obtained by (7).

B∗ = arg max
B∈[−=+1,=−1]

#��F (PVT,MTSB46, B) (7)

Finally, we align the phase shift B∗ of MTSB46 to get MTS
′
B46.

Clustering. OmniTransfer gets the clustering result using hierarchical agglomerative clustering (HAC) and
the weighted Euclidean distance. HAC with average linkage is adopted for the following reasons. (1) The HAC
algorithm is robust to the extreme value because it clusters on the rank of distances rather than the value. (2) Each
data in the cluster have the same effect on the distance measure, making the distance measure transitive. After
clustering, several segments near the cluster centroid are saved for base model training.

4.3.2 Base Model Training. The VAE-based algorithms [7, 23, 33] model the relationship between the latent
variable I and the observed variable G . They typically train their models by optimizing the Evidence Lower Bound
(ELBO) described in (8), which is comprised of a reconstruction probability and a regularization term. ?\ is a
generative model that represents the real posterior of the data, while @q is an inference model aiming to estimate
the posterior. The � ! term represents the Kullback-Leibler divergence[18]. On the other hand, AE-based and
prediction-based models [2, 9, 38, 53] focus on reconstructing or predicting the target. These models train by
minimizing the difference between the target and output in (9).

L1 = E@q (I |G ) [log?\ (G |I)] − � ! [@q (I |G) | |?\ (I)] (8)
L2 = MSE(C0A64C − >DC?DC) (9)
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4.4 Transfer Learning
Transfer preparations. To train the target model for each target MTS, OmniTransfer utilizes a base model �,
which is selected based on the cluster centroid’s proximity to the target short-term data H ∈ '"×= . First, we
perform baseline extraction and phase alignment to get H′ . Then, we calculate the distance between H

′ and the
centroid of each cluster and select the closest one and its corresponding base model for transfer learning. We use
H to fine-tune the base model.

Adaptive transfer strategy. We propose an adaptive transfer strategy that automatically selects whether to
transfer full parameters or partial parameters for each target MTS. When the target MTS and the nearest cluster
centroid are relatively similar, we use the full parameter transfer strategy and fine-tune the entire base model’s
parameters directly. Otherwise, we employ the partial parameter transfer strategy. Specifically, we initialize a
target model with random parameters and load part of the base model’s parameters into the target model. First,
we update the remaining parameters while keeping the transferred parameters fixed. Then we fine-tune all of the
parameters of the target model.
Distance measurement. We use a distance measurement to help decide which transfer strategy to select

for each target MTS. The anomaly score measures the deviation between the target data and the normal pattern
learned by the base model. We use the summation across all time points anomaly scores as the distance score. To
avoid the impact of anomalies and noise in the data, we remove the top 5% of the anomaly scores. The distance
score is defined as (10), where �=><0;~(2>A4

′
�
is obtained by removing extreme values from either (11) or (12).

�8 5 5 (2>A4� (H) = BD<(�=><0;~(2>A4
′
� (H)) (10)

The threshold value V for �8 5 5 (2>A4 is usually determined by experienced operators or initialized by referring to
some entities in the dataset. Empirically, applying the initial V is sufficient to achieve good results. As the data
volume increases, the optimal value for V can be updated to further enhance the detection performance.

Transfer layer selection. We adopt the partial parameter transfer strategy when there is a significant
difference between the target MTS and its corresponding base model. We select specific layers based on the
models’ capabilities and characteristics for transferring. As mentioned in § 3.1, these SOTA MTS anomaly
detection models fall into two categories based on their structures. For the former type, their outer layers focus
on more general tasks and capture more generic features [3, 36, 42], while the inner layers are designed to capture
more task-specific features [12, 39]. For the latter, the specialized layers (e.g., RNN, CNN, attention, and GNN)
capture more generic features, while the fully connected layers focus more on specific tasks [6, 16, 26, 32, 35]. It
is recommended to transfer the parameters of the outer layers or the specialized layers when adopting the partial
parameter transfer strategy, as they learn generic features that are often not specific to a particular task.

4.5 Online Detection
We use the fine-tuned model for online detection. For the VAE-based models, their anomaly score corresponds to
the negative reconstruction probability, which is given by (11). log?\ (G |I) denotes the reconstruction probability
of each observed variable G . The smaller the reconstruction probability, the greater the probability that this data
point is an anomaly. For the AE-based models and prediction-based models, we calculate the anomaly scores
according to (12), which measures the difference between the target and the output. A greater difference indicates
a higher probability that the data point is an anomaly.

In addition, determining the anomaly score threshold is crucial to identify the anomaly points. To obtain the
best results, we use grid search to select the optimal threshold from the available range during evaluation.

�=><0;~(2>A41 = −E@q (I |G ) [log?\ (G |I)] (11)

�=><0;~(2>A42 = MSE(C0A64C − >DC?DC) (12)
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Table 3. Dataset details.

Dataset1 Dataset2

Entity type Web server Wireless base station
Number of entities 400 400
Number of metrics 19 25

Base model training data duration 7 days 14 days
Transfer training data duration 1 day 1 day

Test data duration 2 days 7 days
Anomaly proportion 5.52% 5.18%

In previous grid search selection of the optimal threshold selection, the selection was based on the test set.
We also prepared validation sets, but in a previous work we used a method called the “Tree Based Pipeline
Optimization Tool” to optimize the machine learning pipeline, this article used a test set to select the best
threshold, so this article also used a test set based approach to select the best threshold.

5 EVALUATION
In this section, we first introduce the experimental setup, including dataset, experiment environment, evalua-
tion metrics, and hyperparameters of OmniTransfer . Then, we conduct extensive experiments to evaluate the
performance of OmniTransfer and answer the following research questions:
RQ1. How does the effectiveness and efficiency of OmniTransfer compare to baseline methods?
RQ2. How much initialization time can OmniTransfer reduce compared to non-transfer learning methods?
RQ3. How much do the key techniques contribute to the overall performance?
RQ4. How well does the W-HAC perform compared to other clustering methods?
RQ5. How does the transfer strategy threshold influence the performance?

5.1 Experimental Setup
Dataset and environment. In this work, we use two MTS datasets, Dataset1 is derived from the operating
systems and service data of a multitude of servers, which monitors the system software data and application
performance data when the machines provide services to the users. Dataset2 encompasses software system
data from wireless base stations of one of the world’s leading Internet Service Providers (ISPs). It provides
a comprehensive reflection of the monitoring data, capturing both user behavior and service status, offering
valuable insights into the performance and operational dynamics of the wireless communication infrastructure.

More specific details are shown in Table 3. We do not use public datasets (e.g., SWaT and WADI[30], SMD[33],
SMAP and MSL[17]), mainly because the number of entities is too small (i.e., less than 55 entities).

Please note that we only choose 400 entities from millions for evaluation since the labeling is time-consuming.
In real-world scenarios, additions or upgrades are relatively rare occurrences. To simulate MTS pattern changes,
we employ different entities from the original dataset. To be more specific, we randomly choose 50% of the
entities for training models offline, while the remaining 50% represent newly added entities used for transfer
learning and online detection. The online data is labeled by experienced operators based on real service faults
using the labeling tools provided by CTF[35]. The source code of OmniTransfer and the datasets are publicly
available in [1]. All experiments are run on a server with two 16C32T Intel(R) Xeon(R) Gold 5218 CPU @ 2.30
GHz, one NVIDIA(R) Tesla(R) V100S, and 192 GB RAM.

Evaluation metrics. OmniTransfer outputs an anomaly score for each point and determines whether it is an
anomaly by a threshold. Thus, MTS anomaly detection can be regarded as a binary classification problem. We use
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Table 4. Hyperparameters settings. 4?>2ℎ1 , 4?>2ℎ5 and 4?>2ℎ? denote the epochs of base model training, full-parameters
transfer strategy fine-tuning, and partial-parameters transfer strategy fine-tuning, respectively. ;A1 , ;A 5 and ;A? denote the
learning rate similarly.

Model
Dataset1 Dataset2

4?>2ℎ1 ;A1 4?>2ℎ5 ;A 5 4?>2ℎ? ;A? V 4?>2ℎ1 ;A1 4?>2ℎ5 ;A 5 4?>2ℎ? ;A? V

OmniAnomaly 50 0.001 10 0.0005 10 0.001 868 50 0.001 10 0.0005 10 0.001 107
InterFusion 10 0.0005 10 0.0003 20 0.0005 807 10 0.0005 10 0.0003 20 0.0005 1039
SDFVAE 100 0.001 10 0.001 20 0.001 2430 100 0.002 20 0.0005 20 0.0005 364
DAGMM 500 0.001 20 0.002 50 0.006 7157 500 0.001 20 0.005 50 0.003 9917
USAD 100 0.001 5 0.0001 24 0.001 223 100 0.001 5 0.0002 10 0.001 132
GDN 50 0.005 10 0.0005 30 0.005 2195 50 0.005 10 0.0005 20 0.005 1152

TranAD 100 0.0005 10 0.0005 20 0.005 199 100 0.0005 10 0.0001 20 0.0001 24
DOMI 100 0.001 10 0.001 20 0.0005 849 100 0.002 10 0.0005 20 0.001 126
SLAVAE 100 0.001 20 0.0005 10 0.001 2164 100 0.0001 20 0.0005 10 0.0005 251

MTAD-GAT 50 0.001 30 0.001 40 0.001 633 30 0.001 10 0.001 40 0.001 247

Table 5. Selected anomaly detection models.

Model Structure Characteristics

OmniAnomaly[33] RNN+VAE For the first time, handling temporal dependence and stochasticity
of MTS and learning robust representation.

InterFusion[23] 1D-CNN+RNN+HVAE Novelly employing HVAE to obtain inter-metric
embeddings and temporal embeddings.

SDFVAE[7] 2D-CNN+RNN+VAE Making use of time invariance in MTS to enhance
the robustness and noise-resistance.

DAGMM[53] AE+GMM Using joint optimization to address the
decoupling problem in the model learning.

USAD[2] AE+GAN The combined use of AE and GAN results in
a more stable and faster model training process.

GDN[9] GNN+Attention GNN can accurately capture the correlations among metrics.

TranAD[38] AE+Attention+GAN Enabling powerful multi-modal feature extraction
and adversarial training improves stability.

DOMI[34] 1D-CNN+GMM+VAE Learning potential representations of machine instances
to capture their normal patterns.

SLAVAE[15] 1D-CNN+RNN+VAE Active learning is employed to update the online model
with a small number of uncertain samples.

MTAD-GAT[49] GNN+Attention Leveraging two parallel graph attention layers to learn the
relationships between different metrics dynamically.

the �1 to evaluate the effectiveness, which is given by (13). )% represents True Positives, �% represents False
Positives, and �# represents False Negatives. The �1 of each dataset is obtained using the micro-average method.
By enumerating all possible thresholds, we obtain the best �1 for each model, denoted by � ∗1 . Additionally, we
record the time required for model training to evaluate efficiency.
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%A428B8>= =
)%

)% + �%

'420;; =
)%

)% + �#

�1B2>A4 = 2 × %A428B8>= × '420;;

%A428B8>= + '420;;

(13)

Hyperparameters. We use the best empirical values for most parameters based on experimental results.
Specifically, We set the sliding window length for the moving average to 12 and 4 for the two datasets, respectively.
The exponents U for the periodic weights applied to different metrics during clustering are 1 for the two datasets.
We use 5 and 20 segments closest to the centroid for each cluster to train the base models for the two datasets,
respectively. For all MTS, we slice them using a sliding window with a length of 60. The epoch and learning
rate of each base model training, full-parameters transfer strategy fine-tuning, and partial-parameters transfer
strategy fine-tuning are presented in Table 4. The best threshold V is shown in Table 4.

Point-Adjust strategy. In our experimental evaluation, we employed the Point-Adjust (PA) strategy, a widely
recognized protocol in time-series anomaly detection that adjusts the anomaly predictions by considering the
entire contiguous segment as detected if at least one point within it exceeds the anomaly threshold. This method
is particularly effective in scenarios where the detection of any anomaly within a period is sufficient to trigger
necessary actions, thereby providing a practical approach to assess the performance of our anomaly detection
models.
Validation set. In our experimental evaluation, we used the validation set to select the threshold. The first

half of the labeled test set is used as the verification set to select the threshold value of the abnormal score. The
F1 score of the second half of the test set is calculated by using the calculated threshold value, and the result is
added to table 6 in Section 5.2.

5.2 OmniTransfer vs. Baseline Models
To demonstrate the effectiveness and efficiency of OmniTransfer , we compare it with OmniCluster[45], one
model/entity, CTF[35], JumpStarter[28], and Uni-AD[14]. In addition, we have incorporated one of the most
representative pre-training models, “One Fits All” [51], given that time series pre-training models have been
extensively studied recently. One Fits All model avoids changing the self attention and feedforward layers of
residual blocks in the pre training language or image model, and can produce equivalent or the most advanced
performance in all major time series analysis tasks. The details are as follows: (1) OmniCluster is a model-agnostic
framework for MTS anomaly detection. (2) One model/entity involves training a separate model for each MTS.
(3) CTF is a transfer-based framework to achieve scalable anomaly detection. (4) JumpStarter is an MTS anomaly
detection model that jump-starts quickly with a short initialization time. (5) Uni-AD is a transformer-based model
that works well for model sharing. OmniTransfer , OmniCluster, and one model/entity are model-agnostic training
frameworks or strategies that can be combined with various deep anomaly detection models.

To demonstrate the advantages of the PA strategy, we also compared it with the case where the PA strategy
was not used.

We combine these frameworks/methods with ten typical unsupervised MTS anomaly detection methods:
OmniAnomaly, InterFusion, SDFVAE, DAGMM, USAD, GDN, TranAD, DOMI, SLAVAE, and MTAD-GAT. These
models focus on different challenges in MTS anomaly detection and have different structures. Table 5 shows the
structure and characteristics of these selected models. The results of these methods are presented at the top of
Table 6. CTF is designed specifically for the RNN+VAE model, JumpStarter is not based on deep learning and
cannot be combined with OmniTransfer , and Uni-AD designed a special model based on the transformer. The
results of these three baselines are shown at the bottom of Table 6 OmniTransfer outperforms all baselines in
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Table 6. The overall performance of OmniTransfer compared to baseline models.

Model
Dataset1

OmniTransfer OmniCluster one model/entity

� ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1
OmniAnomaly 0.9721 1212.99 0.9452 0.6795 0.5169 560.47 0.4751 0.5758 0.7000 9888.25 0.6369 0.4933
InterFusion 0.9047 1585.63 0.8892 0.6706 0.5830 566.56 0.5209 0.5609 0.4769 8884.94 0.4286 0.76
SDFVAE 0.8512 209.73 0.8426 0.6447 0.4922 178.02 0.4155 0.4916 0.6055 638.93 0.5217 0.8445
DAGMM 0.8738 244.48 0.8521 0.6764 0.7104 137.37 0.5639 0.5653 0.8245 2947.47 0.7642 0.7377
USAD 0.8539 80.16 0.8318 0.693 0.7468 109.04 0.7084 0.6334 0.7875 691.77 0.7184 0.602
GDN 0.8037 54.55 0.7756 0.481 0.6806 42.81 0.6129 0.4253 0.7405 265.27 0.6872 0.5189

TranAD 0.9714 114.53 0.9208 0.909 0.7797 102.10 0.7084 0.7389 0.8538 591.67 0.8144 0.9388
DOMI 0.8849 156.58 0.8529 0.6215 0.6418 119.56 0.5421 0.5542 0.7138 623.65 0.5871 0.6473
SLAVAE 0.8417 142.54 0.7122 0.6641 0.4831 101.34 0.4508 0.4539 0.5817 603.45 0.4428 0.5514

MTAD-GAT 0.9414 1149.95 0.9098 0.6417 0.6466 305.06 0.6072 0.4792 0.9064 1666.67 0.8413 0.6837

JumpStarter 0.4211 4786.67 0.5227 0.458 - - - - - - - -
CTF 0.8661 4965.61 0.3456 0.7257 - - - - - - - -

Uni-AD 0.6232 119.95 0.5489 0.5759 - - - - - - - -
One Fits All 0.9218 5216.18 0.9127 0.7642 - - - - - - - -

Model
Dataset2

OmniTransfer OmniCluster one model/entity

� ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1 � ∗1 Time (s) Validation � ∗1 Not PA � ∗1
OmniAnomaly 0.974 1430.14 0.9489 0.9106 0.7885 522.63 0.7109 0.5179 0.6316 7791.65 0.5892 0.6446
InterFusion 0.9235 1131.33 0.8962 0.8085 0.6756 479.01 0.6013 0.4819 0.4639 5870.73 0.3872 0.5621
SDFVAE 0.8673 572.95 0.8127 0.7799 0.446 230.75 0.4321 0.5232 0.819 1402.87 0.7356 0.8453
DAGMM 0.9439 271.29 0.8907 0.851 0.8048 133.57 0.7519 0.7066 0.9047 2923.78 0.8265 0.7658
USAD 0.9355 138.39 0.8839 0.8334 0.7138 93.01 0.6692 0.5664 0.8514 665.19 0.7691 0.8753
GDN 0.9525 46.03 0.9088 0.7835 0.7503 17.15 0.6873 0.5429 0.9382 301.17 0.8819 0.7619

TranAD 0.9323 201.93 0.8873 0.8467 0.8566 82.40 0.7863 0.8196 0.5273 704.29 0.479 0.3334
DOMI 0.9316 309.25 0.7429 0.7537 0.8136 87.35 0.5421 0.6931 0.8426 1059.76 0.5871 0.7431
SLAVAE 0.8589 465.77 0.7122 0.6308 0.8136 216.20 0.4508 0.6109 0.8025 1304.03 0.4428 0.6706

MTAD-GAT 0.9757 262.68 0.9133 0.7814 0.5338 204.87 0.4802 0.4672 0.7682 506.35 0.6945 0.7439

JumpStarter 0.649 5359.1 0.4852 0.5227 - - - - - - - -
CTF 0.8788 6187.86 0.4454 0.7645 - - - - - - - -

Uni-AD 0.5978 23.30 0.5196 0.5931 - - - - - - - -
One Fits All 0.9167 5971.93 0.8792 0.7831 - - - - - - - -

effectiveness and is more efficient than all baseline models except for OmniCluster. We will try to analyze the
reasons for this result in detail.
Compare with OmniCluster. On Dataset1, OmniTransfer outperforms OmniCluster by 14.34% to 88.06%,

while on Dataset2, OmniTransfer outperforms OmniCluster by 8.84% to 94.46%. We attribute this to OmniTransfer
improving the clustering method and OmniTransfer training a better model for each MTS. OmniTransfer applies
periodic weighting to the metrics instead of removing some metrics directly, which allows for a more comprehen-
sive use of information. In contrast, OmniCluster compresses MTS in the temporal dimension and removes some
metrics, resulting in a loss of both shape and metric information. OmniTransfer uses transfer learning to train a
suitable model for each MTS, whereas OmniCluster trains a base model for each cluster.

The training time of OmniTransfer is 29.94% and 52.24% higher than OmniCluster on two datasets. Because
OmniCluster only trains base models without fine-tuning. Nevertheless, effectiveness is usually more important
than efficiency in practice, making OmniTransfer a superior solution to OmniCluster.
Comparison with one model/entity. In terms of �1, OmniTransfer achieves an average improvement of

27.84% and 31.67% on the two datasets, respectively. When using a single entity model, ideally, with sufficient
training data, the detection results are similar to those of the migration base model. One model/entity uses only
short-term MTS for training, which is insufficient for deep learning-based models. However, in most cases, when
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there is insufficient training data for online entities, if a single entity model is not used based on the migration
base model, the model training will be insufficient due to insufficient training data, resulting in poor detection
results. Moreover, training the model from scratch usually takes longer to converge. As the amount of data
increases, the training overhead increases significantly. Furthermore, OmniTransfer reduces the training overhead
by 75.95% and 73.07%. After clustering, the number of basic models is much smaller than the number of entities.
Fine-tuning is performed on the basic model, the model converges faster, the number of training rounds required
is smaller, and the overall training cost is lower. Therefore, the performance and efficiency of one model/entity
strategy are unsatisfactory. In contrast, OmniTransfer performs better by maximizing the use of the base MTS to
train the base model. The overall training overhead of OmniTransfer benefits from only a small number of base
models that need to be trained and the base models help accelerate the convergence of the target model training.

Comparison with not PA. The results show that OmniTransfer still outperforms most of the other baseline
models. However, every model’ � ∗1 is notably diminished without the application of the PA strategy, which may
be due to insufficient accuracy in data collection or in the precision of anomaly labeling. This could be the reason
why other baseline studies all employ the PA strategy.

Comparison with CTF. The CTF is specifically designed for RNN+VAE-based models, particularly for
OmniAnomaly. Therefore we only compare the performance of OmniTransfer+OmniAnomaly with CTF. The �1
of OmniTransfer+OmniAnomaly is approximately 10% higher than CTF. CTF produces a fine-tuned model at the
cluster level, which cannot be deployed perfectly to each MTS. The training time of CTF is more than four times
that of OmniTransfer+OmniAnomaly on two datasets. This is because CTF fine-tunes cluster-level models based
on a dataset-level pre-trained model. As the difference between the source domain and the target domain of CTF
is significant, it requires more MTS and training epochs during fine-tuning.

Comparison with JumpStarter. JumpStarter successfully reduces model initialization time by sampling from
the data and reconstructing the data for anomaly detection based on the sample. However, its �1 is significantly
lower and the training time is much longer compared to OmniTransfer . JumpStarter uses only uses short-term data
to sample and reconstruct the normal value, which is usually sufficient. And the outlier-resistant sampling method
may not always successfully remove anomaly points in highly volatile metrics, limiting the performance of
JumpStarter. Additionally, the complicated sampling process in JumpStarter increases the training time seriously.

Comparison with Uni-AD. Uni-AD employs model sharing to address the challenges posed by large-scale,
diverse, and dynamic MTS. Based on transformer encoder layers, Uni-AD can model diverse patterns for different
monitored entities. On Dataset1, the training time of Uni-AD is similar to OmniTransfer and has less training
time on Dataset2, because it uses model sharing to reduce the number of models and the model structure of the
transformer is light-weighted. However, its �1 is significantly lower compared to OmniTransfer . Uni-AD focuses
on a large amount of data with the same pattern and performs poorly when the patterns among different entities
diverge.
Comparison with One Fits All. When compared with the OmniTransfer versions of 10 models, the F1*

of One Fits All is relatively balanced, ranking 4th on Dataset1 and 9th on Dataset2. Additionally, in terms of
efficiency, OmniTransfer performs much better than One Fits All. The training time for One Fits All is more than
10 times longer than the average training time of OmniTransfer on both Dataset1 and Dataset2. However, as a
single model, One Fits All has a higher F1* than the most single models, indicating its strong general applicability.
Comparison with Validation set. It is evident that the OmniTransfer version continues to outperform the

other models, even though the validation F1* scores for each model are slightly lower than the F1* scores.

5.3 Effect on Reducing Model Initialization Time
In this section, we conduct experiments on ten anomaly detection models to verify the effect of OmniTransfer in
reducing model initialization time. We increase the initialization time for the two datasets from one day to five
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Fig. 8. The performance ofOmniTransfer and one model/entity with different initialization time. ‘*’ denotes the corresponding
result of combining OmniTransfer , and without ‘*’ denotes the result of one model/entity strategy.

Table 7. Ablation experiment.

Model Dataset1 Dataset2

OmniTransfer C1 C2 C3 C4 C5 C6 C7 OmniTransfer C1 C2 C3 C4 C5 C6 C7

OmniAnomaly 0.9721 0.6452 0.8239 0.8018 0.694 0.775 0.9675 0.9675 0.974 0.6371 0.8092 0.9297 0.703 0.9194 0.9739 0.974
InterFusion 0.9047 0.566 0.6963 0.7686 0.6944 0.8115 0.9037 0.9037 0.9235 0.7184 0.6128 0.8564 0.6702 0.8818 0.8948 0.9061
SDFVAE 0.8512 0.6513 0.7111 0.7825 0.635 0.7163 0.8463 0.8485 0.8673 0.8473 0.8169 0.7114 0.7252 0.7959 0.8588 0.8626
DAGMM 0.8738 0.8011 0.7476 0.8249 0.7798 0.861 0.8647 0.8669 0.9439 0.9056 0.9172 0.871 0.8588 0.9439 0.9165 0.9439
USAD 0.8539 0.7834 0.8394 0.809 0.8267 0.8535 0.8313 0.8535 0.9355 0.8952 0.8043 0.7653 0.7928 0.9166 0.9289 0.9337
GDN 0.8037 0.763 0.792 0.7572 0.7548 0.7969 0.7742 0.7969 0.9525 0.8764 0.823 0.8601 0.9164 0.9488 0.9335 0.9488

TranAD 0.9714 0.9472 0.9643 0.9575 0.8733 0.9679 0.9485 0.9717 0.9323 0.8528 0.9069 0.9001 0.915 0.927 0.9309 0.9313
DOMI 0.8849 0.7914 0.7529 0.7731 0.7482 0.7608 0.8752 0.7608 0.9316 0.8247 0.8258 0.7953 0.8683 0.9241 0.9286 0.9241
SLAVAE 0.8417 0.7914 0.6368 0.7625 0.7196 0.7039 0.8158 0.7039 0.8589 0.8264 0.8011 0.6939 0.7136 0.7852 0.8427 0.7852

MTAD-GAT 0.9414 0.9109 0.8829 0.8983 0.7255 0.9407 0.9365 0.9407 0.9757 0.9265 0.9331 0.9238 0.6227 0.9714 0.9683 0.9715

days and one day to seven days. Fig. 8 demonstrates that OmniTransfer outperforms one model/entity by 16.53%
and 21.48% with one day and two days of training data on average. OmniTransfer using two days of training data
performs almost the same as one model/entity using all training data. This highlights its ability to significantly
reduce model initialization time. Specifically, the pre-training knowledge of the basic model based on offline
data is used, and only a small amount of online data is needed to achieve good detection results, reducing the
model initialization time. Moreover, the performance of both OmniTransfer and one model/entity improves as
the initialization time increases. However, for OmniTransfer , the performance becomes stable after using less
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than two days of training data, while for one model/entity, the performance of most models is unsatisfactory
with less than three days of training data.

5.4 Ablation Experiment
To demonstrate the effect of five key technologies in OmniTransfer : (1) clustering; (2) weighting metrics; (3)
aligning phases; (4) transfer learning; (5) adaptive transfer strategy, we reconfigure OmniTransfer to create seven
variants. C1: Only one base model is trained for transfer learning, and the data used to train the base model
are randomly selected. C2: All metrics have the same weights when aligning phase shift and clustering. C3: Do
not align the phase shift. C4: The base model is directly used for anomaly detection. C5: Use the full parameter
transfer strategy for all MTS. C6: Use the partial parameter transfer strategy for all MTS. C7: Use the weighted
Euclidean distance to select the transfer strategy. Table 7 shows the results of each variant.
Effect of clustering. With an �1 of lower than 0.57, the performance of C1 is far from satisfactory. The

large difference between the base MTS and the target MTS makes transfer learning challenging. Clustering can
effectively group MTS with similar shapes, making it easy to transfer the knowledge of base MTS to target MTS.

Effect of metric weighting. C2 has relatively poor performance on both datasets regardless of the algorithms.
The reason is that aperiodic metrics are irregular, and can have a negative impact on clustering. Generally, the
distance between two aperiodic metrics can be considerable even though the periodic metrics in the same entities
are relatively similar. Besides, aperiodic metrics can make the target MTS and the corresponding cluster centroid
not being very similar. Therefore, it is indispensable to weighting these aperiodic metrics.

Effect of phase alignment. C3 needs more training overhead and has a poor performance than OmniTransfer .
Without phase alignment, the diversity of MTS patterns increases, resulting in more clusters and more base
models. Therefore, the training overhead increases dramatically. Additionally, it is difficult to match the target
data with the appropriate cluster without phase alignment. Transfer learning can not be effective when the target
data and the base model training data differ significantly.

Effect of transfer learning. C4 directly uses the base model of each cluster for anomaly detection. Although
the target MTS should be reasonably similar to its matching cluster centroid, there are still many tiny differences.
These differences make the �1 relatively poor. It is indispensable to transfer model parameters and fine-tune the
base model.

Effect of adaptive transfer strategy. OmniTransfer with an adaptive transfer strategy performs better than
using a fixed transfer strategy. When the target MTS and its corresponding base cluster centroid are similar, it is
better to transfer full parameters because more parameters can carry more valuable knowledge learned from
the offline training stage. However, many target MTS have relatively large shape differences compared to the
centroid. It is better to transfer partial parameters to avoid negative transfer problems. By automatically selecting
the best transfer strategy for each target MTS, OmniTransfer gets the highest �1.
Effects of the distance measurement of adaptive transfer strategy. Compared with C7, OmniTransfer

has an improvement in the detection performance on most models. The weighted Euclidean distance measures
the difference between the target MTS and the cluster centroid. However, we aim to transfer the knowledge
in the base model to help detect anomalies in the target MTS. The �8 5 5 (2>A4 measures the degree of match
between the target MTS and the knowledge in the base model.

5.5 Effectiveness of the Clustering Method.
To verify the advantages of the W-HAC in OmniTransfer , we select four baseline clustering methods for compari-
son: TICC[13], FCFW[20], Mc2PCA[19], SPCA+AED[40]. We replace the clustering methods in OmniTransfer
and use the anomaly detection performance as the clustering performance. Table 8 shows that the W-HAC’s
�1 improves by 15.35% and 12.80% averagely on two datasets. We try to analyze the reasons. In general, these
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Table 8. Comparison of clustering methods.

Model Dataset1 Dataset2

OmniTransfer TICC FCFW M2PCA SPCA+AED OmniTransfer TICC FCFW M2PCA SPCA+AED

OmniAnomaly 0.9721 0.7209 0.7384 0.7341 0.6697 0.974 0.6339 0.6281 0.6494 0.6485
InterFusion 0.9047 0.6097 0.5528 0.6988 0.6949 0.9235 0.7006 0.6313 0.7897 0.8442
SDFVAE 0.8512 0.7231 0.7137 0.7399 0.71 0.8673 0.8327 0.8483 0.861 0.8663
DAGMM 0.8738 0.8537 0.8225 0.7886 0.8420 0.9439 0.8825 0.8965 0.8922 0.8937
USAD 0.8539 0.8167 0.8216 0.8157 0.8128 0.9355 0.9004 0.9014 0.8879 0.8933
GDN 0.8037 0.8022 0.7934 0.8033 0.7793 0.9525 0.8806 0.8778 0.8877 0.8599

TranAD 0.9714 0.9499 0.95 0.9564 0.9524 0.9323 0.8492 0.8426 0.8439 0.831
DOMI 0.8849 0.7439 0.7361 0.7515 0.7264 0.9316 0.8249 0.8628 0.8527 0.8362
SLAVAE 0.8417 0.7196 0.6709 0.7288 0.7047 0.8589 0.8251 0.8283 0.8477 0.8336

MTAD-GAT 0.9414 0.8933 0.9032 0.9009 0.9028 0.9757 0.9367 0.9355 0.9276 0.9296

methods can not resist noise and anomaly interference, and some can not capture MTS shape features well.
Specifically, TICC is only suitable for short-term data, and it is difficult for TICC to cluster one-day data. FCFW
uses all metrics data, which can be interfered with aperiodic metrics. SPCA+AED and Mc2PCA use PCA to reduce
the dimension of MTS, which loses a lot of shape information, resulting in inaccurate clustering.

5.6 Effect of Transfer Strategy Selection Threshold
Recall that V is the threshold of �8 5 5 (2>A4 . To investigate the effect of V , we conduct experiments with different
values of V . Fig. 9 shows that the performance of OmniTransfer is higher than the worse single transfer strategy
on two datasets, regardless of the value of V . Moreover, it can meet or even surpass the better single transfer
strategy. The performance of OmniTransfer on OmniAnomaly, InterFusion, SDFVAE, DOMI, and SLAVAE is
sensitive to V , while other models are insensitive. For insensitive models, the value of V will not greatly impact
the experimental results. Therefore, we can easily obtain the V that makes each model perform well. For sensitive
models, we randomly select some entities (e.g., twenty segments with one day of two hundred entities) in the
dataset to get V ′ , which can reach the optimal V performance. Short-term segments also allow us to determine V ′

earlier. We invited three experienced operators, and it takes about one day to label 20 entities’ data, so we only
need less than 3 days of manpower to start the model, compared to 30 days for labeling 200 entities saves a lot of
labor costs.

6 RELATED WORK

6.1 MTS Clustering
There have been many studies on MTS clustering. SPCA+AED [40] proposes a hybrid method based on the PCA
similarity factor (SPCA) and the average-based Euclidean distance (AED). Nevertheless, employing SPCA results
in the loss of a significant amount of crucial information, and AED cannot address the phase shift problem. Toeplitz
Inverse Covariance-Based Clustering (TICC) [13] focuses on the subsequences segmentation and clustering of
MTS simultaneously. Segmentation is unnecessary in anomaly detection, and it is challenging for TICC to deal
MTS with more than 100 time points (about one day). Mc2PCA [19] constructs common projection axes as the
prototype of each cluster and uses the reconstruction error to assign the MTS. This method only considers the
similarity within clusters, without the dissimilarity among clusters. FCFW [20] uses a fuzzy c-means method
based on feature-weighted distance combining dynamic time warping (DTW) and shape-based distance (SBD).
The time complexity of DTW is too high, which is unacceptable for large-scale software systems. Moreover,
DTW and SBD consider each metric’s shape features, which can be interfered with aperiodic metrics. CTF [35]
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Fig. 9. The performance of different V . (The horizontal axis represents the value of V . The red vertical dotted line denotes the
optimal V , the blue vertical solid line denotes the V

′
determined by some segments, the green horizontal dotted line denotes

the performance of full parameter transfer strategy, the horizontal solid line denotes the performance of partial parameter
transfer strategy.)

uses the low-dimensional features extracted by the pre-trained anomaly detection model, which is task-specific
and model structure-specific model[33]. OmniCluster [45] compresses the temporal dimension of MTS with
a one-dimensional convolutional autoencoder (AE) and uses a three-step feature selection strategy to remove
aperiodic metrics. However, the compressing and feature selection stages lose a lot of useful information. And
the feature selection depends on an empirical threshold, which is not general.

6.2 MTS Anomaly Detection
There have been many studies on MTS anomaly detection. Both USAD and TranAD adversely train AE, and
they take advantage of the stability of AE and the ability to isolate anomalies of GAN. DAGMM combines AE
and Gaussian mixture model (GMM). It uses an AE to generate the low-dimensional features and reconstruction
errors and feeds them into GMM to get the anomaly score. TranAD uses a sequence encoder with self-attention
to shorten the inference time. OmniAnomaly uses the RNN+VAE structure to model the temporal dependence
and stochasticity in MTS. Both SDFVAE and InterFusion adopt the structure of RNN+CNN+VAE. SDFVAE resists
noise by modeling time-invariant and time-varying features. InterFusion employs a two-view embedding and
prefiltering strategy to explicitly learn the inter-metric and temporal dependencies. DOMI uses VAE+GMM
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to model the intrinsic multimodality of data by obtaining complex latent representations. SLA-VAE uses semi-
supervised VAE and active learning to enhance robustness. GDN and MTAD-GAT are both prediction-based
models. GDN uses structure learning and GNN to model the correlation between metrics. MTAD-GAT leverages
two parallel graph attention layers to learn the relationships between different metrics dynamically.

However, the above models face high training overhead when dealing with large-scale MTS data and long
initialization time. CTF, OmniCluster, JumpStarter, and Uni-AD successfully reduce the training overhead. CTF
provides a solution to reduce training overhead for RNN+VAE models [33], but it is not universal to other models.
OmniCluster is a model-agnostic framework that can reduce the training overhead. It trains a model for each
cluster and directly uses it for anomaly detection. However, it performs poorly when the shape of the target
MTS and the cluster centroid differs. JumpStarter uses the Compressed Sensing to reduce the model initialization
time. However, due to only using short-term data and a simple model structure, it can not capture complex
patterns and long temporal dependence. Uni-AD uses a model-sharing mechanism and transformer layers to
model large-scale time series. However, it does not work well when different entities’ patterns diverge. In short,
none of the above solutions can reduce the training cost and model initialization time while improving most
SOTA models’ detection results.

7 DISCUSSION
In developing OmniTransfer , we have learned the following lessons. (1) The strength of periodicity is very
important for MTS clustering. The information obtained from weak periodicity metrics is limited and can even
seriously affect clustering. (2) The idea of adaptive transfer strategy and novel distance measurement for transfer
strategy selection can ensure that we can achieve the optimal transfer strategy for each target MTS. (3) Reducing
the number of detection models, reducing the scale of training data and accelerating model convergence speed
are all effective solutions to reduce training overhead.

In addition, we have some ideas for future work. (1) We design a model-agnostic framework OmniTransfer for
large-scale anomaly detection. The same ideas and key techniques can be used to reduce model initialization time
and training overhead for other tasks, such as the prediction and classification of large-scale MTS. (2) The weights
employed in the W-HAC method can be derived from prior knowledge or other methodologies, enhancing the
clustering process by incorporating additional information and improving accuracy. (3) In practical applications, V
can be randomly selected at first, and be continuously updated with the supplement of data and manual feedback.
The detection accuracy of the model could gradually increase.

There are also some limitations in our work. We directly only use full parameter transfer and partial parameter
transfer strategies. When using partial parameter transfer strategies, the parameters of which layer to transfer
are fixed for each model. It can be further investigated how to choose which part of the parameters to transfer or
to transfer different parts of the parameters for different data to improve the effectiveness of transfer learning.
Nevertheless, the adaptive strategy has achieved good performance for most models, and a simple and elegant
method is better than complicated methods for a general framework.

8 CONCLUSION
This paper first clearly points out the limitations of existing methods in large-scale MTS scenarios. And we
propose OmniTransfer , a model-agnostic, unsupervised, and efficient anomaly detection framework to address
these limitations. OmniTransfer uses transfer learning to reduce model initialization time and training overhead
effectively. We propose W-HAC to reduce the interference of aperiodic metrics in clustering and improve the
effect of transfer learning. Our experiment results using real-world datasets from a large web content service
provider and a network operator show that OmniTransfer can reduce the initialization time by 46.49% and
improve training efficiency by 74.51% compared to baseline models. We believe OmniTransfer is useful for large
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IT infrastructure, especially when monitoring millions of services that change frequently. OmniTransfer makes
the anomaly detection models as rapidly deployable and cost-effective as possible for the large-scale and changing
MTS.
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