

Giving Every Modality a Voice in Microservice Failure Diagnosis via Multimodal Adaptive Optimization

Lei Tao¹, Shenglin Zhang, Zedong Jia, Jinrui Sun, Minghua Ma,

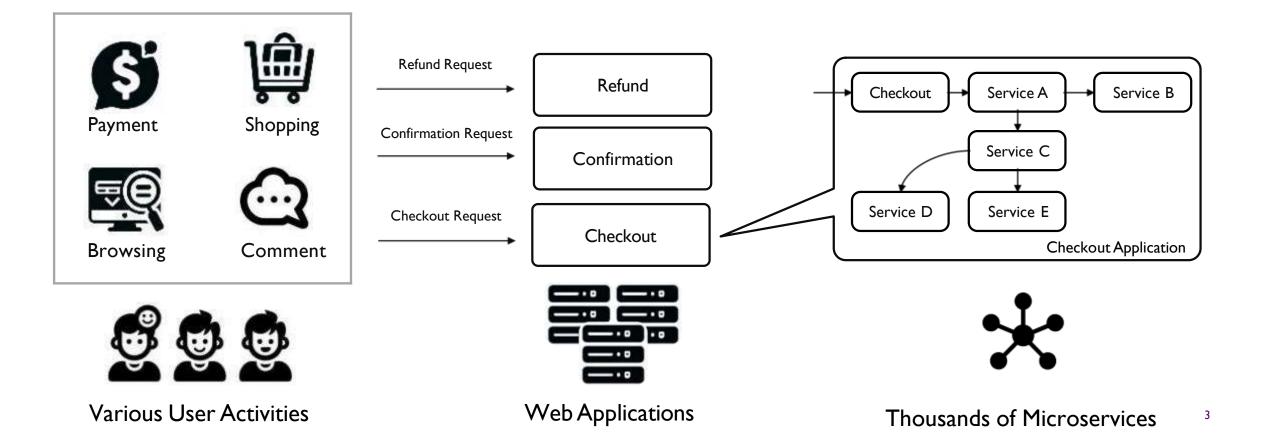
Zhengdan Li², Yongqian Sun, Canqun Yang, Yuzhi Zhang, Dan Pei

[1] Presenter. Email: <u>leitao@mail.nankai.edu.cn</u>[2] Corresponding Author

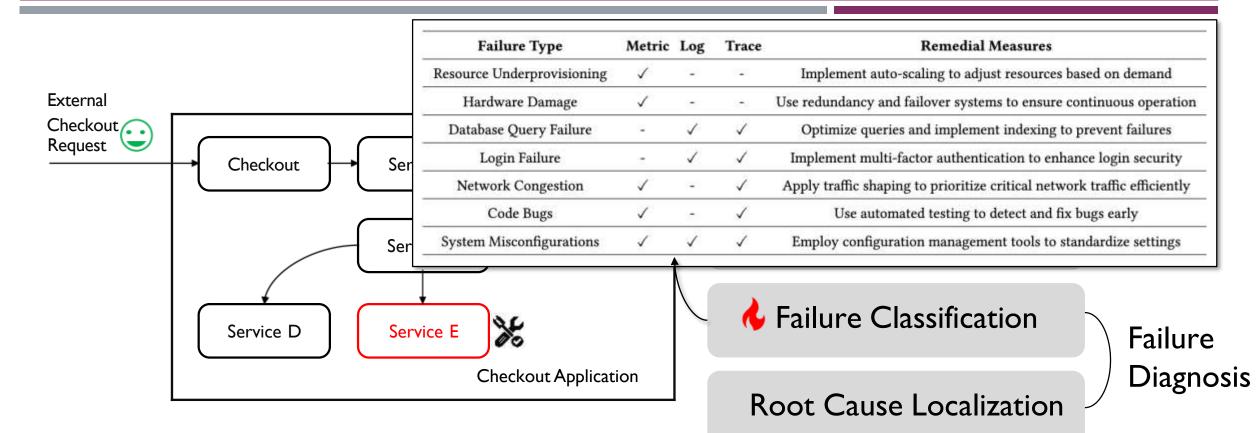
Outline

- Background
- Design
- Evaluation
- Conclusion

Microservice Systems

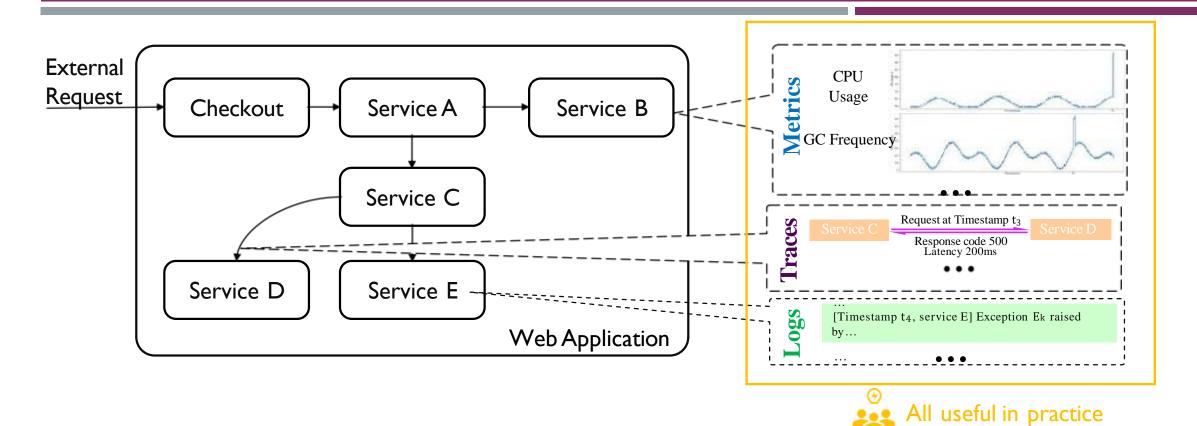


Microservice Reliability Maintenance



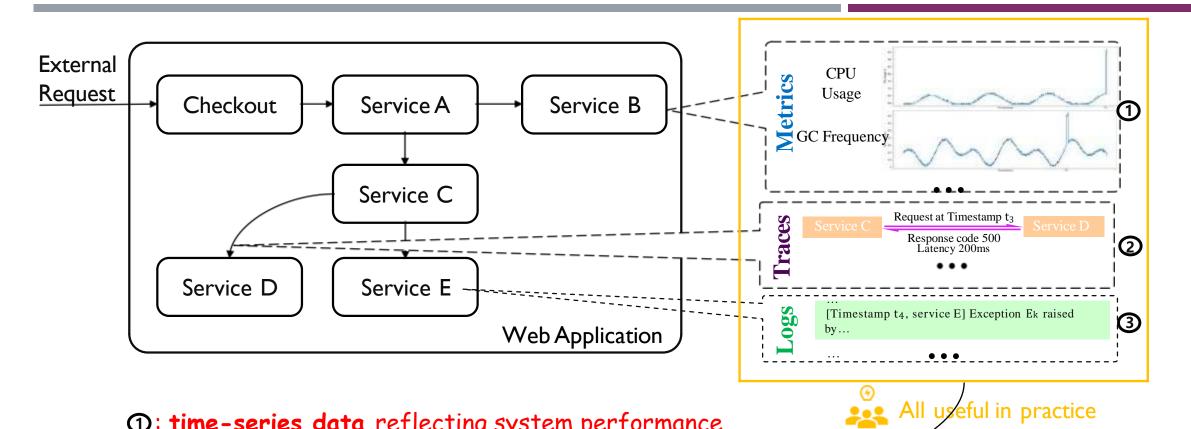
Checkout-related Microservices

Multimodal Monitoring Data in Microservice Systems



Multimodal Monitoring Data in Microservice Systems

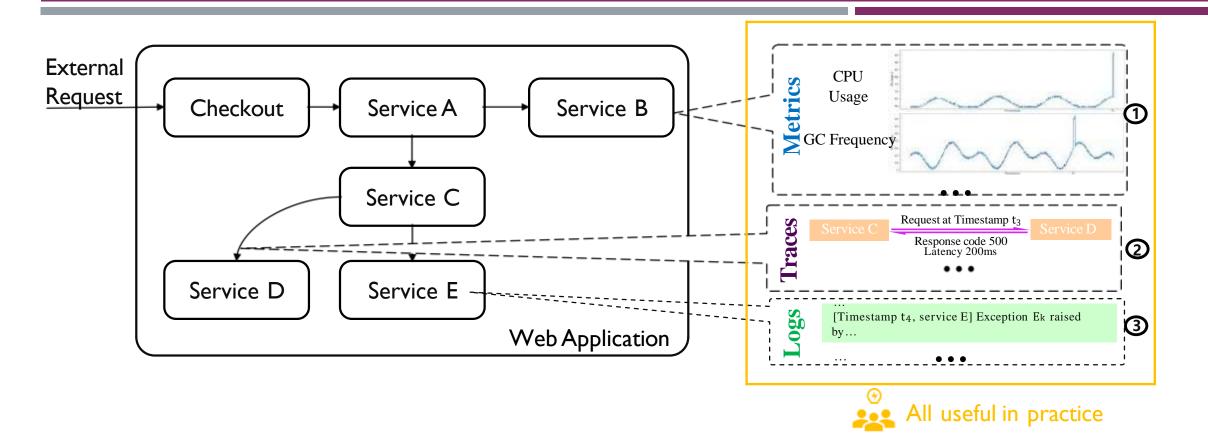
5



- (1): time-series data reflecting system performance
- 2: structured data representing service interactions
- ③: unstructured text detailing system events

Multimodal Monitoring Data in Microservice Systems

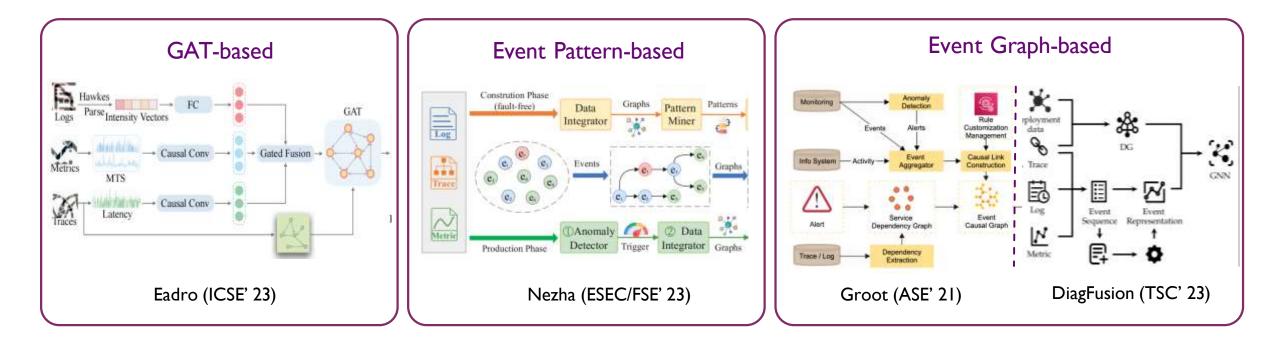
5



Challenge 1: How to analyze multimodal data, leveraging information

trom various observation types?

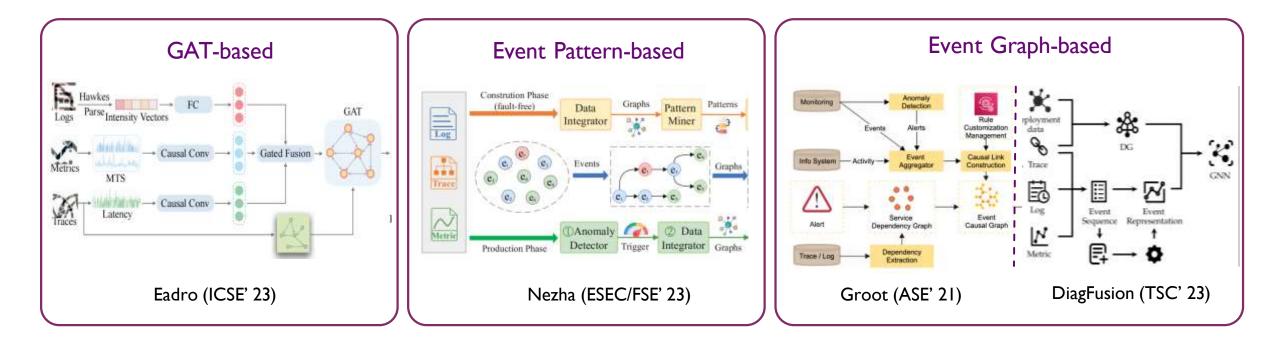
Utilizing Multimodal Monitoring Data



 Modality coupling: Interaction or interdependence between different modalities
Modality dependence: Relying on multiple modalities simultaneously

Utilizing Multimodal Monitoring Data

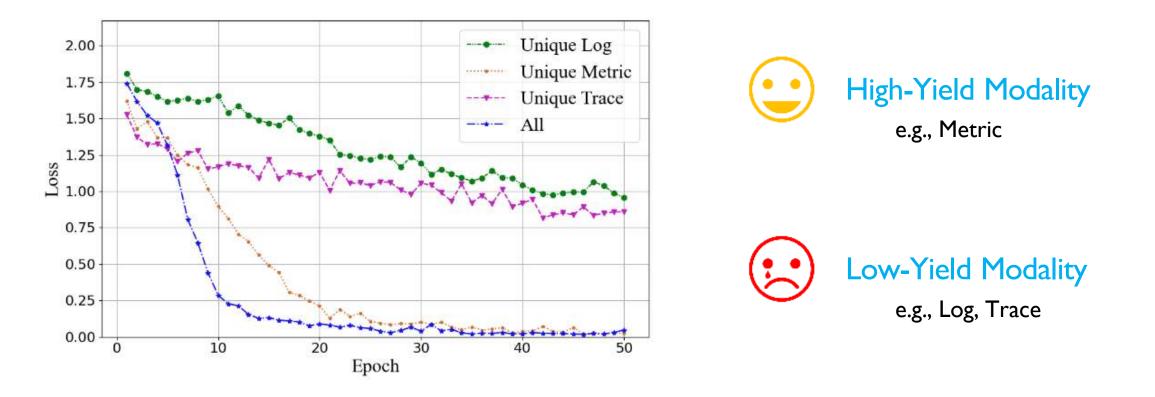
6



Challenge 2: How to address the substantial performance degradation caused by missing or low-quality data from any

modality?

Interference in Modality Optimization



The dominant modality may suppress the optimization of other modalities, preventing them from fully utilizing their features

Interference in Modality Optimization

Challenge 3: How to reduce the negative impact caused by inconsistent convergence rates and mutual interference between different modalities?

Challenges

Inconsistent Data Formats

• Microservice systems generate diverse operational data, such as metrics, logs, and traces, each with distinct formats and methods of encapsulating information

Incomplete and Low-Quality Data

- In real-world microservice environments, the completeness and quality of multimodal data are often lacking
- Missing or low-quality data from any modality can lead to substantial performance degradation in multimodal failure diagnosis approaches

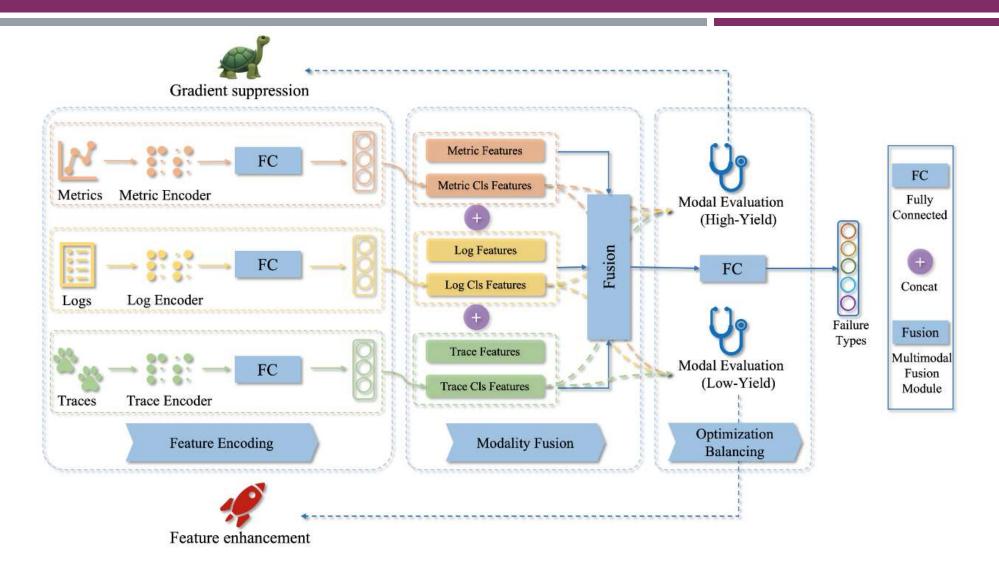
Interference in Modality Optimization

• The dominant modality may suppress the optimization of other modalities, preventing them from fully utilizing their features

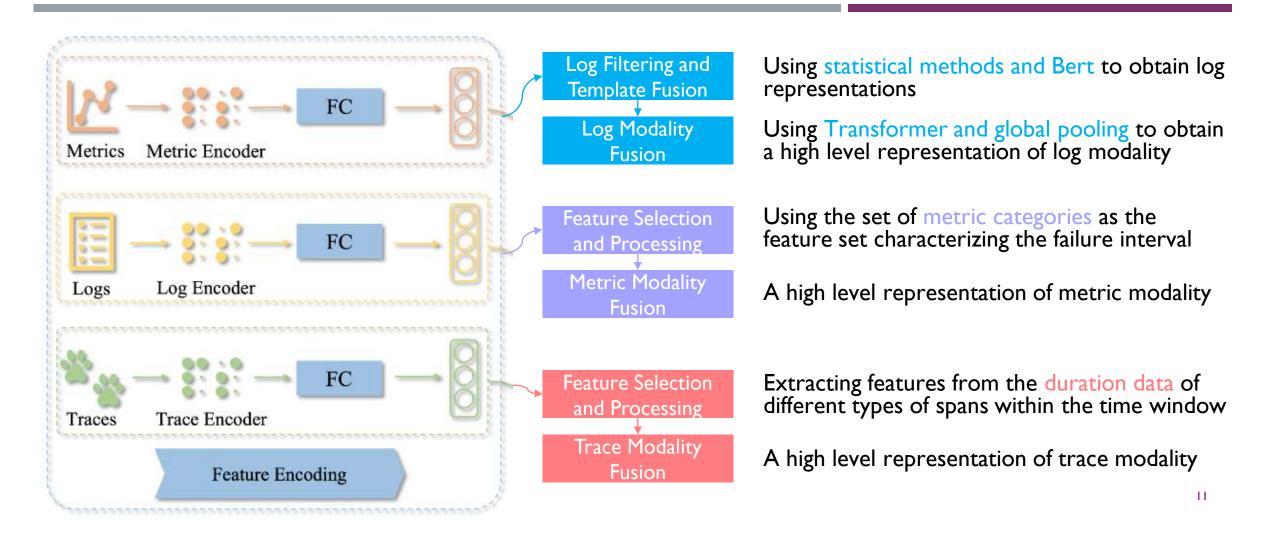
Outline

- Background
- Design
- Evaluation
- Conclusion

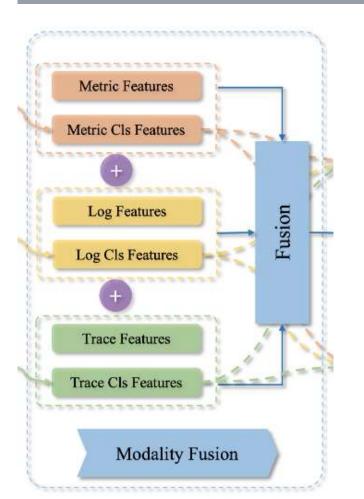
Medicine Design Overview



Stage I: Feature Encoding



Stage II: Modality Fusion



(Feature Concatenation) Concatenate the features of different modalities and use a fully connected layer to generate an integrated feature representation

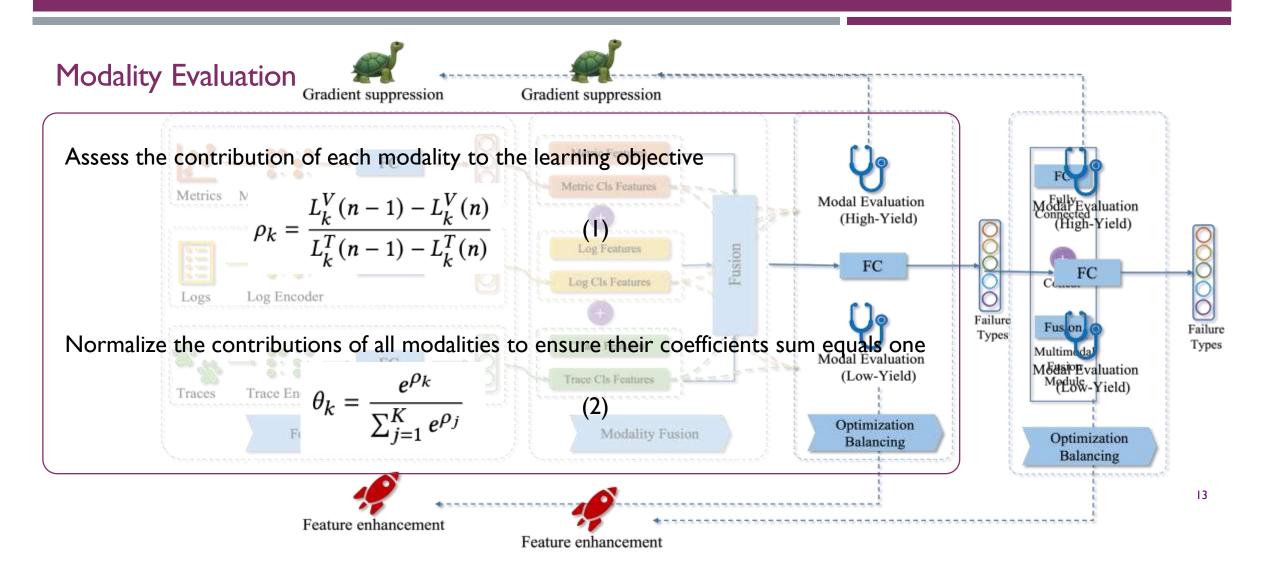
(Modality-specific Linear Transformations) Each modality's features are separately processed through individual linear layers

(Channel Attention Mechanism) The outputs of linear transformations are passed through a sigmoid activation function to produce attention weights

(Feature Stacking and Squeezing) The original and attention-weighted modality features are stacked and processed through adaptive average pooling to reduce dimensionality and focus on key features

(Classification) The pooled feature representation is passed through a fully connected layer to perform failure classification

Stage III: Optimization Balancing



Stage III: Optimization Balancing

Gradient Suppression

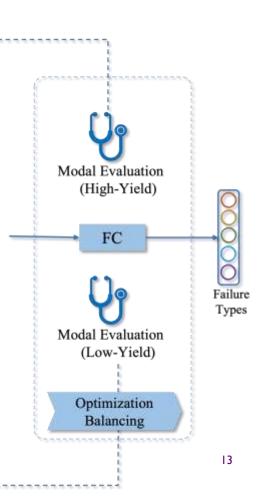
For the dominant modality (the one with the highest θ_k), the gradient is suppressed to prevent it from overwhelming other modalities

$$s_t^k = \begin{cases} 1 - \alpha \cdot \theta_k & \text{if } k = \arg \max(\theta_t^k) \\ 1 & \text{otherwise} \end{cases}$$
(3)

The network parameters are updated as follows:

$$\omega_{t+1}^k = \omega_t^k - \eta \cdot s_t^k \tilde{g}(\omega_t^k)$$

(4)



Gradient suppression

Stage III: Optimization Balancing

南間大學

Feature Enhancement

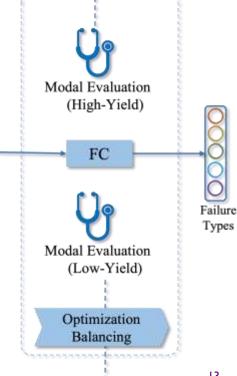
Gradient suppression

To compensate for the lower contribution of underperforming (low-yield) modalities, the feature enhancement component boosts the features of these modalities.

$$s_t^k = \begin{cases} \beta \cdot \theta_k & \text{if } k = \arg\min(\theta_t^k) \\ 1 & \text{otherwise} \end{cases}$$
(5)

The enhanced feature representation is given by:

$$\widetilde{\mathbf{x}}_t^k = \mathbf{F}_{scale}(\mathbf{u}_t^k, s_t^k) = s_t^k \cdot \mathbf{u}_t^k$$



(6)

Outline

- Background
- Design
- Evaluation
- Conclusion

Evaluation: Performance of Medicine

Approach	Modality			D1			D2			D3		
	Metric	Log	Trace	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
DéjàVu [14]	✓			0.4569	0.5526	0.4972	0.4620	0.4820	0.4682	0.5990	0.1852	0.1962
iSQUAD [9]	✓			0.4291	0.5429	0.4750	0.6798	0.6591	0.6457	0.1600	0.2500	0.1857
Cloud19 [15]		\checkmark		0.5082	0.5429	0.5231	0.5703	0.5682	0.5690	0.3602	0.4167	0.3830
LogCluster [10]		\checkmark		0.4867	0.3714	0.3852	0.4522	0.4862	0.4671	0.4128	0.5000	0.4260
MEPFL [16]			\checkmark	0.3286	0.4571	0.3823	0.2321	0.4818	0.3133	0.2946	0.4035	0.3562
CloudRCA [20]	✓	\checkmark		0.2463	0.1370	0.1143	0.0913	0.2174	0.1180	0.3708	0.2630	0.2652
DiagFusion [17]	✓	\checkmark	\checkmark	0.7326	0.6744	0.7015	0.8176	0.7891	0.7895	0.3870	0.2813	0.3165
MicroCBR [22]	✓	\checkmark	\checkmark	0.6286	0.8000	0.6500	0.4630	0.4310	0.4464	0.4626	0.5714	0.4835
Medicine	✓	\checkmark	\checkmark	0.9714	0.9428	0.9508	0.9152	0.9136	0.9136	0.8358	0.8333	0.8260

DI: collect from a top-tier global commercial bank

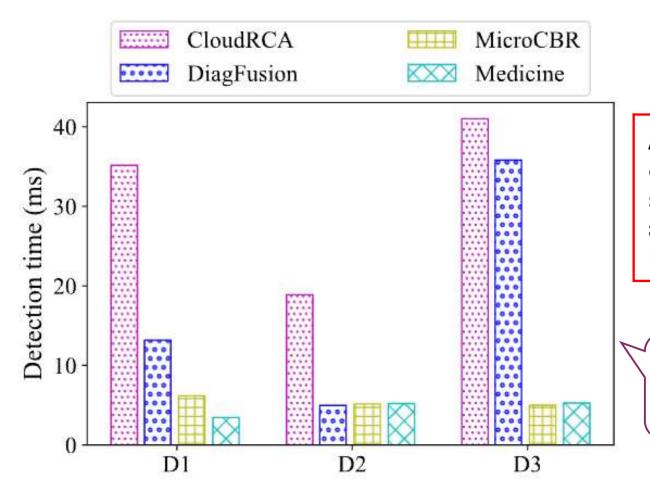
D2: Generic AlOps Atlas (GAIA) dataset from CloudWise

D3:collect from a microservice benchmark, MicroServo

Contrasted with the benchmark multimodal approach, DiagFusion, *Medicine* showcased substantial improvements, enhancing FI-score by 35.54% and 15.72% on DI and D2, respectively.

15

Evaluation: Efficiency



Medicine demonstrates the shortest detection time on D1, taking only 3.44ms, whereas CloudRCA is the slowest at 35.16ms. On D2 and D3, Medicine's average detection time is comparable to that of MicroCBR, all around 5ms.

Compared with baseline methods, *Medicine* is indeed efficient in diagnosising failures.

Evaluation: Ablation Study

Dataset	Approach	Precision	Recall	F1-score			
D1	Only Metric	0.8926	0.8857	0.8847	Medicine significantly outperforms		
	Only Log	0.3316	0.4571		unimodal methods.		
	Only Trace	0.3595	0.4571	0.4020			
	w/o MAO	0.9350	0.9143	0.9086			
	Medicine	0.9714	0.9428	0.9508	Our designed unimodal encoder can		
D2	Only Metric	0.7705	0.7909	0.7753	extract useful features based on the		
	Only Log	0.8836	0.8500	0.8445	characteristics of microservice systems		
	Only Trace	0.5232	0.5227	0.5139	for failure classification.		
	w/o MAO	0.8959	0.8955	0.8953	lor landre classification.		
	Medicine	0.9152	0.9136	0.9136			
D3	Only Metric	0.6875	0.5000	0.4538			
	Only Log	0.4792	0.4583	0.4431	MAO dynamically adjusted and optimized		
	Only Trace	0.2550 0.2083		0.2179	the weights and interactions between		
	w/o MAO	0.7121	0.7083	0.6956	different data modalities, thereby enhancing		
	<u>Medicine</u>	0.8358	0.8333	0.8260	the overall performance of the model.		

Outline

- Background
- Design
- Evaluation
- Conclusion

Conclusion

Medicine, a microservice failure diagnosis framework

- Modal-independent failure diagnosis framework based on multimodal adaptive optimization
- Reduce dependence on any single modality
- Balance the optimization process during training by suppressing gradients for high-yield modalities and enhancing features for low-yield ones based on modal evaluation

Key Designs of Medicine

- Individually designed unimodal encoder
- Multimodal fusion with channel attention
- Multimodal Adaptive Optimization (Modality Evaluation, Gradient Suppression, Feature Enhancement)
- Proved effectiveness of the key components in ablation study

Open source code

<u>https://github.com/AIOps-Lab-NKU/Medicine</u>

Thank You !

Giving Every Modality a Voice in Microservice Failure Diagnosis via Multimodal Adaptive Optimization

> Paper: https://doi.org/10.1145/3691620.3695489 Code: <u>https://github.com/AIOps-Lab-NKU/Medicine</u>