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Trace and Span
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• Large-scale microservice systems could contain tens of thousands of service 
instances 

• Trace data is crucial for understanding system behavior, diagnosing 
performance issues, and ensuring reliability



Trace-Based Anomaly Detection and Root Cause 
Localization
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Trace-based  anomaly detection and root 
cause localization can help operators timely 
mitigate failures and improve user 
experience

• Anomaly detection identifies anomalies in service execution and generates 
alerts

• Root cause localization identifies the specific component or subsystem 
responsible for each failure

When a microservice system 
fails, it will degrade user 
experience and bring loss to 
companies



Why Traces Need to Be Labeled
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• Trace-based anomaly detection methods usually apply deep learning methods 
to learn the normal patterns from “normal data”, the high-quality data without 
anomalies are crucial

• High-quality data is important to evaluate and improve the performance of 
trace-based anomaly detection and root cause localization methods

• There are only a few public trace datasets
• Limited number of traces 
• Limited types of failures
• Not generalized



Manual Trace Labeling Is Time-Consuming and Labor-
Intensive
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Our goal is to design a semi-automatic trace labeling tool for 
efficient and accurate trace labeling
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Massive Trace Data
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• Microservice systems could generate a massive amount of trace data every day 
for labeling

• E.g. , the microservice systems of eBay generate about 150 billion traces 
everyday!



Complex Trace Structure
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• A trace is a complex 

structure arising from the 

hierarchy of parallel 

service invocations

• It can contain dozens to 

hundreds of services



Hard-To-Determine Root Cause
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• Root cause labeling needs to consider multiple traces in a period
• It is challenging to check all the anomalous trace data and conclude the root 

cause information
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A semi-automatic trace labeling tool for 
efficient and accurate trace labeling

LabelEase�
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Overview
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• Data Preprocessing

• GNN Training

• Vectorized 
Representation

Graph-Based Trace Representation
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• Data Preprocessing
• Convert the raw trace data 

into a graph

• Focus on semantic 
information, temporal 
features,  status codes within 
the span, and the calling 
relationships between 
different services

• GNN Training
• Graph contrastive learning

• Differentiate between 
various traces based on 
their representations

• Representation 
vectorization

Graph-Based Trace Representation
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• Hybrid Representative 
Selection

• Partition traces into 
different classes

• Select the cluster center 
point as the most 
representative trace for 
operators to label

• Human Feedback
• Operators label the most 

representative trace in 
each cluster

• LabelEase automatically 
labels the remaining 
traces

Anomaly Labeling
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• Use active learning to 
select the most 
informative data points 
from an unlabeled 
dataset for labeling 
through human 
feedback

• Minimize the labeling 
effort while ensuring 
high-quality data labels

Anomaly Labeling
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Trace Aggregation

Root Cause Localization

Root Cause Labeling
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Trace Aggregation
Partition the trace data 

into abnormal periods

Root Cause Localization
The spectrum-based fault 

localization (SBFL) 
technique

Service dependency 
topology

Service latency 
information  

Root Cause Labeling
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Trace Anomalies Labeling
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After LabelEase selects representative traces for labeling, 
operators will label the given traces on this page



Trace Anomalies Labeling
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Trace and 
span-

related 
information

• Span ID, start time, serice name, operation name, 
status code, and duration



Trace Anomalies Labeling

23

Latency 
information of 

spans

• The average value, standard deviation, and other information 
about each similar call path in the entire dataset as a labeling 
reference



Trace Anomalies Labeling
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Selecte
d trace 

list

• Each trace is visually distinguished: green signifies a label of “normal”, 
red indicates a label of “abnormal”, and black denotes traces awaiting 
labeling



Root Cause Labeling
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After all traces are labeled, operators will go to the 
page of labeling root cause.



Root Cause Labeling
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Fault 
period 
list

• LabelEase identifies the impact of each fault by merging the anomalous 
traces occurred closely

• Red means it has been labeled and black denotes period awaiting 
labeling



Root Cause Labeling
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Service dependency 
topology 

• For each period, a microservice system relationship diagram is 
featured in the center of the page

• The higher the suspicious score, the more likely the root cause is, and 
the darker the service will be displayed on the interface



Root Cause Labeling
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Service 
latency 
informatio
n 

• Upon selecting a service, detailed information about it is displayed
• Operators can set the type of fault to label the root cause
• The service labeled as the root cause is highlighted in red
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•  We use two datasets, denoted as Dataset 1 and Dataset 2.

Datasets and Metrics

30

Source #Normal traces #Anomalous 
traces

Dataset 1 A benchmark microservice system 
developed by us 103078 27285

Dataset 2 A top-tier commercial bank 93579  19207
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• LabelEase shows superior performance over all baseline approaches 
across both datasets, achieving F1-scores of 0.99 and 0.98, respectively

• It shows superior efficiency compared to the baseline methods, boasting 
the shortest time overhead and highest labeling efficiency

LabelEase vs. Baseline Methods
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• LabelEase with the graph-based representation outperforms other trace 
vectorization methods

Effect of Graph-based Trace 
Representation
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• The K-means algorithm shows superior effects and the shortest 
computational time compared with baseline methods

Effect of Clustering Strategies
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• How the F1-score of LabelEase changes with different trace numbers of 
labels

Sensitivity of the Number of Traces to be 
Labeled
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• The precision of fault period detection is 0.89. 

• As long as an anomalous trace is labeled, it is possible to 

accurately identify the period in which the corresponding 

fault occurred, thus enabling precise root cause labeling

• The recall is 0.44 when localizing the fault period

• Anomalies in the unreported fault periods are not reflected 

in the traces but primarily in metrics and logs

Effect of Labeling Root Cause
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• A novel tool LabelEase, a semi-automatic trace labeling tool for 

efficient and accurate trace labeling

• A series of experimental studies to evaluate LabelEase’s 

effectiveness and efficiency using two datasets

• Publish a high-quality dataset 
https://doi.org/10.5281/zenodo.13338156

• LabelEase will surely contribute to the rapid development of 

AIOps

Conclusion
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https://doi.org/10.5281/zenodo.13338156


  

Thank you！
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