

#### LabelEase: A Semi-Automatic Tool for Efficient and Accurate Trace Labeling in Microservices

Shenglin Zhang<sup>1</sup>, Zeyu Che<sup>1</sup>, Zhongjie Pan<sup>1</sup>, Xiaohui Nie<sup>2</sup>, Yongqian Sun<sup>1</sup>, Lemeng Pan<sup>3</sup>, Dan Pei<sup>4</sup>

Nankai University<sup>1</sup>, CNIC<sup>2</sup>, Huawei<sup>3</sup>, Tsinghua University<sup>4</sup>















#### Trace and Span





An Example of Span Log

- Large-scale microservice systems could contain tens of thousands of service instances
- Trace data is crucial for understanding system behavior, diagnosing performance issues, and ensuring reliability

### Trace-Based Anomaly Detection and Root Cause Localization





- Anomaly detection identifies anomalies in service execution and generates alerts
- Root cause localization identifies the specific component or subsystem
   responsible for each failure

#### Why Traces Need to Be Labeled



- Trace-based anomaly detection methods usually apply deep learning methods to learn the normal patterns from "normal data", the high-quality data without anomalies are crucial
- High-quality data is important to evaluate and improve the performance of trace-based anomaly detection and root cause localization methods
- There are only a few public trace datasets
  - Limited number of traces
  - Limited types of failures
  - Not generalized



#### Manual Trace Labeling Is Time-Consuming and Labor-Intensive







*Our goal is to design a semi-automatic trace labeling tool for efficient and accurate trace labeling* 

#### Content





Implementation

Conclusion

#### **Massive Trace Data**





- Microservice systems could generate a massive amount of trace data every day for labeling
- E.g., the microservice systems of eBay generate about 150 billion traces everyday!

#### **Complex Trace Structure**



- A trace is a complex structure arising from the hierarchy of parallel service invocations
- It can contain dozens to hundreds of services



#### Hard-To-Determine Root Cause





- Root cause labeling needs to consider multiple traces in a period
- It is challenging to check all the anomalous trace data and conclude the root cause information



## LabelEase

### A semi-automatic trace labeling tool for efficient and accurate trace labeling

11







#### Overview





#### **Graph-Based Trace Representation**



- Data Preprocessing
- GNN Training
- Vectorized Representation



#### **Graph-Based Trace Representation**



- Data Preprocessing
  - Convert the raw trace data into a graph
  - Focus on semantic information, temporal features, status codes within the span, and the calling relationships between different services
- GNN Training
  - Graph contrastive learning
  - Differentiate between various traces based on their representations
- Representation vectorization



### **Anomaly Labeling**



### • Hybrid Representative Selection

- Partition traces into different classes
- Select the cluster center point as the most representative trace for operators to label
- Human Feedback
  - Operators label the most representative trace in each cluster
  - LabelEase automatically labels the remaining traces



#### **Anomaly Labeling**



 Use active learning to select the most informative data points from an unlabeled dataset for labeling through human feedback

 Minimize the labeling effort while ensuring high-quality data labels









Trace Aggregation

Partition the trace data into abnormal periods

- ≻Root Cause Localization
  - > The spectrum-based fault localization (SBFL) technique
  - Service dependency topology
  - Service latency information











# After LabelEase selects representative traces for labeling, operators will label the given traces on this page



#### **Trace Anomalies Labeling**



Trace and

span-

related

information

• Span ID, start time, serice name, operation name, status code, and duration



#### **Trace Anomalies Labeling**



• The average value, standard deviation, and other information about each similar call path in the entire dataset as a labeling



#### **Trace Anomalies Labeling**



• Each trace is visually distinguished: green signifies a label of "normal", red indicates a label of "abnormal", and black denotes traces awaiting







After all traces are labeled, operators will go to the page of labeling root cause.





- LabelEase identifies the impact of each fault by merging the anomalous traces occurred closely
- Red means it has been labeled and black denotes period awaiting labeling





- For each period, a microservice system relationship diagram is featured in the center of the page
- The higher the suspicious score, the more likely the root cause is, and the darker the service will be displayed on the interface





- Upon selecting a service, detailed information about it is displayed
- Operators can set the type of fault to label the root cause
- The service labeled as the root cause is highlighted in red







#### **Datasets and Metrics**



• We use two datasets, denoted as Dataset 1 and Dataset 2.

|           | Source                                          | #Normal traces | #Anomalous<br>traces |
|-----------|-------------------------------------------------|----------------|----------------------|
| Dataset 1 | A benchmark microservice system developed by us | 103078         | 27285                |
| Dataset 2 | A top-tier commercial bank                      | 93579          | 19207                |

• Evaluation metrics

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

$$F_1 score = 2 \times \frac{Precision \times Rcall}{Precision + Recall}$$



- LabelEase shows superior performance over all baseline approaches across both datasets, achieving F1-scores of 0.99 and 0.98, respectively
- It shows superior efficiency compared to the baseline methods, boasting the shortest time overhead and highest labeling efficiency

| Approach             | $\mathscr{D}1$ |        |              |         | $\mathscr{D}2$ |        |              |         |
|----------------------|----------------|--------|--------------|---------|----------------|--------|--------------|---------|
| Approach             | Precision      | Recall | $F_1$ -score | Time    | Precision      | Recall | $F_1$ -score | Time    |
| LabelEase            | 1              | 0.98   | 0.99         | 6.53s   | 0.96           | 0.99   | 0.98         | 21.68s  |
| MultimodalTrace [37] | 0.2            | 0.15   | 0.17         | 1.9min  | 0.17           | 0.15   | 0.16         | 1.6min  |
| TraceAnomaly [8]     | 0.94           | 0.67   | 0.78         | 27.2min | 0.21           | 0.2    | 0.2          | 22.2min |
| CRISP [9]            | 0.8            | 0.57   | 0.67         | 26.1min | 0.24           | 0.21   | 0.23         | 17.3min |
| TraceCRL [10]        | 0.39           | 0.28   | 0.33         | 8.9h    | 0.48           | 0.43   | 0.45         | 7.2h    |
| TraceVAE [11]        | 0.4            | 0.3    | 0.35         | 1.7h    | 0.14           | 0.77   | 0.23         | 51.3min |
| TraceSieve [3]       | 1              | 0.74   | 0.85         | 7.6min  | 0.17           | 0.15   | 0.15         | 9.8min  |

THE EFFECTS OF LabelEase IN COMPARISON WITH DIFFERENT APPROACHES ON TWO DATASETS

TABLE I

#### Effect of Graph-based Trace Representation



 LabelEase with the graph-based representation outperforms other trace vectorization methods





• The K-means algorithm shows superior effects and the shortest computational time compared with baseline methods

TABLE II THE EFFECTS OF THE DIFFERENT CLUSTER METHODS ON TWO DATASETS

| Approach                      | $\mathscr{D}1$ |        |              | $\mathscr{D}2$ |           |        |              |         |
|-------------------------------|----------------|--------|--------------|----------------|-----------|--------|--------------|---------|
| Approach                      | Precision      | Recall | $F_1$ -score | Time(s)        | Precision | Recall | $F_1$ -score | Time(s) |
| using K-means                 | 1              | 0.98   | 0.99         | 6.53           | 0.96      | 0.99   | 0.98         | 21.68   |
| using hierarchical clustering | 0.99           | 0.98   | 0.99         | 96.9           | 0.96      | 0.95   | 0.96         | 51.98   |
| using DBSCAN                  | 0.99           | 0.92   | 0.95         | 116.07         | 0.83      | 1      | 0.91         | 97.55   |
| using Spectral clustering     | 0.99           | 0.98   | 0.98         | 200.84         | 0.96      | 0.93   | 0.94         | 264.24  |
| using random selection        | 0.8            | 0.2    | 0.32         | -              | 0.95      | 0.33   | 0.49         | -       |

#### Sensitivity of the Number of Traces to be Labeled



 How the F1-score of LabelEase changes with different trace numbers of labels





• The precision of fault period detection is 0.89.

- As long as an anomalous trace is labeled, it is possible to accurately identify the period in which the corresponding fault occurred, thus enabling precise root cause labeling
- The recall is 0.44 when localizing the fault period
  - Anomalies in the unreported fault periods are not reflected in the traces but primarily in metrics and logs











- A novel tool LabelEase, a semi-automatic trace labeling tool for efficient and accurate trace labeling
- A series of experimental studies to evaluate LabelEase's effectiveness and efficiency using two datasets
- Publish a high-quality dataset
   <u>https://doi.org/10.5281/zenodo.13338156</u>
- LabelEase will surely contribute to the rapid development of AIOps



## Thank you!