
End-to-End AutoML for Unsupervised
Log Anomaly Detection

Shenglin Zhang1,2 Yuhe Ji1 Jiaqi Luan1 Xiaohui Nie3

Zi’ang Chen1 Minghua Ma4 Yongqian Sun1,5 Dan Pei6

1Nankai University 2Haihe Laboratory of Information Technology
Application Innovation

3Computer Network Information
Center,Chinese Academy of Sciences.

4Microsoft 5Tianjin Key Laboratory of Software Experience
and Human Computer Interaction

6Tsinghua University

Background Design Evaluation Conclusion

Background

System stability is crucial for modern software systems.
Logs play a key role in maintaining system stability.

Background

Log anomaly detection includes four steps:
Log Parsing Log Grouping Log representation Anomaly Detection

INFO CE sym 12, at 0x1b786f60, mask 0x04

Event1: CE sym <*>, at <*>, mask <*>

Log Parsing

Structured Log

Raw Log

Log Grouping

Sliding window

Fixed window

Session windowLog Sequence

Log Representation

Log Windows

Sequential Vector

Quantitative Vector

Semantic Vector

Anomaly Detection

Clustering

Next token predict

Classification

Background

Log Representation

Log Windows

Sequential Vector

Quantitative Vector

Semantic Vector

Anomaly Detection

Clustering

Next token predict

Classification

Which type of feature performs
better in anomaly detection on the
specified log dataset: sequence,
quantity, semantics, or their
combination?

How should existing anomaly
detection methods be selected
and deployed? How should their
hyperparameters be determined?

Background

Our goal:
Parsing Presentation Model Selection Train & Inference

Automated!

Background

Challenges:

Diversified datasets present challenges to feature engineering.

• The quality of template extraction and the chosen log representation methods significantly
impact the final anomaly detection results.

• The significant differences between datasets lead to the need for deep manual involvement
in the feature engineering process.

Background

Challenges:

Massive hyperparameter combinations and unlabeled data present challenges to
model selection and evaluation.

• Each model has numerous hyperparameters, making model selection highly challenging.

• Model evaluation needs labeled data, making performance assessment difficult with
unlabeled data.

Background Design Evaluation Conclusion

Design

Overview of LogCraft

Design

Core idea of LogCraft

To address Challenge 1:
• Combine semantic analysis and clustering techniques to improve template parsing accuracy.
• Use feature combinations as one of the candidate set features.

Design

Core idea of LogCraft

To address Challenge 2:
• Design a meta-feature extractor and combine it with collaborative filtering techniques to

recommend models from the candidate set for unlabeled datasets.

Adaptive Feature Enhancement

Traditional Log Parsing :

• Inconsistent variable lengths

• Lack of filtering rules

• Neglect of semantic information

Raw Log

Parsing
E1: CE sym *, mask *

E2: CE sym *, mask *, *

E3: generating core *
Embedding Clustering

E1: CE sym *, mask *

E1: CE sym *, mask *, *

E3: generating core *

Structured Log

I need to write appropriate regular
expressions for each type of log
and make multiple attempts to

achieve reasonable results!

Or rather, through automated
sentence vector encoding and

clustering?

Adaptive Feature Enhancement

Log Engineering:

• Differences between datasets

• Difficult to identify key anomaly features

How should I choose the features
for model training when the key
characteristics that determine

anomalies differ across various logs?

Incorporate combinations of
features as part of the model's

hyperparameters and include them
in the candidate set!

Feature Vectors Feature Combinations

Sequential + Semantic

Sequential + Quantitive

……

Model Candidates

Meta Learner Construction

To select a well-performing model for unlabeled log datasets, the results of
the models on existing datasets are used for recommendation.

Two factors are essential:

Performance Evaluation Similarity Measurement

Meta Learner Construction

We selected four base algorithms and combined them with different
hyperparameters to establish a candidate set containing tens of millions of models.

Next, we ran the particle swarm optimization algorithm on four labeled datasets,
retaining potential candidates and recording their performance as Performance
Matrix.

PSO

Searching Space Model Candidates

Evaluate

Performance Matrix

Meta Learner Construction

We creatively designed a meta-feature extractor for log data, which extracts
fixed-length vectors from log datasets as their representation.

Feature Vectors

The meta-feature extractor is designed to extract two types of meta-features
from datasets: statistical meta-features and model-based meta-features.

Matrix Analysis Variance, Skewness, Kurtosis …

inter-cluster distances …Clustering, IForest Meta-Feature
Matrix

Meta Learner Construction

Regression Learner Matrix Performance Matrix

The goal of the meta-learner is to learn a regression function and a new matrix
(referred to as the Learner Matrix), such that the dot product of the meta-
feature matrix, after a linear transformation, with this matrix approximates the
Performance Matrix.

Model Preparing

When new log data arrives, it is structured and associated with meta-feature extraction.
The resulting meta-feature vector undergoes a linear transformation and is multiplied by
the Performance Matrix, resulting in the Performance Vector. Each column of the vector
represents the estimated performance of the corresponding model on that dataset.

New Dataset

LogAFE

Feature Vectors

Extract

Regression Learner
Matrix

Performance
Vector

Background Design Evaluation Conclusion

Dataset

Detailed information of the datasets

Research Questions

RQ1: How effective is LogCraft in unsupervised log anomaly detection?

RQ2: How effective are the main components of LogCraft?

RQ3: How do hyperparameter settings affect the performance of LogCraft?

Research Questions

RQ1: How effective is LogCraft in unsupervised log anomaly detection?

RQ2: How effective are the main components of

RQ3: How do hyperparameter settings affect the performance of

We compared the performance of LogCraft with six unsupervised log anomaly
detection baselines: PCA, IM, DeepLog, LogAnomaly, CNN, and LogBERT.

Research Questions

RQ1: How effective is

RQ2: How effective are the main components of LogCraft?

RQ3: How do hyperparameter settings affect the performance of

In the ablation experiments for LogAFE, we first tested the effect of removing the task of merging
template semantics and directly extracting feature vectors for model training.

After template merging, the model's performance improved across all datasets, and the
detection speed increased on four datasets.

Research Questions

RQ1: How effective is

RQ2: How effective are the main components of LogCraft?

RQ3: How do hyperparameter settings affect the performance of

In the ablation experiments for LogAFE, we then attempted to train and detect the
model using only certain features to verify the improvement in performance after
feature integration with LogCraft.

After considering feature combinations, LogCraft's performance either matched or exceeded that
of the model which only considered single features across all datasets.

Research Questions

RQ1: How effective is

RQ2: How effective are the main components of LogCraft?

RQ3: How do hyperparameter settings affect the performance of

For the meta-feature learner, we compared the performance of LogCraft with
other recommendation algorithms.

LogCraft outperformed other recommendation algorithms on four datasets and achieved the
theoretical optimal value on three datasets.

Research Questions

RQ1: How effective is

RQ2: How effective are the main components of

RQ3: How do hyperparameter settings affect the performance of LogCraft?

LogCraft is designed as a black box, automatically selecting parameters. However, the operator can still influence
the model's performance by modifying the similarity threshold (s_th) for template merging. We evaluated
LogCraft's performance under different hyperparameter settings.

Background Design Evaluation Conclusion

Conclusion

Log Data Representation Matters.

Meta Feature Potentials Log Analytics.

Conclusion

• This paper introduces LogCraft: an end-to-end unsupervised log
anomaly detection framework based on AutoML

• LogCraft shown good performance on five public datasets with an
average F1 score of 0.899, surpassing existing unsupervised
detection algorithms.

• LogCraft represents the initial effort to derive fixed-dimensional
vectors as latent feature representations from an entire log dataset.

• The meta-feature extractor we propose also demonstrates significant
promise for assessing dataset similarity and advancing research in
the field of log analytics.

Thanks

