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ABSTRACT
Microservice systems are inherently complex and prone to fail-
ures, which can significantly impact user experience. Existing di-
agnostic approaches based on single-modal data such as logs, met-
rics, or traces cannot comprehensively capture failure patterns.
For those multimodal data-based failure diagnosis methods, the
dominant modality can overshadow others, hindering low-yield
modalities from fully leveraging their characteristics. This paper
proposes Medicine, a modal-independent microservice failure di-
agnosis framework based on multimodal adaptive optimization.
It encodes different modalities separately to retain their unique
features and employs adaptive optimization to adjust the learning
pace between modalities, thereby enhancing overall diagnostic per-
formance. Experimental results demonstrate that Medicine outper-
forms existing single-modal and multimodal diagnostic approaches
on three public datasets, with F1-score improving by 15.72% to
70.84%. Even in cases where individual modal data is missing or of
lower quality, Medicine maintains high diagnostic accuracy.
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1 INTRODUCTION
The microservice architecture decomposes applications into in-
dependently deployable services, each handling specific business
functions, offering high flexibility and maintainability [1]. How-
ever, its complexity and dynamism pose reliability and availability
challenges [2, 3]. Failures in one service can propagate across the in-
terdependent services, significantly impacting user experience and
causing substantial losses if not promptly diagnosed and remedied
[4]. For instance, on June 13, 2023, due to a potential software defect,
a disruption in the AWS Lambda service, which is implemented
using a microservices architecture [5], affected several other AWS
services, leading to nearly four hours of downtime and significant
economic losses [6].

Rapidly diagnosing the type of failure in a microservice system
helps operators trace and implement appropriate remedies. Failures
in microservice systems typically include hardware failure (e.g.,
intensive workload, resource exhaustion), software failure (e.g., sys-
tem bottleneck, code bugs), and network problem (e.g., network
exception, packet loss) [7–10]. Accurately diagnosing the type of
failure aids in more effectively identifying the root cause of issues,
leading to faster resolution and reduced downtime. Understanding
the types of frequently occurring failures allows for proactive main-
tenance planning, preventing recurrence and enhancing system
reliability [11, 12].

Collected metrics, logs, and traces in microservice systems can
be utilized to detect and diagnose failures [13]. Metrics are time se-
ries data reflecting business status and machine performance. Logs
are unstructured text outputs from program executions, and traces
connect service invocation information into a tree-like structure
during a business call. Single-modality failure diagnosis approaches
(e.g., metrics [9, 14], logs [10, 15], or traces [16]) in microservice
systems face significant limitations due to their restricted focus on
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a single data type. For instance, log data might indicate a series of
minor errors that do not impact overall system performance, lead-
ing to false alarms. Conversely, actual failures might go unnoticed
if they do not produce significant anomalies in the chosen data type.
Relying solely on performance metrics can result in missing critical
issues such as "Security breaches" or "Network misconfigurations,"
which may only be evident in other data forms. Consequently,
single-modality approaches are prone to both false positives and
false negatives, undermining the reliability and comprehensiveness
of failure diagnosis. Figure 1 illustrates a failure example in a mi-
croservice system, with the red-marked sections indicating how the
failure manifests in three different modalities of data. Compared
to single-modality data, multimodal observability data can offer a
more comprehensive insight into the system’s state.

Figure 1: A failure in a microservice system as reflected in
multimodal observability data. The red markings indicate
anomalies detected across the three modalities.

Significant efforts have been made to diagnose microservice
system failures using multiple modalities of data [17–26]. After
practicing and analyzing these multimodal data-based failure diag-
nosis approaches, we identified three challenges: 1) Inconsistent
data formats: To simplify data processing and capture complemen-
tary information among different modalities, [17–21] have mapped
multimodal data into a unified representation space. However, they
overlook inter-modality differences and disrupt the structure of
information stored within each modality. 2) Incomplete and low-
quality data: existing approaches [17, 18, 20, 22–24] often assume
a scenario with complete and high-quality multimodal data, which
is not always feasible, leading to potential performance degradation
when the data is incomplete or of low quality. 3) Interference in
modality optimization: Previous multimodal failure diagnosis ap-
proaches have mostly been based on deep learning. Training a mul-
timodal data-based failure diagnosis model with unified learning
objectives using the same training strategy may not be globally op-
timal due to different training convergence rates across modalities
[21, 22, 25, 26]. During training, high-yield modalities with better
performance tend to suppress the optimization of other modalities.
As a result, low-yield modalities cannot fully utilize their features
due to interference from other modalities.

In this work, we propose Medicine, a modal-independent mi-
croservice failure diagnosis framework based on multimodal adap-
tive optimization. It consists of three stages: 1) Feature Encoding:

Each modality of data is encoded separately. 2) Modality Fusion:
Encoded features are fused, retaining initial features for compre-
hensive representation. 3) Optimization Balancing: An adaptive
optimization module adjusts convergence speeds across modali-
ties to enhance overall performance. Specifically, to tackle the first
challenge, we design specific data processing, feature encoding,
and classifiers tailored to the knowledge stored in metrics, logs,
and traces, respectively. For the second challenge, we use a paral-
lel stream structure and modal modulation to treat each modality
equally, significantly reducing dependency on any single modality.
For the third challenge, we balance the optimization process during
training by suppressing gradients for high-yield modalities and
enhancing features for low-yield ones based on modal evaluation
results.

We evaluated Medicine’s performance on three widely used pub-
lic datasets collected from benchmark microservice systems. The
experimental results demonstrate that Medicine achieves compa-
rable or superior failure classification performance compared to
state-of-the-art single-modal or multimodal failure diagnosis ap-
proaches. Specifically, Medicine improves F1-score by 41.49% to
93.90% compared to single-modal approaches and by 15.72% to
70.84% compared to other multimodal approaches.

In summary, the main contributions of this paper are:
• We design specific feature encoders for different modalities
of observability data based on their unique characteristics
and the types of failures they reflect, enhancing the ability to
comprehensively capture knowledge within each modality.

• We introduce Medicine, the first parallel microservice fail-
ure diagnosis framework that achieves modal independence
throughmultimodal adaptive optimization, reducing reliance
on individual modalities. The implementation is publicly
available at [28].

• Our designed module, combining modal evaluation, gradient
suppression, and feature enhancement, maximizes the po-
tential of multimodal data by adapting to different learning
paces. Extensive experiments prove Medicine’s superiority
over existing multimodal failure diagnosis approaches for
microservice systems.

2 BACKGROUND AND RELATEDWORK
2.1 Background
Microservice failure diagnosis refers to the process of identifying,
localizing, and analyzing the causes of service interruptions or per-
formance degradation within a microservice system. Failure clas-
sification in microservices involves recognizing and categorizing
various types of failures, which aids operators in more effectively
identifying, diagnosing, and resolving issues in microservice sys-
tems. Common types of failures in microservices systems are shown
in Table 1. Failure classification in microservice systems enhances
failure diagnosis and resolution efficiency, leading to quicker issue
resolution and reduced downtime. It also improves system reli-
ability and user satisfaction by enabling proactive maintenance,
resource optimization, and better system design.

To monitor the operational state of microservice systems in real-
time, operators continuously collect observability data, including
logs, metrics, and traces. Logs, denoted as L, are semi-structured
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Table 1: Failure types in microservice systems and their different manifestations in multimodal data. [27]

Failure Type Metric Log Trace Remedial Measures

Resource Underprovisioning ✓ - - Implement auto-scaling to adjust resources based on demand

Hardware Damage ✓ - - Use redundancy and failover systems to ensure continuous operation

Database Query Failure - ✓ ✓ Optimize queries and implement indexing to prevent failures

Login Failure - ✓ ✓ Implement multi-factor authentication to enhance login security

Network Congestion ✓ - ✓ Apply traffic shaping to prioritize critical network traffic efficiently

Code Bugs ✓ - ✓ Use automated testing to detect and fix bugs early

System Misconfigurations ✓ ✓ ✓ Employ configuration management tools to standardize settings

data that record system information, user behavior, and business
information during the operation of a microservice system. They
facilitate various system management and diagnostic tasks. Metrics
are typically time series data collected at regular intervals [29]. A
metric can be defined asM = {𝑥1, 𝑥2, ..., 𝑥𝑇 }, where𝑇 is the length
of the metric and 𝑥𝑡 ∈ R represents the observed value at time
𝑡 . Metrics provide the most straightforward depiction of resource
usage in a microservice system and can also reflect performance-
related issues. When a service within a microservice system is
requested by a user, multiple calls (spans) may be generated [30].
These spans form a trace, denoted as T , which includes call status
and response information.

The goal of failure classification is to use data from L,M, and
T to predict the presence of failures and determine their types. The
failure type is represented by 𝑦, where 𝑦 ∈ {1, 2, ..., 𝑁 } indicates 𝑁
possible failure types.

2.2 Related Work
2.2.1 Single-modal Failure Diagnosis. Early single-modal failure
diagnosis approaches typically rely on statistical or rule-based ap-
proaches. LOGAN [31] constructs a reference model for each re-
quest type, comparing current logs to this model to identify failures.
LADRA [32] uses custom log feature correlations to determine fail-
ure probabilities. DBSherlock [33] identifies potential failure types
and confidence levels based on visualized performance metrics and
user-specified abnormal instances. FPDB [34] transforms trace data
into processing streams, storing these with failure information and
using similarity matching for diagnosis.

With the rise of machine learning, effective approaches like Log-
Cluster [10], Cloud19 [15], Déjàvu [14], iSQUAD [9] and MEPFL
[16] have emerged. LogCluster [10] clusters logs to extract rep-
resentative failure sequences and matches them during detection.
Cloud19 [15] diagnoses failures by extracting and classifying excep-
tion logs related to critical tasks using a pre-trained classifier for
each task. Déjàvu [14] maps the metrics of failure instances within
the same failure category into fixed-width vectors and uses a graph
neural network (GNN) based on the failure dependency graph to
diagnose root causes and failure types. iSQUAD [9] diagnoses the
root causes of intermittent slow queries by clustering and labeling
them offline, then matches new queries to these clusters based on
similarity. MEPFL [16] learns behavior patterns from trace data to

build a random forest model, classifying real-time trace instances
during detection.

2.2.2 Multimodal Failure Diagnosis. Single-modal failure diagno-
sis can often fail to fully capture the anomalies caused by failures,
leading to suboptimal diagnostic outcomes [18]. To overcome this
limitation, researchers have developed multimodal data-based ap-
proaches for more effective failure diagnosis [13, 17–26, 35, 36].
These approaches can be categorized into feature fusion, model
fusion, and result fusion based on the stage at which the multimodal
integration occurs.

Feature fusion involves processing multimodal data to extract a
unified feature matrix or event representation as the model input,
with the model outputting the final diagnostic result. For exam-
ple, CloudRCA [20] integrates anomalous metric sequences and
log patterns into a unified feature matrix, then uses a knowledge-
informed hierarchical Bayesian network for diagnosis. DiagFusion
[17] converts multimodal data into a unified event representation
and employs a trained event embedding model and GNN to deter-
mine failure types. Model fusion extracts different features from
multimodal data and combines them within a model capable of
handling such data. Groot [23] and TrinityRCL [24], for instance,
build causal graphs from multimodal data and use graph theory
models to integrate information for failure diagnosis. MicroCBR
[22] integrates multimodal data into a knowledge graph and inputs
anomalies to the graph for failure reporting. Result fusion involves
specific analysis of the stage results from single-modality data. For
example, PDiagnose [13] performs separate anomaly detection on
each modality and uses a voting mechanism to identify the root
cause service. Wang et al. [36] proposed reflecting system anomaly
levels through log anomaly scores and using mutual information to
calculate the correlation between log anomaly scores and metrics,
thereby pinpointing the root cause of the failure.

3 MOTIVATION AND CHALLENGES
3.1 Motivation
3.1.1 Enhancing Diagnostic Accuracy throughMultimodal Data Inte-
gration. Microservice systems generate diverse types of operational
data (metrics, logs, traces), each offering unique insights. Diagnos-
ing failures based solely on single-modal data can result in a high
incidence of false positives. Abnormal fluctuations in single-modal
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data do not necessarily indicate a system failure [25, 37]. For in-
stance, network fluctuations in a microservices system might cause
temporary spikes or dips in related metrics that eventually stabilize.
Moreover, system failures are not always captured by the monitor-
ing data of a single modality. As demonstrated in Table 1, focusing
exclusively on metric data could lead to overlooking critical issues
such as "Login failure" and "Database Query Failure" in a microser-
vices system. To maximize diagnostic accuracy, integrating these
different modalities is essential, despite their varied formats and
information encoding methods. This approach allows for a more
holistic view of system health, capturing complex interdependen-
cies and failure characteristics that single-modal approaches might
miss.
3.1.2 Ensuring Robustness in Real-World Scenarios. Real-world mi-
croservice systems often face scenarios with incomplete and low-
quality data. Developing a failure diagnosis framework that re-
mains effective despite missing or poor-quality data is crucial. By
leveraging multimodal data, the framework can maintain robust
performance, ensuring reliable service continuity and minimizing
downtime, even in suboptimal monitoring conditions. To achieve
this, a framework that adaptively optimizes and balances different
data modalities is essential, as it ensures robust failure diagnosis
and effective operation in dynamic environments.

3.2 Challenges and Solutions
3.2.1 Inconsistent Data Formats. Microservice systems generate
diverse operational data, such as metrics, logs, and traces, each
with distinct formats and methods of encapsulating information.
Unifying these multimodal data formats can disrupt the inherent
structure and storage methods unique to each modality. For in-
stance, metrics are typically time-series data reflecting system per-
formance, logs are unstructured text detailing system events, and
traces are structured data representing service interactions. Harmo-
nizing these different formats without losing critical information
is a significant challenge. To address this issue, we design specific
data processing, feature encoding, and classifiers tailored to the
granular knowledge stored in metrics, logs, and traces, reflecting
different failure types. Consider a system where metric anomalies
indicate CPU spikes, logs detail error messages, and traces show
delayed service interactions. By designing information statistics
paradigms and encoding each data type separately, we preserve
their unique information, enabling precise failure diagnosis. For
more details, see Section 4.1, 4.2, and 4.3.
3.2.2 Incomplete and Low-Quality Data. In real-world microser-
vice environments, the completeness and quality of multimodal data
are often lacking. Clear architecture, precise service calls, compre-
hensive metrics, and standardized log information are rare. Missing
or low-quality data from any modality can lead to substantial per-
formance degradation in multimodal failure diagnosis approaches.
For example, if logs are incomplete or metrics are noisy, the diagno-
sis framework may fail to accurately detect and diagnose failures,
resulting in prolonged downtime and user dissatisfaction. To ad-
dress this challenge, we use a parallel stream structure and modal
modulation to treat each modality equally. Notably, treating each
modality equally does not mean giving each modality the same
weight. The parallel stream structure decouples feature extraction

and fusion for each modality, and multimodal adaptive optimization
reduces dependence on any single modality while enhancing the
utilization of other modalities. This design minimizes the impact
on the final diagnostic results in scenarios with incomplete or low-
quality data, thereby enhancing the robustness and resilience of
the failure diagnosis system.

3.2.3 Interference in Modality Optimization. During the training
phase of multimodal models, high-yield modalities (e.g., those with
better performance metrics) tend to dominate the optimization
process. As shown in Figure 2, the metric modality is the domi-
nant modality that is easier to train and optimize in a microservice
system. The dominant modality varies depending on the microser-
vice system. This dominance suppresses the optimization of other
modalities (e.g., the log and trace modality in Figure 2), preventing
them from fully utilizing their features. For example, a model might
overfit to metric data because it provides more immediate perfor-
mance feedback while neglecting the valuable insights from logs
and traces. Balancing the optimization process across all modalities
to ensure comprehensive utilization and prevent interference is a
critical challenge. Hence, we balance the optimization process dur-
ing training by suppressing gradients for high-yield modalities and
enhancing features for low-yield ones based on modal evaluation
results. For more details, see Section 4.5.

By addressing these challenges with tailored solutions, we en-
hance the robustness and accuracy of multimodal failure diagnosis
in microservice systems.

Figure 2: Loss curves of single-modality classifiers in a mi-
croservice system. The dominant modality (e.g., metric) may
suppress the optimization of other modalities, preventing
them from fully utilizing their features.

4 METHODOLOGY
Figure 3 presents the overview of Medicine, a multimodal failure
diagnosis framework for microservice systems. The framework
consists of three main stages: feature encoding, modality fusion,
and optimization balancing.
4.1 Log Encoder
We first use statistical methods and the BERT [38] to obtain log
representations for each time window in the failure interval. Then,
we train our log-specific model using these log representations to
obtain a high-level representation of log modality. Log encoding
consists of two steps.

1) Log Filtering and Template Fusion: First, we use Drain[39]
to derive structured log template data from unstructured log data.
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Figure 3: The framework ofMedicine.

Our analysis of the log data revealed that within the failure interval,
there are varying degrees of increase or decrease in the number
of log templates, as illustrated in Figure 4. Log templates with a
large quantity and small fluctuation, such as Figure 4 (a) and Figure
4 (b), carry less of a message for failure classification. In contrast,
templates with sudden changes or significant increases or decreases
in quantity, like those in Figure 4 (c) and Figure 4 (d), provide critical
information. To capture abnormal information of log templates, we
assign higher weight to log templates with obvious fluctuating
quantities and lower weights to stable and unchanging ones, for
example, in Figure 4, template0 is assigned 0.128 while template3 is
assigned 5.117. Based on this, we perform a statistical analysis of
the log quantity in each time window within the failure interval to
determine the weight of each log template. The following formula
calculates the increment (decrement) of each log template in the
corresponding window:

𝑐′𝑖, 𝑗 =

{
| log2 (𝑐𝑖, 𝑗 + 𝜖) − log2 (𝑐𝑖, 𝑗−1 + 𝜖) |, 1 < 𝑗 ≤ 𝑚

0, 𝑗 = 1
(1)

where 𝑐𝑖, 𝑗 is the occurrence count of the 𝑖-th template at time 𝑗 .
The following formula calculates the weight of each log template:

𝑤𝑖 = max
1≤ 𝑗≤𝑚

𝑐′𝑖, 𝑗 − 𝑐′
𝑖

(2)

𝑤𝑖 =
𝑤𝑖∑𝑛
𝑘=1𝑤𝑘

(3)

where 𝑤𝑖 is the weight of the 𝑖-th template. Inspired by
NeuralLog[40], we use BERT [38] to obtain the semantic vectors
for each log template:

ℎ𝑖 = BERT(𝑡𝑖 ) (4)

To obtain the log representation of a time window while reduc-
ing training costs, we sum the vectors in this window using their
corresponding weights:

𝑟 𝑗 =

𝑛∑︁
𝑖=1

𝑤𝑖ℎ𝑖 (5)

Thus, a failure interval should have a log representation sequence
𝑅 = {𝑟 𝑗 | 1 ≤ 𝑗 ≤ 𝑚}.

Figure 4: The number of different log templates changes
under the access deny failure condition. The level denotes
the log level, and w denotes the weight of the template.

2) Log Modality Fusion: We leverage the advantages of the
transformer model [41] for processing sequential data, including its
ability to model long-distance dependencies and effectively capture
both local and global information within sequences, thus better
understanding the key information and patterns in log data. Addi-
tionally, we utilize global pooling to aggregate, compress and sum-
marize information from the entire sequence, extracting a global
feature representation of the sequence.
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4.2 Metric Encoder
Weextract features from different categories ofmetrics for each time
window within the failure interval. Then, we utilize the extracted
features to train our metric-specific model to obtain a high-level
representation of metric modality. Metric encoding involves two
steps.

Figure 5: The manifestation of network failures in selected
metrics of the productcatalogservice-0

1) Feature Selection and Processing: We find that specific
failures often manifest as concentrated anomalies in a few metric
categories while appearing normal in others. For example, in Figure
5, there are obvious manifestations in network and CPU related
metrics, while fewer in memory and file system related metrics.
Based on this, we consider the set of metric categories𝑀 = {𝑀𝑖 |1 ≤
𝑖 ≤ 𝑓 } as the feature set characterizing the failure interval, which
can effectively distinguish between different failures. To ensure
comparability across metric categories and instances within the
same metric, we standardize each feature of each instance using
the following formula:

𝑥 ′𝑖 =
𝑛(𝑥𝑖 − 𝑥)√︃∑𝑛
𝑘=1 (𝑥𝑘 − 𝑥)2

(6)

Additionally, certain features display trends. To remove these
trends and enhance the distinction between abnormal and normal
data, we perform first-order differencing:

𝑥 ′′𝑖 =

{
𝑥 ′
𝑖
− 𝑥 ′

𝑖−1, 𝑖 > 1
0, 𝑖 = 1

(7)

In a failure occurrence interval, we compute the average met-
ric value for each instance and metric category within each time
window. Thus, for a representation 𝑅 = {𝐹𝑘 |1 ≤ 𝑘 ≤ 𝑛} of
a failure interval, an instance 𝐹𝑘 has such a feature sequence
𝐹𝑘 = {𝑡 𝑗 |1 ≤ 𝑗 ≤ 𝑚}, where 𝑡 𝑗 represents the feature set of the 𝑗-th
time window, expressed as 𝑡 𝑗 = {𝑚 𝑗,𝑖 |1 ≤ 𝑖 ≤ 𝑓 }.

2) Metric Modality Fusion: When designing the metric en-
coder, we’ve identified two critical issues. we’ve observed that
the same failure can occur across different instances. For example,
Figure 6 and Figure 7 show two cases where the same network

failure occurred at different times, with clear manifestations on
container_network_receive_MB. Secondly, when a failure occurs, it
can have a cascading effect, influencing other instances to varying
degrees. As shown in Figure 7, although adservice-0 and frontend-1
are not the root causes of the failure, they still exhibit clear mani-
festations on network_receive_MB.

Figure 6: The manifestation of network failure in the con-
tainer_network_receive_MB of root cause frontend-1 and
two nonroot cause.

Figure 7: The manifestation of network failure in
the container_network_receive_MB of root cause
recommendationservice-2 and two nonroot cause.

Based on this, inspired by SENet[42], we treat each instance as a
separate channel and deploy a channel attention mechanism [42],
which concentrates and compresses the failure information con-
tained in all instances, enabling the extracted features to represent
the entire microservice system’s characterization following a fail-
ure to the fullest extent possible. This method effectively addresses
the two previously mentioned issues.

Then, we utilize a transformer model [41] and global pooling
to aggregate feature information from the time series into a fixed-
length vector, extracting a comprehensive global feature represen-
tation.

4.3 Trace Encoder
We extract features from the duration data of different types of
spans within the time window of each failure case. Then, we use
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the obtained trace representations to train on themodel we designed
for trace to obtain the high-level representation of trace modality.
Trace encoding involves two steps.

1) Feature Selection and Processing: To better extract infor-
mation from Trace data, we consider the combination of the calling
service and the called service as a type of span, thus categorizing
multiple types of spans. To eliminate differences in duration across
different types of spans, we standardize the duration for each type
of span.

𝑥 ′𝑖 =
𝑛(𝑥𝑖 − 𝑥)√︃∑𝑛
𝑘=1 (𝑥𝑘 − 𝑥)2

(8)

We detect anomalies for each type of invocation using the 3-
sigma method and calculate the anomaly score 𝑆 to reflect the
anomaly situation of this type of span. The specific formula is as
follows, where 𝑛 represents the number of points greater than 3.

S =

{∑
𝑥𝑖>3 𝑥𝑖
𝑛 if 𝑛 > 0

0 if 𝑛 = 0
(9)

We analyzed the trace data and found that the number of anom-
alies for each type of span fluctuates differently under various cases.
As shown in Figure 8, four types of spans and their corresponding
weights are marked in the figure.

Figure 8: The number of anomalies for spans under different
failure cases

For a type of span, if it frequently switches between normal
and abnormal states (e.g., Span2 in Figure 8 (b)) or has a large
fluctuation in the number of anomalies (e.g., Span3 in Figure 8 (c)),
then its importance for failure classification is higher. If it remains
consistently normal or abnormal with small fluctuations in the
number of anomalies (e.g., Span1 and Span4 in Figure 8), then its
importance for failure classification is lower. To increase the weight
of the former and decrease the weight of the latter, we use the same
statistical analysis method as the log encoder to assign appropriate
weights to each type of span.

After determining the weights that should be assigned to each
type of call, we use the product of the weight and the anomaly score
as the feature for that type of span within the time window. In this
way, for a failure interval, we can obtain a sequence of features.

2) Trace Modality Fusion: To obtain an overall understand-
ing of anomaly situations from sequences of features derived from

different types of spans, we utilize the Encoder layer of the Trans-
former [41]. We employ its multi-head self-attention mechanism
[41] to capture internal relationships among different types of spans,
facilitating a better comprehension and learning of crucial informa-
tion and patterns within. Subsequently, we employ a linear classifier
to compress and summarize the information of the entire feature
sequence, thereby extracting a global feature representation of the
sequence.

4.4 Multimodal Fusion
In the modality fusion stage, we employ a multimodal fusion mod-
ule with channel attention [42] to integrate the original statistical
features from each modality with the failure classification features
extracted by the feature encoders. This module is designed to ef-
fectively combine information from different modalities, ensuring
that the unique characteristics of each modality are preserved and
enhanced. The fusion module performs the following steps:

1) Feature Concatenation: The input features from different
modalities (x, y, and z) are concatenated along the feature dimension.
This concatenated feature vector is then passed through a fully con-
nected layer [43] to generate an integrated feature representation
𝑓 𝑐𝑜𝑢𝑡 .

2) Modality-specific Linear Transformations: Each modal-
ity’s features are separately processed through individual linear
layers (𝑙𝑖𝑛𝑒𝑎𝑟𝑥𝑜𝑢𝑡 , 𝑙𝑖𝑛𝑒𝑎𝑟𝑦𝑜𝑢𝑡 , and 𝑙𝑖𝑛𝑒𝑎𝑟𝑧𝑜𝑢𝑡 ). These transforma-
tions help to capture modality-specific information and enhance
the discriminative power of each modality.

3) Channel Attention Mechanism: The outputs of linear trans-
formations are passed through a sigmoid activation function to
produce attention weights (𝜎 (𝑥𝑜𝑢𝑡 ), 𝜎 (𝑦𝑜𝑢𝑡 ), and 𝜎 (𝑧𝑜𝑢𝑡 )). These
weights are used to highlight important features in each modality.

4) Feature Stacking and Squeezing: The original modality
features and the attention-weighted features are stacked together,
creating a comprehensive feature set. This stacked feature set is
then processed using an adaptive average pooling layer to reduce
the dimensionality and focus on the most informative features.

5) Classification: The pooled feature representation is passed
through a fully connected layer [43] to perform failure classification.
This layer outputs the predicted class labels for the input data.

4.5 Multimodal Adaptive Optimization
The multimodal adaptive optimization module (MAO) is designed
to address the challenges of inconsistent convergence rates and mu-
tual interference among different modalities in multimodal failure
diagnosis. This module comprises three key components: modality
evaluation, gradient suppression, and feature enhancement. These
components work together to dynamically adjust the training pro-
cess, ensuring that each modality contributes effectively to the
overall model performance. The following introduces these three
key components:

Modality Evaluation: Modality evaluation is the initial step in
the adaptive optimization process. In an ideal real-world scenario,
it is preferable for the reduction in training loss (the difference in
training loss between iterations) to be gradual, while the reduction
in validation loss should be rapid. It assesses the contribution of
each modality to the learning objective by calculating the ratio of
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validation loss reduction to training loss reduction:

𝜌𝑘 =
𝐿𝑉
𝑘
(𝑛 − 1) − 𝐿𝑉

𝑘
(𝑛)

𝐿𝑇
𝑘
(𝑛 − 1) − 𝐿𝑇

𝑘
(𝑛)

(10)

This ratio 𝜌𝑘 indicates the generalization performance of modality
𝑘 . The contributions of all modalities are then normalized to ensure
their coefficients 𝜃𝑘 sum equals one:

𝜃𝑘 =
𝑒𝜌𝑘∑𝐾
𝑗=1 𝑒

𝜌 𝑗
(11)

This evaluation helps to identify dominant (high-yield) and un-
derperforming (low-yield) modalities, providing a foundation for
subsequent optimization steps.

Gradient Suppression: The gradient suppression component
dynamically adjusts the learning rates of different modalities based
on their evaluated contributions. For the dominant modality (the
one with the highest 𝜃𝑘 ), the gradient is suppressed to prevent it
from overwhelming other modalities:

𝑠𝑘𝑡 =

{
1 − 𝛼 · 𝜃𝑘 if 𝑘 = argmax(𝜃𝑘𝑡 )
1 otherwise (12)

Here, 𝛼 is a hyperparameter controlling the degree of suppression,
and 𝑠𝑘𝑡 represents the suppression factor for the gradients. This
approach ensures that the dominant modality does not excessively
influence the training process, allowing underperforming modali-
ties to catch up. The network parameters are updated as follows
[44, 45]:

𝜔𝑘𝑡+1 = 𝜔𝑘𝑡 − 𝜂 · 𝑠𝑘𝑡 𝑔(𝜔𝑘𝑡 ) (13)

In this formula, 𝜔𝑡 is the current parameter value at iteration 𝑡 ,
and 𝜔𝑡+1 is the updated parameter value for the next iteration.
The term 𝜂 represents the learning rate, which controls the step
size of the update. Finally, 𝑔 is the gradient of the loss function
with respect to the parameter 𝜔𝑡 , guiding the update direction.
This update rule ensures that high-performing modalities do not
dominate the optimization process, allowing for more effective and
balanced training across all modalities.

Feature Enhancement: To compensate for the lower contri-
bution of underperforming (low-yield) modalities, the feature en-
hancement component boosts the features of these modalities. The
scaling factor for the weakest modality, determined by the lowest
evaluation score, is calculated as:

𝑠𝑘𝑡 =

{
𝛽 · 𝜃𝑘 if 𝑘 = argmin(𝜃𝑘𝑡 )
1 otherwise (14)

This formula determines the scaling factor 𝑠𝑘𝑡 for the lowest-
performing (low-Yield) modality 𝑘 at iteration 𝑡 . Here, 𝛽 is a scaling
parameter. For all other modalities, the scaling factor 𝑠𝑘𝑡 is set to 1,
indicating no change in their feature values. The enhanced feature
representation is given by [42]:

x̃𝑘𝑡 = F𝑠𝑐𝑎𝑙𝑒 (u𝑘𝑡 , 𝑠𝑘𝑡 ) = 𝑠𝑘𝑡 · u𝑘𝑡 (15)

In this formula, x̃𝑘𝑡 represents the enhanced feature vector formodal-
ity 𝑘 . The term u𝑘𝑡 is the original feature vector of the modality.
The function F𝑠𝑐𝑎𝑙𝑒 scales the feature vector u𝑘𝑡 by the factor 𝑠𝑘𝑡 ,
effectively enhancing the features of low-performing (low-Yield)

modalities. This enhancement helps accelerate the learning pro-
cess for these modalities, ensuring a more balanced and effective
optimization across different types of data.

5 EXPERIMENT
We conduct a variety of experimental studies to answer the follow-
ing research questions.

RQ1: How well does Medicine perform in microservice system
failure diagnosis?

RQ2: Does each component contribute to Medicine?
RQ3: How do the major parameters of Medicine influence its

performance?

5.1 Experimental Design

Table 2: Summary of selected multi-modal datasets

# Instances # Failure cases Modality #

D1 10 174
Log 26,035,183

Metric 18,497,325
Trace 44,858,388

D2 40 1099
Log 80,113,843

Metric 117,411,233
Trace 26,064,740

D3 9 119
Log 18,665,646

Metric 50,284,800
Trace 30,709,790

5.1.1 Datasets. To evaluate the performance of Medicine, we con-
duct extensive experiments on three microservice systems (forming
Dataset 1, Dataset 2, and Dataset 3, respectively). Table 2 lists the
detailed information of these three datasets. The second column
indicates the number of instances of each dataset. The third column
indicates the number of failures injected into each dataset. The
fourth and fifth columns indicate the number of each modality in
each dataset.

• Dataset 1 (D1) is collected from a large-scale simulated e-
commerce application system operated by a top-tier global com-
mercial bank, which is a microservices architecture [46]. It injects
a variety of real failures to simulate the operational challenges
faced by e-commerce companies when dealing with a massive
of business data. This dataset includes the dynamic topology of
application services, real-time traces, metrics, and logs.

• Dataset 2 (D2) is the Generic AIOps Atlas (GAIA) dataset from
CloudWise [47]. It contains the multimodal data collected from a
business simulation system of Cloudwise. This dataset provides
records of all injected failures that may occur in real systems
to facilitate fair algorithm evaluation, and data of all relevant
entities, traces, logs, and metrics.

• Dataset 3 (D3) is collected from a recently released microservice
benchmark, MicroServo [48], which deploys the open-source
Online Boutique [49] provided by GoogleCloudPlatform, employs
three collectors to gather metric, log, and trace data separately
and employs chaos engineering techniques [50] to simulate the
occurrence of real failures. This dataset provides data of logs,
metrics, and traces, and abundant fault injection records.

1114



Giving Every Modality a Voice in Microservice Failure Diagnosis via Multimodal Adaptive Optimization ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 3: The precision, recall and F1-score of different approaches on different datasets.

Approach Modality D1 D2 D3

Metric Log Trace Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

DéjàVu [14] ✓ 0.4569 0.5526 0.4972 0.4620 0.4820 0.4682 0.5990 0.1852 0.1962
iSQUAD [9] ✓ 0.4291 0.5429 0.4750 0.6798 0.6591 0.6457 0.1600 0.2500 0.1857
Cloud19 [15] ✓ 0.5082 0.5429 0.5231 0.5703 0.5682 0.5690 0.3602 0.4167 0.3830

LogCluster [10] ✓ 0.4867 0.3714 0.3852 0.4522 0.4862 0.4671 0.4128 0.5000 0.4260
MEPFL [16] ✓ 0.3286 0.4571 0.3823 0.2321 0.4818 0.3133 0.2946 0.4035 0.3562

CloudRCA [20] ✓ ✓ 0.2463 0.1370 0.1143 0.0913 0.2174 0.1180 0.3708 0.2630 0.2652
DiagFusion [17] ✓ ✓ ✓ 0.7326 0.6744 0.7015 0.8176 0.7891 0.7895 0.3870 0.2813 0.3165
MicroCBR [22] ✓ ✓ ✓ 0.6286 0.8000 0.6500 0.4630 0.4310 0.4464 0.4626 0.5714 0.4835

Medicine ✓ ✓ ✓ 0.9714 0.9428 0.9508 0.9152 0.9136 0.9136 0.8358 0.8333 0.8260

5.1.2 Implementation. Medicine is implemented in PyTorch and all
experiments are conducted on a Linux Server 20.04.1 LTS with
two 48C48T Intel(R) Xeon(R) CPU E5-2650 v4@ 2.20GHz, one
NVIDIA(R) Tesla(R)M4, and 125 GB RAM.

5.1.3 Performance Metrics. Failure classification is a multi-
classification task. Here, we use weighted precision, weighted recall,
and weighted F1-score to evaluate the performance ofMedicine and
other models. For convenience, we will refer to them simply as
precision, recall, and F1-score later. The formulas for these met-
rics are as follows: Precision = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), Recall = 𝑇𝑃/(𝑇𝑃 +
𝐹𝑁 ), F1-score = 2 · Precision · Recall/(Precision + Recall) , where𝑇𝑃
is the number of correctly identified abnormal samples, 𝐹𝑁 is the
number of anomalies that were not detected, and 𝐹𝑃 is the number
of normal samples that were incorrectly identified as anomalies.

5.1.4 Baselines. We use DéjàVu [14], iSQUAD [9], Cloud19 [15],
LogCluster [10], MEPFL [16], CloudRCA [20], DiagFusion [17] and
MicroCBR [22] as our baseline approaches. These approaches use
one, two, or three modalities for failure classification tasks. The
modalities used by each approach are shown in the Table 3. For all
approaches, we tune parameters and report the best results.

5.2 RQ1: Overall Performance ofMedicine
Table 3 illustrates the performance comparison of various failure
detection approaches across three datasets (D1, D2 and D3), focus-
ing on three key metrics: Precision, Recall, and F1-score. Analysis
of Table 3 reveals that Medicine attained F1 scores of 0.9508, 0.9136,
and 0.8260 on D1, D2, and D3, respectively, markedly surpassing
single-modal approaches like Déjàvu [14]. The inferior performance
of single-modal approaches stems from their exclusive reliance on
a singular data type, thus failing to harness the informational rich-
ness conveyed by other modalities. For example, while log data may
chronicle system events, it might not adequately represent resource
utilization, and metric data might lack granular operational insights.
This inherent limitation in single-modal approaches can potentially
lead to erroneous assessments.

In the realm of multimodal methodologies, CloudRCA [20]
emerged as the least effective, with F1-score trailing Medicine by
0.8365, 0.7965, and 0.5608 on D1, D2, and D3, respectively. This
discrepancy is attributed to CloudRCA’s [20] heavy dependence

on expert knowledge for constructing and maintaining knowledge
repositories, thereby constraining its adaptability and robustness.
Contrasted with the benchmark multimodal approach, DiagFusion
[17], Medicine showcased substantial improvements, enhancing F1-
score by 35.54% and 15.72% onD1 andD2, respectively. DiagFusion’s
[17] conversion of diverse modalities into a shared representation
space disregards inter-modality distinctions, consequently disrupt-
ing the coherence of intra-modality information. This shortcoming
manifests particularly in scenarios of incomplete multi-modal data
or subpar data collection quality.

The disparity in performance between MicroCBR [22] and
Medicine is marginally narrower on D1 than on D2 and D3, primar-
ily because failure information in D1 predominantly resides within
the singular modality of metrics, whereas D2 and D3 encompass
both metrics and logs, reflecting a richer array of failure data. De-
spite MicroCBR’s [22] endeavor to optimize all modalities with a
unified learning objective and identical training strategies, it fails to
address the inherent imbalance in modality optimization, resulting
in F1-score of only 0.4464 and 0.4835 on D2 and D3, respectively.
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Figure 9: The average detection time for diagnosing a failure.

We simulate the online detection environment to analyze the
complexity of Medicine and other multimodal baselines by calcu-
lating the average detection time required for each failure case. As
shown in Figure 9, Medicine demonstrates the shortest detection
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Table 4: Performance comparison of different components.

Dataset Approach Precision Recall F1-score

D1

Only Metric 0.8926 0.8857 0.8847
Only Log 0.3316 0.4571 0.3820
Only Trace 0.3595 0.4571 0.4020
w/o MAO 0.9350 0.9143 0.9086
Medicine 0.9714 0.9428 0.9508

D2

Only Metric 0.7705 0.7909 0.7753
Only Log 0.8836 0.8500 0.8445
Only Trace 0.5232 0.5227 0.5139
w/o MAO 0.8959 0.8955 0.8953
Medicine 0.9152 0.9136 0.9136

D3

Only Metric 0.6875 0.5000 0.4538
Only Log 0.4792 0.4583 0.4431
Only Trace 0.2550 0.2083 0.2179
w/o MAO 0.7121 0.7083 0.6956
Medicine 0.8358 0.8333 0.8260

time on D1, taking only 3.44ms, whereas CloudRCA [20] is the
slowest at 35.16ms. On D2 and D3, Medicine’s average detection
time is comparable to that of MicroCBR [22], all around 5ms. Given
the frequent failure diagnosis operations performed by operators,
Medicine meets this requirement efficiently. Furthermore, Medicine
achieves satisfactory results by effectively leveraging three modal-
ities, demonstrating superiority in both effectiveness and perfor-
mance.

5.3 RQ2: Contributions of Components
To illustrate the significance and contributions of each component
in Medicine, we conducted four sets of comparative experiments to
assess the performance of its five components. These components
are: 1) Only Metric: To underscore the importance of the specially
designed metric encoder, we isolated it fromMedicine and appended
a fully connected layer to output failure categories, utilizing only
metric data in this scenario. 2) Only Log: To emphasize the signifi-
cance of the log encoder, we solely employed the log encoder for
failure classification. 3) Only Trace: To highlight the importance
of the trace encoder, we exclusively utilized trace data in the trace
encoder for failure diagnosis. 4) w/o MAO: In this configuration,
we omitted the multimodal adaptive optimization (MAO) module
from Medicine while retaining all other components unchanged.

As depicted in Table 4, the metric encoder achieved F1-score of
0.8847, 0.7753, and 0.4538 on D1, D2, and D3, respectively, surpass-
ing or closely approaching the best multimodal baseline in Table
3. This indicates that our designed metric encoder consistently
characterizes failures, and the proposed feature sequences adeptly
differentiate various failures. The log encoder attained an F1-score
of 0.8445 on D2, significantly surpassing other log modality base-
lines. Similarly, the performance of the trace encoder outpaced
the corresponding trace modality baselines. However, due to the
limited number of failure cases reflected in the trace data, the trace
encoder’s performance did not realize its full potential.

In comparison to the unimodal encoders, the fusion of care-
fully encoded multimodal data yielded F1-score of 0.9086, 0.8953,
and 0.6956 on D1, D2, and D3, respectively, emerging as the top-
performing model alongside Medicine. With the incorporation of
the multimodal adaptive optimization module, Medicine’s F1-score
improved by 4.64%, 2.04%, and 18.75% on D1, D2, and D3, respec-
tively. After multimodal adaptive optimization, Medicine retains
useful information from all modalities. MAO dynamically adjusted
and optimized the weights and interactions between different data
modalities, thereby enhancing the overall performance of the model.
In most scenarios, it is unknown which modality will be the most
effective before model deployment. Therefore, we recommend train-
ing and optimizing the model using data from all three modalities
before deployment.

5.4 RQ3: Parameter Sensitivity
We primarily discuss the impact of two hyperparameters in the
multimodal adaptive optimization module (Section 4.5) on the per-
formance ofMedicine. Figure 10 illustrates how the average optimal
F1-score of Medicine varies with different values of hyperparame-
ters 𝛼 and 𝛽 . Specifically, we increased 𝛼 in the gradient suppression
component from 0.1 to 0.9. The experimental results indicate that
if 𝛼 is too small, the suppression effect on high-yield modalities is
similar to that on low-yield modalities, failing to reduce their gradi-
ent propagation effectively. Conversely, if 𝛼 is too large, high-yield
modalities will not receive sufficient training. Setting 𝛼 around 0.5
yields relatively better performance, hence we set 𝛼 = 0.5.
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Figure 10: F1-score ofMedicine under different parameters.

We also increased 𝛽 in the feature enhancement component
from 0.1 to 0.9. The best performance is achieved when 𝛽 = 0.3. If
𝛽 is too large, the performance of Medicine declines as low-yield
modalities are overly emphasized, causing high-yield modalities to
be neglected. During training, the actual gradient update direction
(from the multimodal output) and the guiding direction for each
modality (from the unimodal output) diverge, leading to increased
interference [51]. Overprotecting low-yield modalities disrupts the
ability of other modalities to fully utilize their features.

6 DISCUSSION
6.1 Case Study
We applied Medicine on a global, top-tier commercial bank, D1,
where operators collected metrics, logs, and traces from the moni-
toring system to initiate a multimodal failure diagnosis task. Figure
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11 illustrates a network packet loss failure case, where a signifi-
cant drop in network and CPU-related metrics of the k8s container
was observed, alongside a sharp increase in abnormal service calls.
Medicine effectively diagnosed the anomaly, pinpointing "k8s con-
tainer network packet loss" as the root cause. Following Medicine
’s diagnosis, operators investigated the k8s container’s network
configuration and identified a DNS misconfiguration, which, once
corrected, restored normal operations in the microservices system.
Notably, no anomalies were detected in the related logs; however,
Medicine accurately identified the issue by leveraging the valid
information from metrics and traces. By integrating various data
modalities, Medicine is capable of identifying failures that might
elude single-modality approaches, thereby enabling more precise
diagnoses.

6.2 Lessons Learned
While Medicine represents a significant advancement in failure
diagnosis for microservice systems, it still has some limitations.
Primarily, the framework’s performance is critically dependent on
the availability and quality of multimodal data. In real-world sce-
narios, inconsistencies in data collection may lead to diagnostic
gaps, despite Medicine’s modular design aimed at preserving the
independence of each modality. Additionally, although the adap-
tive optimization process adeptly balances learning across various
modalities, it incurs computational overhead that could impede real-
time performance. Furthermore, the reliance on pre-trained models
and domain-specific knowledge for encoding different modalities
may restrict the framework’s applicability across diverse domains
without extensive retraining and tuning. Therefore, developing
generalized encoding techniques that require minimal retraining
and tuning is necessary to enhance the framework’s applicability
across various domains.

The adaptive optimization module’s hyperparameters require
meticulous tuning. Once established, these parameters remain static
during operation, limiting the framework’s capability to dynami-
cally adjust to evolving conditions or new data patterns. This static
nature could constrain Medicine’s ability to continuously improve
and adapt. In future work, we will integrate a feedback loop into

Figure 11: A failure case "k8s container network packet loss"
on D1, with the red-highlighted areas indicating the anom-
alies detected by Medicine across different modalities.

Medicine that continuously monitors performance and automati-
cally adjusts hyperparameters, enabling Medicine to adapt to evolv-
ing conditions and new data patterns without manual intervention.

6.3 Threats to Validity
Internal threats. Despite Medicine ’s effectiveness in diagnosing
failure types within the evaluated microservice systems, there exists
a potential threat of overfitting to specific data patterns during the
training process. Should the framework become overly attuned to
the characteristics of the training data, it may fail to generalize ef-
fectively to new, unseen failure data exhibiting different patterns or
anomalies. Furthermore, Medicine ’s performance is highly contin-
gent on the tuning of its hyperparameters. Extensive experiments
were conducted to ascertain the optimal settings; however, these
parameters may not be universally optimal across varied datasets
or operational conditions, posing a risk of suboptimal performance
in untested scenarios.
External threats. The datasets employed in the experiments might
not encompass the full spectrum of failure types and system behav-
iors present in microservice environments. The specific attributes
of these datasets could limit the generalizability of the research find-
ings to other settings.Medicine was assessed on particular microser-
vice systems, and the diversity in architectures, configurations, and
deployment environments of other microservice systems might
constrain the applicability of the results. Systems with markedly
different structures or operational behaviors may necessitate ad-
justments to the Medicine framework. Although the framework
demonstrated promising results in the test scenarios, its scalabil-
ity in very large and highly dynamic microservice environments
remains to be thoroughly evaluated. The computational overhead
introduced by the adaptive optimization process has not been ef-
fectively assessed in such environments.

7 CONCLUSION
In this paper, we introduced Medicine, a modality-independent fail-
ure diagnosis framework for microservice systems based on multi-
modal adaptive optimization. Medicine addresses the limitations of
existing single-modal diagnostic approaches by encoding different
modalities separately, preserving their unique characteristics, and
employing adaptive optimization to balance the learning progress
across modalities. This approach significantly enhances overall
diagnostic performance. Our extensive experiments demonstrate
that Medicine outperforms other single-modal and multimodal di-
agnostic approaches on three public datasets, achieving an F1-score
improvement of 15.72% to 70.84%. Notably,Medicine maintains high
diagnostic accuracy even when some modality data is missing or of
low quality, showcasing its robustness and practical applicability in
real-world scenarios. In the future, we will further explore how to
monitor the operational status of microservice systems in real time,
enabling the timely detection and diagnosis of failures to provide
users with more stable and reliable services.
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