ART: A Unified Unsupervised Framework for Incident Management in Microservice Systems

Yongqian Sun¹, Binpeng Shi¹, Mingyu Mao¹, Minghua Ma², Sibo Xia¹, Shenglin Zhang¹, Dan Pei³

¹Nankai University, ²Microsoft, ³Tsinghua University

Outline

What's the incident life-cycle in microservice systems?

➔ Anomaly detection, failure triage, root cause localization

How to achieve the unification across multiple tasks?

➔ Anomalous deviation: the shared knowledge

Framework design

➔ Dependency-Aware Status Learning, Unified Failure Representation Acquisition, Unsupervised Solutions for Diagnostic Tasks

Evaluation

➔ 2 popular microservice systems

Microservice Systems

Microservice systems have become an essential part of our daily lives

Impact of Incidents

Incidents -> Unsatisfying customers -> Economic loss

An Incident Life-cycle

OCEs call for an elegant and efficient unified modeling approach

Challenges When Applying SSL

Outline

What's the incident life-cycle in microservice systems?

➔ Anomaly detection, failure triage, root cause localization

How to achieve the unification across multiple tasks?

➔ Anomalous deviation: the shared knowledge

Framework design

➔ Dependency-Aware Status Learning, Unified Failure Representation Acquisition, Unsupervised Solutions for Diagnostic Tasks

Evaluation

➔ 2 popular microservice systems

Anomalous Deviation

• The difference between predictions/expectations and observations

- SLD (system-level deviation)
- K-dimensional vectors
- The fluctuations of each corresponding channel at system level

- ILD (instance-level deviation)
- K-dimensional vectors
- The fluctuations of each corresponding channel at instance level

Table 1: L₁-norms of SLDs during failure and normal hours

System Status	Metric	Deviations: $ SLD _1$	Percentile
Failure Hours	Mean	100.620	P85
	Median	90.165	P73
Normal Hours	Mean	82.716	P64
	Median	77.147	P49

Deviations Manifested in Anomaly Detection

Table 2: Top5 channels with the largest deviations for different failure types

Failure Type	Top5 Data Channels with the Largest Deviations									
Container Hardware	container_fs_inodes	container_fs_usage_MB	container_fs_writes	container_memory_cache	container_threads					
Container Network	duration	severity_error	connection_error	service_log_other	system.net.udp.in_errors					
Node CPU	system.disk.total	system.fs.inodes.free	system.fs.inodes.in_use	system.fs.inodes.total	system.load.15					
Node Disk	container_last_seen	system.disk.free	system.disk.pct_usage	system.disk.total	system.disk.used					
Node Memory	system.mem.pct_usage	system.mem.real.pct_useage	system.mem.real.used	system.mem.usable	system.mem.used					

Deviations Manifested in Failure Triage

Table 3: Silimarity between SLDs and ILDs of root cause and non-root cause instances

Instances	Metric	Cosine Similarity	Percentile
Root Cause	Mean	0.714	P83
	Median	0.767	P90
Non-root Cause	Mean	0.487	P46
	Median	0.499	P48

Deviations Manifested in Root Cause Localization

RQ2: How to Extract

Outline

What's the incident life-cycle in microservice systems?

➔ Anomaly detection, failure triage, root cause localization

How to achieve the unification across multiple tasks?

➔ Anomalous deviation: the shared knowledge

Framework design

➔ Dependency-Aware Status Learning, Unified Failure Representation Acquisition, Unsupervised Solutions for Diagnostic Tasks

Evaluation

➔ 2 popular microservice systems

ART Overview

A Unified Unsupervised Framework for Incident Management in Microservice Systems

Module #1 Dependency-Aware Status Learning

Module #1 Channel Dependency

Module #1 Temporal Dependency

Module #1 Call Dependency

Module #2 Unified Failure Representation Acquisition

Module #3 Unsupervised Solutions for Diagnostic Tasks

Outline

What's the incident life-cycle in microservice systems?

➔ Anomaly detection, failure triage, root cause localization

How to achieve the unification across multiple tasks?

➔ Anomalous deviation: the shared knowledge

Framework design

➔ Dependency-Aware Status Learning, Unified Failure Representation Acquisition, Unsupervised Solutions for Diagnostic Tasks

Evaluation

➔ 2 popular microservice systems

Evaluation: Performance

Table 5: Performance comparison for AD, FT, and RCL. "-" means the method does not cover the problem.

						D1									D2				
#	Method		AD			FT			RCL			AD			FT			RCL	
		Precision	Recall	F1	Precision	Recall	F1	Top1	Top3	AVG@5	Precision	Recall	F1	Precision	Recall	F1	Top1	Top3	AVG@5
e	ART	0.899	0.990	0.942	0.836	0.809	0.812	0.667	0.810	0.776	0.877	0.960	0.917	0.851	0.796	0.802	0.722	0.889	0.870
ipl	Eadro [27]	0.425	0.946	0.586	-	-	-	0.137	0.315	0.302	0.767	0.935	0.842	-	-	-	0.157	0.315	0.310
Inf	Dejevu [31]	-	-	-	0.369	0.621	0.415	0.411	0.679	0.625	-	-	-	0.718	0.340	0.417	0.402	0.667	0.619
ц	DiagFusion [60]	-	-	-	0.675	0.500	0.568	0.310	0.452	0.467	-	-	-	0.797	0.527	0.593	0.582	0.709	0.695
e	Hades [28]	0.866	0.863	0.865	-	-	-	-	-	-	0.867	0.868	0.868	-	-	-	-	-	-
ngl	MicroCBR [35]	-	-	-	0.667	0.796	0.717	-	-	-	-	-	-	0.629	0.678	0.636	-	-	-
Si.	PDiagnose [19]	-	-	-	-	-	-	0.615	0.692	0.685	-	-	-	-	-	-	0.037	0.296	0.285

Evaluation: Efficiency

Table 6: The comparison of training time (Offline) and diagnosis time (Online) per case. The unit is second. "-" means no need for training.

Method		Targe	et	D	1	D2		
	AD	FT	RCL	Offline	Online	Offline	Online	
ART	✓	\checkmark	\checkmark	460.262	0.872	1085.767	1.363	
Eadro	\checkmark		\checkmark	510.570	0.627	795.416	0.899	
Dejavu		\checkmark	\checkmark	1182.468	0.427	1937.330	1.028	
DiagFusion		\checkmark	\checkmark	621.309	4.145	310.357	3.297	
Hades	✓			1214.528	0.104	2073.0413	0.415	
MicroCBR		\checkmark		-	0.278	-	0.306	
PDiagnose			\checkmark	-	4.342	-	9.919	

Evaluation: Ablation Study

Table 7: The evaluation results of ablation study

Method		D1		D2					
memou	AD: F1	FT: F1	RCL: AVG@5	AD: F1	FT: F1	RCL: AVG@5			
ART	0.942	0.812	0.776	0.917	0.802	0.870			
A1	0.900	0.558	0.727	0.891	0.727	0.851			
A2	0.914	0.671	0.672	0.783	0.754	0.853			
A3	0.922	0.700	0.725	0.858	0.638	0.857			
B1	0.936	0.794	0.748	0.906	0.717	0.855			
B2	0.926	0.728	0.770	0.881	0.621	0.866			
B3	0.893	0.680	0.770	0.892	0.728	0.863			
B4	0.931	0.769	0.755	0.845	0.786	0.862			
B5	0.893	0.758	0.714	0.888	0.570	0.844			

Conclusion

- **Motivation**: OCEs call for an elegant and efficient unified modeling approach, addressing anomaly detection, failure triage, and root cause localization
- **Challenge**: complexity, interpretability, scarcity
- **Solution**: ART framework for incident management
 - Dependency-Aware Status Learning, Unified Failure Representation Acquisition, Unsupervised Solutions for Diagnostic Tasks
- **Evaluation**: superior performance with comparable efficiency

Thank you!