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Background & Motivation

* Thousands of boards in a supercomputer carry tons of sensors,
generating a huge amount of out-of-band alerts (i.e., IPMI alerts).

 We adopt a hierarchical alert reporting. Even if filtered by blacklists or
increased sampling intervals, the system still exposed to thousands of
alerts every day. —
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Background & Motivation

* Alert Overload

* Unlike occasional alert bursts from online services in data centers.
* Alert overload is continuous disturbance of alerts.
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This calls for Automatic Alert Aggregation.
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Challenges

* Challenge1: Shape-based aggregation methods do not work.

* E.g,, Clustering-based and Similarity-based methods both need calculating
distances, while all the changes in sensor lines are jumps.

* Challenge?2: Deriving causal relationships from the physical meaning of

sensors do not work.
* Sensor names are very complex and not readabile.

Clustering-based Similarity -based Ground Truth (Ideal)
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Temp_3 S$*09 192 % % R3-pP*
Volt_1 CEQ1 192 % %= R3-P*

Sensor names: complex and
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Observation 1: Many frequent bursts of
— different patterns contribute to the large
number of alerts. (redundancy)
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Observation 2: These two alert lines show

similar trends with a casual relationship.
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These motivate us to find out the burst patterns in each sensor, and the causal
patterns between sensors.



SuperAgg: Overview

« Offline Stage: learning knowledge Hierarchically from historical alerts
* Tier1: sensor-tier burst pattern modeling (According to Observation 1)
* Tier2: system-tier causal pattern modeling (According to Observation 2)

* Online Stage: performing aggregation based on the knowledge
- Step1: strategy-based aggregation with tier1 patterns
- Step2: rule-based aggregation with tier2 patterns
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SuperAgg: Offline Pattern Modeling

* Tier1: sensor-tier burst pattern modeling

1. Pattern detection by using

contrastive learning.
 Time2State , a best SOTA method.

Subsequence with the same pattern
f 1

2. Human-in-the-loop Modeling for

their semantic meaning
« Groups 8 patterns into 4 categories
* It is one-pass step and offline
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SuperAgg: Offline Pattern Modeling

* Tier2: system-tier causal pattern modeling

» Use a directional Apriori method to rules confidence
. . . ('33', '41', 'STB_2V5')->('5', 'S', 'Temp_3') 0.975
depict the sr_)anal correlation patterns. LT S s F -
 (Generate prlmarY'and'Secondary rules. (i, s, psvy-se3, 11, Temp_3) 0.971

('19', '8', 'P5V')->('6', '6', 'Temp_4') 0.971

("13', '2', 'NIO_TOP1_Temp')->('13", '2', 'NIO_BOT2_Temp') 0.966

('7','11', 'STB_2V5")->('3", '11', 'Temp_3") 0.964
('8', '11', 'STB_2V5")->("10', '10', 'Temp_3") 0.963
('8', '11', 'STB_2V5')->("18', '42', 'Temp_1") 0.963

('30", '31", 'NIO_BOT3_Temp')->('30', '31', 'NIO_BOT2_Temp') 0.963
('7','6', 'STB_2V5")->('9', '9', 'Temp_3") 0.955
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SuperAgg: Online Aggregation

Ly T
- Step1: Strategy-based Aggregation e e N—
- Strategy1: Silent awaiting (for Fake & Wander patterns) upH”; a”.U“ w””ﬂ”w” u”m”, e”,
« Strategy2: See&suppression (for Jitter patterns) Blnininin INNNNN]
up jitter down Jitter

- Step2: Rule-based Aggregation

Ruley, = [(%, %, AL;) — (*,%,AL;),0.8] € RA(t;—t;) < w
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Evaluation: Datasets and Metrics

Two datasets: up w@w)

Datasets Time span #Alerts | #Sentinel alerts
A 2023/01/28 ~ 03/31 1552942 607
B 2023/04/01 ~ 06/06 2115815 558
Metrics:

Nbefore — Nafter

Aggregation rate = x 100%

Npe fore

n . .
Accuracy — retainedSentinels < 100%

Nsentinels
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Evaluation: Performance of SuperAgg

Aggregation Rate (%)

Methods
Vet o Al B Improvement of about 0.9%
Rule-based 97.10 97.74
Clustering-based ~ 97.77 94.81 / to 3.83%.
Window-based 97.87 97.33
SuperAgg (ours) 99.04 98.64
100 1 99.18 B SuperAgg (ours) 95.88

B Clustering-based

—~ 801 B Window-based .
g © 7 Rule-based At least 83.8% lift on Dataset A,
5 60
-, 43.2% on Dataset B.
2
201 1532 15.34

Datasets
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Implementation on TIANHE

Before SuperAgg, the number of
alerts is about 1350 to 9180 per
day.

After SuperAgg, the number
of alerts is about 57 to 470
per day.
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Conclusion

* This paper is the first work to solve the alert overload problem for
supercomputers.

 SuperAgg first detect the burst patterns in each sensor using
contrastive learning, then mining the causal patterns in a system-tier.

* SuperAgg has a high aggregation rate and do not miss important
alerts.
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Thanks for your attention!

Q&A

Email: sunyonggian@nankai.edu.cn



