
Illuminating the Gray Zone: Non-intrusive Gray
Failure Localization in Server Operating Systems

Shenglin Zhang1, Yongxin Zhao1, Xiao Xiong1, Yongqian Sun1, Xiaohui Nie2,

Jiacheng Zhang1, Fenglai Wang3, Xian Zheng3, Yuzhi Zhang1, Dan Pei4

1Nankai University, 2Chinese Academy of Science
3Huawei Technologies, 4Tsinghua University

01

Background

02

Design

03

Evaluation

04

Conclusion

2

Server OS

3

Servers support countless applications and services

Server operating system (OS) acts as an intermediary

between applications and the server hardware

Applications

OS

Hardware

• Server OS enables applications to run efficiently and securely

on hardware.

• Servers serve as the core of large-scale data management and

a key component in providing network services.

Gray Failures in Server OS

4

UNHEALTHY HEALTHYGRAY FAILURES

Gray failures occur frequently but are difficult to localize

• Gray failures are the root cause of many catastrophic failures in the real world.

• When one component becomes unhealthy, it will likely impact the performance

of other components (possibly all), affecting the system’s regular operation.

• Gray failures make troubleshooting time-consuming and inaccurate.Timely and accurate localization and mitigation of gray failures

in server OSes are crucial for ensuring their high availability

Empirical Study

5

Anomalies on KPIs often signal potential gray failures, and root cause

metrics exhibit anomalies and correlate with the KPI

Expert knowledge is essential for accurate causality learning

FSECompanion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

Table 1: The number of edges in the causal i ty graph constructed by di f erent methods and the resul ts of gray fai lure local ization

(✓for accurate local ization and ×for inaccurate local ization).

Method
Disk

Fai lure_1
Disk

Fai lure_2
Delay

Fai lure_1
Delay

Fai lure_2
Packet Loss
Fai lure_1

Packet Loss
Fai lure_2

CPU
Fai lure_1

CPU
Failure_2

Granger causality tests [10] w knowledge 76 (✓) 92 (✓) 88 (✓) 81 (✓) 42 (✓) 142 (✓) 63 (✓) 54 (✓)
Granger causality tests [10] w/o knowledge 297 (×) 345 (×) 152 (✓) 153 (✓) 155 (×) 395 (×) 210 (✓) 217 (×)

PC algorithm [39] w knowledge 12 (×) 42 (✓) 7 (×) 6 (×) 16 (✓) 15 (×) 31 (✓) 3 (×)
PC algorithm [39] w/o knowledge 59 (×) 95 (×) 40 (×) 43 (×) 54 (✓) 64 (×) 60 (×) 53 (×)
PCTSalgorithm [30] w knowledge 32 (✓) 47 (✓) 52 (✓) 50 (×) 48 (✓) 45 (✓) 64 (✓) 43 (×)

PCTSalgorithm [30] w/o knowledge 40 (✓) 51 (×) 69 (✓) 63 (×) 73 (✓) 48 (✓) 64 (✓) 89 (×)

Multivariate

Time Series

Causality

Skeleton

Causal

Inference

Causality Graph

Learning

Root Cause

Inference

Root Cause

List

Path Search

Algorithm

 Propagation Path

Inference

Data

Collection

Anomaly

Detection

 Gray Failure

Report

Figure 2: The framework of GrayScope.

gray failure was high CPU utilization, which led to extended re-

sponse times for processing. During the gray failure, the metrics

“mem_utilization” and “cpu_utilization” also showed anomalies,

while the metric “nic_in_packets” appeared normal. Although the

anomaly degree of “mem_utilization” is higher, “cpu_utilization”

correlates more with the KPI when the gray failure occurred. As a

result, the correlation between metrics and the KPI, as well as the

anomaly degree of metrics, are crucial for accurately identifying

the root cause of thegray failure.

3 APPROACH

3.1 Overview

Asshown in Fig. 2, GrayScopeconsists of four key modules:

(1) Data Col lection and Anomaly Detection (§3.2). GrayScope

uses metric collection tools to collect runtime monitoring metrics

from multiple data sources at f xed intervals in server OS. It then

triggers root cause localization when an anomaly in KPI isdetected.

(2) Causal i ty Graph Learning (§3.3). In root cause localization,

GrayScope f rst constructs a metric causality structure graph by

plugging relevant metrics in a skeleton graph based on expert

knowledge. It then analyzes causal relationships between metrics

using an observation window for causality testing. By integrating

the metric causality structure graph with the causal relationships

between metrics, a metric causality graph is derived, represent-

ing how various metrics af ect KPI and their mutual interactions.

Therefore, GrayScope focuses on relevant metrics rather than all

availabledata, reducing thechanceof spuriouscorrelations. Thede-

rived metric causality graph captures the evolving causal structure,

considering direct and indirect relationships between metrics and

the target KPI, overcoming the challenge introduced by complex

causal relationships between metrics (the f rst challenge).

(3) Root Cause Inference (§3.4). Inspired by the random walk

algorithm, GrayScopeconsiders the weighted combination of the

correlation between metricsand KPI, aswell as theanomaly degree

of metrics themselves, as the transition probabilities for the walk.

Starting from the anomalous KPI, GrayScope randomly traverses

along the metric causality graph to generate a potential root cause

ranking list. Integrating the correlation provides a dynamic assess-

ment of potential root causes, mitigating the underutilization of

thecorrelations (the second challenge).

(4) Propagation Path Inference (§3.5). Finally, GrayScopecom-

bines the metric causality graph with the potential root cause rank-

ing list to infer possible propagation paths of the root cause within

the server OS. This provides an interpretable explanation of how

the gray failure spreads through the server OS, aiding operators in

implementing targeted mitigation strategies, thus addressing the

challengeof interpretability (the third challenge).

3.2 Data Col lection and Anomaly Detection

By real-timemonitoringof server OSmetrics,operatorscan promptly

identify and resolve performance issues, ensuring that server OS

meets user requirements. The Data Collection module gathers mul-

tiple runtime information from the server OSacross various data

sources, including system calls, applications, and process commu-

nications. Gala-gopher [8] is an eBPF-based low-overhead probe

framework for monitoring and collecting data on server OSnet-

work, memory, disk I/O, and scheduling states. It allows for conf g-

uring existing collection probesbased on businessneeds. Wedeploy

gala-gopher on each server OSto collect monitoring metrics, setting

thedata collection interval at f veseconds. Prometheus [35] is an

open-source service monitoring system and time-series database,

providing a generic data model and fast data collection, storage,

and query interfaces. We employ Prometheus to collect metric data

from each server OSat given intervals.

Asdescribed in Section §2.1.3,gray failures,when they occur, can

lead to adegradation in application performance, with anomalies in

KPI. Therefore, before localizing the root cause of gray failures, we

f rst require an anomaly detection algorithm to identify anomalies

in KPI and report the gray failure occurring in the system. Further-

more, according to Pearl’s concept of cause-ef ect [33], if there is a

causal relationship between two variables, a change in onevariable

will lead to a change in the other. Usually, the root cause metrics

will also exhibit anomalies during the gray failure, as anomalous

metrics could be the potential root causes of an abnormal KPI [30].

Related Work

6

Research on root cause localization for gray failures is scarce

• Some intrusive methods rely on modifying the source code of applications,

limiting their practical deployment due to high modification costs and long

localization cycles.

A collection of metric-based root cause localization methods has

been proposed for distributed systems

• Statistical methods are easily affected by data noise.

• Feature learning methods often rely on many high-quality labeled cases.

• Causality graph-based methods are promising for non-intrusive metric-based

gray failure localization in server OS.

Challenges

Complex causal relationships between metrics

• Server OSes feature hundreds of dynamically changing metrics, with evolving relationships
between them.

Underutilization of the correlations

Interpretability

• A lack of information about the propagation paths of gray failures can affect the efficiency
of operators in mitigating failures.

• The correlation between metrics and the gray failure can guide the root cause inference

method to localize the metrics causing the gray failure.

7

Contributions

Complex causal relationships between metrics

8

Integrates expert knowledge with causal learning techniques

Contributions

Underutilization of the correlations

9

Combines partial correlation with anomaly degree

Contributions

Interpretability

10

Infers the gray failure propagation paths between metrics

01

Background

02

Design

03

Evaluation

04

Conclusion

11

GrayScope Overview

Multivariate

Time Series

Anomaly

Detection

Gray Failure

Report

Causality

Skeleton

Causal

Inference

Causality Graph

Learning

Root Cause

Inference

Root Cause

List

Path Search

Algorithm

Propagation Path

Inference

Data

Collection
 Data Collection and Anomaly Detection

 Causality Graph Learning

 Root Cause Inference

 Propagation Path Inference

Four key modules:

12

Data Collection and Anomaly Detection

• The Data Collection module gathers multiple runtime information from the server OS

across various data sources, including system calls, applications, and communications.

• The Anomaly Detection module identifies anomalies in KPI and reports the gray failure

occurring in the system.

FSECompanion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

Table 1: The number of edges in the causal i ty graph constructed by di f erent methods and the resul ts of gray fai lure local ization

(✓for accurate local ization and ×for inaccurate local ization).

Method
Disk

Fai lure_1
Disk

Fai lure_2
Delay

Fai lure_1
Delay

Fai lure_2
Packet Loss
Fai lure_1

Packet Loss
Fai lure_2

CPU
Fai lure_1

CPU
Fai lure_2

Granger causality tests [10] w knowledge 76 (✓) 92 (✓) 88 (✓) 81 (✓) 42 (✓) 142 (✓) 63 (✓) 54 (✓)
Granger causality tests [10] w/o knowledge 297 (×) 345 (×) 152 (✓) 153 (✓) 155 (×) 395 (×) 210 (✓) 217 (×)

PC algorithm [39] w knowledge 12 (×) 42 (✓) 7 (×) 6 (×) 16 (✓) 15 (×) 31 (✓) 3 (×)
PC algorithm [39] w/o knowledge 59 (×) 95 (×) 40 (×) 43 (×) 54 (✓) 64 (×) 60 (×) 53 (×)
PCTSalgorithm [30] w knowledge 32 (✓) 47 (✓) 52 (✓) 50 (×) 48 (✓) 45 (✓) 64 (✓) 43 (×)

PCTSalgorithm [30] w/o knowledge 40 (✓) 51 (×) 69 (✓) 63 (×) 73 (✓) 48 (✓) 64 (✓) 89 (×)

Multivariate

Time Series

Causality

Skeleton

Causal

Inference

Causality Graph

Learning

Root Cause

Inference

Root Cause

List

Path Search

Algorithm

 Propagation Path

Inference

Data

Collection

Anomaly

Detection

 Gray Failure

Report

Figure 2: The framework of GrayScope.

gray failure was high CPU utilization, which led to extended re-

sponse times for processing. During the gray failure, the metrics

“mem_utilization” and “cpu_utilization” also showed anomalies,

while the metric “nic_in_packets” appeared normal. Although the

anomaly degree of “mem_utilization” is higher, “cpu_utilization”

correlates more with the KPI when the gray failure occurred. As a

result, the correlation between metrics and the KPI, as well as the

anomaly degree of metrics, are crucial for accurately identifying

the root cause of the gray failure.

3 APPROACH

3.1 Overview

As shown in Fig. 2, GrayScopeconsists of four key modules:

(1) Data Col lection and Anomaly Detection (§3.2). GrayScope

uses metric collection tools to collect runtime monitoring metrics

from multiple data sources at f xed intervals in server OS. It then

triggers root cause localization when an anomaly in KPI isdetected.

(2) Causal i ty Graph Learning (§3.3). In root cause localization,

GrayScope f rst constructs a metric causality structure graph by

plugging relevant metrics in a skeleton graph based on expert

knowledge. It then analyzes causal relationships between metrics

using an observation window for causality testing. By integrating

the metric causality structure graph with the causal relationships

between metrics, a metric causality graph is derived, represent-

ing how various metrics af ect KPI and their mutual interactions.

Therefore, GrayScope focuses on relevant metrics rather than all

availabledata, reducing thechanceof spuriouscorrelations. Thede-

rived metric causality graph captures the evolving causal structure,

considering direct and indirect relationships between metrics and

the target KPI, overcoming the challenge introduced by complex

causal relationships between metrics (the f rst challenge).

(3) Root Cause Inference (§3.4). Inspired by the random walk

algorithm, GrayScopeconsiders the weighted combination of the

correlation between metricsand KPI, aswell as theanomaly degree

of metrics themselves, as the transition probabilities for the walk.

Starting from the anomalous KPI, GrayScope randomly traverses

along the metric causality graph to generate a potential root cause

ranking list. Integrating the correlation provides a dynamic assess-

ment of potential root causes, mitigating the underutilization of

the correlations (the second challenge).

(4) Propagation Path Inference (§3.5). Finally, GrayScopecom-

bines the metric causality graph with the potential root cause rank-

ing list to infer possible propagation paths of the root cause within

the server OS. This provides an interpretable explanation of how

the gray failure spreads through the server OS, aiding operators in

implementing targeted mitigation strategies, thus addressing the

challenge of interpretability (the third challenge).

3.2 Data Col lection and Anomaly Detection

By real-timemonitoringof server OSmetrics,operatorscan promptly

identify and resolve performance issues, ensuring that server OS

meets user requirements. The Data Collection module gathers mul-

tiple runtime information from the server OSacross various data

sources, including system calls, applications, and process commu-

nications. Gala-gopher [8] is an eBPF-based low-overhead probe

framework for monitoring and collecting data on server OSnet-

work, memory, disk I/O, and scheduling states. It allows for conf g-

uring existing collection probesbased on businessneeds. Wedeploy

gala-gopher on each server OSto collect monitoring metrics, setting

the data collection interval at f ve seconds. Prometheus [35] is an

open-source service monitoring system and time-series database,

providing a generic data model and fast data collection, storage,

and query interfaces. We employ Prometheus to collect metric data

from each server OSat given intervals.

Asdescribed in Section §2.1.3,gray failures, when they occur, can

lead to adegradation in application performance, with anomalies in

KPI. Therefore, before localizing the root cause of gray failures, we

f rst require an anomaly detection algorithm to identify anomalies

in KPI and report the gray failure occurring in the system. Further-

more, according to Pearl’s concept of cause-ef ect [33], if there is a

causal relationship between two variables, a change in one variable

will lead to a change in the other. Usually, the root cause metrics

will also exhibit anomalies during the gray failure, as anomalous

metrics could be the potential root causes of an abnormal KPI [30].

13

Causality Graph Learning

Multivariate

Time Series

Anomaly

Detection

Gray Failure

Report

Causality

Skeleton

Causal

Inference
Causality Graph

Learning

Root Cause

Inference

Root Cause

List

Path Search

Algorithm

Propagation Path

Inference

Data

Collection

• Learning effective causality graphs is

crucial for failure root cause

localization.

• Granger causality tests, a method of

time series analysis used to test for

causality between two time series, to

learn causality graphs between metrics.

• We propose a causality graph learning

model that combines expert

knowledge with Granger causality tests.

14

Causality Graph Learning

(a) We construct a causality skeleton

graph of meta metrics for server OS

gray failures by leveraging expert

knowledge.

(b) We insert the top 𝑚 related metrics

for each category of meta-metrics.

(c) We connect related metrics fully and

construct the metric causality

structure graph.

(d) We perform the Granger causality

test for all related metrics and

preserve the anomalous KPI

subgraph, resulting in the learned

metric causality graph.

15

Root Cause Inference

• Identifying root causes should prioritize metrics highly correlated with KPI.

• Root cause metrics usually exhibit anomalies during a gray failure.

• The random walk should consider the correlation between each metric and the

anomalous KPI and each metric’s anomaly degree.

FSECompanion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

Table 1: The number of edges in the causal i ty graph constructed by di f erent methods and the resul ts of gray fai lure local ization

(✓for accurate local ization and ×for inaccurate local ization).

Method
Disk

Fai lure_1
Disk

Fai lure_2
Delay

Fai lure_1
Delay

Fai lure_2
Packet Loss
Fai lure_1

Packet Loss
Fai lure_2

CPU
Fai lure_1

CPU
Fai lure_2

Granger causality tests [10] w knowledge 76 (✓) 92 (✓) 88 (✓) 81 (✓) 42 (✓) 142 (✓) 63 (✓) 54 (✓)
Granger causality tests [10] w/o knowledge 297 (×) 345 (×) 152 (✓) 153 (✓) 155 (×) 395 (×) 210 (✓) 217 (×)

PC algorithm [39] w knowledge 12 (×) 42 (✓) 7 (×) 6 (×) 16 (✓) 15 (×) 31 (✓) 3 (×)
PC algorithm [39] w/o knowledge 59 (×) 95 (×) 40 (×) 43 (×) 54 (✓) 64 (×) 60 (×) 53 (×)
PCTSalgorithm [30] w knowledge 32 (✓) 47 (✓) 52 (✓) 50 (×) 48 (✓) 45 (✓) 64 (✓) 43 (×)

PCTSalgorithm [30] w/o knowledge 40 (✓) 51 (×) 69 (✓) 63 (×) 73 (✓) 48 (✓) 64 (✓) 89 (×)

Multivariate

Time Series

Causality

Skeleton

Causal

Inference

Causality Graph

Learning

Root Cause

Inference

Root Cause

List

Path Search

Algorithm

 Propagation Path

Inference

Data

Collection

Anomaly

Detection

 Gray Failure

Report

Figure 2: The framework of GrayScope.

gray failure was high CPU utilization, which led to extended re-

sponse times for processing. During the gray failure, the metrics

“mem_utilization” and “cpu_utilization” also showed anomalies,

while the metric “nic_in_packets” appeared normal. Although the

anomaly degree of “mem_utilization” is higher, “cpu_utilization”

correlates more with the KPI when the gray failure occurred. As a

result, the correlation between metrics and the KPI, as well as the

anomaly degree of metrics, are crucial for accurately identifying

the root cause of the gray failure.

3 APPROACH

3.1 Overview

As shown in Fig. 2, GrayScopeconsists of four key modules:

(1) Data Col lection and Anomaly Detection (§3.2). GrayScope

uses metric collection tools to collect runtime monitoring metrics

from multiple data sources at f xed intervals in server OS. It then

triggers root cause localization when an anomaly in KPI isdetected.

(2) Causal i ty Graph Learning (§3.3). In root cause localization,

GrayScope f rst constructs a metric causality structure graph by

plugging relevant metrics in a skeleton graph based on expert

knowledge. It then analyzes causal relationships between metrics

using an observation window for causality testing. By integrating

the metric causality structure graph with the causal relationships

between metrics, a metric causality graph is derived, represent-

ing how various metrics af ect KPI and their mutual interactions.

Therefore, GrayScope focuses on relevant metrics rather than all

availabledata, reducing thechanceof spuriouscorrelations. Thede-

rived metric causality graph captures the evolving causal structure,

considering direct and indirect relationships between metrics and

the target KPI, overcoming the challenge introduced by complex

causal relationships between metrics (the f rst challenge).

(3) Root Cause Inference (§3.4). Inspired by the random walk

algorithm, GrayScopeconsiders the weighted combination of the

correlation between metricsand KPI, aswell as theanomaly degree

of metrics themselves, as the transition probabilities for the walk.

Starting from the anomalous KPI, GrayScope randomly traverses

along the metric causality graph to generate a potential root cause

ranking list. Integrating the correlation provides a dynamic assess-

ment of potential root causes, mitigating the underutilization of

the correlations (the second challenge).

(4) Propagation Path Inference (§3.5). Finally, GrayScopecom-

bines the metric causality graph with the potential root cause rank-

ing list to infer possible propagation paths of the root cause within

the server OS. This provides an interpretable explanation of how

the gray failure spreads through the server OS, aiding operators in

implementing targeted mitigation strategies, thus addressing the

challenge of interpretability (the third challenge).

3.2 Data Col lection and Anomaly Detection

By real-timemonitoringof server OSmetrics,operatorscan promptly

identify and resolve performance issues, ensuring that server OS

meets user requirements. The Data Collection module gathers mul-

tiple runtime information from the server OSacross various data

sources, including system calls, applications, and process commu-

nications. Gala-gopher [8] is an eBPF-based low-overhead probe

framework for monitoring and collecting data on server OSnet-

work, memory, disk I/O, and scheduling states. It allows for conf g-

uring existing collection probesbased on businessneeds. Wedeploy

gala-gopher on each server OSto collect monitoring metrics, setting

the data collection interval at f ve seconds. Prometheus [35] is an

open-source service monitoring system and time-series database,

providing a generic data model and fast data collection, storage,

and query interfaces. We employ Prometheus to collect metric data

from each server OSat given intervals.

Asdescribed in Section §2.1.3,gray failures, when they occur, can

lead to adegradation in application performance, with anomalies in

KPI. Therefore, before localizing the root cause of gray failures, we

f rst require an anomaly detection algorithm to identify anomalies

in KPI and report the gray failure occurring in the system. Further-

more, according to Pearl’s concept of cause-ef ect [33], if there is a

causal relationship between two variables, a change in one variable

will lead to a change in the other. Usually, the root cause metrics

will also exhibit anomalies during the gray failure, as anomalous

metrics could be the potential root causes of an abnormal KPI [30].

• Forward step (walk from result metric to cause metric):

• Backward step (walk from cause metric to result metric):

• Self step (stay in the present metric):

16

Propagation Path Inference

• Studying gray failure paths boosts

operator confidence about results,

reduces mitigation time, and improves

system availability.

• Our goal is to deduce the gray failure

propagation path from 𝑣𝑟𝑜𝑜𝑡 to 𝑣𝐾𝑃𝐼 .

• We aim to find the shortest path with

the metrics’ highest cumulative

anomaly score as the propagation path.

Multivariate

Time Series

Anomaly

Detection

Gray Failure

Report

Causality

Skeleton

Causal

Inference

Causality Graph

Learning

Root Cause

Inference

Root Cause

List

Path Search

Algorithm

Propagation Path

Inference

Data

Collection

17

01

Background

02

Design

03

Evaluation

04

Conclusion

18

Dataset

• We establish a cluster environment in Huawei, comprising five physical host machines

and 11 virtual machines, and deploy four popular applications (GaussDB, Redis, Kafka,

and Tomcat) across these server OSes. EulerOS is installed on each of these 16 machines.

• We use Chaosblade for gray failure simulation to simulate network latency, packet loss,

disk IO high load, and CPU exhaustion.

• We inject 1241 gray failures, including 212 gray failures caused by CPU exhaustion, 274

caused by disk IO high load, 336 caused by network latency, and 419 caused by network

packet loss.

19

Effectiveness

20

Compared with baseline methods, the results show that GrayScope is

indeed effective in root cause localization.

outstanding performance on all scenarios

Effectiveness

21

Illuminating the Gray Zone: Non-intrusive Gray Failure Localization in Server Operating Systems FSECompanion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil

Figure 5: Parameters sensit ivi ty on GrayScope.

disk_util

sli_tps

cpu_user_

msec

disk_

wspeed

cpu_total_

used_per

anomaly

detection

root cause

inference

trigger

CPU exhaustion

disk_util

sli_tps

tcp_link_

srtt

disk_

wareq

network latency

disk_

wspeed
sli_tps

disk IO high load

cpu_iowait

_msec

Figure 6: Gray fai lure cases: the red arrows represent the gray

fai lure propagation path.

(4) Weight of partial correlation coef cient and anomaly degree. As

can also be seen in the experiments in Section §4.3, the anomaly

degree has a more signif cant impact on the accuracy of the results

than the partial correlation coef cient. Therefore, we set � to be

less than or equal to 0.5. When � changes from 0.1 to 0.5, the � � @5

of GrayScope remainsalmost unchanged. Overall, GrayScopeworks

best when � is set to 0.2.

4.6 Threats to Val idi ty

A primary threat to the internal validity of our study lies in the

implementation processof GrayScope. Our implementation isbased

on mature frameworks to mitigate this potential threat and has

undergone rigorouschecks and testing.

Regarding theexternal validity of our research, apotential threat

lies in our study subjects. All our studies use data collected from

four application scenarios in Huawei ’s server OS. However, we

believe that our approach possesses suf cient generality. Server

OSbusiness scenarios in other companies or domains may have

dif erent characteristics, such as metric f uctuations and anomaly

propagation. Our study’saccuracy and ef ciency might not directly

apply to other application scenarios. In the future, GrayScopewill

include further evaluations to make it applicable to a broader range

of application scenarios.

5 DISCUSSION

5.1 Case Study

GrayScope has been deployed in Huawei Cloud for four months

to help operators timely and accurately localize gray failures for

server OSes. GrayScope is deployed on each server OSand is trig-

gered when a KPI becomes anomalous. We further evaluate the

performance of GrayScope based on a dataset collected from the

industrial environment of Huawei Cloud, denoted as � . There are

135server OSgray failurecasesin � . Among 48casescaused by net-

work latency, GrayScope’s AC@3 reached 0.83; in 50 cases caused

by disk IO high load, the AC@3 achieved 0.98; and among 37 cases

caused by high memory utilization, the AC@3 attained 0.94. It took

GrayScope6.97s to localize the root cause of each gray failure on

average.

To gain insights into the gray failure localization process of

GrayScope, we utilize three cases from dataset � to illustrate the

step-by-step workf ow employed by GrayScope, as shown in Fig. 6.

(1) CPU exhaustion. When the Anomaly Detection module of

GrayScopedetected anomalies in the performance metric sli_tps of

the GaussDB application, it triggered GrayScope to conduct root

cause localization. GrayScope identif ed cpu_user_msec (theamount

of time that the CPU has spent executing processes in user mode)

as the primary culprit behind the gray failure and provides the

possible propagation path of the gray failure. According to the

results provided by GrayScope, this gray failure was attributed to

an application process consuming a signif cant amount of CPU

time (cpu_user_msec↑), resulting in insuf cient CPU resources for

processing disk I/O, leading to disk operationsbeing queued for pro-

cessing (disk_util↓),ultimately causing adecreasein thethroughput

of the GaussDB application (sli_tps↓). With the root cause localiza-

tion result, operators promptly investigated suspicious processes

with high CPU utilization and quickly took measures to restore the

performance of GaussDB.

(2) Network latency. When network instability led to increased

response time (tcp_link_srtt ↑), the number of requests received

by GaussDB from users within a unit of time decreased, resulting

in reduced disk I/O demands (disk_util ↓), ultimately manifesting

as degradation in GaussDB performance (sli_tps↓). After receiving

the gray failure ticket generated by GrayScope, operators inspected

and conf gured network-related deviceson the server OS, promptly

mitigating this gray failure.

(3) Disk IO high load. The underlying logic involved suspicious

processes heavily utilizing disk write bandwidth (disk_wspeed↑),
causing GaussDB to lack suf cient disk I/O resources for data write

operations, resulting in performance degradation (sli_tps↓). When

operators received the gray failure ticket generated by GrayScope,

they quickly identif ed and addressed suspicious processes with

high disk write resource utilization.

Based on theaboveanalysis, it isevident that themeasurestaken

by GrayScopetoprovidegray failurepathsof er greater convenience

to operators and strengthen their acceptance of root causes.

• We further evaluate the performance of

GrayScope based on a dataset collected

from the industrial environment of

Huawei Cloud, denoted as 𝑪.

• In 48 network latency cases, GrayScope’s

AC@3 reached 0.83; in 50 disk IO high

load cases, the AC@3 achieved 0.98; in

37 high memory utilization cases, the

AC@3 attained 0.94.

• It took GrayScope 6.97s to localize the

root cause of each gray failure on

average.

01

Background

02

Design

03

Evaluation

04

Conclusion

22

Conclusion

GrayScope: A Framework for Localizing Root Causes of Gray Failures

Opensource GrayScope

• https://gitee.com/ milohaha/grayscope

• Integrates expert knowledge with causal learning =>Learns reliable metric causal graphs

• Combines partial correlation with anomaly degree => Enhances the accuracy

• Recommends propagation paths => Enhances the interpretability

• Effectively and efficiently localize the root causes of gray failures in server OS

23

Thanks
Q&A

