
End-to-End AutoML for Unsupervised Log Anomaly Detection
Shenglin Zhang
Nankai University &

HL-IT
Tianjin, China

zhangsl@nankai.edu.cn

Yuhe Ji
Nankai University
Tianjin, China

jiyuhemail@foxmail.com

Jiaqi Luan
Nankai University
Tianjin, China

2120230752@mail.nankai.edu.cn

Xiaohui Nie
CNIC, CAS

Beijing, China
xhnie@cnic.cn

Zi’ang Chen
Nankai University
Tianjin, China

2012217@mail.nankai.edu.cn

Minghua Ma
Microsoft

Redmond, WA, USA
minghuama@microsoft.com

Yongqian Sun∗
Nankai University &

TKL-SEHCI
Tianjin, China

sunyongqian@nankai.edu.cn

Dan Pei
Tsinghua University

Beijing, China
peidan@tsinghua.edu.cn

ABSTRACT
As modern software systems evolve towards greater complexity,
ensuring their reliable operation has become a critical challenge.
Log data analysis is vital in maintaining system stability, with anom-
aly detection being a key aspect. However, existing log anomaly
detection methods heavily rely on manual effort from experts, lack-
ing transferability across systems. This has led to the situation
where to perform anomaly detection on a new dataset, the opera-
tors must have a high level of understanding of the dataset, make
multiple attempts, and spend a lot of time to deploy an algorithm
that performs well successfully. This paper proposes LogCraft, an
end-to-end unsupervised log anomaly detection framework based
on automated machine learning (AutoML). LogCraft automates fea-
ture engineering, model selection, and anomaly detection, reducing
the need for specialized knowledge and lowering the threshold
for algorithm deployment. Extensive evaluations on five public
datasets demonstrate LogCraft’s effectiveness, achieving an aver-
age F1 score of 0.899, which outperforms the second-best average
F1 score of 0.847 obtained by existing unsupervised algorithms.
According to our knowledge, LogCraft is the first attempt to ex-
tract fixed-dimensional vectors as latent representations from a
complete log dataset. The proposed meta-feature extractor also
exhibits promising potential for measuring log dataset similarity
and guiding future log analytics research.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

∗Yongqian Sun is the corresponding author.
TKL-SEHCI is short for Tianjin Key Laboratory of Software Experience and Human
Computer Interaction. HL-IT stands for Haihe Laboratory of Information Technology
Application Innovation. CNIC, CAS is short for Computer Network Information Center,
Chinese Academy of Sciences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’24, 27 October-1 November 2024, Sacramento, California
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00
https://doi.org/10.1145/3691620.3695535

KEYWORDS
Log Anomaly Detection, AutomatedMachine Learning, Meta Learn-
ing

ACM Reference Format:
Shenglin Zhang, Yuhe Ji, Jiaqi Luan, Xiaohui Nie, Zi’ang Chen, Minghua Ma,
Yongqian Sun, and Dan Pei. 2024. End-to-End AutoML for Unsupervised
Log Anomaly Detection. In 39th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’24), October 27-November 1, 2024,
Sacramento, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3691620.3695535

1 INTRODUCTION
As modern software systems continue to evolve towards greater
scale and complexity, they are extensively designed for various
online services and intelligent applications, requiring 24/7 uninter-
rupted provision of reliable services to users [24, 50]. Consequently,
ensuring the smooth operation of these systems has become a criti-
cal challenge [7, 8, 14, 38]. Log data is the textual record generated
during the operation of systems or applications, detailing the code
execution process and the current state of the system. Analyzing
log data is vital for maintaining system stability, and anomaly de-
tection plays a key role in identifying system errors and potential
risks [9, 18–20, 30, 36, 42].

Traditional log anomaly detection methods heavily rely on the
involvement of operations and maintenance experts, who filter out
anomalous logs by setting rules or searching for keywords. Such
methods are not only costly in terms of manual labor, but also lack
transfer ability, requiring customized solutions for different sys-
tems and application versions. With the advancement of machine
learning technologies, numerous automated log anomaly detection
schemes have been proposed [5, 12, 15, 16, 29, 33, 41, 48, 51, 53].
These schemes utilize machine learning or deep learning algorithms
to identify anomalies in log data. Depending on the need for labeled
data, these algorithms can be categorized into unsupervised and
supervised types. Unsupervised algorithms do not require labeled
anomaly data and detect anomalies by learning the patterns of nor-
mal data [12, 15, 16, 41]. In contrast, supervised algorithms need
known anomaly data for model training and identify log anomalies
through the classification process [29, 51, 52]. In industrial practice,
system operators still tend to prefer using unsupervised approaches
due to the lack of high-quality labeled data [39, 40].

1680

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://orcid.org/0000-0003-0330-0028
https://orcid.org/0009-0009-1645-1686
https://orcid.org/0009-0005-4720-2675
https://orcid.org/0000-0002-0371-854X
https://orcid.org/0009-0006-0732-7198
https://orcid.org/0000-0002-6303-1731
https://orcid.org/0000-0003-0266-7899
https://orcid.org/0000-0002-5113-838X
https://doi.org/10.1145/3691620.3695535
https://doi.org/10.1145/3691620.3695535
https://doi.org/10.1145/3691620.3695535

ASE’24, 27 October-1 November 2024, Sacramento, California Shenglin Zhang, Yuhe Ji, Jiaqi Luan, Xiaohui Nie, Zi’ang Chen, Minghua Ma, Yongqian Sun, and Dan Pei

However, although existing unsupervised algorithms have shown
good performance on certain datasets, they still face significant chal-
lenges in actual deployment. Selecting a high-performing algorithm
for a specific dataset is very difficult and requires a considerable
amount of time for iterative trials. Previous research findings [53]
and our empirical study indicate that there does not exist one anom-
aly detection algorithm that can get the best performance on different
datasets. We realize that automating the selection and deployment
of algorithms to achieve stable performance is just as important
as proposing new ones. Therefore, this paper aims to develop an
automated system that intelligently selects and deploys anomaly de-
tection algorithms, and continuously enhances their performance in
real-world applications, thereby reducing the time and cost associated
with algorithm selection and deployment.

In fact, selecting a well-performing algorithm for a specific
dataset is very challenging. Each algorithm focuses on different data
characteristics, uses varyingmodel structures, and has distinct train-
ing objectives, leading to significant performance differences across
datasets. Operators need to spend a considerable amount of time
conducting multiple iterative trials. Previous research [25] shows
that typical data science projects allocate 15% to 26% of their time
to model selection or construction, representing a significant ex-
penditure. Besides, some works focus on using automated machine
learning (AutoML) to speed up the model selection process. Zhao
and colleagues [54] have demonstrated the effectiveness of meta-
learning-based model recommendation algorithms for automating
outlier model selection on metric data. Therefore, we propose that
leveraging AutoML methods for automating log anomaly detection
could be a promising solution.

However, when automating the entire log anomaly detection
process, we encountered the following challenges: (1) Diversified
datasets present challenges to feature engineering. Currently,
mainstream log anomaly detection algorithms consider template
extraction as a preliminary step. The quality of template extraction
and the chosen log representation methods (e.g., sequence, count)
will significantly impact the final anomaly detection results. There
are substantial differences between various log datasets, so obtain-
ing good log feature representations requires substantial human
involvement, setting different rules for each dataset, and conducting
multiple trials. (2) The challenge of massive hyperparameter
combinations and unlabeled data for model selection and
evaluation. For each model, there are numerous variable hyperpa-
rameter values, and the combinations of these hyperparameters can
reach millions or even tens of millions, making it very challenging
to select an appropriate model. Additionally, model evaluation re-
quires labeled data to compute relevant metrics, making it difficult
to assess the relative performance of models when only unlabeled
data is available.

In this paper, we propose LogCraft, an end-to-end unsupervised
log anomaly detection framework based on AutoML, designed to
accelerate model selection and deployment for unsupervised log
anomaly detection. (1) To address the first challenge, we designed
LogAFE, an adaptive log feature enhancement framework. LogAFE
improves log template parsing quality through semantic analysis
and achieves high-quality log representation without human inter-
vention by combining multiple features and unifying feature and
model optimization. (2) To address the second challenge, we first

apply a particle swarm optimization algorithm to conduct hyper-
parameter search on the existing dataset, filtering out a selection
of well-performing models as a coarse screening in the recommen-
dation process. Then, we use a carefully designed meta-learner to
identify the patterns between the dataset and model performance,
enabling model recommendations on new datasets, corresponding
to fine screening in the recommendation process.ll

LogCraft is systematically evaluated on five public datasets. Un-
der highly automated conditions, LogCraft achieved an average F1
score of 0.899, surpassing the second-best performance of LogBERT,
which had an average F1 score of 0.847. Our ablation experiments
demonstrated the effectiveness of LogCraft’s each component and
explored the impact of the sole hyperparameter on LogCraft.

Our contributions are summarized as follows:
(1) To the best of our knowledge, LogCraft is the first work
that focuses on automated unsupervised log anomaly de-
tection. It is an end-to-end unsupervised log anomaly detection
framework based on AutoML, enhancing the automation of anom-
aly detection and lowering the barrier for algorithm deployment.
(2) We designed two modules to address the challenges of
automating log anomaly detection. First, we developed LogAFE
to obtain high-quality log representations, thereby solving the fea-
ture engineering difficulties caused by log variations. Secondly,
we adopted a meta-learning approach to tackle the model recom-
mendation problem for unlabeled datasets. Specifically, we innova-
tively designed a meta-feature extractor tailored for log datasets
to measure a certain similarity between them and associate it with
algorithm performance.
(3) Demonstration of framework effectiveness and open source
code. LogCraft has demonstrated exceptional performance, achiev-
ing an impressive average F1 score of 0.899 across five publicly
available datasets. This remarkable result significantly surpasses
the second-best baseline algorithm, which only achieved an F1
score of 0.847. LogCraft’s ability to excel despite the challenges of
smaller training sets and finer evaluation granularity underscores
its robustness and effectiveness. Furthermore, in a commitment to
advancing research in this field, we have open-sourced all the code
of LogCraft. Our source code is available at [1].

2 BACKGROUND
2.1 Log Anomaly Detection
The purpose of log anomaly detection is to identify logs that may
symbolize abnormal system activity. Specifically, the mainstream
log anomaly detection process consists of four parts: log parsing,
log grouping, log representation, and anomaly detection [30], as
shown in Figure 1.
(1) Log parsing. Each log entry typically contains two parts: a
structured part and an unstructured part. The structured part of
the log depends on the log recording tool used, while the unstruc-
tured part is written by the programmer [10]. Most log anomaly
detection algorithms require structured data (such as a matrix or
a list of structured log counts) [18]. Therefore, converting them
into structured log events through log parsing algorithms is very
important. Many log parsing schemes have been proposed, such as
Spell [11], Drain [17], FT-Tree [41], LogPPT [31], etc. Among them,

1681

End-to-End AutoML for Unsupervised Log Anomaly Detection ASE’24, 27 October-1 November 2024, Sacramento, California

Figure 1: Pipeline of log anomaly detection approaches

Drain is used by many anomaly detection works due to its good
performance on various datasets [15, 21, 30, 48, 52].
(2) Log grouping. Direct analysis of log data is not feasible because
they are too large and complex. Moreover, since there is a strong
correlation between the contexts of logs, the results of analyzing in-
dividual logs are often unreliable. Existing work typically uses three
methods to group logs, including fixed windows, sliding windows,
and session windows [18].
(3) Log representation. Machine learning models require numeri-
cal output, but logs are usually in text form. Therefore, it is neces-
sary to extract reasonable features from logs and represent them
as continuous vectors to serve as training data for models. Differ-
ent anomaly detection methods will transform logs into different
feature vectors. For example, DeepLog [12] uses sequences of log
events as model input, LogAnomaly [41] uses both vectors of log
events and event count vectors to analyze logs, and NeuralLog [29]
classifies and detects logs using semantic vectors encoded by BERT.
(4) Anomaly detection. The feature data will be utilized to train a
model, which may either follow a rule-based approach or be based
on machine learning techniques. This model will subsequently
serve in identifying anomalies within new logs, flagging any logs
that appear anomalous for in-depth analysis by operators.

2.2 AutoML & Meta Learning
AutoML is an important branch of machine learning, dedicated to
simplifying some of the complex and technical tasks in machine
learning, allowingmachine learning to achieve good results without
human intervention [22]. AutoML mainly focuses on three aspects:
feature engineering, model selection, and optimization algorithm
selection [49]. Most AutoML algorithms require a labeled dataset
to evaluate the model’s performance and automatically adjust the
selection of features and model structure based on the evaluation
results.

Meta-learning, also known as “learning to learn”, is a crucial part
of automatic machine learning. Meta-learning focuses on quickly
adapting to new tasks by leveraging past experiences, and it is
an important subset of automated machine learning. Its principles
enable the application of past knowledge to guide the comple-
tion of new tasks to a certain extent, even with unlabeled data [3].

Meta-features are defined as vectors that can characterize certain
attributes of a dataset and are typically extracted from that dataset
[2]. They are often employed in the automatic recommendation of
machine learning algorithms and for high-performance parameter
optimization. In this paper, we designed a meta-feature extractor
that effectively extracts characterizations of log data. This extractor
is integrated with meta-learning for recommendations in anomaly
detection models.

3 EMPIRICAL STUDY
In this section, we conducted an empirical study to investigate the
extent to which current log anomaly detection methods rely on
human intervention. The motivation behind this study is to under-
stand how much manual effort and domain expertise are required
for effective log anomaly detection usingmodern techniques. Specif-
ically, we explore the impacts of model selection and log feature
engineering choices.

Model selection directly determines the performance ceiling of
a log anomaly detection system [20, 53]. With the variety of neural
architectures and hyperparameter configurations available, iden-
tifying the optimal model for a given scenario can be extremely
challenging without extensive experimentation and domain exper-
tise.

Effective log feature engineering is a prerequisite for accurate
anomaly detection. However, this process often requires substantial
human effort and domain knowledge, particularly in tasks like log
parsing and feature selection, which can be dataset-specific and
error-prone.

Three public datasets were used in the study, namely Blue Gene/L
(BGL) [43, 55], Thunderbird [55], and the Hadoop Distributed File
System (HDFS) [47, 55]. BGL and Thundbird consist of logs gener-
ated from supercomputers, while the HDFS dataset was constructed
using map-reduce tasks on over 200 Amazon EC2 nodes. Due to
the large size of the Thunderbird dataset, we only analyzed the first
five million entries from 200 million logs.
RQ 1: How does the selection of models impact the perfor-
mance of log anomaly detection? Currently, the primary neural
network structures relied upon for unsupervised log anomaly de-
tection are still RNNs [12, 41, 53] and Transformers [15]. It is worth
noting that regardless of whether the neural networks are based
on RNNs or Transformers, they essentially learn the features of
log sequences by predicting the next token. However, different
algorithms exhibit significant differences in network architecture
design and hyperparameter configuration. For example, RNNs can
choose different recurrent units such as LSTM or GRU, while Trans-
formers can adjust the number of attention heads, the number
of encoder/decoder layers, etc. The selection of these algorithmic
parameters has a significant impact on anomaly detection perfor-
mance. The performance differences brought about by different
algorithmic parameters can be quite large, making it challenging
for humans to search and optimize in this algorithmic space.

In this section, we define a model as a combination of algorithms
and hyperparameters. This means that even if the algorithms are
the same, we consider them different models if they use different
hyperparameters. We conducted research using three unsupervised
algorithms: DeepLog [12], LogAnomaly [41], and LogBERT [15].

1682

ASE’24, 27 October-1 November 2024, Sacramento, California Shenglin Zhang, Yuhe Ji, Jiaqi Luan, Xiaohui Nie, Zi’ang Chen, Minghua Ma, Yongqian Sun, and Dan Pei

Table 1: F1 scores of best and worst-performing models

Dataset DeepLog LogAnomaly LogBERT

BGL 778/0.501 0.713/0.671 0.874/0.576
Thunderbird 0.723/0.580 0.734/0.602 0.803/0.672
HDFS 0.944/0.711 0.883/0.711 0.828/0.749

Table 2: Template counts and parsing accuracy with different
settings

Template Counts Parsing Accuracy

Dataset Customized Default Customized Default

BGL 684 1823 0.901 0.681
Thunderbird 2073 3487 0.857 0.590
HDFS 35 47 0.990 0.808

DeepLog employs an LSTM model to learn log sequence vectors,
while LogAnomaly uses two LSTMs to learn log sequence vectors
and count vectors separately. LogBERT utilizes BERT as the core
model, conducting anomaly detection through masked keyword
training and hypersphere volume minimization. We performed
anomaly detection tasks on 54 combinations of four common hy-
perparameters: window_size, stride, num_layers, hidden_size across
the three algorithms, totaling 162 models.
Observation 1: The results of log anomaly detection heavily
depend on the choice of neural network architecture and
the configuration of network hyperparameters. Table 1 shows
the best and worst F1 scores obtained by the three algorithms on
each dataset. In our experiments, we found that it is often very
challenging to identify the model that performs best on different
datasets. On one hand, the core structure of the algorithm and the
training method can affect its anomaly detection capabilities; on
the other hand, the setting of hyperparameters can also impact the
model’s convergence speed and learning ability.
RQ 2: How much domain expertise and manual effort is re-
quired in log feature engineering? For log segments that are
out of the ordinary, it is essential to manually configure regular
expressions to refine parsing accuracy [32, 56]. This task typically
necessitates a comprehensive understanding of the dataset’s struc-
ture and specific technical expertise. Additionally, since the log
parser significantly influences the efficiency of anomaly detection
methods, an increase in the number of event templates can result in
reduced anomaly detection efficiency [13]. Consequently, operators
should be proficient in log parsing technology and fine-tune the
hyperparameters within the algorithm, thereby maintaining the
template count within a reasonable limit.
Observation 2.1: Log parsing, a crucial step in log feature
engineering, heavily relies on operation and maintenance
experts’ domain knowledge to establish appropriate pars-
ing formats and manually configure regular expressions for
anomalous log segments. Table 2 contrasts the template counts
and parsing accuracy(PA) derived from both settings’ parsing re-
sults. PA is the proportion of accurately parsed log messages to the

total log messages. Zhu et al. [56] developed logparser, an open-
source toolkit for log parsing, which encompasses various parsing
algorithms and tailors regular expressions and hyperparameters
to specific datasets. We utilized Drain [17] for log parsing. In the
Customized Setting experiment, we adjusted hyperparameters and
crafted regular expressions based on individual parsing outcomes to
minimize errors within the algorithm. Conversely, the Default Set-
ting experiment employed only Drain’s standard hyperparameters
and fundamental regular expressions (IPv4, IPv6, decimal, and hexa-
decimal numbers) for template generation. The experiment results
demonstrate that failing to choose appropriate hyperparameters
and set corresponding regular expressions for the template parsing
algorithm can result in many logs being incorrectly parsed, signifi-
cantly increasing the total number of templates obtained. Moreover,
le et al. [29] discovered that current log parsing approaches may
yield inaccurate parsing due to Out-Of-Vocabulary (OOV) issues
and semantic misinterpretations, adversely affecting the efficacy of
subsequent anomaly detection algorithms.
Observation 2.2: Apart from log parsing, feature selection
also significantly affects the detection performance of the
model. Landauer et al. [28] have demonstrated the necessity of
selecting appropriate features for anomaly detection by applying
simple rule-based algorithms to different datasets and focusing
on different features. In the study, using event sequences as the
target feature for anomaly detection yielded an F1 score of 53.9 on
HDFS while using count vectors as the feature yielded an F1 score
of 56.0. When both features were combined for detection, the F1
score increased to 72.0. However, combining these two features on
Thunderbird and BGL resulted in a performance decline.

4 APPROACH
To minimize the need for manual intervention in log anomaly de-
tection and enhance algorithm deployment, we introduce LogCraft.
This innovative, end-to-end, unsupervised log anomaly detection
framework aims to automate the process significantly. LogCraft
excels by incorporating feature engineering and model selection
within its architecture, thereby facilitating superior anomaly detec-
tion in log datasets with minimal human oversight. In this study,
the dataset used to construct the meta-learner is termed the support
set, while the dataset used for actual anomaly detection is the target
set. LogCraft comprises three main components: LogAFE for feature
enhancement, Meta-Learner Construction for dynamic learning,
and a Model Preparation segment. Figure 2 visually outlines the
systematic workflow of LogCraft, highlighting the integration and
interaction of these components.

4.1 LogAFE: Adaptive Log Feature Enhancement
The robustness of data cleansing and preparation plays a pivotal
role in fortifying the learning proficiency of automated models
[22]. Positioned at the forefront of AutoML challenges, LogAFE
is designed to tackle the complexities of log feature engineering
observed in empirical research, focusing on the adaptive extraction
of salient features from textual logs.

Laying the groundwork, we commencewith employing theDrain
algorithm [17] for the initial log parsing phase, from which we ob-
tain a rudimentary set of parsing results. Since LogCraft is designed

1683

End-to-End AutoML for Unsupervised Log Anomaly Detection ASE’24, 27 October-1 November 2024, Sacramento, California

Figure 2: Anomaly detection pipeline of LogCraft

for autonomous operation, Drain is used with its default hyper-
parameters and predefined regular expressions. In datasets with
diverse log types, this default setup may generate many redundant
templates due to incorrect classification of log entries. This issue
mainly arises from three types of parsing errors: logs with variable-
length variables being split into multiple templates, the lack of
specific regular expressions to filter out unique system strings, and
traditional log parsing algorithms ignoring semantic information,
leading to different templates for logs with identical meanings but
slightly different wording.

To address these challenges, we proceed with semantic rectifi-
cation of the initial templates. Initially, we will remove any place-
holders and special symbols that represent variables and regular
expressions from each parsed template. Then we encode each log
template using the pre-trained model all-MiniLM-L6-v2 from the
sentence-transformers repository [44, 45]. This model, fine-tuned
on a billion sentences, generates 384-dimensional semantic vectors
for each input statement, making it suitable for semantic similar-
ity analysis.In line with canonical semantic analysis practices, we
utilize cosine similarity amongst the vectors to delineate template
akinness. The encoded log templates undergo a clustering algo-
rithm, leveraging the union-find strategy to amalgamate analogous
templates. Herein, the most prevalent template within each col-
lective emerges as the archetype. This stratagem can effectively
mitigate the negative impact of the three aforementioned errors
on template parsing, ensuring that the feature engineering module
achieves excellent performance even in a fully automated setting.
Moreover, reducing the number of templates will significantly en-
hance the efficiency of subsequent model training and detection
processes.

Then, we map the merged templates to unique template IDs,
transforming the log template sequence into a log ID sequence,
serving as the input log event vectors for subsequent modeling.
Furthermore, we generate count vectors based on the frequency of
each template within a specified window, providing an additional
feature for anomaly detection. These vectors, in conjunction with
the magistral semantic representations from Sentence-BERT, afford
LogAFE with a multi-faceted feature amalgam, comprising event,

count, and semantic vectors, thereby assembling a formidable fea-
ture combination search space. Empirical study on different datasets
indicate that the reasonable combination of various types of fea-
tures can significantly enhance anomaly detection performance.
By enveloping feature assemblies, algorithmic selection, and hy-
perparameter tuning within a meta-learning paradigm, LogAFE
autonomously steers towards the most optimal model configura-
tions for unfamiliar datasets. Culminating in a unified optimization
conceptualization, this approach amplifies LogCraft’s generaliza-
tion aptitude. Our forthcoming sections will delve into meta-feature
learning and algorithm selection, canvassing through the assem-
bled search space, to procure configurations that assure illustrious
performances across different datasets.

4.2 Meta Learner Construction
The Meta Learner Construction phase in LogCraft is crucial as it
forms the foundation for recommending optimal models for anom-
aly detection. This phase involves a meticulous offline training
process designed to understand and leverage the relationship be-
tween different models and their effectiveness on various datasets.
The final meta-learner consists of two parts: a regressor and a
trained matrix

Table 3: Selected statistical features and their meanings

Statistical Feature Feature Meaning
Maximum, Minimum Frequent occurrence of templates

Array Length Number of templates
Variance Dispersion of templates
Skewness Asymmetry of template distribution
Kurtosis Sharpness of template distribution

Meta feature extraction. The core challenge in recommending
models for unlabeled log datasets lies in uncovering the relation-
ship between model performance and data characteristics. Effective
feature extraction must not only represent the vast dataset but
also ensure these features possess good transferability. LogCraft ad-
dresses this challenge by innovatively designing a log meta-feature
extractor, which extracts meta-feature vectors that encapsulate the

1684

ASE’24, 27 October-1 November 2024, Sacramento, California Shenglin Zhang, Yuhe Ji, Jiaqi Luan, Xiaohui Nie, Zi’ang Chen, Minghua Ma, Yongqian Sun, and Dan Pei

patterns or characteristics of an entire log dataset. To our knowl-
edge, LogCraft is pioneering in characterizing entire log datasets
with finite-dimensional vectors for data correlation analysis. Specif-
ically, the log meta-feature vector extracted by LogCraft includes
two parts: statistical meta-features and model-based meta-features.

Statistical meta-features capture the distribution information of
the log data. We focus on template counts and template sequences,
which are highly robust and universal features. The selected sta-
tistical features for this vector and their corresponding meanings
are detailed in Table 3. We employ a two-level statistical feature
calculation method. Initially, we compute statistical features for
each log template to capture its distribution characteristics. Subse-
quently, we calculate global statistical features for the entire matrix
to extract characteristics that represent the overall log flow. Further-
more, we introduce the template distribution proportion feature,
considering the importance of the distribution and frequency of
log templates in distinguishing between normal and anomalous
log sequences. Lastly, during the meta-feature extraction process,
we conduct the Kwiatkowski–Phillips–Schmidt–Shin(KPSS) test
[27] on each sequence, incorporating the resulting data as part of
the statistical meta-features representing sequence stability. Specif-
ically, in the process of applying the KPSS test for meta-feature
extraction, we compute the KPSS statistic, p-value, and lag order for
each sequence. These metrics collectively provide a comprehensive
description of the statistical features of the sequences.

In the field of meta-learning, selecting appropriate model-based
meta-features is considered a key step in building efficient meta-
learning models [54]. These features focus on extracting key infor-
mation from the dataset through simple and fast algorithms. In this
study, we selected structural information generated by two unsu-
pervised algorithms—Isolation Forest(IForest) [35] and LogCluster
[34] as meta-features. IForest is a tree-based anomaly detection
algorithm that efficiently identifies outliers in data through an
isolation mechanism. We use parameters such as the number of
decision trees and splitting thresholds as meta-features. LogCluster
is a clustering-based log anomaly detection algorithm that identi-
fies problems and abnormal patterns in log data through automatic
clustering. We select features related to the number of clusters, the
range of cluster sizes, and inter-cluster distances. This step yields
an 8-dimensional vector of model-based meta-features.

Ultimately, our designed meta-feature extractor can extract a
59-dimensional meta-feature vector for each log dataset, which is
used for subsequent meta-feature learning algorithms. Moreover,
this extractor can also guide the assessment of log dataset similarity
and the analysis of relationships between datasets. Concatenate the
meta-feature vectors generated from all logs in the support set to
form amatrix𝑀 of size𝑛∗𝑑 , where𝑛 is the number of log sets in the
support set, and 𝑑 is the dimension of the extracted meta-features.

The overarching goal of the meta-learner construction phase is
to discover a high-performing algorithm that can select the optimal
model from the search space based on the meta-feature vector
extracted from new datasets. This phase is designed to bridge the
gap between the characteristics of the data and the performance of
various models, thus ensuring effective anomaly detection.

Inspired by the work of Zhao et al. [54], our approach employs a
model-based collaborative filtering algorithm to learn the mapping

relationship between meta-features and models. The process is
meticulously organized as follows:
Searching space initialization and model performance eval-
uation. During this phase, we define the search space consisting
of various models. Each model is a combination of features, al-
gorithms, and hyperparameters. Specifically, the features include
event vectors, count vectors, and semantic vectors, as well as their
combinations. The algorithms encompass four unsupervised log
anomaly detection algorithms: DeepLog [12], LogAnomaly [41],
CNN [6],and LogBERT [15].

To ensure that our framework performswell on different datasets,
we initialized the hyperparameter search space across a wide range.
The range of each hyperparameter and the corresponding models
are shown in Table 4, resulting in a total of 11,136,000 algorithm
and hyperparameter combinations.

To select models that are likely to perform well on the target
dataset under the huge searching space and reduce the cost of train-
ing the meta-learner, we first run the Particle Swarm Optimization
algorithm (PSO) [26] on the labeled support set. PSO simulates the
birds in a flock by designing massless particles. Each particle has
two properties: velocity and position. Velocity represents the speed
of movement, while position indicates the direction of movement.
Each particle individually searches for the optimal solution in the
search space and records it as the current personal extremum. This
personal extremum is then shared with other particles in the entire
swarm to find the optimal personal extremum, which becomes the
current global optimal solution for the entire swarm. All particles
in the swarm adjust their velocity and position based on their own
found current personal extremum and the current global optimal
solution shared by the entire swarm. For each algorithm, we select
the top 1000 hyperparameter combinations based on their perfor-
mance on each support set and use these models as the candidate
set for the meta-learner. After removing those identical models,
we obtained a candidate set of models with a size of 7840. The
subsequent task is to recommend the most suitable model on a new
unlabeled dataset.

Next, in order to provide prior knowledge for subsequent rec-
ommendation algorithms, we will train and test the model selected
by the PSO algorithm using support set to evaluate the model’s
performance. We use F1 score as the evaluation metric. These F1
scores form a matrix 𝑃 of size 𝑛×𝑚, where 𝑛 represents the number
of existing datasets, and 𝑚 is the number of models. This setup
allows us to capture the relationship between different models and
their performance across various datasets.
Collaborative filtering for model recommendation. The goal
of the collaborative filtering algorithm is to recommend suitable
models by analyzing patterns in the matrix 𝑃 . We initialize a matrix
𝑉 of size𝑚 ∗ 𝑑 using a normal distribution and use matrix 𝑀 to
initialize another matrix𝑈 .

Our objective is to minimize the difference between the model
evaluation matrix 𝑃 and the reconstructed matrix𝑈𝑉𝑇 . We use Nor-
malized Discounted Cumulative Gain (NDCG) as the loss function
to assess the ranking differences between the two matrices:

𝐿𝑜𝑠𝑠 = 1 − 𝑁𝐷𝐶𝐺 (𝑃,𝑈𝑉𝑇) (1)

1685

End-to-End AutoML for Unsupervised Log Anomaly Detection ASE’24, 27 October-1 November 2024, Sacramento, California

Table 4: Parameter Search Spaces and Their Corresponding Models

Parameter Search Space Corresponding Models Description

epochs 2, 4, 6, 8, 10 ALL Number of passes through the training data.
hidden_size 16, 32, 54, 128, 256, 512, 768, 1024, 2048, 4096 ALL Units in each hidden layer.
num_layers 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 ALL Total number of layers in the model.
window_size 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 ALL Size of the input window.
use_quantitive 0, 1 ALL Use quantitative features (0 = No, 1 = Yes).
use_semantic 0, 1 ALL Use semantic features (0 = No, 1 = Yes).
use_attention 0, 1 DeepLog, LogAnomaly Apply attention mechanisms (0 = No, 1 = Yes).
num_directions 1, 2 DeepLog, LogAnomaly Directions for RNNs (1 = uni, 2 = bi).
embedding_dim 16, 32, 64, 128, 256, 512, 1024, 2048 DeepLog, LogAnomaly, LogBERT Dimensionality of embeddings.
n_head 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 LogBERT Number of attention heads.
latent_size 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 CNN Size of latent representation.
kernel_size 3 × 3, 5 × 5, 7 × 7, 9 × 9 CNN Size of the convolutional kernel.
pooling_size 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9 CNN Size of pooling layer.

NDCG is a commonly used ranking evaluation metric that mea-
sures the consistency between predicted and actual rankings. We
use NDCG@3 in our framework, which reflects the degree of con-
sistency between the actual ranking and the ideal ranking when
only the top 3 entries of the sorting results are considered. The
definition of NDCG@k is as follows:

𝑁𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘

𝐼𝐷𝐶𝐺@𝑘
(2)

DCG@k measures the overall relevance of items in the list, taking
into account their positions. As the position decreases, the value
decreases, which is represented by a discount factor. DCG@k is
calculated as the sum of the multiplication of the relevance score
of each item and the reciprocal of the logarithm of its position.

𝐷𝐶𝐺@𝑘 = 𝑟𝑒𝑙1 +
𝑘∑︁
𝑖=2

𝑟𝑒𝑙𝑖

log2 (𝑖 + 1) (3)

IDCG@k is the max DCG value that can be obtained when all items
are arranged in order of relevance, preset on the same relevance
score. When calculating IDCG@k, the most relevant item is as-
sumed to be at the top of the list. Here, |𝑅𝐸𝐿𝑘 | is the set consisting
of the top-k results after sorting 𝑟𝑒𝑙𝑖 from highest to lowest.

𝐼𝐷𝐶𝐺@𝑘 =

|𝑅𝐸𝐿𝑘 |∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2 (𝑖 + 1) (4)

In our scenario, each row of 𝑃 corresponds to a dataset, representing
the actual ranking of different models on that dataset (based on
F1 scores); 𝑈𝑉𝑇 represents the predicted ranking of models. By
minimizing this loss function, we can learn the optimal 𝑉 , making
𝑈𝑉𝑇 as close as possible to the actual model evaluation matrix 𝑃 .

After the aforementioned training process, we obtainwell-trained
matrices 𝑈 and 𝑉 . Next, we will use a random forest regressor to
learn the mapping from matrix𝑀 to matrix𝑈 , which will later be
applied to transform meta-feature vectors in the target set similarly.

4.3 Model Preparing and Detection
The objective of this step is to utilize themeta-learner to recommend
a well-performing model for the unlabeled target set. The process
is organized as follows: First, we perform LogAFE on the target

set to obtain structured files and their event vectors, count vectors,
and semantic vectors. Next, we input the structured files into the
meta-feature extractor to get a meta-feature vector𝑚 representing
the data set. We use the random forest regressor trained in the
meta-learner to transform the vector𝑚, resulting in a 1 × 𝑑 vector
𝑢. We then take the dot product of vector 𝑢 and matrix 𝑉 to get a
1 ×𝑚 vector 𝑞.

𝑞 = 𝑓 (𝑚) ·𝑉𝑇 (5)
Vector 𝑞 is the predicted score for each model in the target set,
where each column value represents the potential evaluation score
that the corresponding model in the search space may achieve on
the data set, i.e., the F1 score. Lastly, we select the model with the
highest score to train and test on the target set.

5 EVALUATION
In this section, we evaluate LogCraft with several experiments to
answer the following research questions(RQs).

RQ3: How effective is LogCraft in unsupervised log anom-
aly detection?

RQ4: How effective are the main components of LogCraft?
RQ5: How do hyperparameter settings affect the perfor-

mance of LogCraft?

5.1 Experimental Design
5.1.1 Datasets. we evaluated the effectiveness of LogCraft on five
publicly available datasets: HDFS, Blue Gene/L (BGL), ThunderBird,
Spirit, and Liberty [43, 47, 55]. The HDFS dataset was collected
from a hadoop distributed file system running on the Amazon EC2
platform. The BGL dataset was collected from the Blue Gene/L su-
percomputer at Lawrence Livermore National Labs. ThunderBird,
Spirit, and Liberty were collected from two real-world supercom-
puters at Sandia National Labs. Due to the large size of these three
datasets, we randomly sampled 5,000,000 log entries from each
dataset for evaluation.

In the HDFS dataset, each log entry contains a block_id that sym-
bolizes the session to which the log belongs. We use it as a unique
identifier to group logs. For the remaining log data, we group them
based on time intervals. We use a sliding window with a window
length of 60 seconds and a step size of 30 seconds to segment log

1686

ASE’24, 27 October-1 November 2024, Sacramento, California Shenglin Zhang, Yuhe Ji, Jiaqi Luan, Xiaohui Nie, Zi’ang Chen, Minghua Ma, Yongqian Sun, and Dan Pei

Table 5: Detailed information of the datasets

Dataset Category Messages Anomalies

HDFS Distributed system 11,175,629 16,838
BGL Supercomputer 4,747,963 348,460

ThunderBird Supercomputer 5,000,000 76,130
Spirit Supercomputer 5,000,000 764,890
Liberty Supercomputer 5,000,000 1,814,386

sessions. Compared to studies that set the session length to several
minutes or half an hour [10, 15], this approach allows for a more rig-
orous evaluation of the model’s anomaly detection performance at
a finer granularity. Consequently, both the F1 scores of this method
and the baseline experimental model will experience some decline.
The sources, total log entries, and the number of anomalous log
entries for each dataset are summarized in Table 5.

5.1.2 Evaluation Metrics. We adopted the commonly used Preci-
sion, Recall, and F1 Score to evaluate the log anomaly detection
effect of LogCraft. These three metrics are widely used in log anom-
aly detection tasks to comprehensively evaluate the model’s ability
to distinguish between normal and abnormal data [6, 10, 12, 34, 41,
51, 53, 55], and the definitions of these three metrics are as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(8)

5.2 How Effective Is LogCraft?
This research RQ assesses the performance of LogCraft in log anom-
aly detection. In evaluating LogCraft’s performance on a specific
dataset, it was designated as the target set, with the other four
datasets serving as the support set for constructing the knowledge
base. In fact, only one construction of the meta-learner is required,
followed by masking the corresponding rows of the target set in
the matrix. For the target set, we randomly selected 10% of the
normal logs for model training, with the remainder normal logs
and all abnormal logs used for anomaly detection. The only hyper-
parameter that needs to be set in this framework is the similarity
threshold for merging templates during template semantic analy-
sis(s_th) in the feature engineering module, which was set at 0.9.
We conducted three experiments starting from the construction of
the meta-learner and took the average as the final result.

We compared the performance of LogCraft with six unsuper-
vised log anomaly detection baselines: PCA [46], IM [37], DeepLog
[12], LogAnomaly [41], CNN [6], LogBERT [15], and LogTAD [16].
PCA and IM are based on traditional machine learning algorithms;
DeepLog and LogAnomaly are based on LSTM deep learning al-
gorithms; CNN is a type of deep learning architecture specifically
designed for processing structured grid data; LogBERT is a BERT-
based anomaly detection method; LogTAD is an unsupervised log
transfer learning algorithm. For the first six algorithms, we only
trained using the target set. For LogTAD, we adopted the bilat-
eral generalization experiment setup from its paper with BGL and

ThunderBird. For other target sets, we used a meta-feature extractor
to find the dataset with the highest similarity to its meta-feature
vector from the support set for transfer experiments. Specifically,
we selected BGL as the source domain for Liberty and HDFS, and
Liberty as the source domain for Spirit. In the source domain, we
randomly sampled 10% of the normal data for LogTAD training,
with training and detection in the target domain consistent with
other experiments. In order to reduce the impact of random factors,
we conducted three experiments and took the average of the final
results.

The experimental results, as shown in Table 6, demonstrate the
effectiveness of LogCraft in achieving the highest F1 scores on
the BGL, Spirit, HDFS, and ThunderBird datasets. Specifically, for
the detection tasks of BGL and Liberty, LogCraft recommended a
model based on LogBERT; for the detection tasks of HDFS and Spirit,
LogCraft selected a model based on DeepLog; and for the Thun-
derBird dataset, LogBERT opted for a CNN model with adjusted
parameters for detection. From the results, it is evident that no
single anomaly detection method performs well across all datasets.
PCA, as a linear dimensionality reduction technique, is adept at
capturing linear relationships within the dataset. On the other hand,
IM’s detection performance relies on prior feature mining, and these
two algorithms may exhibit good performance on certain datasets
but exhibit significant fluctuations when faced with diverse and
complex data.

DeepLog, LogAnomaly, LogBERT, CNN, and LogTAD are deep
learning-based algorithms with more complex architectures and
higher parameter capacities. They can extract higher-order or non-
linear features directly from the raw dataset, which contributes
to their improved robustness and overall performance. However,
the most suitable features for detection and the optimal hyperpa-
rameters for learning vary across different datasets. Consequently,
LogCraft, which incorporates high-quality feature engineering and
model recommendations, ultimately demonstrates superior robust-
ness and achieves the highest average F1 score.

LogTAD performs best on the Liberty dataset and achieves good
results on the Spirit dataset, but its performance is poorer on other
datasets. We believe that the effectiveness of such transfer learning
algorithms is influenced by latent relationships between different
datasets, and currently, there is no effective criterion for selecting
the most suitable dataset. This finding underscores the challenges
faced in current cross-domain work. Overall, LogCraft, which rec-
ommends models based on past experience rather than transfer-
ring from a single dataset, achieves the best average performance,
demonstrating the algorithm’s robustness.

Notably, LogCraft exhibits significant performance improve-
ments on the BGL and ThunderBird datasets, which are character-
ized by complex log types and lower template parsing accuracy.
In summary, LogCraft automates log feature engineering, model
recommendation, and anomaly detection without manual interven-
tion, achieving a high level of automated log anomaly detection.
Across the six datasets, it achieves an average F1 score of 0.899
without human intervention.

1687

End-to-End AutoML for Unsupervised Log Anomaly Detection ASE’24, 27 October-1 November 2024, Sacramento, California

Table 6: Precisions, Recalls, and F1 Scores of different methods on different datasets

Dataset PCA IM DeepLog LogAnomaly CNN LogBERT LogTAD LogCraft
Precision 0.445 0.822 0.690 0.639 0.711 0.790 0.723 0.854

BGL Recall 0.895 0.702 0.890 0.806 0.650 0.978 0.581 0.935
F1 Score 0.594 0.757 0.778 0.713 0.679 0.874 0.644 0.893
Precision 0.481 0.502 0.924 0.834 0.706 0.969 0.788 0.983

HDFS Recall 0.881 1 0.965 0.934 1 1 0.932 1
F1 Score 0.622 0.668 0.944 0.883 0.828 0.953 0.854 0.992
Precision 0.547 0.468 0.633 0.626 0.792 0.715 0.021 0.756

ThunderBird Recall 0.462 0.619 0.843 0.886 0.694 0.915 0.234 0.995
F1 Score 0.501 0.533 0.723 0.734 0.740 0.803 0.038 0.859
Precision 0.900 0.564 0.652 0.591 0.822 0.724 0.702 0.890

Spirit Recall 0.681 0.901 0.798 0.848 0.647 0.934 0.843 0.944
F1 Score 0.740 0.694 0.718 0.696 0.724 0.816 0.766 0.916
Precision 0.528 0.742 0.795 0.648 0.543 0.680 0.904 0.741

Liberty Recall 0.728 0.646 0.833 0.894 0.925 0.941 0.991 0.986
F1 Score 0.612 0.690 0.814 0.752 0.684 0.790 0.943 0.846

5.3 How Effective are the Main Components in
LogCraft?

We explore the effects of key components in LogCraft. Specifically,
through ablation experiments on LogAFE, hyperparameter search
algorithm and the database construction module, we compare the
performance changes of the model in anomaly detection tasks.

For LogAFE, we conducted the following ablation experiments.
First, we eliminated the task of merging template semantics and
directly extracted feature vectors for model training. The exper-
imental results are shown in Figure 3. The effectiveness of this
approach was validated in terms of performance and efficiency.
Upon removing the semantic analysis of the template, the accu-
racy of template parsing declined, causing some logs in the test
set to be misclassified. As a result, these logs appeared as out-of-
vocabulary templates during detection, causing false alarms by the
model. Concurrently, due to the increase in the number of tem-
plates, the model’s execution time for anomaly detection tasks also
increased. The experimental results showed that in most datasets,
performing template merging via semantic analysis yielded better
detection results and reduced the required time for algorithm exe-
cution. The final score and running time did not improve, because
only 44 templates existed in the initial parsing of the HDFS dataset
and no similar templates were merged during the merging process.

To study the impact of different hyperparameter algorithms on
the quality of the candidate set for meta-learning models, we com-
pared three hyperparameter selection algorithms: Random Search
(RS) [4], Genetic Algorithm (GA) [23], and Particle Swarm Opti-
mization (PSO) [26]. Our experiment utilized a diverse collection of
11,136,000 pre-trained models. The dataset was split into 10% train-
ing and 90% test sets. We employed F1-score as the performance
metric. To manage computational constraints while maintaining
result reliability, each algorithm was executed 3 times. RS was con-
figured to sample 2,000 models. GA utilized a population size of
2,000 over 100 generations, with crossover and mutation rates set
at 0.8 and 0.1, respectively. Similarly, PSO was implemented with
2,000 particles evolving over 100 iterations, using an inertia weight
of 0.7 and both cognitive and social learning factors of 1.5. The

Table 7: Comparison of the overhead and performance of
Random Search (RS), Genetic Algorithm (GA), and Particle
Swarm Optimization (PSO).

Algorithm Time Cost(s) Avg F1Score
RS 22,423 0.781
GA 52,169 0.904
PSO 30,082 0.899

final experimental results are shown in the Table 8. PSO, while hav-
ing a significantly shorter total runtime compared to GA, exhibits
performance similar to that of GA.

The experimental results indicate that although the Random
Search Algorithm has the lowest overhead, its average performance
in generating candidate sets is relatively poor, which limits the per-
formance ceiling of subsequent model recommendations. Both the
Genetic Algorithm and Particle Swarm Optimization yield similar
performance in their candidate sets; however, the time overhead
of the Genetic Algorithm is approximately 70% higher than that of
the latter. Therefore, considering the balance between performance
and time overhead, we chose Particle Swarm Optimization as the
hyperparameter optimization algorithm to be used.

To study the impact of focused features on the model’s anomaly
detection performance, we tried to use only one type of feature
vector for anomaly detection of the log dataset, rather than adding
their combination to the search space. We compared changes in the
model’s anomaly detection F1 score as shown in Figure 4. Among
these, Evt Only indicates that only event vectors are used, Cnt Only
signifies the use of quantity vectors alone, and Sem Only implies
the exclusive use of semantic vectors.

To validate the impact of knowledge base construction on the
effectiveness of model recommendations, we compared the existing
collaborative filtering-based recommendation algorithm with sev-
eral alternative recommendation methods in terms of their perfor-
mance in cold start scenarios. The experimental results are shown

1688

ASE’24, 27 October-1 November 2024, Sacramento, California Shenglin Zhang, Yuhe Ji, Jiaqi Luan, Xiaohui Nie, Zi’ang Chen, Minghua Ma, Yongqian Sun, and Dan Pei

Figure 3: Comparison of F1 score and runtime before and
after merging templates

Figure 4: Comparison of F1 score for anomaly detection using
only a single feature

in Table 8. The alternative recommendation algorithm schemes
include the following.
Global Best. This method does not rely onmeta-features. Instead, it
simply selects the model with the best average performance across
all training datasets for recommendation. The strategy is based
on the assumption that algorithms performing well on existing
datasets will also exhibit excellent performance on new datasets.
However, it overlooks the potential differences between datasets.
The globally optimal model may not always be the best choice.
ArgoSmArT. ArgoSmArT utilizes meta-features to characterize
datasets. It selects the dataset from the training set that is closest to
the target dataset in terms of meta-features for model recommen-
dation. The method assumes a linear relationship between dataset
similarity and model performance, implying that datasets with sim-
ilar meta-features will exhibit similar model performance. However,
the relationship between dataset similarity and model performance
may not strictly follow a linear pattern.
LinearRegression. Linear regression is a predictive analysis tech-
nique that seeks to find a linear relationship between variables by
minimizing the differences between predicted and actual values. It
is suitable for scenarios where the relationship between variables is
close to linear, but may not perform well if the data has nonlinear
characteristics or complex multivariate interactions.
RandomForest. Random forest regression is an ensemble learn-
ing method based on decision trees, which improves prediction

accuracy by building multiple decision trees and outputting their
average prediction. It is effective for handling high-dimensional
data and nonlinear relationships but can become computationally
intensive when dealing with very large datasets and is not as intu-
itive as linear regression when it comes to model interpretation.
Theoretical optimum. We manually reviewed the evaluation met-
rics of the models on this dataset and identified the model that
demonstrated the best actual performance. This score represents
the performance ceiling of all models.

In our experiments, the collaborative filtering algorithm demon-
strated the best recommendation performance. We observed that al-
though linear regression and random forest regression show strong
learning capabilities, they are prone to overfitting issues in meta-
feature training or being influenced by extreme values. Moreover,
when facing the cold start problem, which involves recommending
models for unevaluated log data, collaborative filtering tends to per-
form better by analyzing the interaction patterns between users and
items. Furthermore, LogCraft recommended the best-performing
models within the search space for two datasets, and the models
it recommended for the other three datasets also approached the
theoretical optimum. The meta-learner trained using collaborative
filtering achieved an average NDCG@3 score of over 0.9.

Figure 5: Impact of s_th on the performance of LogCraft

5.4 How do hyperparameter settings affect the
performance of LogCraft?

This research question explores the impact of hyperparameters on
the performance of LogCraft. LogCraft is designed as a log anomaly
detection framework that minimizes manual intervention, includ-
ing the reliance on manually tuning hyperparameters. Therefore,
LogCraft has only one hyperparameter that needs adjustment: the
similarity threshold(s_th) used for template semantic analysis. This
hyperparameter directly affects the merging strength of templates,
thereby influencing the quantity and quality of the final templates
obtained. To study its effect on the framework’s performance, we
varied its value from 0.75 to 0.95 and recorded the changes in the
F1 scores for anomaly detection.

The experimental results are shown in Figure 5. Overall, the
performance of LogCraft remains stable, although the impact of
changing s_th varies across different datasets. For instance, the

1689

End-to-End AutoML for Unsupervised Log Anomaly Detection ASE’24, 27 October-1 November 2024, Sacramento, California

Table 8: F1 scores of the models with different recommendation algorithms

Method Global Best ARGOSMART RandomForest LinearRegression LogCraft Theoretical optimum
BGL 0.603 0.580 0.891 0.846 0.877 0.891
HDFS 0.793 0.930 0.890 0.992 0.992 0.992
Liberty 0.822 0.803 0.820 0.803 0.846 0.846
Spirit 0.662 0.575 0.915 0.785 0.898 0.916

Thunderbird 0.459 0.854 0.543 0.720 0.859 0.859
Average 0.668 0.748 0.811 0.829 0.894 -

Thunderbird dataset shows significant variations in F1 scores (high-
est 0.853, lowest 0.799), likely because Thunderbird logs are gener-
ally more complex with a higher number of templates. In contrast,
for the HDFS dataset, which has the fewest templates, changes in
the hyperparameter have a minimal effect. When s_th is set to 0.9,
LogCraft achieves the optimal F1 scores across multiple datasets.

6 DISCUSSION
6.1 Lessons Learned
Through the development and evaluation of LogCraft, several valu-
able lessons were learned that highlight the complexities and op-
portunities in the field of unsupervised log anomaly detection using
automated machine learning (AutoML) techniques.
Log Data RepresentationMatters. LogCraft implements LogAFE
to enhance the feature representation of each dataset and find suit-
able combinations. The evaluation results demonstrate the effective-
ness of this approach. Since anomaly characteristics exhibited by
datasets from different sources can vary greatly, anomaly detection
algorithms that focus on only one or a few features may struggle
to achieve consistent performance across all datasets. When the
capabilities of deep learning models reach saturation, data repre-
sentation can easily become a limiting performance factor.
Meta Feature Potentials Log Analytics. The meta-feature extrac-
tor proposed in LogCraft is an innovative point, as it can generate
fixed-dimensional vector representations for entire log datasets.
Our experiments show that this representation can guide model
recommendations and measure the similarity between log datasets.
This opens up a new research direction in log analysis, namely,
how to conduct data association analysis and knowledge transfer
based on the "features" of entire datasets. Therefore, LogCraft not
only addresses practical issues in log anomaly detection but also
provides valuable exploration for meta-learning in this field.

7 RELATEDWORK
This section introduces existing unsupervised log anomaly detec-
tion algorithms and MetaOD. In this paper, DeepLog, LogAnomaly,
and LogBERT are used as the base algorithms for the search space.
DeepLog. Du et al. [12] utilize the LSTM model to model the se-
quence of log events, determining the presence of anomalies in the
log sequence by predicting the template of the next log entry.
LogAnomaly. Meng et al. [41] proposed LogAnomaly, which uti-
lizes log vectors and count vectors as inputs to train two separate
LSTM models. Additionally, they introduced template2vec, a novel

and effective method for extracting semantic information from log
templates by considering synonyms and antonyms.
CNN. Chen et al. [6] proposed a novel semantic embedding repre-
sentation method that allows for learning information from normal
log sequences using a CNN network. They demonstrated that the
model designed in this way can achieve excellent anomaly detection
results even when trained with a small batch of normal data.
LogBERT. Guo et al. [15] utilize the BERT model to learn patterns
in normal log sequences through two unsupervised learning tasks,
which allow LogBERT to capture the underlying patterns in normal
log sequences and detect deviations from those patterns.
LogTAD. Han et al. [16] proposed a transfer learning model Log-
TAD, which utilizes an LSTM network to model log sequences from
two different systems. By employing domain adversarial techniques,
the model maps the log sequences from the source and target do-
mains onto the same hypersphere with a similar distribution.
MetaOD. Zhao et al. [54] innovatively established a connection be-
tween the model selection problem in outlier detection and the cold
start problem in collaborative filtering, and for the first time, pro-
posed an algorithm for automatic outlier detection model selection
based on meta-learning—MetaOD.

8 CONCLUSION
Log anomaly detection is a key technology for maintaining the high
availability of system services. In our empirical research, we have
demonstrated the high dependency of existing detection methods
on manual expertise. This paper introduces LogCraft: an end-to-end
unsupervised log anomaly detection framework based on AutoML,
designed to lower the barriers and domain-specific knowledge re-
quirements for deploying algorithms in practical applications, and
it has shown good performance on five public datasets with an av-
erage F1 score of 0.899, surpassing existing unsupervised detection
algorithms. To our knowledge, LogCraft represents the initial effort
to derive fixed-dimensional vectors as latent feature representations
from an entire log dataset. Moreover, the meta-feature extractor we
propose also demonstrates significant promise for assessing dataset
similarity and advancing research in the field of log analytics.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (62272249, 62302244, 62072264).

1690

ASE’24, 27 October-1 November 2024, Sacramento, California Shenglin Zhang, Yuhe Ji, Jiaqi Luan, Xiaohui Nie, Zi’ang Chen, Minghua Ma, Yongqian Sun, and Dan Pei

REFERENCES
[1] [n. d.]. LogCraft. https://anonymous.4open.science/r/LogCraft-54D8/. Accessed:

2024-06-08.
[2] Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Luís PF Garcia, Jefferson TOliva,

and André CPLF De Carvalho. 2020. MFE: Towards reproducible meta-feature
extraction. Journal of Machine Learning Research 21, 111 (2020), 1–5.

[3] Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio. 2022. AutoML:
state of the art with a focus on anomaly detection, challenges, and research
directions. International Journal of Data Science and Analytics 14, 2 (2022), 113–
126.

[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012).

[5] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles Trédan. 2017.
Experience report: Log mining using natural language processing and application
to anomaly detection. In 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 351–360.

[6] Hao Chen, Ruizhi Xiao, and Shuyuan Jin. 2021. Unsupervised Anomaly Detection
Based on System Logs.. In SEKE. 92–97.

[7] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie
Cao, Xuedong Gao, Hao Fan, Ming Wen, Jun Zeng, Supriyo Ghosh, Xuchao
Zhang, Chaoyun Zhang, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and
Tianyin Xu. 2024. Automatic Root Cause Analysis via Large Language Models
for Cloud Incidents. In Proceedings of the Nineteenth European Conference on
Computer Systems, EuroSys 2024, Athens, Greece, April 22-25, 2024. ACM, 674–688.
https://doi.org/10.1145/3627703.3629553

[8] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Towards intelligent incident
management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1487–1497.

[9] Zhuangbin Chen, Jinyang Liu,Wenwei Gu, Yuxin Su, andMichael R Lyu. 2021. Ex-
perience report: Deep learning-based system log analysis for anomaly detection.
arXiv preprint arXiv:2107.05908 (2021).

[10] Zhuangbin Chen, Jinyang Liu,Wenwei Gu, Yuxin Su, andMichael R Lyu. 2021. Ex-
perience report: Deep learning-based system log analysis for anomaly detection.
arXiv preprint arXiv:2107.05908 (2021).

[11] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[12] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[13] Ying Fu, Meng Yan, Zhou Xu, Xin Xia, Xiaohong Zhang, and Dan Yang. 2023.
An empirical study of the impact of log parsers on the performance of log-based
anomaly detection. Empirical Software Engineering 28, 1 (2023), 6.

[14] Bernd Grobauer and Thomas Schreck. 2010. Towards incident handling in the
cloud: challenges and approaches. In Proceedings of the 2010 ACM workshop on
Cloud computing security workshop. 77–86.

[15] Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. Logbert: Log anomaly detec-
tion via bert. In 2021 international joint conference on neural networks (IJCNN).
IEEE, 1–8.

[16] Xiao Han and Shuhan Yuan. 2021. Unsupervised cross-system log anomaly
detection via domain adaptation. In Proceedings of the 30th ACM international
conference on information & knowledge management. 3068–3072.

[17] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[18] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
computing surveys (CSUR) 54, 6 (2021), 1–37.

[19] Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li, Yu Kang, Minghua Ma, Yining
Wei, Yingnong Dang, Saravanakumar Rajmohan, and Qingwei Lin. 2022. An
empirical study of log analysis at Microsoft. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022.
ACM, 1465–1476. https://doi.org/10.1145/3540250.3558963

[20] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience re-
port: System log analysis for anomaly detection. In 2016 IEEE 27th international
symposium on software reliability engineering (ISSRE). IEEE, 207–218.

[21] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2020. Loghub: A large
collection of system log datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448 (2020).

[22] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowledge-based systems 212 (2021), 106622.

[23] John H Holland. 1992. Genetic algorithms. Scientific american 267, 1 (1992),
66–73.

[24] Pengxiang Jin, Shenglin Zhang, Minghua Ma, Haozhe Li, Yu Kang, Liqun Li,
Yudong Liu, Bo Qiao, Chaoyun Zhang, Pu Zhao, Shilin He, Federica Sarro,
Yingnong Dang, Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang. 2023.
Assess and Summarize: Improve Outage Understanding with Large Language
Models. In Proceedings of the 31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023. ACM, 1657–1668. https:
//doi.org/10.1145/3611643.3613891

[25] Kaggle. 2018. 2018 Kaggle Machine Learning and Data Science Survey. https:
//www.kaggle.com/kaggle/kaggle-survey-2018. Accessed: 2024-05-13.

[26] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, Vol. 4. ieee,
1942–1948.

[27] Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. 1992.
Testing the null hypothesis of stationarity against the alternative of a unit root:
How sure are we that economic time series have a unit root? Journal of econo-
metrics 54, 1-3 (1992), 159–178.

[28] Max Landauer, Florian Skopik, andMarkusWurzenberger. 2023. ACritical Review
of Common Log Data Sets Used for Evaluation of Sequence-based Anomaly
Detection Techniques. arXiv preprint arXiv:2309.02854 (2023).

[29] Van-Hoang Le and Hongyu Zhang. 2021. Log-based anomaly detection with-
out log parsing. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 492–504.

[30] Van-Hoang Le and Hongyu Zhang. 2022. Log-based anomaly detection with
deep learning: How far are we?. In Proceedings of the 44th international conference
on software engineering. 1356–1367.

[31] Van-Hoang Le andHongyu Zhang. 2023. Log parsingwith prompt-based few-shot
learning. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2438–2449.

[32] Zhijing Li, Qiuai Fu, Zhijun Huang, Jianbo Yu, Yiqian Li, Yuanhao Lai, and Yuchi
Ma. 2024. Revisiting Log Parsing: The Present, the Future, and the Uncertainties.
IEEE Transactions on Reliability (2024).

[33] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure
Prediction in IBM BlueGene/L Event Logs. 583 – 588. https://doi.org/10.1109/
ICDM.2007.46

[34] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion.
102–111.

[35] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[36] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, Saravan Rajmohan, and Dongmei
Zhang. 2022. UniParser: A Unified Log Parser for Heterogeneous Log Data. In
WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 -
29, 2022. ACM, 1893–1901. https://doi.org/10.1145/3485447.3511993

[37] Jian-Guang Lou, Qiang Fu, Shenqi Yang, Ye Xu, and Jiang Li. 2010. Mining
invariants from console logs for system problem detection. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10).

[38] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-
hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, Feifei Li, Changcheng
Chen, and Dan Pei. 2020. Diagnosing Root Causes of Intermittent Slow Queries
in Large-Scale Cloud Databases. Proc. VLDB Endow. 13, 8 (2020), 1176–1189.
https://doi.org/10.14778/3389133.3389136

[39] Minghua Ma, Shenglin Zhang, Junjie Chen, Jim Xu, Haozhe Li, Yongliang Lin,
Xiaohui Nie, Bo Zhou, Yong Wang, and Dan Pei. 2021. Jump-Starting Multi-
variate Time Series Anomaly Detection for Online Service Systems. In 2021
USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021. USENIX
Association, 413–426.

[40] Minghua Ma, Shenglin Zhang, Dan Pei, Xin Huang, and Hongwei Dai. 2018.
Robust and Rapid Adaption for Concept Drift in Software System Anomaly
Detection. In 29th IEEE International Symposium on Software Reliability Engineer-
ing, ISSRE 2018, Memphis, TN, USA, October 15-18, 2018. IEEE Computer Society,
13–24.

[41] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. Loganomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs.. In IJCAI,
Vol. 19. 4739–4745.

[42] Adam Oliner, Archana Ganapathi, and Wei Xu. 2012. Advances and challenges
in log analysis. Commun. ACM 55, 2 (2012), 55–61.

[43] Adam Oliner and Jon Stearley. 2007. What supercomputers say: A study of
five system logs. In 37th annual IEEE/IFIP international conference on dependable
systems and networks (DSN’07). IEEE, 575–584.

[44] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

1691

https://anonymous.4open.science/r/LogCraft-54D8/
https://doi.org/10.1145/3627703.3629553
https://doi.org/10.1145/3540250.3558963
https://doi.org/10.1145/3611643.3613891
https://doi.org/10.1145/3611643.3613891
https://www.kaggle.com/kaggle/kaggle-survey-2018
https://www.kaggle.com/kaggle/kaggle-survey-2018
https://doi.org/10.1109/ICDM.2007.46
https://doi.org/10.1109/ICDM.2007.46
https://doi.org/10.1145/3485447.3511993
https://doi.org/10.14778/3389133.3389136
https://arxiv.org/abs/1908.10084

End-to-End AutoML for Unsupervised Log Anomaly Detection ASE’24, 27 October-1 November 2024, Sacramento, California

[45] Nils Reimers and Iryna Gurevych. 2020. Making Monolingual Sentence Em-
beddings Multilingual using Knowledge Distillation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics. https://arxiv.org/abs/2004.09813

[46] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.
Largescale system problem detection by mining console logs. Proceedings of
SOSP’09 (2009).

[47] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.

[48] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. 2021. Semi-supervised log-based anomaly detection via
probabilistic label estimation. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1448–1460.

[49] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li,
Wei-Wei Tu, Qiang Yang, and Yang Yu. 2018. Taking human out of learning appli-
cations: A survey on automated machine learning. arXiv preprint arXiv:1810.13306
(2018).

[50] Zhaoyang Yu, Minghua Ma, Chaoyun Zhang, Si Qin, Yu Kang, Chetan Bansal, Sar-
avan Rajmohan, Yingnong Dang, Changhua Pei, Dan Pei, Qingwei Lin, and Dong-
mei Zhang. 2024. MonitorAssistant: Simplifying Cloud Service Monitoring via
Large Language Models. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering, FSE 2024, Porto de Galinhas,
Brazil, July 15-19, 2024. ACM, 38–49. https://doi.org/10.1145/3663529.3663826

[51] Chenyangguang Zhang, Tong Jia, Guopeng Shen, Pinyan Zhu, and Ying Li. 2024.
MetaLog: Generalizable Cross-System Anomaly Detection from Logs with Meta-
Learning. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. 1–12.

[52] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
joint meeting on European software engineering conference and symposium on the
foundations of software engineering. 807–817.

[53] Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan, Yong
Wu, Zhen Feng, XidaoWen,Wenchi Zhang, et al. 2021. An empirical investigation
of practical log anomaly detection for online service systems. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1404–1415.

[54] Yue Zhao, Ryan Rossi, and Leman Akoglu. 2021. Automatic unsupervised outlier
model selection. Advances in Neural Information Processing Systems 34 (2021),
4489–4502.

[55] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. 2023. Loghub:
A large collection of system log datasets for ai-driven log analytics. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
355–366.

[56] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121–130.

1692

https://arxiv.org/abs/2004.09813
https://doi.org/10.1145/3663529.3663826

