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Abstract—Alongside the high performance built on massive
hardware, ever-larger computer systems bear tons of hardware
alerts every day during reliability maintenance. Based on an
exploratory study on a representative supercomputer system,
this work first characterizes supercomputer alerts as an overload
of continuous bursts for the operators. Yet, existing similarity-
based aggregation solutions, tuned for in-band textual alerts, are
myopic by finding dissimilar representatives instead of looking
into the semantics in the supercomputer context. To fill the void
of supercomputer alert aggregation, we propose the SuperAgg
framework to extract the hierarchical patterns of real-world
alerts and use them for online alert management. SuperAgg
jointly integrates unsupervised state detection of time series and
expert analysis to successfully discover 4 categories of sensor-
tier alert patterns and exploits primary-and-secondary statistics
between sensors for system-tier correlation patterns. With such
extracted knowledge, SuperAgg then identifies the formulated
patterns online and uses spatiotemporal combined strategies
to reduce the alert influx. Evaluations on alerts generated
from a production supercomputer show that SuperAgg provides
over 98% aggregation rate and significantly higher aggregation
accuracy (over 83.8% and 43.2% on different datasets) than
3 baselines. Production deployment further demonstrates its
effectiveness from the perspective of system operators. The source
code is available at: https://github.com/Txh-User/SuperAgg.

Index Terms—Supercomputer reliability, alert management,
time series analysis, AIOps.

I. INTRODUCTION

Nowadays, high-performance computer systems are char-
acterized by ever-growing computation, network, and storage
resources [1] [2], especially true for large-scale data centers
and supercomputer systems in the (pre)-exascale computing
era. For example, the Tianhe-2A supercomputer system in-
tegrates 16K computing nodes, each with 64GB RAM and
400Gbps external one-way bandwidth [3]. Detecting abnor-
malities and failures of such massive hardware in time is
critical, among other things, for the reliability of the system
and providing continuous services. For this, out-of-band mon-
itoring and diagnostic infrastructure are commonly deployed
in production systems, collecting hundreds of indicators (e.g.,
voltage, temperature, and humidity) for individual components
within each node [3] [4]. Once the sensory data violates
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pre-defined thresholds, alerts would be issued to notify the
operators, facilitating the primary avenue for accommodating
the behavior of supercomputers.

In this paper, we use a production supercomputer as the rep-
resentative to collect facts and study management on massive
alert data, considering that supercomputer is undoubtedly the
most computation-intensive HPC infrastructure. Thousands of
boards in a supercomputer carry tons of sensors, generating a
huge amount of alerts. We find the raw alerts in a production
supercomputer, even after a black list suppression, could still
easily reach a prohibitive number of around 200 per 10
minutes. Unlike occasional alert storms in existing online
service system [5], we observe that the overwhelming alerts
in supercomputer systems manifest a stream of bursts, which
we call alert overload (§ III-C). As identified in our field
study, an experienced operator of the supercomputer system
may spend as many as 6 hours per day mitigating all the
alerts s/he believes to be important, which relies highly on
subjective analysis and is prohibitive for everyday operations.
This calls for automatic alert aggregation before reporting to
remove redundant alerts and elaborate on the key ones, even
at the cost of losing some inherent important signs, because
it is favorable to retain the concise and useful ones instead of
the cumbersome, thus useless, ones.

The existing efforts for alert aggregation/summarization
all adopt a similarity-based strategy for unstructured in-band
alerts [5]-[10]. Their basic idea is to pick out alerts that are
dissimilar to each other. For this, one way is to use Jaccard
distance on content [6], topology distance on locations [5],
and temporal distance on time [10] of alerts for clustering and
take the centroids as summarization. Some others release the
alerts with different texts and occurrence frequency in sliding
windows [7]. Nevertheless, similarity-based alert aggregation,
focusing merely on comparing the content, is myopic in han-
dling highly structural out-of-band alerts in supercomputers.
Fig. 1 is an example taken from a real alert time series
(§ IV-B), with the alert level frequently changing on the influx
of new alerts. Especially, since alert levels are limited, for
these alerts from the same board (same location), the changes
are temporally quite small, making clustering and window-
grouping in this window degenerate to random selection.
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Fig. 1. The processing results of different alert aggregation methods on an
example alert time series. The values in the y-axis indicate different alert
levels, where y > O represents alert activation and y = 0 for no alert. The
dotted lines in the upper boxes indicate the alert time subsequences (up/down
triggered by an alert) removed by corresponding aggregation methods, and
the red cross represents their deletion.
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As illustrated with the ideal subsequence (red box in Fig. 1),
merely the first alert is informative and shall be retained. Such
refinement could only be attained with dedicated semantics of
supercomputer alerts, telling which alerts are the outcome of
redundancy or byproduct. Yet, unlike the in-band textual alerts,
out-of-band alerts are issued without semantic information,
making simple filtering rules unsuitable. Notably, observations
gained from data in the Next Generation Tianhe Supercom-
puter (NG-Tianhe) indicate that 1) the alert channel of a
single sensor manifests continuous burst, whereas 2) channels
of different sensors, both on the same and different boards,
may share similar subsequences. These motivate us to explore
aggregation opportunities for supercomputer alerts from the
sensor tier and system (cross-sensors) tier hierarchically.

We present the design of SuperAgg, the first framework
for alert pattern learning (offline) and aggregation (online)
in the supercomputer system. Essentially, SuperAgg learns
hierarchical patterns by parsing sensor-tier alert semantics and
spatial correlations from historical alert data in the production
system. First, to overcome the pitfall of labeling tons of alerts,
SuperAgg adapts an unsupervised state detection technique to
find countable representative subsequences and jointly feed
them to an expert group for offline analysis. Such a human-in-
the-loop design for knowledge discovery is common in AIOps
to facilitate interpretability, which is important for taking
automatic operations in production systems. With this, we
successfully summarize 7 typical sensor-tier patterns, formally
categorized as stable, fake, wandering, and jittering, where the
latter three are redundant and should be removed. Second,
system-tier correlation between alerts issued from different
sensors is modeled by estimating their temporal-lagging co-
occurrences (e.g., a temperature alert on board 1 always
happens after a voltage alert on its neighbor board), which
extracts primary-and-secondary rules from historical alerts.

During online aggregation, two strategies of waiting and
observing are invented by identifying the above redundant
sensor-tier patterns and automatically suppressing alerts that
are believed to be redundant. These refined alerts are fur-
ther aggregated by merely releasing the precedent/primary
alerts according to the spatial rules in the system tier. We
highlight that our aggregation design, fotally and explicitly

guided by expert knowledge and primary-secondary inference,
would not incur additional false positives (i.e., discarding
expert interested alerts) compared with a predefined black list.
Finally, we have constructed two datasets from the production
supercomputer system and evaluated SuperAgg by comparing
it with both a practical baseline and two similarity-based
baselines. The major contributions are as follows.

o This is the first work to identify the alert overload
pitfall of supercomputer alerts. An exploratory study on
a production system brings out operator expectations and
insightful observations for alert management.

o We present the novel design of SuperAgg for the offline
discovery of hierarchical patterns in supercomputer alerts
and their interpretable aggregation with dedicated strate-
gies in real-time alert series.

o Evaluation on alert data of a production system shows
SuperAgg’s superiority in aggregation rate and accuracy,
compared with 3 baselines. Real-world deployment qual-
itatively demonstrates it is favored by operators.

The rest of the paper is organized as follows: § II presents
the related work. § III describes the exploratory study and
observations on supercomputer alerts. § IV describes the
overview and details of SuperAgg. In § V, we demonstrate
the effectiveness and efficiency of SuperAgg by experiments
based on real-world datasets. § VI discusses the SuperAgg.
§ VII concludes the paper.

II. RELATED WORK
A. Alert Aggregation

With the development of Atrtificial Intelligence for IT Op-
erations (AIOps), alert management has become an important
part of AlOps, including alert aggregation [S]-[10], alert
correlation [11] [12], and alert ranking [13] [14]. Wherein,
the latter two could be used as a component for aggregation
(e.g., Maximal Information Criteria correlation is used for
aggregation in [8]). Here, we describe the representative alert
aggregation methods, which are all similarity-based in design.

Lin et al. [6] use Jaccard distance to measure the similarity
between textual alerts and perform graph-based clustering to
find the principal incidents. Zhao et al. [5] introduce topologi-
cal similarity into the Jaccard measure and leverage DBSCAN
to attain a series of centroids as the summary of an alert
storm. These works are criticized for ignoring the occurrence
characteristics of alerts. Accordingly, Chen et al. [7] integrate
the CBoW model and occurrence embedding for alert feature
representation and similarity estimation, and reduce textual
and occurrence similar alerts in the same window. As to the
intrusion detection domain, aggregation is clustered based on
alert groups (formed by interarrival time in [9] and temporal
segmentation in [10]), instead of independent alerts, hoping to
retain the local consecutive alert order that may form intrusion.

We note that existing efforts focus on aggregating un-
structured alerts (system in-band alerts) by measuring their
content similarities, which cannot effectively distinguish the
structured hardware runtime alerts in supercomputer systems



that have similar attributes. More importantly, similarity-based
aggregation ignores the semantic pattern of alerts, thus leading
to the random suppression of important alerts.

B. Pattern Analysis for Time Series

The pattern of time series could be embodied as motif [15]
and segmentation [16] [17] [18] in different contexts. Motif
are repeated subsequences in multivariate time series (e.g., en-
tomology). The recent VACOMI [15] method attains variable-
length motif discovery by performing min-max-min cross-
series distance calculation and comparison until consensus on
a special subsequence. Segmentation, on the other hand, finds
the change points in time series (e.g., [oT) for deducing the
changes in the underlying process. For example, Kontrast [16]
discerns erroneous software alterations by juxtaposing KPI
time series data both antecedent to and subsequent to the im-
plementation of software modifications. ClaSP [17] iteratively
finds the best split for a subsequence by tuning a classifier
to identify whether each pair of two adjacent segments has
a similar shape. The SoTA method, Time2State [18], uses
contrastive learning to efficiently segment time series with
clear boundaries on the deep features.

These analysis processes are inspiring for understanding
alerts in supercomputers. However, they are designed for han-
dling continuous KPI/values, while the hardware alerts in this
work are discrete and have already been full of change points
(a new alert means the entrance of a new alert level). Dedicated
adaptation for these techniques and domain knowledge are thus
gathered to facilitate the analysis of supercomputer alerts.

III. EXPLORATORY STUDY ON SUPERCOMPUTER ALERTS

This section describes the practical facts, as well as ob-
servations on the tremendous amounts of hardware alerts in
production supercomputers.

A. Alert Reporting

To monitor the runtime situation of the massive hardware
resources in supercomputers, a hierarchical alert reporting
mechanism is often adopted. Taking the production environ-
ment of Tianhe HPC systems as an example, (1) the Board
Management Unit (BMU) on each board is responsible for
collecting alerts from the diverse sensors mounted on the
board. @ In each chassis (a collection of boards), BMUs
use SNMP-trap to actively report their detected alerts to the
Chassis Management Unit (CMU), which parses and records
the alerts in specific structure (§ III-B). @ Each chassis’s
CMU periodically (e.g., 15s) reports the local alerts to the
System Management Unit (SMU) for retention and rendering
the comprehensive alert situations of the supercomputer sys-
tem to the operator front end.

Typically, in the Tianhe HPC systems [3], each board is
designed to have over 200 sensors for key components like
CPU, memory, and I/O, covering temperature, voltage, current,
and moisture, among many other aspects. Black or block list,
as a rule-based mechanism, is often used to surpass the re-
porting of some disinterest sensors according to the operators’

experience. Unfortunately, as we will see in § III-C, even after
filtering out a large portion of channels with the black list, the
system is still exposed to thousands of alerts every day owing
to the massive monitoring basis in the supercomputer.

B. Alert Data

As aforementioned, alerts are triggered in BMUs and for-
malized in the corresponding CMUs. An example of the
principle attributes of the structured alert data is shown in
Table 1. Each alert could be located by “LF” (row-chassis)
and board name and is featured with a “type” indicating its
severity and a “value” for the specific sensory data.

TABLE I
AN EXAMPLE FOR HARDWARE ALERTS IN A PRODUCTION
SUPERCOMPUTER SYSTEM.

Sensor ID  Board Name 1P LF
Temp_3 S*09 192.% * * R3-p*
Volt_1 C*01 192 * * R3-P*
SensorVal Type RecStat Timestamp
68 NC 0 2023-04-01 00:22:42

11.8 DNC 1 2023-04-01 00:23:02

In common practices, out-of-band (hardware) alerts are
categorized into 3 levels!, i.e., NC (Non-Critical), CR (CRiti-
cal), and NR (Non-Recoverable), with three underlying trigger
thresholds for each sensor [19]. The switching of each alert
level is controlled by two types of alerts, one for issuing it and
another for dismissing it. For example, the BMU may be set
to trigger an NC-level alert (type NC) when the temperature is
> 60 and dismiss it (type DNC) when the temperature returns
to 58. When there are alerts not being dismissed, the operators
at the front end would assess the severity and urgency based
on the alert level and take necessary measures to maintain the
big machine in a good state.

C. Alert Overload

We collect the reported alert data of 4K boards in the
NG-Tianhe system from 2023/01/28 to 2023/06/06 (130 days
in total) via its unified monitoring system. To study and
understand the underlying alerts, brute-force suppression rules
(e.g., filtering out NC-level alerts or merely monitoring a few
empirically useful sensors), which may overlook important
hardware issues, are not activated. This provides us with over
3.66 million raw alerts.

1) Not just one burst: To understand the scale of alerts,
we calculate the per-day and per-10m alerts statistics of the
system. Fig. 2 shows the cumulative distribution function
(CDF) of the alerts received by the system, which, if not being
processed, would be all reported to the front-end operator. For
almost every tested day, the system faces at least 10K alerts
and the scale goes beyond 25K for 40% days of the runtime
collection, as shown in Fig. 2(a). When referring to the finer

IThere are 3 positive and 3 negative levels in total. W.1.o.g., we only discuss
the positive ones hereafter for simplicity.



granularity in Fig. 2(b), we can see that the system has to deal
with over 500 and 200 alerts in 90% and 50% of the observed
10-minute time slot, respectively.

As we will revisit in § III-C2, most experienced operators
could only afford to handle a maximum of 10 alerts in 10
minutes, so 5~20 focused and full-time operators are needed
to support real-time alert processing.

Observation: The production supercomputer system
faces continuous disturbance of alerts, named alert
overload. Different from the occasional alert burst
reported in data center systems [5], alert overload is
a stream of bursts overwhelming the operators.

What’s worse, the historical alerts not handled in time would
accumulate to make the burden more excessive.

10000 20000 30000 40000 50000 60000 7000
# Alerts per day

(a) CDF of alerts per day

3

200 400 600 800 1000 1200 1400
# Alerts per 10 minutes

(b) CDF of alerts per 10m

Fig. 2. Illustration of the continuous stream of alerts.

2) A field-survey on handling alerts: We further design
a questionnaire’ to investigate operators’ daily experiences
in handling our supercomputer’s overloaded alerts. Eighteen
operators from different service teams are invited to participate
in the survey, each with operation experiences of at least 2
supercomputers.

By analyzing the collected questionnaires, we find that most
engineers (61.11%) adopt the rule-based strategy, focusing on
high-level alerts only, to suppress the alerts. According to
the feedback, they are aware that such strategies may cause
overlooking signs of failure and lag in operations and main-
tenance. Although 66.67% of them reflect being able to deal
with 10 alerts in less than 10 minutes, such compromise (i.e.,
overlooking and lagging) is still reported to be unavoidable,
due to the significant number of alerts (66.67%), difficulties in
analyzing multi-dimensional alert information (33.33%), and
the complex correlation between alerts (38.89%). Unfortu-
nately, this would still cost them an average of 2.11 hours per
day, with most of the alerts turning out to be not important.

D. Observations on Aggregation Opportunities

Fig. 3 shows the alert time series of three different sensors
during a day (series construction will be explained in § IV-B),
with the first two from the same board and the 3rd one from
another board.

Zhttps://www.wjx.cn/vin/YIIOASY.aspx
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Fig. 3. Illustrative examples of the continuous bursts of sensor-tier alerts and
spatial correlation among system-tier alerts. The continuous bursts in the "red
boxes" are non-exclusive situations in our system.

Observation: Underlying the overload of the system,
single sensors issue continuous alert bursts (intensive
alert level switching in the consecutive dotted box).

Given this, sensor-tier alert aggregation is critical to mitigate
the overload from the sensory root.

Observation: The alert series of sensors from both the
same board and different boards often show similar
trends at some periods (the dotted boxes across differ-
ent series).

The following occurrence of alerts on different sensors indi-
cates spatial correlation among them, which could be utilized
for elaborating the root alert and suppressing the others.

IV. DESIGN OF SUPERAGG

Given the observations above, we are inspired to explore
the opportunities of aggregating alerts from two tiers, one for
local alerts within a sensor and one for global alerts among
sensors of different boards and chassis.

A. Framework Overview

An overview of the SuperAgg framework is shown in
Fig. 4. SuperAgg works in two stages with the offline stage
learning knowledge from historical alerts of our production
supercomputer and the online stage performing aggregation
based on the knowledge. The learning process involves 1) a
sensor-tier alert pattern modeling component for discovering
alert patterns for all the sensors independently based on self-
supervised pattern detection and human-in-the-loop analysis
(See § IV-C); and 2) a system-tier correlation pattern modeling
component for summarizing primary-and-secondary rules of
alerts in different sensors (See § IV-D). The learned alert
patterns and correlation rules are then fed to strategy-based
and spatial-based aggregation engines for inner-channel and
inter-channel alert reduction in the online stage.
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Fig. 4. The framework of SuperAgg, wherein two examples of alert time series are provided to illustrate online aggregation.

Note that offline pattern modeling, both sensor-tier and
system tier, doesn’t involve real-time operations, thus having
no impact, on the production system. In practice, the modeling
and learning could even be conducted on servers not in the
production system as long as the historical data is recorded
and stored on them, providing more opportunity for operators
to discuss and elaborate on explainable aggregation guidelines.

B. Alert Pre-processing

During the training stage, historical alerts are transformed
into time series with mechanism redundancy removed.

1) Transforming into time series: The raw alert data con-
sists of discrete entries, as described in Table 1. For pattern
mining from the system perspective, we propose to transform
the entries into a time series that records the system’s evolving
situation. Outlier alert entries with incorrect dates or excep-
tional readings are first excluded. We then use AL!=0,1,2,3
to denote no alert and level NC, CR, NR alert for sensor s; (i is
a system-wise index) at time point ¢. Given all the alert data of
si, we use the “Type” attribute to switch the value of AL! and
gain the alert time series S;={ AL!}L . In this way, a changing
point in S; indicates an event of alert issuing or dismissing.
We will use S¥*?=1/2/3 to denote a subsequence of a time
series where the sensor stays in the level of NC/CR/NR alert
from time p to q.

2) Chain alerts reduction: During practice, we note that,
since sensory values change continuously, the triggering of a
high-level alert will unavoidably cause the issuing of low-level
alerts. For example, if the thresholds of NC, CR, and NR of a
temperature sensor are set to be 55, 60, and 65, then type NC,
CR, NR alerts would be issued sequentially when the ambient
temperature increases from 54 to 66. We call this phenomenon
an alert chain. To mitigate the redundancy in the chain and
ensure that the specific state (severity level) of each alert is
accurately known to operators, we use a simple temporal filter
that releases an alert only if no higher-level alerts appear in
the time slot At (set to be 1s empirically) starting from its
happening time:

ALL =Signo(S{™HA — AL - ALY ()
+ Sign<o(SFHAY — ALY) - ALY,

where Sign~g = 1 if there is an element in S?HN — ALt is
bigger than 0. This process is adopted for both offline learning
and online aggregation.

C. Sensor-tier Alert Pattern Modeling

Observation from Fig. 3 reveals the intensive alerts in
the series, which may inherently be event-triggered patterns.
Figuring them out will help us understand the impact on
the system and retain the important alerts. Let operators
manually look into and analyze tons of alert series is not
feasible, not to mention that new patterns may appear under
new workloads and dynamic maintenance. As a remedy, we
propose to automatically elaborate on a few candidate patterns
for affordable human analysis.

1) Pattern Detection: As labeling the alerts is prohibitive
for operators, pattern detection should be performed in an
unsupervised way. We propose to adapt the state-of-the-art
Time2State technique [18] for this purpose. As shown in
Fig. 5, it uses contrastive learning to learn a state/pattern
encoder en(-) that could detect patterns for alert time series.
For the paper to be self-contained, we describe the brief
workflow and adaptation of Time2State. On one hand, it
stresses that neighbor alert subsequences falling in consecutive
time windows are more likely to be with the same pattern.
Formally, to encode these neighbor alert subsequences into
close embeddings/vectors in the feature space, the following
loss function is used:

Lo = —log(3(en(S™ 5 0)T - en(SH 1 030))), @)

where 6 is the network parameter for the encoder, § is the
sigmoid function, and ¢;" and ¢7" are the starting time of alert
subsequence in two consecutive time windows. By performing
several sampling (i.e., several (i, 7) pairs)) in m places of the
alert series, this loss optimizes the encoder on pulling together
the representation of alert subsequences with the same pattern.



On the other hand, it considers that alerts falling in non-
consecutive windows, sampled from different places in the
alert series, are more likely to be with different patterns. To
train the encoder for learning pattern differences, the following
loss function is used:

Eneg = _log(é(sz . fk))7 (3)

where ¢;" and t]' are the starting time of two alert subse-
quences sampled from two random places in the alert series,
and f; = n% -3 en(St T 0) denotes the average
embedding vector for ng sampling at the same two places.
Similar to L,0s, Lneq Optimizes the encoder on pushing away
the representation of alert subsequences with different patterns,
i.e., telling the differences in alert patterns. One may argue
that, in practice, alerts in randomly sampled time windows
are not necessarily with different patterns (i.e., false negative
in Lyeq). We emphasize strengthening the learning of alerts
of the same pattern (i.e., with £,.4)) will complement such
false negatives and maintain the learning effectiveness.

The state encoder of Time2State for regular time series, with
independent channels and short intervals, may miss the un-
charted patterns in multi-channel and complex supercomputer
alerts. Hence, we tune the encoder with context knowledge
during adaption. Specifically, positive sampling should be
within the same pattern for correct feature representation, so
SuperAgg sets the sampling length upper bound as the system
inspection period (e.g., 1 hour in the tested production system),
during which period the behavior of the hardware is believed to
be similar. Accordingly, for the parameter of sampling window
size w, moving step step, and sampling number k, we set them
according to w+k - step < 3600s.

Based on these parameter settings, SuperAgg fine-tunes the
encoder by sampling and training on each sensor’s one-day
alert data each time until learning every sensor’s data on 130
days. This helps to avoid overfitting on a single channel of one
sensor. It takes 270s (15 epochs) to learn the dedicated encoder
for supercomputer alerts. We then infer potential patterns in
all the time series with the encoder and regulation that each
pattern shall appear in at least two different sensors. As shown
in the example of Fig. 5, This yields the detection of 7 different
patterns.

Subsequence with the same pattern
r 1
1= T
k lconsecutive windows as
positive samples

T
m randomly-placed windows

as negative samples
mnl N

Contrastive Learning Unsupervised
Encoder Fine-tuning

decreasing the distance
of (pos, pos) samples

increasing the distance
of (pos, neg) samples

D:terml puﬂi'rnx l
AR A T AN

Fig. 5. Fine-tuning Time2state encoder for pattern detection.

2) Human-in-the-loop Modeling: The detection phase pro-
vides 7 different patterns, but their semantic meaning is

unclear, which is unhelpful in deciding how to deal with them.
Given that manually analyzing 7 patterns is lightweight, Su-
perAgg then carries out a human-in-the-loop pattern labeling
phase to figure out the inherent event of each pattern with a
focused discussion. Note that integrating expertise knowledge
is only for elaborating on interpretable guidelines in the offline
pattern learning, which is a one-pass step, not used in the
online automatic aggregation. According to the feedback, we
group them into four categories, including one stable, two fake
(issuing and dismissing), two wandering (up and down), and
two jittering (up and down) patterns.

Stable pattern. As shown in Fig. 6, the expert group of
operators points out that a sufficient-long time (i.e., J) period
with at most one alert message (i.e., the number of fluctuation
Ny <1) could be considered as stable, which is believed to
be the normal and ideal behavior of sensors.

—

Fig. 6. Example and formulation of the stable pattern.

stable

Formally, we could denote the stable pattern as follows,
where len? is the duration for a sensor staying in the j-th
alert level for the p-th time:

Nfl < 1,[6’/1? > (5, je [0,1,2,3],]3 S [1,...,Nﬂ] 4)

Fake pattern. The experts categorize the two patterns of
consecutive spikes shown in Fig. 7 as fake ones, mainly owing
to the manufacture deficiencies of sensors. As a spike, the alert
level switching in this pattern is instantaneous (i.e., lenf <46
with p the index of number of fluctuation). By using “fake”,
we mean that, after a period of fluctuation T, it will always
return to the original alert level, which has AL! = AL?Tf h

L Terere e

Jake issuing Jake dismissing

Fig. 7. Example and formulation of the fake pattern.
Formally, we could denote the fake pattern as follows:

AL = AL Ty = Y0 len?, (5)
len < 4,5 =10,1,2,3].

Wandering pattern. This is identified as a similar pattern
of Fake, i.e., also characterized as a series of spikes. The dif-
ference is that such a fluctuation is a wandering process before
entering into a different alert level, so it has AL! # AL?—T’" L
The experts owe this phenomenon to the hardware sensory
value falling in critical intervals, e.g., when the temperature
ranges between 59 and 60 with an alert threshold of 60.
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Fig. 8. Example and formulation of the wandering pattern.

Formally, we could denote the wandering pattern as follows:
ALY # AL Ty = 3007 len? (6)
lent < 4,5 =10,1,2,3].

Jittering pattern. It is identified as a wave-shape time
subsequence, with significantly more fluctuations than pattern
Stable each wave significantly longer than the spike in pattern
Fake and Wandering. Like pattern Wandering, this pattern is
considered to be caused by the slight sensory value chang-
ing around an alert level, but more often with the loading,
execution, and scheduling of workloads.

Ty Uhuuy

up jitter down jitter

Fig. 9. Example and formulation of the jittering pattern.

Formally, we could denote the jittering pattern as follows:
Ny > 2,len§ >4, j€1[0,1,2,3],pe[1,...Npl. (1)

Note that, except for the stable pattern, the other patterns
all involve semantic redundancy whose removal could yield
concise alert data to the operators. We will explore these
opportunities in § IV-E.

D. System-tier Correlation Pattern Modeling

Recall the observation on spatial correlation in § III-D,
SuperAgg also tries to reduce the spatial redundancy by
understanding correlations among different alert time series.
For this, a directional Apriori method is used to mine the
correlation rules by estimating the statistics of alert co-
occurrences.

To lead to reasonable aggregation, we propose to find
primary-and-secondary rules from the occurrence chain of
alerts on different sensors. Intuitively, if type NC alert fre-
quently appears on sensor s; shortly after type CR alert on
sensor s;, then the latter is the principal manifestation of
the inherent fault and could be considered the root cause
of the former one. By only reporting and addressing the
primary alert, the subsequent alert shall also be suppressed.
Hence, SuperAgg first constructs a collection of primary-
and-secondary alert groups. For each alert in s;, SuperAgg
checks whether its happening time is within the time window
(empirically set to 10 minutes) of any existing alerts that have
not been dismissed in the system, and if so, adding it to the
effect group of the corresponding precedent alert. Then the
support and confidence of correlations of a precedent alert and
all its effects in the group are calculated as in Apriori [20].

It takes 45s to generate rules for our 130-days his-
torical alerts. Each raw rule is represented as Rule; =
[(e1,01,AL1) — (2,02, ALs), conf], wherein ¢; and b; are
the chassis and board identifier of an alert, and conf is the
confidence in a rule. By retaining rules beyond a certain
confidence value, a list of correlation is attained in the form
of R = {Ruley, Rules, ..., Ruler,}, where L is the number
of rules.

E. Pattern-aware Online Alert Aggregation

The two modeling components provide patterns and rules
during offline learning, which are then used as the knowledge
base for sensor-tier and system-tier online aggregation, respec-
tively.

1) Sensor-tier aggregation: Different from the offline pos-
terior pattern modeling, SuperAgg has to identify and handle
the online alert streaming in real time. The crux in making
the decision is the parameter 9, i.e., fluctuations < § are either
Fake or Wandering, while those > § are Jittering. SuperAgg
refers to the statistics in historical data to set the bounds, that
is, denoting ¢ as the average of all the fake and wandering
spikes’ length and >> § as the average of all the jittering waves’
length, which are around 10s and 30s in our context. SuperAgg
then uses a strategy of silent awaiting in cases where alert
levels switching < 10s and strategy see&suppression in cases
where alert levels retain unchanged > 30s for aggregation.

Silent awaiting. Literally, this strategy keeps silent (i.e.,
temporarily not reporting the alert to operators) when receiving
two consecutive alerts within ds until the fluctuation finishes.
The rationale behind awaiting is that such a spike-alike fluctu-
ation could be fake alerts or wandering before stable, so could
only be identified when it stops fluctuating. We set the stop
criterion as lenj-vfﬂrl > 3% max(lenf) (p € [1,..,Npu)), ie.,
the alert series stays on a level for at least 3 times the length
of the largest spike. If the alert level at the finishing time point
(AL?Tf ") is different from that of the starting time point, it
will report AL:+Tf ' to the operators (wandering), otherwise,
no alert will be pushed to the operators (Fake).

See&suppression. This strategy records the wave fluctua-
tion in the jittering pattern for a while (i.e., n=6 fluctuations)
before deciding to suppress which level of alerts in the
jittering. Specifically, the lengths of every wave at the two
different alert levels are denoted as L,=[lenZ,p € [1,..,n]]
and Ly=[leny,p € [1,..,n]] (a # b € [0,1,2, 3]). Then we use
the independent-measures t-test to estimate whether there is
a significant difference between L, and L;. If the difference
in lengths is significant, then the alert level with the smaller
average on length will be suppressed (e.g., reporting only A¢
if u(Ly) > u(Ly)). Otherwise, both levels of alerts would be
retained and reported.

2) System-tier aggregation: We explain the idea and ratio-
nale of spatial aggregation with a concrete case. Since boards
in the same chassis share wind cooling subsystem, temperature
sensors s; and so on such two boards share the same ambient
temperature controlling process. If s; is mounted closer to the
wind inlet than s-, then the former would issue an alert before



so when the temperature goes beyond specific thresholds.
Ideally, only the alert from s; is sufficient to remind the
operators to take measures.

Given the rules R obtained in § IV-D, SuperAgg suppresses
an alert if it has precedent primary alerts in window w (e.g.,
the alerts of s; and s, are primary and secondary in the above
case).

Ruley, = [(x,*, AL;) — (%,%, AL;),0.8] € RA(t;—t;) < w,
where t; is the happen time of AL;.

V. EVALUATION

We evaluate the performance of SuperAgg by answering
the following two questions based on data generated from the
NG-Tianhe system:

(Q1) Performance of SuperAgg: How does SuperAgg
perform in online aggregation?

(Q2) Effectiveness of the hierarchical design: Are sensor-
tier and system-tier patterns and aggregations effective?

A. Settings

1) Datasets: As described in § III-C, we use the 130-day
raw alert data in NG-Tianhe®. Since an overhaul is conducted
in this period, we divide the data into 2 parts at the overhaul
time point, which also helps to assess the generality. Note
that it is difficult to evaluate the accuracy of aggregation (i.e.,
whether there are wrongly suppressed alerts) without labels on
the ideal alert series while having operators annotate tons of
alerts is infeasible. As a remedy, we propose to put sentinels
that shall not be removed during aggregation and use them
for accuracy evaluation. Specifically, the operators managed
to pick out 1165 cases of sentinel alerts by manually referring
to explicit context events and critical sensors in design. Table II
shows the details of the datasets, wherein the minimum and the
maximum number of per-day raw alerts are 10266 and 67262,
respectively. In each dataset, we use the first three-quarters of
alerts divided by time as the training set and the last quarter
of alerts as the test set.

TABLE 11
DETAILS OF EXPERIMENTAL DATASETS.

Datasets Time span #Alerts  #Sentinel alerts
A 2023/01/28 ~ 03/31 1552942 607
B 2023/04/01 ~ 06/06 2115815 558

2) Metrics: We use aggregation rate to evaluate the alert
reduction performance:
Nbefore — Nafter x 100%7
Npefore
which is the main impact factor of operators’ experiences.
Meanwhile, it is critical to make sure that the reduction is

3Note that, as the first work on handling out-of-band alerts on large-scale
computer systems, we cannot find any prior public datasets in this context.
We believe that evaluation on the real data from a top-level supercomputer
system is sufficiently representative.

valid, instead of random removal, with key alerts for operation
involvement and troubleshooting retained. The sentinel alerts
have been extracted to provide an approximate estimation of
the aggregation accuracy by the ratio of retained sentinels
after aggregation (i.e., considering the sentinel as a sampling
of the population of key alerts).

3) Baselines: Existing alert aggregation techniques could
be categorized as rule-based methods [21] favored in practice,
clustering-based methods [5] stressing global features, and
similarity-based ones [7] counting on local correlation. Since
there is no public implementation for the above methods in
the context of supercomputer, we have implemented the above
aggregation methods to construct three baselines by referring
to the formulation and settings in their papers.

Rule-based [21]. It attains a naive aggregation by constrain-
ing the number of reported alerts on different levels for a
concise alert list at the front end. According to the statistics in
historical data, the upper bounds of allowed alerts for the NC,
CR, and NR levels are set to be 400, 200, and 20. This also
provides a similar aggregation rate to other methods, making
it intuitive for comparison.

Clustering-based [5]. We adapt the clustering aggregation
methods in [5] by extracting the physical locations of sensors
and alert levels as discrete features and sensory values and
timestamps as continuous features. A normalized distance is
then calculated for the extracted features of each alert pair. DB-
SCAN clustering (¢=0.05 and minpoints=50) is performed
to group the alerts in a window into clusters. Only the alerts
corresponding to the centroids are finally released.

Window-based [7]. It suppresses a new alert with ALE1 if it
is sufficiently similar to a precedent alert AL?O and t1-tp < w.
We set the similarity threshold to 0.97 (normalized) and the
window size to 10 minutes.

We implemented these approaches with Python and ran
them on different CMU servers with 16GB memory. The
settings are typical because such servers are widely used in
commercial clusters and data centers.

B. Performance on Alert Aggregation

1) Aggregation rate: The aggregation rate is an important
indicator of how much burden a method can relieve for the
operators. Table III shows the comparison of the aggregation
rate of SuperAgg and the baselines. We can observe that, even
set with purposely high aggregation strength (i.e., significantly
small bounds, and small similarity threshold to clustering cen-
troid and precedent alert), all the baselines showcase inferior
aggregation rates than SuperAgg. Operators only need to focus
on the refined alerts.

The main reason is that the baselines ignore the semantic
redundancy in the supercomputer’s alerts. On one hand, the
rule-based method’s fixed bounds on allowed alerts would
yield varied performance on days with different numbers of
alerts and should be carefully set based on the experience
of the operators and the realistic scenarios. Further, once the
number of alerts at one level has met the threshold, later
alerts, even important in operation, would unfortunately be



ignored. On the other hand, we notice that the clustering
method presents a significant aggregation rate decrease on
dataset B, because the number of alerts each day is much
different in B, making the clustering and inferring process
unstable.

TABLE III
THE AGGREGATION RATE OF SUPERAGG AND BASELINES

Aggregation Rate (%)

Methods
Dataset A Dataset B
Rule-based 97.10 97.74
Clustering-based 97.77 94.81
Window-based 97.87 97.33
SuperAgg (ours) 99.04 98.64

2) Accuracy: Then we check the aggregation accuracy by
estimating the protection of sentinel alerts during redundancy
removal or suppression. The experimental results on the accu-
racy of SuperAgg and the baselines are shown in Fig. 10. We
note that, with similar performance on aggregation rate, our
SuperAgg showcases a large margin on accuracy compared
with all the baselines (i.e., at least 83.8% on dataset A and
43.2% on dataset B).

We owe such superiority to the pattern discovery and
exploration of SuperAgg, which helps to automatically remove
redundancy with expert-provided semantics. The clustering
and window methods both rely on measuring the similarity
of alerts, under the idea of de-duplicating similar alerts. This
would cause many false aggregations as referring to the limited
discrete alert levels may easily group two temporal neighbor
alerts as duplicative. For instance, these two baselines would
very likely suppress one of a group of NC alerts on different
boards of the same chassis issued at the same window, though
they provide load-balancing signs for specific boards. Besides,
the rule-based method has a significantly lower accuracy than
the other baselines, indicating that important sentinels are
brutally removed when the daily number of alerts at each level
reaches the set bounds.

SuperAgg has over 95% accuracy on both datasets, which
indicates better generality than the baselines. The clustering-
based and window-based methods suppress alerts proportional
to the scale/density of the alerts, which would retain more
data in the same time window on the dense dataset (B) than
the sparse dataset (A), thus showing a higher probability of
retaining sentinel alerts. Finally, an accuracy smaller than
100% means that mis-suppression could happen, which may
cause later failure. While this is true, we note that the raw
alerts are with an amount that is incapable for operators to
handle, in which case more key alerts would be overlooked
by exhausted operators. Hence, aggregation with slight mis-
suppression is practically acceptable.

3) Time cost: This part tests the online alert processing
time (delay) of different methods, which is critical for the
timely troubleshooting of supercomputer operation. Before
working online, SuperAgg requires offline unsupervised pat-
tern learning, as explained in § IV-C1 and § IV-D to be 270s
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Fig. 10. The aggregation accuracy of SuperAgg and baselines.

for modeling patterns in sensor-tier and 45s for generating
rules in system-tier on the 130-day trace, separately. Note that
the offline stage causes no dynamic time cost to the online
alert aggregation and the patterns could be updated in the
background at any time with sufficient historical data.

The online processing time cost of SuperAgg is d=10s
because after receiving each alert, the engine will wait for
0 to decide whether it is in the fake or wandering pattern.
SuperAgg will neglect it if it is a Fake or Wandering while
releasing it to or suppressing it from the operator according to
the aggregation strategies. Considering that mainstream moni-
toring products, such as Azure Alerts [22], fire alerts in around
1 minute, the delay of 10s for aggregation is acceptable. As
to the baselines, the time costs of window-based and rule-
based baselines are O(1), which is negligible by involving
only a few distance estimation or number counting operations.
In the tests, the average time cost of processing an alert for
the clustering-based methods is 281s. This baseline requires
performing clustering on alerts in a time window, thus causing
additional delay. In the worst cases, the maximum delay for
this method could be 345s.

Note that all the methods, except clustering, use a one-pass
way in online alert aggregation, so the time costs would not
scale with denser alerts. The clustering time would increase
when more alerts happen in a time window.

C. Ablation Study

SuperAgg works on sensor-tier strategy aggregation and
system-tier rule aggregation. This part conducts an ablation
study on these two aspects of aggregation to test their effec-
tiveness. Table IV shows the performance comparisons on two
datasets achieved by SuperAgg, only sensor-tier aggregation
(i.e., w/o system-tier aggregation) and only system-tier aggre-
gation (i.e., w/o sensor-tier aggregation).

As shown, sensor-tier aggregation (strategy) provides a
significantly higher aggregation rate and accuracy than system-
tier aggregation (correlation rules). This owes to the more
excessive redundancy of the single-channel alert time series
than the cross-channel ones. For example, in a fake/wandering
pattern (major patterns in the observed alerts), generally,
> 10 spikes appear, each with 2 alerts (one issuing and
one dismissing), which generates > 20 redundant alerts in
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a 200s time window. Hence, over 98% of alerts (0.38 and
0.52 million alerts for datasets A and B, respectively) are
suppressed by the sensor-tier aggregation. Notably, no sen-
tinel is mis-removed during sensor-tier aggregation (accuracy
100%), because only the redundant alerts in each pattern are
suppressed while the principal alerts (if there is a sentinel) are
retained. Still, system-tier aggregation independently provides
a modest accuracy performance compared to the results of the
baselines.

It seems that the involvement of system-tier aggregation re-
duces 1%~4% of the accuracy by improving only around 0.2%
aggregation rate. We emphasize that the relative improvements
of rule aggregation (system) from strategy aggregation (sensor)
in aggregation rate are 15% and 19% for datasets A and
B, respectively, successfully reducing 60~100 alerts per day.
Operators state in our qualitative study that such accuracy
sacrifice for fewer alerts is favorable and they could always
deactivate this aggregation dimension during the support of
important tasks.

Furthermore, we also dig into the aggregation performance
of strategy and rules independently. Wherein, we only examine
dataset A, considering that the variation in the number of
alerts per day in dataset B is unstable for straightforward
observations.

Effectiveness of sensor-tier strategies. The fake and wan-
dering patterns dominate the alert data collection, so we
compare the number of alerts before and after the processing
of the silent awaiting strategy as a representative. The results

TABLE IV
ABLATION STUDY RESULTS ON ONLINE AGGREGATION

A B
Methods
AR (1) ACC (1) AR(®) ACCH)
w/o system-tier aggregation 98.88 100" 98.33 100"
w/o sensor-tier aggregation 8.85 20.00 21.79 41.33
SuperAgg 99.04 99.18 98.64 95.88

* Only redundant alerts in each pattern are removed, so if there is a sentinel
in the pattern, it will be retained as the principal alert by the strategy.

of fake issuing, fake dismissing, up wandering, and down
wandering patterns on dataset A are shown in Fig. 11. The
number of alerts in each pattern is reduced significantly,
with the max, min, and average aggregation rates of different
patterns 99.03%, 94.24%, and 97.94%, respectively. Notably,
even if the number of alerts for a given pattern exceeds 8000
a day, SuperAgg is still effective in reducing the number of
alerts to less than 240.

Effectiveness of system-tier rules. Then we analyze the
aggregation gains of different amounts of spatial correlation
rules, tuned by parameters support and conf. The result
is shown in Fig. 12. We can see that larger support and
conf generate fewer rules, and the number of rules is directly
proportional to the aggregation rate in practice. The reduction
in the number of alerts is at a minimum of 6.81% and a
maximum of 15.54%. Given that the number of spatially
correlated alerts is relatively low and operators take a cautious
attitude on cross-sensor suppression, such an aggregation rate
is acceptable.

D. Parameter study

1) Impact of §: We further conduct a variable-control
experiment on dataset A to explore the impact of parameter §
in the online alert pattern detection performance. Fig. 13 shows
the overall performance by ranging § in {2, 4, ... 20} seconds.
We can see that, with the increasing of J, SuperAgg’s accuracy
first decreases and then increases to relatively stable (8~12s).
The aggregation rate increases with § until receiving stable
at 14~20s. The rationale is that very small § may cause the
strategy to be rigid on considering a subsequence to be Fake or
Wandering, yielding a relatively low aggregation rate and high
accuracy (more sentinels retained as fewer alerts aggregated).
On the other hand, ¢ larger than the common length of Fake or
Wandering (i.e., 12) would wrongly suppress the subsequences



TABLE V
IMPACT OF support AND con f ON THE NUMBER OF RULES

# Rules Support
0.02 0.03 0.04 0.05
70% 740 342 223 144

75% 624 273 171 105
80% 509 204 123 72
85% 388 159 86 46

Confidence

of Jittering using the silent awaiting strategy. During practices,
we recommend carefully setting § with the average value of
observed spikes (e.g., 10s in our context).

2) Impact of support and conf: As shown in in Table V,
we also test the impact of support and con f on spatial rules by
varying them in the range of {0.02%, 0.03%, 0.04%, 0.05%}
and {70%, 75%, 80%, 85%}, respectively. When con f is fixed,
the number of rules decreases agilely with the increase of
support, while it decreases more slowly with the increase of
conf, indicating stronger sensitivity to the support value.

Fig. 14 shows the impact of these rule generation parameters
on aggregation. With more rules, the relative aggregation rate
increases first, decreases in the middle, and then increases
with a relatively minor overall change, while the accuracy
showcases a contrary trend. The time cost changes slightly
with the variation of rules. The above phenomenon suggests
that 1) setting support as 0.04% and conf as 70% can obtain
a proper number of rules (225 + 10), and maintain a proper
performance on system-tier aggregation; 2) support and con f
both impact the performance of system-tier aggregation.
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VI. IMPLEMENTATION AND DISCUSSIONS
A. Qualitative Study

We have deployed SuperAgg in a production supercomputer
system for a runtime test of 5 days. After a minute-level pattern
learning and confirmation, it seamlessly begins online aggre-
gation. According to the feedback from the field, operators
#1 and #3 state that it is fantastic to hear fewer alert rings
without worrying that important signs are missed. Operator #2
brings up the expectation to see the comparison between the
raw alerts and the refined ones to understand how the removal
ones are aggregated into the final alerts, which is an insightful
idea for building an operation knowledge base.

One should note that the design of SuperAgg is also suitable
to alert management in data centers and clusters that rely on

out-of-band monitoring for reliability. Such scalability owes to
its unsupervised and interpretable design in pattern learning.
We ask for the community to adapt SuperAgg on their private
hardware data for more research tests and discussions, instead
of directly using our elaborated alert categories.

A concern on SuperAgg is that pivot signs or important
alerts may be accidentally removed, which may cause negative
impacts on the production system. We argue that, without
aggregation, operators cannot find any if not all, in-time and
important clues from cumbersome alert series, so SuperAgg
significantly relives this situation. Meanwhile, the suppressed
alerts are not deleted and the operators can find them in the
database to investigate if a failure is correlated to them and
recover such false-negative alerts in later aggregation.

B. Discussions

1) Limitations: One limitation of SuperAgg, as well as
all the studies on alert management, is the lack of labeled
data on the ground truth, making knowledge extraction and
performance evaluation challenging. Although sentinels are
set in our evaluation, it is just a subset of the estimation of
the ideal alerts that manifest the fault or failure in hardware
runtime. We note that a feasible remedy for such a pitfall is a
scalable annotation tool for redundancy, state, and even root
cause labeling of tremendous alert data. Besides, we could
leverage the system log as context knowledge to prioritize
alerts that happen during memory, disk, and OS faults.

2) Implication: The data generated in supercomputer sys-
tems is a representative form of big data. From the qualitative
study of this work, we find that elaborating information that is
affordable to users (operators in our cases) is more favorable
than maintaining absolute integrity because users have to
randomly drop any information when they are overloaded in
handling all of it. On the other hand, involving expert knowl-
edge in a lightweight way could provide significant gains in
understanding the semantics of big data, with which accurate
and interpretable highlights could be effectively refined.

VII. CONCLUSION

This work identifies and focuses on relieving the massive
alert pitfall from the practice of production supercomputer
systems. Through an exploratory study, we find that supercom-
puter alerts are a stream of bursts, costing operators several
hours to handle, even after suppressing many empirically
negligible ones. As a technical remedy, a novel SuperAgg
framework is proposed based on exploring hierarchical pat-
terns in supercomputer alerts. It successfully discovers 4 cate-
gories of single-channel alert patterns leveraging unsupervised
learning and human-in-the-loop assistance and builds system-
wise alert correlation rules with primary-and-secondary anal-
ysis. Dedicated aggregation strategies are proposed for the
elaborated patterns, which yield interpretable alert suppression
in the context of supercomputer alert reporting. Real-world
evaluation and implementation demonstrate the effectiveness
of the proposal in the production system.
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