
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

No More Data Silos: Unified Microservice Failure
Diagnosis with Temporal Knowledge Graph

Shenglin Zhang, Member, IEEE, Yongxin Zhao, Sibo Xia, Shirui Wei, Yongqian Sun, Member, IEEE, Chenyu
Zhao, Shiyu Ma, Junhua Kuang, Bolin Zhu, Lemeng Pan, Yicheng Guo, Dan Pei, Senior Member, IEEE

Abstract—Microservices improve the scalability and flexibility
of monolithic architectures to accommodate the evolution of
software systems, but the complexity and dynamics of microser-
vices challenge system reliability. Ensuring microservice quality
requires efficient failure diagnosis, including detection and triage.
Failure detection involves identifying anomalous behavior within
the system, while triage entails classifying the failure type and
directing it to the engineering team for resolution. Unfortunately,
current approaches reliant on single-modal monitoring data, such
as metrics, logs, or traces, cannot capture all failures and neglect
interconnections among multimodal data, leading to erroneous
diagnoses. Recent multimodal data fusion studies struggle to
achieve deep integration, limiting diagnostic accuracy due to
insufficiently captured interdependencies. Therefore, we propose
UniDiag, which leverages temporal knowledge graphs to fuse
multimodal data for effective failure diagnosis. UniDiag applies
a simple yet effective stream-based anomaly detection method
to reduce computational cost and a novel microservice-oriented
graph embedding method to represent the state of systems
comprehensively. To assess the performance of UniDiag, we
conduct extensive evaluation experiments using datasets from two
benchmark microservice systems, demonstrating its superiority
over existing methods and affirming the efficacy of multimodal
data fusion. Additionally, we have publicly made the code and
data available to facilitate further research.

Index Terms—Microservice, failure diagnosis, multimodal
data, knowledge graph.

I. INTRODUCTION

M ICROSERVICES have gained significant attention in
the last few years in both industry and academia [1].

However, the complexity and dynamism of microservice sys-
tems pose unique challenges for maintenance [2]. When a
microservice system fails, the failure will propagate along the
interaction network between microservices, posing significant

Y. Sun is the corresponding author. Y. Sun is with the College of Software,
Nankai University, Tianjin, China, and also with the Tianjin Key Laboratory
of Software Experience and Human Computer Interaction (TKL-SEHCI),
Tianjin, China. Email: sunyongqian@nankai.edu.cn

S. Zhang is with the College of Software, Nankai University, Tianjin, China,
and also with the Haihe Laboratory of Information Technology Application
Innovation (HL-IT), Tianjin, China. Email: zhangsl@nankai.edu.cn

Y. Zhao, S. Xia, S. Ma, and J. Kuang are with Nankai University, Tianjin,
China. Email: {zyx nkcs, xiath, mashiyu, 2013157}@mail.nankai.edu.cn.

S. Wei is with University of the Chinese Academy of Sciences, Beijing,
China. Email: weishirui23@mails.ucas.ac.cn.

C. Zhao is with Alibaba Group, Beijing, China. Email:
zhaochenyu@mail.nankai.edu.cn.

B. Zhu is with Nanjing University, Nanjing, China. Email:
bolinzhu@smail.nju.edu.cn

L. Pan and Y. Guo are with Huawei Technologies Co., Ltd., Shenzhen,
China. Email: {panlemeng, guoyicheng3}@huawei.com.

D. Pei is with Department of Computer Science, Tsinghua University,
Beijing, China. Email: peidan@tsinghua.edu.cn.

challenges and pressures for operators. Failures will negatively
impact user experience and cause enormous losses for service
providers if they are not quickly diagnosed and mitigated [3],
[4]. To ensure high availability and minimize service down-
time, prompt diagnosis, encompassing both detection and
triage, is crucial [5], [6]. This allows operators to respond
efficiently to failures, mitigating their impact and restoring
service functionality as quickly as possible. Proactive failure
detection can alert operators timely, and accurate failure triage
can not only provide operators with suggestions for mitigation
measures (Table I) but also minimize the cost associated with
reassignment, which refers to the process of re-allocating
the initially assigned mitigation measures to the potentially
more appropriate measures [5]. Therefore, rapid and accurate
failure diagnosis is indispensable for effectively maintaining
microservice systems.

A microservice system is an architecture composed of
multiple microservices, with each microservice having mul-
tiple instances. To monitor the status of microservice systems
in real-time and achieve rapid failure diagnosis, operators
often continuously collect three modalities of monitoring data
(i.e., metrics, logs, traces) for each microservice instance [7].
Fig. 1 shows the three modalities of data in a microser-
vice system. Metrics include system-level metrics (e.g., CPU
utilization, memory utilization, and network throughput) and
user-perceived metrics (e.g., average response time, error rate,
and page view count), presented as time series. Logs are semi-
structured text that records various events and system runtime
status. Traces are in the tree structure recording information
about user requests like instances and service calls, and each
call forms a span. For example, as shown in Fig. 1, after a
failure occurs, the “system.cpu.pct utilization” metric sharply
rises, and simultaneously microservice instances S1 and S2

generate anomalous log messages, with a significant increase
in response time in related traces.

Over the years, many single-modal data-based failure diag-
nosis approaches for microservice systems have been proposed
(e.g., metrics [8]–[10], logs [11]–[13], or traces [14]). How-
ever, these approaches usually lead to a large number of mis-
diagnoses due to the inherent limitations of the characteristics
of the data used:

Limitations of Metrics. Metrics can react rapidly to
changes in system performance [15], reflecting various fail-
ure modes via higher or lower values. However, the over-
sensitivity of the metrics may produce false alarms [15],
[16]. For example, in scenarios where memory is effectively
released, notwithstanding a potentially decreased memory uti-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

(a) (b)

timestamp cmdb value
�2 "severity: debug, message: request started"
�2 "severity: debug, message: request complete"
�2 "severity: info, message: home"
�1 "severity: debug, message: view user cart"
�1 "severity: debug, message: setting currency"
�3 "severity: debug, message: placing order"
�1 "severity: error, message: request error"
�2 "severity: error, message: request error"

1651407263

1651407263

1651407263

1651407278

1651407288

1651407374

1651407383

1651407383

(c)

�3

RT=500ms

RT=137ms

RT=4890ms

RT=43667ms

�2

�1

Fig. 1: An example of the multimodal data of a microservice system during a failure. Fig. 1(a) shows two metrics: the blue
line in the figure represents the original value of the metric, and the red line represents an anomalous fragment. Fig. 1(b)
shows eight logs; the red ones are anomalous. Fig. 1(c) shows a trace where a node represents a microservice instance, an
edge from a caller to a callee denotes a span, and the red span is anomalous because of its excessively high response time.

TABLE I: Anomalous manifestations of multimodal data are derived from an extensive empirical analysis of failure cases, and
mitigation measures for each failure type are based on their underlying root causes [21].

Failure Type Metric Log Trace Mitigation Measures

CPU resource underprovisioning ✓ - - Identify and optimize high CPU-consuming processes
Memory resource underprovisioning ✓ - - Identify and optimize high memory-consuming processes

Disk resource underprovisioning ✓ - - Identify and optimize high disk-consuming processes
System component damage ✓ - - Restart the system or replace the damaged component

Filesystem misconfigurations - ✓ ✓ Check the file path and file permissions, and run filesystem recovery programs
Access control errors - ✓ ✓ Check certificate or credential updates that have only been partially distributed

Container resource quota violations ✓ - - Increase the quota and restart the container
Network device breakdown ✓ - ✓ Test network devices and optimize network transport routes allocation

Incorrect data exchange ✓ - ✓ Check error detection and correction mechanisms
Incorrect network configuration ✓ - - Check the configuration of the network transport protocols

lization may be lower than normal level, it does not indicate
a system failure.

Limitations of Logs. Since logs are semi-structured text
generated by logging statements in software source code [17],
they rely significantly on developers’ domain knowledge. Con-
sequently, certain nuanced performance issues, such as anoma-
lous memory utilization, may not be adequately reflected
in the logs, rendering it impossible to diagnose “Resource
underprovisioning” failures (Table I).

Limitations of Traces. The information reflecting calls
between microservice instances does not provide information
about what is happening inside the instance [18]. This lack of
information makes it unfeasible to diagnose “System compo-
nent damage” failures through tracing alone (Table I).

Due to the above limitations, recent studies have explored
multimodal data fusion for enhanced failure diagnosis [19],
[20]. However, these approaches often fall short of achieving
sufficiently deep integration of heterogeneous data sources.
This limitation in effectively capturing the complex interde-
pendencies between different modalities consequently hinders
diagnostic accuracy. Furthermore, the predominant reliance
on supervised learning frameworks in these existing methods
introduces a significant dependency on labeled data, restricting
their flexibility and generalization capabilities, particularly
when confronted with novel failure patterns or evolving system
architectures.

Much research has demonstrated that knowledge graph
(KG) is a potent technique for combining multimodal in-
formation [22], [23]. It can capture entity characteristics for
subsequent failure detection and triage. Therefore, we try

to apply KG to fuse multimodal data for failure diagnosis
(i.e., failure detection and triage). However, applying KG to
achieve failure diagnosis through multimodal data faces the
following challenges:

1) The immense volume of monitoring data generated by
microservices systems [2], makes it challenging to in-
tegrate all the data into the KG in the form of enti-
ties and relations. Furthermore, as aforementioned, the
multimodal data is heterogeneous. The fusion of these
heterogeneous data in a KG poses significant challenges.

2) The relations between entities in the KG manifest as a
heterogeneous composition, capturing not only the states
of distinct events within a given microservice instance but
also the intricate interactions and resource-sharing across
different instances. Moreover, the temporal variations in
instance states and the dynamic fluctuations in the number
of instances [24], [25] present notable obstacles in ef-
fectively acquiring temporal and heterogeneous structural
information from a KG. Furthermore, deriving graph
representations from dynamic node embeddings adds to
the complexity of the challenge.

In this paper, we propose UniDiag, a novel approach
for integrating the multimodal data in microservice systems
and conducting failure diagnosis. It first fuses multimodal
data using a temporal knowledge graph (TKG), which is
constructed by temporally stacking KG snapshots to capture
system dynamics [26]. This method enables the effective
fusion of multimodal data. Subsequently, a novel microservice-
oriented graph embedding (MOGE) method is employed to
generate graph representations of the TKG, encoding its rich



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

structural and temporal information. The main contributions
of this paper are as follows:

1) UniDiag considers the heterogeneity and correlation of
three modalities of data (i.e., metrics, logs, and traces)
and combines these data with TKG. To the best of our
knowledge, we are among the first to apply the KG-based
method to fuse the three modalities of data for failure
diagnosis.

2) To decrease the number of entities present in KG and fuse
the heterogeneous data, we propose a simple yet effective
stream-based anomaly detection method, addressing the
first challenge.

3) To obtain the comprehensive state representation of a
microservice system, we propose a novel MOGE method,
integrating the Relation-aware Graph Convolutional Net-
work (R-GCN) [27], Gate Recurrent Unit (GRU) [28] and
second-order pooling (SOPOOL) [29], which addresses
the second challenge. R-GCN and GRU effectively cap-
ture the heterogeneous structural and temporal informa-
tion of entities and relations in the TKG, respectively.
Furthermore, we utilize SOPOOL to learn a comprehen-
sive graph representation of dynamically changing KGs
by leveraging the node embeddings.

4) We assess the efficacy and efficiency of UniDiag by
conducting experiments on two benchmark microservice-
generated datasets. Our findings reveal that UniDiag
achieves online diagnosis within 0.6 seconds and exhibits
robust generalization across diverse microservice sys-
tems. Furthermore, we observe that UniDiag outperforms
the baseline methods, as evidenced by an average F1-
score of 0.869 and 0.723 for failure diagnosis on the
respective datasets, representing a significant improve-
ment of 0.117 and 0.04 compared to the best-performing
baseline methods, respectively. Beyond achieving su-
perior performance on known failure types, UniDiag
demonstrates promising capabilities for diagnosing pre-
viously unseen failure types, highlighting its potential
for real-world deployment scenarios. To ensure better
reproducibility, we have made our code and data publicly
available [30].

II. RELATED WORK

Various methodologies exist for diagnosing failures through
metric analysis. For instance, iSQUAD [8] labels root causes
and features for different failure clusters, while Pattern-
Matcher [9] employs coarse-grained anomaly detection and a
pattern classifier to identify anomalous patterns. DéjàVu [10]
trains a model using historical failures and system dependen-
cies.

Log analysis is also pivotal for diagnosing microservice
system failures. LogCluster [11] clusters log sequences to de-
termine failure types. Yuan et al. [12] use supervised methods
to extract features from anomalous logs and correlate them
with failure behaviors, requiring extensive manual labeling.

MEPFL [14] predicts errors and failure types for trace
instances based on system trace data. However, methods like
those in [31]–[33] using traces for anomaly detection or root
cause localization do not specify failure types.

Several studies integrate multimodal data for anomaly
detection or root cause localization [18]–[20], [34]–[37].
CloudRCA [20] combines metrics and logs with a Knowledge-
informed Hierarchical Bayesian Network for root cause anal-
ysis. MicroCBR [34] embeds anomaly event sequences into a
failure knowledge graph for case retrieval and failure triage.
DiagFusion [19] uses embedding techniques and a Graph
Neural Network to determine failure types. Eadro [18] models
intra-service dynamics and inter-service dependencies using
traces, logs, and KPIs for anomaly detection and root cause
localization. TAD [35] employs a Transformer encoder model
to identify failures and utilizes tracing chains to pinpoint
faulty services. HeMiRCA [36] utilizes Spearman correlation
to localize hierarchical root causes. MULAN [37] localizes
root causes by co-learning a causal graph from metrics and
logs. However, none of these approaches, including Eadro,
TAD, HeMiRCA, and MULAN offer comprehensive triage of
failure types in microservice systems.

III. MOTIVATION AND PROBLEM STATEMENT

A. Motivation

Our goal is to recommend to the operators the occurrence
and type of failure based on the latest multimodal data to
help operators quickly take the correct mitigation measures.
We refer to this as failure diagnosis, which includes failure
detection and triage, which facilitates a more comprehensive
identification and comprehension of diverse failure types [5],
[6], [38]. Table I lists typical failures encountered in microser-
vice systems, showcasing the corresponding manifestations
of these failures on multimodal data and the corresponding
mitigation measures. The failure types are designated based
on their underlying root causes [21]. Nevertheless, the primary
objective of our research in this study centers on failure
diagnosis rather than the subsequent remediation of failures.

Our examination of 164 microservice system failure cases
collected from benchmark microservice systems (see §VI-A
for more details) determined that the fusion of multimodal data
holds crucial significance in detecting and triaging failures.
During failures, anomalies can be observed in metrics [8]–
[10], logs [11], [12], and traces [31]. Moreover, different types
of failures exhibit distinct anomalous patterns across these
multimodal data [18].

1) The Role of Metric in Failure Diagnosis: As shown in
Fig. 1(a), the metric data is defined as x = {x1, x2, . . . , xT },
where T is the observation window length and xt ∈ R repre-
sents the observation at time t. Metrics are crucial for gauging
proper system functioning. When a microservice instance
experiences failures, the associated metrics (e.g., memory
utilization, disk I/O, CPU utilization, and network through-
put) frequently exhibit abnormal patterns. Therefore, operators
must remain vigilant in continuously monitoring the metrics.

2) The Role of Log in Failure Diagnosis: As shown in
Fig. 1(b), a log message often contains multiple fields, includ-
ing timestamp, node ID, and detailed information, etc. The
detailed information field is unstructured and usually contains
constants and variables. The constants are fixed texts the
developers set to describe system event entities and relations.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

In contrast, the variables carry dynamic runtime information
(e.g., IP address, file name, status code, etc.) [17]. Various log
parsing algorithms, such as Drain [39] and FT-tree [40], can
automatically distinguish the constants and the variables, and
generate log templates (constants) and parameters (variables).
System states and significant events at various critical points
are the main function of logs [41]. Diagnosing microservice
system failures can be effectively facilitated by analyzing the
diverse anomalous behaviors manifested in logs.

3) The Role of Trace in Failure Diagnosis: The microser-
vice systems encompass a significant volume of asynchronous
interactions between instances of microservices, which involve
intricate invocation chains [2]. As shown in Fig. 1(c), the
mutual invocations between instances can be represented as
trace trees, where one invocation request corresponds to one
trace. Each span corresponds to one service invocation, having
a span ID and a parent ID to reconstruct the calling relations
between individual spans [42]. The trace data, which contains
response time, status codes, and request frequency, etc., can
be crucial indicators for failures [14].

4) Multimodal Data Fusion: For instance, consider a “Net-
work device breakdown” failure may result in increased
network packet errors for affected services. While metrics
alone might indicate anomalies, identifying the failure type
remains challenging without additional contextual information.
By integrating metrics with traces, which expose disrupted
communication paths between services, operators can more
precisely diagnose the underlying network device failure.

In light of the above observations, a novel approach for
the fusion of multimodal data to enable effective failure
diagnosis has been conceptualized. This has culminated in the
development of UniDiag.

It is worth noting that in our study, data collection is
conducted with distinct granularity levels to capture com-
prehensive insights. Metrics and logs are collected at the
microservice instance level, gaining a detailed understanding
of the performance and the events within individual microser-
vice instances, respectively. Meanwhile, traces are collected at
the microservices system level, revealing intricate interactions
and dependencies among the microservices and facilitating a
holistic understanding of the whole system. This multi-faceted
analysis, encompassing various levels of data granularity,
enables UniDiag to deliver a comprehensive assessment of the
microservices system and empowers accurate failure diagnosis.

B. Problem Statement

The fine-grained decomposition of microservices makes the
system susceptible to performance issues due to highly com-
plex orchestration and dynamic interactions. Failure diagnosis
is the core of microservice system maintenance, which enables
operators to resolve failures effectively.

Our goal is to recommend to the operators the occurrence
and type of failure based on the latest multimodal system
monitoring data to help operators quickly take the correct
recovery measures. We refer to this as failure diagnosis, which
includes failure detection and triage. The detection and triage
of failures facilitate a more comprehensive identification and

comprehension of diverse failure types, thereby enabling the
implementation of suitable remedial actions [5], [6], [38].
For example, metrics, logs, and traces are the most direct
signals that characterize underlying failures [43]. Table I lists
typical failures encountered in microservice systems, show-
casing the corresponding manifestations of these failures on
multimodal data and the corresponding remedial measures.
The failure types are designated based on their underlying
root causes [21]. Nevertheless, the primary objective of our
research in this study centers on failure diagnosis rather than
the subsequent remediation of failures.

IV. PRELIMINARIES

A. Temporal Knowledge Graph

A TKG incorporates temporal information into a static KG
by extending the triple (h, r, t) into a quadruple (h, r, t,
τ ), where h represents the head entity, t represents the tail
entity, r represents the relation, τ provides additional temporal
information about the fact of the triple, indicating that the fact
is valid at time τ . KG can effectively combine multimodal
data, and since metrics, logs, and traces change dynamically
over time, using TKG allows for the accurate representation
of the microservice system’s state.

B. R-GCN

To capture the multiple relations in the graph, R-GCN [27]
models different relations for the central node separately while
adding self-looping features for feature fusion and contin-
uously updating the representation of the central node. In
KGs, different edge types convey distinct information, and
the direction of edges plays a crucial role in determining the
underlying facts. Therefore, in our work, we employ R-GCN
to capture not only the states of individual events within a
specific microservice instance but also the intricate relations
among diverse instances.

C. GRU

Recurrent Neural Network (RNN) [44] is a powerful model
for processing sequential data [45]. However, it cannot solve
problems such as long-term memory and gradients in back-
propagation. Long-Short Term Memory (LSTM) [46] and
GRU [28] have been proposed to address this issue. GRU
and LSTM are similar in functional performance in many
cases [47], but compared to LSTM, GRU has fewer parameters
and is more computationally efficient. Therefore, we choose
GRU in UniDiag.

V. APPROACH

A. Overview

As shown in Fig. 2, UniDiag has two parts: offline training
and online diagnosis. In the offline training stage, UniDiag
consists of three main steps:

1) Multimodal Temporal Knowledge Graph Construc-
tion (§V-B). To address the first challenge of KG, we
introduce a stream-based anomaly detection module. It



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

27

Multimodal
TKG

Entity 
Embedding

Graph 
Embedding

Failure Case
Clusters

Label
Typical Cases

Failure 
Diagnosis

New 
Failure Case

Offline Training

Online 
Diagnosis

Relation 
Embedding

Stream-Based
Anomaly Detection

§V-B

§V-C 

§V-C §V-D 

§V-B 

§V-C §V-E 

§V-D 

§V-E 

Microservice-Oriented 
Graph Embedding

Metric

Log

Trace

§V-B 

Fig. 2: The framework of UniDiag.

first serializes the multimodal data into streams based on
their characteristics, and then conducts anomaly detection
for each stream. To deal with the dynamically changing
data, UniDiag builds a TKG based on the topological
relations of microservice systems.

2) MOGE (§V-C). To address the second challenge, Uni-
Diag combines R-GCN, GRU, and SOPOOL. R-GCN
leverages its ability to handle multi-relational graphs to
learn the structural information within the TKG. GRU,
on the other hand, captures long sequence dependencies
to learn the temporal information within the TKG. Lastly,
SOPOOL pools the TKG to capture high-level features
within the graph.

3) Failure Diagnosis (§V-D). A hierarchical clustering
approach is used to perform failure diagnosis on the
learned graph embeddings to obtain a number of clusters.
Then, UniDiag presents these clusters to operators who
investigate and assign corresponding normal or failure
types to each cluster.

In the online diagnosis (§V-E) stage, UniDiag converts the
data into a graph representation vector and diagnoses the
failure type based on the trained model (§ V-D).

B. Multimodal Temporal Knowledge Graph Construction

KG representations, characterized by their structured nodes
and edges, elucidate the relationships among diverse data
sources within microservice systems. This structured approach
enhances the comprehension of complex dependencies and
facilitates the analysis of failure patterns. Temporal Knowledge
Graphs (TKGs) offer significant flexibility and scalability,
adeptly capturing the dynamic nature of microservices. Their
ability to accommodate updates ensures real-time accuracy,
which is essential for effective monitoring in rapidly evolving
environments. UniDiag applies TKGs to enhance the fusion of
heterogeneous multimodal data. The TKGs can be viewed as
a series of sub-KGs, i.e., G = (Gτ−k+1, ..., Gτ−1, Gτ ), where
Gτ is the KG at time τ . We try to utilize all instances, metrics,
and log templates in the microservice system as nodes in Gτ .

Serializing Multimodal Data. As shown on the left side
of Fig. 3, we need to serialize multimodal data of each

microservice instance to obtain multimodal information at
each time point.

1) Metric Serialization. Metrics appear in the form of time
series with a serialized structure. Therefore, UniDiag
adopts standard preprocessing steps such as normaliza-
tion.

2) Log Serialization. Logs, as semi-structured text, encap-
sulate crucial information regarding system events [17].
UniDiag employs the Drain algorithm [39] to extract
fixed text segments, referred to as log templates, which
preserve the core semantic content essential for effective
analysis [48]. Utilizing the sliding window technique,
UniDiag segments the logs and quantifies the occurrence
frequency of each log template per minute. These fre-
quencies are subsequently transformed into time series
data, aligning with metrics for comprehensive analysis.

3) Trace Serialization. UniDiag concentrates on three piv-
otal metrics for traces: response time (RT), error count
(EC), and query count (QC) [32]. These metrics are es-
sential for identifying anomalies related to performance,
reliability, and traffic [32]. Specifically, to ensure a com-
prehensive evaluation, we divide the data into one-minute
time windows and obtain the values of the three critical
metrics within each window. Accordingly, we generate
three time series for each tuple <caller, callee>, each
reflecting the average response time, query count, and
error count, respectively.

Capturing Microservice Dependencies. Understanding the
intricate dependencies between microservices is crucial for ef-
fective failure diagnosing [19]. These dependencies primarily
consist of function calling and resource contention [49]. To
accurately model these interdependencies, we integrate traces
and deployment data. Specifically, we aggregate trace data
to represent the invocation relations between microservices,
adding a directed edge in the KG from each caller to its
corresponding callee. Additionally, when two instances are co-
deployed according to the deployment data, we introduce a
directed edge in the KG from the instance to the physical host
associated with the deployment data.

Transforming Time Series Data into Events. The intuitive



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

τ-1 �2  query=select passwards ... -> �1

τ   �2  query=select passwards ... -> �1

M
et

ri
c

Lo
g

Tr
ac

e

τ-1 �1 -> �2 RT 

τ-1 �1 -> �2 QC 
τ-1 �1 -> �2 EC 
τ �3 -> �2 RT 
τ �3 -> �2 QC 

τ-1 �2 num of  �1

τ �2 num of  �1 

τ-1 �2 net_out_err
τ �2 net_out_err

τ-1 �2 net_out_pkts
τ �2 net_out_pkts

τ-1 �2 net_in_pkts

Time τ-1

anomalously 
calls

net_out_err

net_out_pkts net_in_pkts

has a normal
   value of

has a normal
  value of

T2

D1
normal calls

net_out_err

net_out_pkts net_in_pkts

t_a
has a higher

value of
has a normal
  value of has a lower

 value of

has a normal
 value of

�1

Serialized Data Stream-Based Anomaly Detection Temporal Knowledge Graph

τ �3 -> �2 EC 

τ �2 net_in_pkts

�2 �1

has a normal
  value of

has a normal
 num of

S1

Time τ

normally calls

net_out_err

net_out_pkts net_in_pkts

has an u_low
    value of

has a normal
  value of

�3 �2 �1  num of
has an e_high

has a normal
  value of

num of template �1

RT EC QC

RT EC QC

Fig. 3: Multimodal data serialization, stream-based anomaly detection, and construction of TKGs (u low: unexpected low,
e high: excessively high).

idea is to regard the invocation and deployment relations
between instances, the value of metrics data, the number
of log templates, and the value of three vital trace-related
metrics data as edges. However, this will bring excessively
high calculation and storage costs for subsequent tasks, making
real-time failure diagnosis impractical. Therefore, UniDiag
applies a stream-based anomaly detection approach to trans-
form these time series into events and capture the underlying
characteristics of the multimodal data. As shown in the middle
part of Fig. 3, we adopt the 3-sigma rule to classify the time
series data as normal, excessively high, and unexpectedly low
every minute, then the type of the edge is set accordingly.
Specifically, the edge settings in Gτ are as follows:

The edge of an instance-type object represents whether it
is a normal or anomalous call, and this classification depends
on whether the current values of the three key trace-related
metrics are normal, excessively high, or unexpectedly low.
Moreover, the edge of a metric-type (log-template-type) object
represents whether the current metric (log) data is normal,
excessively high, or unexpectedly low. UniDiag stores this
information on the edges of the KG.

Constructing the TKG. At time τ , UniDiag utilizes the
output obtained from stream-based anomaly detection to derive
the quadruples required for constructing a TKG. For exam-
ple, the representation of a quadruple between microservice
instance S1 and metric m1 is indicated as (S1, has a normal
value of, m1, τ ), whereas the representation of a quadruple be-
tween microservice instance S1 and log template l1 is denoted
as (S1, has an excessively high number of, l1, τ ). Concerning
trace data, we utilize “anomalously calls” and “normally calls”
to identify whether the trace-related metrics are anomalous
or not. For instance, the quadruple representation for calls
between two microservice instances S1 and S2 is expressed as
(S1, anomalously calls, S2, τ ). Moreover, the relation between
microservice instance S1 and host H1 is presented as (S1,
deploys at, H1, τ ). Finally, UniDiag builds a comprehensive
KG (τ ) based on the serialized data and the topological relation
between microservice instances. UniDiag stacks the KGs of

each moment together to form a graph stream (i.e., a TKG).

C. Microservice-Oriented Graph Embedding
To learn the nodes and edges information in TKG, UniDiag

uses entity and relation embedding. We apply R-GCN and
GRU to take into account the structural and temporal infor-
mation of entities and relations, respectively.

Capture Structural Dependency. Each graph in the TKG
contains rich facts, and the interconnection between entities
demonstrates a structural dependency. Exploiting the structural
dependency enables the central entity to aggregate information
from its surrounding neighbors and enhance the learning of
entity representations. UniDiag uses L-layer relation-aware
GCN as an evolutionary unit to model the concurrent facts
of structural dependency information. Each entity et,τ obtains
information from itself, its connected neighboring entities eh,τ ,
and the relation r at time τ , and passes down to the next layer:

e⃗k+1
t,τ = f(

1

δt

∑
(h,r),∃(h,r,t)∈ϑτ

γk
1 (e⃗

k
h,τ + r⃗τ ) + γk

2 e⃗
k
t,τ ) (1)

where ϑτ is the set of facts at timestamp τ , k ∈ [0, L − 1],
e⃗kh,τ , r⃗τ , e⃗kt,τ denote the kth layer embeddings of entities h,
relation r, and entities t at time τ , respectively. γk

1 and γk
2

are the parameters for aggregating features and self-loop in
the kth layer. e⃗kh,τ + r⃗t represents the relational translation
between the head entity and the tail entity under relation r. δt
is a normalization constant, equal to the in-degree of entity t.
f(·) is the RReLU activation function.

Capture Temporal Information. A TKG contains in-
formation about the dynamic evolution of KGs over time.
UniDiag utilizes two temporal gating components to model the
sequential information of entities and relations, respectively.

The embedding of all entities at time τ is determined by
the final layer output of the relation-aware GCN at time τ and
the entity embedding representation at time τ − 1. Formally,

Eτ = Uτ ◦ EL
τ + (1− Uτ ) ◦ Eτ−1 (2)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

where E ∈ R|E|∗d denotes the entity embedding matrix, E is
the set of entities, and d is the dimension of the embeddings.
◦ denotes the Hadamard product. The temporal gate Uτ ∈
R|E|×d conducts nonlinear transformation.

The embedding of a relation at time τ is influenced by Eτ−1

and er,τ , which can be formulated as:

r⃗
′

τ = [pooling(Eτ−1, er,τ ); r⃗] (3)

where r⃗ is the embedding of relation r, er,τ is the set of r-
related entities, pooling denotes the mean pooling operation,
and [; ] denotes the vector concatenation operation.

UniDiag uses the GRU component to obtain the embedding
of all relations:

Rτ = GRU(Rτ−1, R
′
τ ) (4)

where R ∈ R|R|∗d denotes the relation embedding matrix, and
R is the set of relations.

Our goal is to diagnose failures in the entire microser-
vice system, so we need to learn the graph embeddings of
the KG at each moment to perform downstream diagnostic
tasks. Because microservice instances are dynamically created
and deleted in the microservice system, the deployment and
invocation relation also change dynamically [24], [25]. That
is, the KGs in the constructed TKG can be different, which
brings challenges for subsequent failure detection and triage.
Moreover, there is no inherent ordering relation among the
nodes in the graph, and we get the same output by using any
order of node representation as input.

SOPOOL [29] collects second-order statistics from the
information of all nodes. It captures the correlations among
features and topology information in graph representation
learning [29]. In this way, it can help UniDiag address the
above challenge. Therefore, UniDiag uses SOPOOL to obtain
a graph representation based on node representation. UniDiag
transforms the entity embedding matrix E using a linear
mapping to obtain the embedding of the graph:

SOPOOL(E) = ETEµ (5)

where µ ∈ Rd is a trainable vector.
These graph embeddings, encapsulating the rich informa-

tional content of three distinct monitoring data (metrics, logs,
and traces) gathered during microservice system operation,
effectively capture the nuanced patterns embedded within each
modality. This comprehensive representation, derived from
the fusion of heterogeneous data sources, enables a more
discriminating differentiation between various failure types,
thereby facilitating increased accuracy in downstream failure
diagnosis tasks.

We train the MOGE model with the KG inference task of
the TKG. Specifically, the inference is performed on the KG
of the next moment based on the KG of the current moment,
and a cross-entropy loss is computed according to the result
of the inferred and the actual KG of the next moment.

D. Failure Diagnosis
UniDiag trains failure diagnosis models using various fail-

ure features. Initially, the number of clusters n is set based

on operators’ prior knowledge. UniDiag then clusters the
embedded representations of multimodal TKGs according to
n. The farthest distance between cluster centers defines the
distance threshold d.

We employ hierarchical agglomerative clustering (HAC) for
the following reasons: (1) it uses a “bottom-up” approach to
identify hierarchical relations; (2) it is easy to define and
flexible with distance similarities and rules; (3) it handles
clusters of different sizes; and (4) it is widely used in failure
diagnosis [13], [50], [51]. Operators label each cluster with
a specific failure type using a typical case, thus reducing
annotation effort by labeling only the typical case closest to
each cluster center.

E. Online Diagnosis and Update
For a new window’s multimodal data, UniDiag calculates

the distance between the failure’s embedding and the existing
cluster centers, mapping the failure to the nearest cluster. If
the distance is less than d, the failure is classified according
to the nearest cluster center. Otherwise, a new cluster is
created and labeled by operators, who then update UniDiag
accordingly. Discrepancies between UniDiag’s diagnosis and
operators’ verification result in cluster set updates, enhancing
performance.

UniDiag is initially deployed in a limited number of scenar-
ios and gradually expanded as it stabilizes. Failures identified
in one scenario can inform diagnoses in other scenarios,
allowing operators to build a comprehensive knowledge base
of failure types. This enables quick labeling of new failures,
thereby improving diagnosis efficiency and mitigation.

F. Computational Complexity Analysis
To evaluate the computational efficiency of UniDiag, we

conduct a complexity analysis of two critical components:
Multimodal Temporal Knowledge Graph Construction and
Microservice-Oriented Graph Embedding. In the Multimodal
Temporal Knowledge Graph Construction phase, the time
complexity for serializing multimodal data is determined by
the number of data entries at each timestamp. Constructing
the knowledge graph entails the insertion of nodes and edges.
Assuming the number of nodes is |Eall| and the number
of edges is |Rall|, the complexity is O(|Eall| + |Rall|). In
the Microservice-Oriented Graph Embedding phase, the time
complexity for capturing structural dependencies is O(|F|L),
where |F| denotes the maximum number of concurrent facts
within the knowledge graph. Additionally, the time complexity
for capturing temporal information is O(|Esub||R|), where
|Esub| is the maximum number of entities involved in the
relationships, and |R| is the size of the relation set.

VI. EVALUATION

We aim to answer the following research questions (RQs):
RQ1: How effective does UniDiag perform in failure diagno-
sis?
RQ2: Does each component contribute to UniDiag?
RQ3: Does each data modality contribute to UniDiag?
RQ4: Is UniDiag computationally efficient?
RQ5: What is the impact of different hyperparameter settings?



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE II: Dataset information

Dataset #Instances #Failures #Records

D1 17 126
metric 3,677,426
log 1,569,917
trace 520,674

D2 46 252
metric 349,648
log 3,048,094
trace 5,288,134

A. Experimental Setup

Dataset. To evaluate UniDiag, we conduct extensive ex-
periments using two datasets, D1 and D2, sourced from
distinct microservice systems with varying business contexts
and architectures. Table II details the datasets. Both datasets
are split into training (the initial 70% of failure cases) and
testing (the remaining 30%) sets based on their start time.

Dataset 1 (D1), derived from CloudWise’s Generic AIOps
Atlas (GAIA)1, serves as a benchmark for microservice fail-
ure diagnosis [19], [52]–[54]. GAIA data, primarily from
CloudWise’s MicroSS simulation system, encompasses com-
prehensive monitoring data and simulated failures. We test
four types of failures: “Memory resource underprovisioning”,
“System component damage”, “Filesystem misconfigurations”,
and “Access control errors”.

Dataset 2 (D2) originates from a simulated e-commerce
application utilizing microservices. It includes a variety of
real failure injections to replicate e-commerce operational
challenges. This dataset encompasses dynamic service topolo-
gies, real-time traces, metrics, and logs. We test five types
of failures: “CPU resource underprovisioning”, “Memory re-
source underprovisioning”, “Disk resource underprovision-
ing”, “System component damage”, and “Container resource
quota violations”.

Implementation. UniDiag is implemented in PyTorch, and
all of the experiments are conducted on a Linux Server with
64 16C32T Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz,
two NVIDIA(R) Tesla(R) V100S, and 187.5 GB RAM. As
for the hyperparameters, the number of layers and the hidden
size in R-GCN are 2 and 50, respectively. The dimension of
graph embedding is 100.

Baselines. We compare UniDiag with the following base-
line methods: iSQUAD [8], DéjàVu [10], LogCluster [11],
Cloud19 [12], MEPFL [14], CloudRCA [20], MicroCBR [34],
and DiagFusion [19], which are based on either single-modal
or multimodal data. We implement these methods referring to
the codes provided by the original papers. For the papers with-
out open-source codes, we set the hyperparameters according
to the descriptions provided in the respective papers.

Evaluation Metrics. In the task of failure diagnosis, distinct
labels are assigned to each type of failure. Hence, to assess
multi-label tasks, we utilize the extensively employed evalua-
tion metrics known as Weighted Average Precision, Weighted
Average Recall, and Weighted Average F1-score [55]. For

1https://github.com/CloudWise-OpenSource/GAIA-DataSet

each label, we perform calculations to determine the respective
precision = TP/(TP +FP ), recall = TP/(TP +FN), and
F1-score = 2 × precision × recall/(precision + recall),
with True Positives (TP ), False Positives (FP ), and False
Negatives (FN ). Subsequently, these metrics are averaged
by applying weighting based on the support, representing the
number of true cases associated with each label.

Furthermore, in the ablation experiments, we employ two
widely acknowledged metrics, namely Normalized Mutual
Information (NMI) [56] and Clustering Accuracy (ACC) [57],
to evaluate the performance of UniDiag. NMI is a commonly
used evaluation metric for clustering results, which measures
the consistency between clustering results and ground-truth
class labels. Formally,

NMI = −
2×

∑
i

∑
j

(
|Ti ∩Qj | × log

(
C×|Ti∩Qj |
|Ti|×|Qj |

))
∑

i

(
|Ti| × log

(
|Ti|
C

))
+

∑
j

(
|Qj | × log

(
|Qj |
C

))
(6)

where C is the total number of cases, Ti and Qj denote the
i-th class of the ground truth and the j-th cluster generated by
the clustering algorithm, respectively.

ACC elucidates the correspondence between clustering re-
sults and ground-truth class labels by quantifying the degree
to which each cluster encompasses data points belonging to
the respective ground-truth class. ACC can be calculated as
follows:

ACC(x, x̂) =
1

C

C∑
c=1

δ (xc = x̂c) (7)

where x and x̂ denote the actual class labels of the results
and the labels that match the ground truth best, respectively.
δ denotes the Kronecker delta.

B. Overall Performance (RQ1)

Table III presents the number of labeled samples (failures
needing labeling) and the overall performance comparison
on the two datasets. The quantity of labeled data for each
baseline is tailored to its specific requirements. We empirically
determine the optimal number of labeled samples for meth-
ods without explicit labeling needs by conducting multiple
experiments with varying labeled sample numbers, selecting
the best configuration. Notably, the labeled samples are only
a subset of the training data, while larger datasets are used
for training and testing to ensure comprehensive learning and
robust evaluation. A key distinction is that MEPFL [14] labels
anomalous traces, unlike other methods that label failure cases.
Table III details the number of traces needing labeling for
MEPFL. UniDiag outperforms all baselines on both datasets,
achieving an impressive Weighted Average F1-score of 0.869
and 0.723, respectively.

iSQUAD [8] diagnoses failures using ground truths from
similar failures but lacks historical failure integration, risking
errors from noise and fluctuations. DéjàVu [10] trains a
model with historical failures and Failure Dependency Graphs
(FDGs), requiring many labeled cases. Both methods rely
on metric data, lacking comprehensive features, resulting in
poor performance. LogCluster [11] struggles to parse log

https://github.com/CloudWise-OpenSource/GAIA-DataSet


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE III: Effectiveness and efficiency of failure diagnosis

Method
D1 D2

Labeled
Samples Precision Recall F1-score Offline

Time
Online
Time

Labeled
Samples Precision Recall F1-score Offline

Time
Online
Time

UniDiag 15 0.884 0.868 0.869 3720.33s 0.32s 20 0.73 0.724 0.723 4098.57s 0.59s
iSQUAD [8] 4 0.642 0.658 0.645 25.09s <0.01s 5 0.702 0.684 0.65 61.81s <0.01s
DéjàVu [10] 88 0.678 0.684 0.674 118.92s <0.01s 176 0.647 0.553 0.571 2590.32s <0.01s

LogCluster [11] 11 0.518 0.579 0.534 0.12s <0.01s 6 0.603 0.684 0.635 0.33s <0.01s
Cloud19 (RF) [12] 88 0.74 0.7 0.713 189.00s 0.03s 176 0.601 0.632 0.613 99.00s 0.03s

MEPFL (MLP) [14] 47,022 0.619 0.600 0.599 452.30s <0.01s 167,468 0.558 0.556 0.417 824.65s <0.01s
CloudRCA [20] 88 0.676 0.605 0.581 25.88s 0.04s 176 0.855 0.6 0.683 44.56s 0.06s
MicroCBR [34] 20 0.74 0.7 0.713 - 0.10s 45 0.924 0.489 0.443 - 0.28s
DiagFusion [19] 88 0.743 0.77 0.752 0.02s <0.01s 176 0.7 0.663 0.676 0.06s <0.01s

TABLE IV: Effectiveness of the models dealing with new types of failures

Method
D1 D2

Precision Recall F1-score Precision Recall F1-score

UniDiag 0.798 0.726 0.73 0.666 0.692 0.669
iSQUAD [8] 0.376 0.387 0.345 0.349 0.442 0.366

LogCluster [11] 0.449 0.533 0.462 0.487 0.566 0.509

entries into meaningful events, missing semantic information.
Cloud19 [12] fails to address polysemy and uses a limited
context window, missing broader contextual information and
leading to suboptimal performance.

MEPFL [14] uses a supervised learning model through
traces, relying on labeling all anomalous trace patterns.

CloudRCA [20] combines logs and metrics but ignores
the microservice system’s topology, missing crucial features.
It also requires many labeled historical failure cases, and
insufficient training samples harm its performance. In contrast,
UniDiag excels in failure diagnosis, achieving a significantly
higher Weighted Average F1-score than existing methods.

UniDiag demonstrates superior performance in failure di-
agnosis compared to MicroCBR [34] and DiagFusion [19] by
integrating both normal and failure data, thereby capturing a
holistic view of the system state and mitigating information
loss. Unlike MicroCBR, which is constrained by its reliance
on failure data alone, and DiagFusion, which depends heavily
on labeled historical cases, UniDiag employs TKG and MOGE
to provide a comprehensive temporal representation of the
microservice system’s state, effectively modeling complex
dependencies and interactions.

RT and invocation paths reflect anomalous patterns in trace
data, while EC and QC are key for detecting reliability and
traffic failures. MicroCBR uses only RT for anomaly detection,
and DiagFusion uses RT and EC, potentially leading to inac-
curate diagnoses. In contrast, UniDiag uses invocation paths,
RT, EC, and QC to construct a knowledge graph, incorporating
rich information for more accurate failure diagnosis.

Frequent failure scenarios in historical data can be swiftly
and accurately identified through observation and practice.
However, as the microservice architecture evolves and de-
velops, new types of failures, that is, undiscovered types of
failures that have never occurred or occurred less frequently
in the past, often manifest within the microservice systems.

To evaluate UniDiag’s robustness in diagnosing new failure

types, we select distinct failure types from diverse datasets
and excluded associated samples from the training set. Given
that supervised methods cannot diagnose new failure types
and MicroCBR can only match new cases with existing types,
we used iSQUAD and LogCluster as baselines. As listed in
Table IV, by averaging the results of each new failure type
diagnosis on the same dataset, we calculate the precision,
recall, and F1-score. UniDiag significantly outperforms the
other methods. iSQUAD and LogCluster, limited to single-
modal data, fail to detect some failures, resulting in numerous
false positives and negatives. In contrast, UniDiag’s fusion of
three modalities of monitoring data captures unique features
from each modality, leading to comprehensive representation
learning for each failure type. This demonstrates that multi-
modal data fusion enhances UniDiag’s performance.

C. Contribution of Key Components (RQ2)
To show the effectiveness of UniDiag’s key techniques

(i.e., , entity embedding, graph embedding, and clustering),
we creat five variants (C1-C5) by substituting these techniques
with common or state-of-the-art alternatives: (1) C1 uses RE-
NET [58] instead of MOGE for learning entity embedding. (2)
C2 uses TANGO [59] instead of MOGE for learning entity
embedding. (3) C3 uses mean pooling instead of MOGE for
learning graph embedding. (4) C4 uses DBSCAN instead of
HAC. (5) C5 uses K-means instead of HAC.

Table V demonstrates that UniDiag outperforms all variants
on two datasets, underscoring the significance of each compo-
nent. Substituting MOGE with RE-NET (C1) or TANGO (C2)
results in decreased performance. RE-NET’s use of subgraph
aggregators and GRUs neglects the structural dependencies
and static attributes in TKGs, leading to the potential loss or
mixing of historical facts. TANGO’s Neural Ordinary Differ-
ential Equations (NODE) [60] are better suited for continuous
time domains and fail to capture patterns in the discrete
snapshots of TKGs amidst frequent microservice changes.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE V: Experimental results of ablation study

Dataset Method NMI ACC Precision Recall F1-score

D1

UniDiag 0.783 0.868 0.884 0.868 0.869
C1 0.538 0.658 0.567 0.632 0.587
C2 0.634 0.737 0.699 0.684 0.687
C3 0.764 0.789 0.728 0.737 0.73
C4 0.663 0.658 0.521 0.632 0.547
C5 0.759 0.816 0.781 0.763 0.763

D2

UniDiag 0.602 0.75 0.73 0.724 0.723
C1 0.368 0.566 0.392 0.171 0.203
C2 0.573 0.697 0.583 0.671 0.617
C3 0.558 0.684 0.655 0.671 0.662
C4 0.651 0.724 0.413 0.461 0.416
C5 0.538 0.671 0.679 0.618 0.638

Replacing MOGE with mean pooling (C3) degrades perfor-
mance as traditional pooling methods (e.g., mean pooling) can-
not effectively characterize features. SOPOOL, by modeling
general graph information correlations, captures long-distance
feature information more effectively.

Substituting HAC with DBSCAN or K-means (C4 & C5)
also reduces performance. HAC is robust to random initial
values and can identify outliers in KGs. DBSCAN, a density-
based method, is insensitive to noise and outliers, making it
unsuitable for failure detection. K-means struggles with non-
spherical and varied-sized clusters, and the choice of initial
cluster centers significantly affects the results.

D. Contribution of Each Modality (RQ3)

We conduct ablation experiments to examine the contri-
butions of different data sources by creating the following
variants: (1) UniDiag w/o M drops metrics while inputs logs
and traces. (2) UniDiag w/o L drops logs while inputs metrics
and traces. (3) UniDiag w/o T drops traces while inputs
metrics and logs.

TABLE VI: Contributions of diverse data sources

Dataset Method NMI ACC Precision Recall F1-score

D1

UniDiag 0.783 0.868 0.884 0.868 0.869
UniDiag w/o M 0.733 0.763 0.701 0.737 0.696
UniDiag w/o L 0.717 0.737 0.607 0.737 0.65
UniDiag w/o T 0.675 0.737 0.753 0.737 0.718

D2

UniDiag 0.602 0.75 0.73 0.724 0.723
UniDiag w/o M 0.536 0.684 0.57 0.579 0.569
UniDiag w/o L 0.524 0.645 0.688 0.539 0.582
UniDiag w/o T 0.574 0.711 0.715 0.684 0.693

Table VI indicates that UniDiag’s effectiveness depends on
the integration of all data modalities, with each contributing
differently. Traces contribute the least in D1 and D2, as
indicated by the minor performance drop in UniDiag w/o
T , due to limited trace records and fluctuating RT and QC.
Conversely, UniDiag w/o M shows significant performance
degradation, aligning with observations in Table I.

In conclusion, integrating all three data modalities sig-
nificantly enhances UniDiag’s effectiveness, highlighting the
crucial role of diverse data in improving failure diagnosis.

E. Computational Efficiency (RQ4)
Table III compares the running times of UniDiag with other

baseline methods, covering both offline training and online
diagnosis durations. Notably, UniDiag achieves an average
online diagnosis time of 0.6s, meeting real-time diagnostic
demands, given that data collection intervals for D1 and D2
are at least 30s. However, UniDiag has longer offline training
times due to the entity embedding process, which is influenced
by the size and complexity of the KG and the GCN. Despite
this, UniDiag minimizes the need for frequent retraining.

To test UniDiag’s efficiency on larger datasets, we con-
structed a KG with 2,553 entities and 3,807,420 edges by
replicating nodes and attributes from D1. UniDiag achieved
an average offline training time of 5.12h and an average online
diagnosis time of 4.73s, demonstrating suitability for real-
world deployment. These results confirm UniDiag’s robust
performance on large-scale datasets.

F. Effect of Hyperparameters (RQ5)
We discuss the impact of UniDiag’s three hyperparameters

and different training set sizes. Fig. 4 shows how NMI, ACC,
and Weighted Average F1-score vary with these parameters.

The Number of Layers in Entity Embedding. UniDiag’s
performance declines as the number of GCN layers increases
from 1 to 5, with optimal results achieved at 2 or 3 layers.
An excessive number of layers causes node representations to
converge and lose distinction.

Graph Embedding Dimension. Optimal performance is
observed at a graph embedding dimension of 100. Larger
dimensions risk sparsity, over-fitting, and increased compu-
tational complexity, but they may be suitable for complex
microservice systems.

The Number of Clusters. Increasing the number of clusters
enhances the utilization of training data; however, too many
clusters raise the labeling effort. We select 15 and 20 clusters
for D1 and D2, respectively.

The Size of the Training Set. We evaluated UniDiag
with training set sizes of 30%, 40%, 50%, 60%, and 70%,
using the remaining 30% for testing. Fig. 4 demonstrates that
UniDiag achieves a high Weighted Average F1-score even
with a limited number of failure cases, proving its effectiveness
in real-world scenarios with constrained historical data.

VII. DISCUSSION

A. Lessons Learned
1) Data Collection Granularity: Currently, most IT enter-

prises collect data at minute-level granularity, typically every
1 or 5 minutes [61], [62]. This granularity generally does not
significantly impact the model’s effectiveness. In our approach,
once the metric granularity is set, logs and traces must be
aligned with the metrics.

2) Effectiveness: UniDiag demonstrates superior effective-
ness in failure diagnosis by integrating comprehensive multi-
modal data and leveraging TKGs to capture the full system
state over time. Unlike other methods that rely on limited
data sources, insufficient labeled data, or simplistic models,
UniDiag incorporates a broader range of features, which
ensures accurate diagnosis in microservice systems.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Fig. 4: Hyperparameters sensitivity on UniDiag.

3) Flexibility: UniDiag’s flexibility is driven by its dynamic
TKG updates and incremental learning. The system continu-
ously adapts to new data, integrating evolving failure patterns
and architectural changes without requiring full retraining,
ensuring it remains effective in diagnosing emerging failures
as the environment evolves.

4) Scalability: UniDiag exhibits a high degree of adapt-
ability to the dynamic nature of microservice architectures.
As microservice instances are created or destroyed, UniDiag
requires only the addition or removal of the corresponding
entities and relations within the TKG. The workflow of Uni-
Diag is inherently general and does not rely on any specific
data modality, thereby maintaining its effectiveness even in
production environments where not all three modalities of data
are concurrently monitored.

B. Threats to Validity

Regarding internal validity threats, the primary concern is
the implementation process. To address this, we conducted
repeated experimental tests and iteratively optimized the ap-
proach. The results presented are averages of multiple trials.

Externally, there are two primary threats. First, the limited
scale of our datasets compared to real-world microservice
systems in production environments restricts generalizability.
These datasets might not fully represent all microservice
systems. Nevertheless, we believe our approach is sufficiently
general. We plan to collaborate with a top-tier Internet service
provider to deploy UniDiag and validate its effectiveness in
real-world scenarios. Second, our datasets may not capture
all failure types compared to industry-collected data. Future
work will involve evaluating our approach on a broader range
of microservice systems, incorporating larger-scale real-world
cases with diverse failure types to address this limitation.

C. Limitations

Based on the conducted experiments, we draw attention to
two primary limitations of UniDiag, as follows:

1) While UniDiag is designed to leverage metrics, logs,
and traces for comprehensive failure diagnosis, it remains
robust even when data from some modalities are un-
available. This is crucial since acquiring synchronized
multimodal data can be challenging in certain microser-
vice deployments. Although UniDiag can function with

missing data sources due to its loosely-coupled nature,
providing all data types maximizes its effectiveness.
Open-source toolkits such as cAdvisor [63] for metrics,
Elasticsearch [64] for logs, and Jaeger [65] for tracing
facilitate monitoring data collection in microservice sys-
tems. These tools simplify equipping microservices with
comprehensive data collection capabilities [18].

2) UniDiag relies on a data-driven approach. If specific
failures do not manifest anomalies in the collected
data, accurate diagnosis becomes challenging. This issue
is common and also recognized in MEPFL [14] and
SCWarn [16].

VIII. CONCLUSION

Recognizing the limitations of relying solely on single-
modal data, which may fail to capture a substantial amount of
crucial information, we present UniDiag as a novel approach
for failure diagnosis. UniDiag fuses multimodal data, includ-
ing metrics, logs, and traces, using TKG. It includes a three-
step process: (1) effective fusion of metrics, logs, and traces
through TKGs, (2) utilization of MOGE for entity embedding
and graph embedding, and (3) training of the failure diagnosis
model to detect failures and identify failure types accurately.
We have conducted extensive evaluation experiments on two
datasets to validate the efficacy, efficiency, and generalization
of UniDiag. The empirical findings affirm the robustness and
effectiveness of UniDiag in achieving accurate and efficient
failure diagnosis. Moreover, to overcome the limitations of the
data-driven approach, a contextual analysis module could ef-
fectively analyze external factors, such as deployment changes
and system updates, which might provide additional clues
about potential failures for more accurate failure diagnosis.

ACKNOWLEDGMENTS

This work is supported by the Advanced Research Project of
China (No. 31511010501), and the National Natural Science
Foundation of China (62272249, 62302244, 62072264).

REFERENCES

[1] T. Colanzi, A. Amaral, W. Assunccao, A. Zavadski, D. Tanno, A. Garcia,
and C. Lucena, “Are we speaking the industry language? the practice
and literature of modernizing legacy systems with microservices,” in
15th Brazilian Symposium on Software Components, Architectures, and
Reuse. New York, NY: ACM, 2021, pp. 61–70.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[2] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software
Engineering, vol. 47, no. 2, pp. 243–260, 2018.

[3] A. Mahimkar, C. E. de Andrade, R. Sinha, and G. Rana, “A composition
framework for change management,” in Proceedings of the 2021 ACM
SIGCOMM Conference. New York, NY: ACM, 2021, pp. 788–806.

[4] J. Y. Chung, C. Joe-Wong, S. Ha, J. W.-K. Hong, and M. Chiang,
“Cyrus: Towards client-defined cloud storage,” in Proceedings of the
Tenth European Conference on Computer Systems. New York, NY:
ACM, 2015, pp. 1–16.

[5] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An empirical investigation of incident triage for online
service systems,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
Los Alamitos, CA: IEEE, 2019, pp. 111–120.

[6] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “Continuous incident triage for large-scale online service
systems,” in 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). Los Alamitos, CA: IEEE, 2019,
pp. 364–375.

[7] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through
causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS). Los Alamitos, CA: IEEE, 2020, pp.
1–10.

[8] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu, C. Luo,
Y. Li, N. Qiu et al., “Diagnosing root causes of intermittent slow queries
in cloud databases,” Proceedings of the VLDB Endowment, vol. 13, no. 8,
pp. 1176–1189, 2020.

[9] C. Wu, N. Zhao, L. Wang, X. Yang, S. Li, M. Zhang, X. Jin, X. Wen,
X. Nie, W. Zhang et al., “Identifying root-cause metrics for incident
diagnosis in online service systems,” in 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). Los Alamitos,
CA: IEEE, 2021, pp. 91–102.

[10] Z. Li, N. Zhao, M. Li, X. Lu, L. Wang, D. Chang, X. Nie, L. Cao,
W. Zhang, K. Sui et al., “Actionable and interpretable fault localization
for recurring failures in online service systems,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. New York,
NY: ACM, 2022, pp. 996–1008.

[11] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). Los Alamitos, CA: IEEE, 2016, pp. 102–111.

[12] Y. Yuan, W. Shi, B. Liang, and B. Qin, “An approach to cloud execution
failure diagnosis based on exception logs in openstack,” in 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). Los
Alamitos, CA: IEEE, 2019, pp. 124–131.

[13] X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang, X. Li, Y. Dang,
Q. Lin et al., “Onion: identifying incident-indicating logs for cloud
systems,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. New York, NY: ACM, 2021, pp. 1253–1263.

[14] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and
C. He, “Latent error prediction and fault localization for microservice
applications by learning from system trace logs,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
New York, NY: ACM, 2019, pp. 683–694.

[15] C. Lee, T. Yang, Z. Chen, Y. Su, Y. Yang, and M. R. Lyu, “Heteroge-
neous anomaly detection for software systems via semi-supervised cross-
modal attention,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). Los Alamitos, CA: IEEE, 2023, pp.
1724–1736.

[16] N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang,
K. Sui, and D. Pei, “Identifying bad software changes via multimodal
anomaly detection for online service systems,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. New York,
NY: ACM, 2021, pp. 527–539.

[17] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey
on automated log analysis for reliability engineering,” ACM computing
surveys (CSUR), vol. 54, no. 6, pp. 1–37, 2021.

[18] C. Lee, T. Yang, Z. Chen, Y. Su, and M. R. Lyu, “Eadro: An end-
to-end troubleshooting framework for microservices on multi-source

data,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). Los Alamitos, CA: IEEE, 2023, pp. 1750–1762.

[19] S. Zhang, P. Jin, Z. Lin, Y. Sun, B. Zhang, S. Xia, Z. Li, Z. Zhong,
M. Ma, W. Jin, D. Zhang, Z. Zhu, and D. Pei, “Robust failure diagnosis
of microservice system through multimodal data,” IEEE Transactions
on Services Computing, 2023.

[20] Y. Zhang, Z. Guan, H. Qian, L. Xu, H. Liu, Q. Wen, L. Sun, J. Jiang,
L. Fan, and M. Ke, “Cloudrca: a root cause analysis framework for cloud
computing platforms,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. New York,
NY: ACM, 2021, pp. 4373–4382.

[21] P. Dogga, K. Narasimhan, A. Sivaraman, S. Saini, G. Varghese, and
R. Netravali, “Revelio: Ml-generated debugging queries for finding root
causes in distributed systems,” Proceedings of Machine Learning and
Systems, vol. 4, pp. 601–622, 2022.

[22] C. Deng, Y. Jia, H. Xu, C. Zhang, J. Tang, L. Fu, W. Zhang, H. Zhang,
X. Wang, and C. Zhou, “Gakg: A multimodal geoscience academic
knowledge graph,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. New York,
NY: ACM, 2021, pp. 4445–4454.

[23] A. V. Kannan, D. Fradkin, I. Akrotirianakis, T. Kulahcioglu, A. Canedo,
A. Roy, S.-Y. Yu, M. Arnav, and M. A. Al Faruque, “Multimodal
knowledge graph for deep learning papers and code,” in Proceedings of
the 29th ACM International Conference on Information & Knowledge
Management. New York, NY: ACM, 2020, pp. 3417–3420.

[24] X. Li, Y. Chen, and Z. Lin, “Towards automated inter-service autho-
rization for microservice applications,” in Proceedings of the ACM
SIGCOMM 2019 Conference Posters and Demos. New York, NY:
ACM, 2019, pp. 3–5.

[25] S. Chakraborty, S. Garg, S. Agarwal, A. Chauhan, and S. K. Saini,
“Causil: Causal graph for instance level microservice data,” in Proceed-
ings of the ACM Web Conference 2023. New York, NY: ACM, 2023,
pp. 2905–2915.

[26] R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs,” in Proceedings of the 34th
International Conference on Machine Learning. New York, NY: PMLR,
2017, pp. 3462–3471.

[27] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional net-
works,” in European semantic web conference. Berlin: Springer-Verlag,
2018, pp. 593–607.

[28] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” in Conference on
Empirical Methods in Natural Language Processing (EMNLP 2014).
Stroudsburg,PA: Association for Computational Linguistics, 2014, p.
1724–1734.

[29] Z. Wang and S. Ji, “Second-order pooling for graph neural networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 6, pp. 6870–6880, 2020.

[30] UniDiag, “Open source repository of unidiag,” 2024. [Online].
Available: https://github.com/AIOps-Lab-NKU/UniDiag.git

[31] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang,
L. Mo, J. Zeng, W. Xue et al., “Unsupervised detection of microservice
trace anomalies through service-level deep bayesian networks,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). Los Alamitos, CA: IEEE, 2020, pp. 48–58.

[32] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou,
and Z. Wu, “Microhecl: High-efficient root cause localization in large-
scale microservice systems,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). Los Alamitos, CA: IEEE, 2021, pp. 338–347.

[33] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang,
L. Yan, Z. Wang et al., “Practical root cause localization for microservice
systems via trace analysis,” in 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS). Los Alamitos, CA: IEEE,
2021, pp. 1–10.

[34] F. Liu, Y. Wang, Z. Li, R. Ren, H. Guan, X. Yu, X. Chen, and G. Xie,
“Microcbr: Case-based reasoning on spatio-temporal fault knowledge
graph for microservices troubleshooting,” in International Conference
on Case-Based Reasoning. Berlin: Springer-Verlag, 2022, pp. 224–
239.

[35] J. Wang, Y. Li, Q. Qi, Y. Lu, and B. Wu, “Multilayered fault detection
and localization with transformer for microservice systems,” IEEE
Transactions on Reliability, pp. 1–14, 2024.

https://github.com/AIOps-Lab-NKU/UniDiag.git


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[36] Z. Zhu, C. Lee, X. Tang, and P. He, “Hemirca: Fine-grained root
cause analysis for microservices with heterogeneous data sources,” ACM
Trans. Softw. Eng. Methodol., Jul 2024, just Accepted.

[37] L. Zheng, Z. Chen, J. He, and H. Chen, “Mulan: Multi-modal causal
structure learning and root cause analysis for microservice systems,”
in Proceedings of the ACM on Web Conference 2024, ser. WWW ’24.
New York, NY, USA: ACM, 2024, p. 4107–4116.

[38] A. Workshop, “2022 ccf aiops challenge,” 2022. [Online]. Available:
https://workshop.aiops.org

[39] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE international conference
on web services (ICWS). Los Alamitos, CA: IEEE, 2017, pp. 33–40.

[40] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen,
H. Dong, X. Qu, and L. Song, “Syslog processing for switch failure
diagnosis and prediction in datacenter networks,” in 2017 IEEE/ACM
25th International Symposium on Quality of Service (IWQoS). Los
Alamitos, CA: IEEE, 2017, pp. 1–10.

[41] J. Kulkarni, S. Joshi, S. Bapat, and K. Jambhali, “Analysis of system
logs for pattern detection and anomaly prediction,” in Proceeding of
International Conference on Computational Science and Applications:
ICCSA 2019. Berlin: Springer-Verlag, 2020, pp. 427–436.

[42] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010.

[43] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Ling, Y. Yang, and M. R. Lyu,
“Adaptive performance anomaly detection for online service systems via
pattern sketching,” in Proceedings of the 44th International Conference
on Software Engineering. New York, NY: ACM, 2022, pp. 61–72.

[44] S. Kim, S. An, P. Chikontwe, and S. H. Park, “Bidirectional rnn-based
few shot learning for 3d medical image segmentation,” in Proceedings
of the AAAI conference on artificial intelligence. Palo Alto, CA: AAAI,
2021, pp. 1808–1816.

[45] M. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, “Machine learning at the network edge: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 8, pp. 1–37, 2021.

[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[47] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014.

[48] N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, Z. Pan, Y. Wu, Z. Feng,
X. Wen, W. Zhang et al., “An empirical investigation of practical log
anomaly detection for online service systems,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. New York,
NY: ACM, 2021, pp. 1404–1415.

[49] Y. Wang, G. Li, Z. Wang, Y. Kang, Y. Zhou, H. Zhang, F. Gao, J. Sun,
L. Yang, P. Lee, Z. Xu, P. Zhao, B. Qiao, L. Li, X. Zhang, and Q. Lin,
“Fast outage analysis of large-scale production clouds with service
correlation mining,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). Los Alamitos, CA: IEEE, 2021, pp.
885–896.

[50] Y. Sun, D. Cheng, T. Yang, Y. Ji, S. Zhang, M. Zhu, X. Xiong, Q. Fan,
M. Liang, D. Pei et al., “Efficient and robust kpi outlier detection
for large-scale datacenters,” IEEE Transactions on Computers, vol. 72,
no. 10, pp. 2858–2871, 2023.

[51] Y. Fu, M. Yan, Z. Xu, X. Xia, X. Zhang, and D. Yang, “An empirical
study of the impact of log parsers on the performance of log-based
anomaly detection,” Empirical Software Engineering, vol. 28, no. 1, p. 6,
2023.

[52] Y. Sui, Y. Zhang, J. Sun, T. Xu, S. Zhang, Z. Li, Y. Sun, F. Guo, J. Shen,
Y. Zhang et al., “Logkg: Log failure diagnosis through knowledge
graph,” IEEE Transactions on Services Computing, 2023.

[53] S. Zhang, Z. Pan, H. Liu, P. Jin, Y. Sun, Q. Ouyang, J. Wang, X. Jia,
Y. Zhang, H. Yang et al., “Efficient and robust trace anomaly detection
for large-scale microservice systems,” in 2023 IEEE 34th International
Symposium on Software Reliability Engineering (ISSRE). Los Alamitos,
CA: IEEE, 2023, pp. 69–79.

[54] C. Zhao, M. Ma, Z. Zhong, S. Zhang, Z. Tan, X. Xiong, L. Yu,
J. Feng, Y. Sun, Y. Zhang et al., “Robust multimodal failure detection
for microservice systems,” in Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. New York,
NY: ACM, 2023, pp. 5639–5649.

[55] B. M. Sundheim, “Overview of the fourth message understanding
evaluation and conference,” NAVAL COMMAND CONTROL AND
OCEAN SURVEILLANCE CENTER RDT AND E DIV SAN DIEGO
CA, Tech. Rep., 1992.

[56] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of statistical mechanics:
Theory and experiment, vol. 2005, no. 09, p. P09008, 2005.

[57] N. Zhao, L. Zhang, B. Du, Q. Zhang, J. You, and D. Tao, “Robust dual
clustering with adaptive manifold regularization,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 11, pp. 2498–2509, 2017.

[58] W. Jin, M. Qu, X. Jin, and X. Ren, “Recurrent event network: Au-
toregressive structure inferenceover temporal knowledge graphs,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Stroudsburg,PA: Association for
Computational Linguistics, nov 2020, pp. 6669–6683.

[59] Z. Han, Z. Ding, Y. Ma, Y. Gu, and V. Tresp, “Learning neural ordinary
equations for forecasting future links on temporal knowledge graphs,” in
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Stroudsburg,PA: Association for Computational
Linguistics, nov 2021, pp. 8352–8364.

[60] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishna-
murthy, A. Smola, and A. McCallum, “Go for a walk and arrive at the
answer: Reasoning over paths in knowledge bases using reinforcement
learning,” in International Conference on Learning Representations.
OpenReview.net, 2018.

[61] Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid clustering
of kpis for large-scale anomaly detection,” in 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). Los Alamitos,
CA: IEEE, 2018, pp. 1–10.

[62] Z. Li, W. Chen, and D. Pei, “Robust and unsupervised kpi anomaly de-
tection based on conditional variational autoencoder,” in 2018 IEEE 37th
International Performance Computing and Communications Conference
(IPCCC). Los Alamitos, CA: IEEE, 2018, pp. 1–9.

[63] Google, “Container advisor,” 2024. [Online]. Available: https://github.
com/google/cadvisor

[64] Elastic, “Elasticsearch,” 2024. [Online]. Available: https://www.elastic.
co/

[65] C. N. C. Foundation., “Jaeger,” 2024. [Online]. Available: https:
//www.jaegertracing.io/

Shenglin Zhang received B.S. in network en-
gineering from the School of Computer Science
and Technology, Xidian University, Xi’an, China,
in 2012 and Ph.D. in computer science from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 2017. He
is currently an associate professor with the College
of Software, Nankai University, Tianjin, China. His
current research interests include failure detection,
diagnosis, and prediction for service management.
He is an IEEE Member.

Yongxin Zhao received her B.S. and M.S. degrees in
software engineering from the College of Software,
Nankai University, Tianjin, China, in 2021 and 2024,
respectively. She is currently a Ph.D. student at
the College of Software, Nankai University, Tianjin,
China. Her research interests include failure detec-
tion and failure diagnosis.

https://workshop.aiops.org
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://www.elastic.co/
https://www.elastic.co/
https://www.jaegertracing.io/
https://www.jaegertracing.io/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Sibo Xia received his B.S. degree in software
engineering from the College of Software, Nankai
University, Tianjin, China, in 2022. He is currently
a Ph.D. student at the College of Software, Nankai
University. His research interests include anomaly
detection and failure diagnosis.

Shirui Wei received her B.S. in software engineer-
ing from the College of Software, Nankai University,
Tianjin, China, in 2023. She is currently a master
student at the National Astronomical Observatories,
Chinese Academy of Sciences, Beijing, China. Her
research interests include astroinformatics and vir-
tual observatories.

Y. Sun et al.: HotSpot: Anomaly Localization for Additive KPIs With Multi-Dimensional Attributes

that it is infeasible to do a fair comparison with [19] in the
evaluation section.

IX. CONCLUSION
For an additive KPI with multi-dimensional attributes, it is
a hard problem to localize the overall KPI’s anomaly to
the root cause, which is one (or more) combination of
attribute values in multiple dimensions. Firstly, we consider
this anomaly localization as a search problem with a huge
space. To deal with the huge search space, our proposed
framework, HotSpot, adopts the MCTS approach (the first
time in anomaly localization literature) whose action value
is our novel potential score based on the ‘‘ripple effect’’,
which captures how anomalies propagate from the root cause
throughout the aggregation hierarchy. In addition, we propose
a hierarchical pruning approach to further reduce the search
space. Our experiments based on the data from a real-world
search engine show that HotSpot achieves much better accu-
racy than previous approaches. Our operational experiences
show that HotSpot can reduce the localization time from
about more than 1 hour in manual efforts to less than 20 sec-
onds, and that HotSpot is an approach generally applicable to
the anomaly localization for additive KPI metrics.

REFERENCES
[1] R. Bhagwan et al., ‘‘Adtributor: Revenue debugging in advertising sys-

tems,’’ inProc. 11thUSENIX Symp. Netw. Syst. Design Implement. (NSDI),
2014, pp. 43–55.

[2] Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang, ‘‘iDice: Problem identification
for emerging issues,’’ in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 214–224.

[3] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[4] C. B. Browne et al., ‘‘A survey of Monte Carlo tree search methods,’’ IEEE
Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[5] D. Silver et al., ‘‘Mastering the game of Go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] S.-B. Lee et al., ‘‘Threshold compression for 3G scalable monitoring,’’ in
Proc. IEEE INFOCOM, Mar. 2012, pp. 1350–1358.

[7] L. Kocsis and C. Szepesvári, ‘‘Bandit based Monte-Carlo planning,’’ in
Proc. Eur. Conf. Mach. Learn., 2006, pp. 282–293.

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer, ‘‘Finite-time analysis of the
multiarmed bandit problem,’’ Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[9] A. Soule, K. Salamatian, and N. Taft, ‘‘Combining filtering and statistical
methods for anomaly detection,’’ in Proc. 5th ACM SIGCOMM Conf.
Internet Meas., 2005, p. 31.

[10] List of HTTP status codes. Accessed: Oct. 1, 2017. [Online]. Available:
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#4xx_Client_
errors

[11] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, ‘‘Pinpoint:
Problem determination in large, dynamic Internet services,’’ in Proc. Int.
Conf. Depend. Syst. Netw. (DSN), Jun. 2002, pp. 595–604.

[12] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, ‘‘IP fault
localization via risk modeling,’’ in Proc. 2nd Conf. Symp. Netw. Syst.
Design Implement., vol. 2. 2005, pp. 57–70.

[13] S. Kandula, D. Katabi, and J.-P. Vasseur, ‘‘Shrink: A tool for failure
diagnosis in IP networks,’’ in Proc. ACM SIGCOMM Workshop Mining
Netw. Data, 2005, pp. 173–178.

[14] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, ‘‘Detection
and localization of network black holes,’’ in Proc. 26th IEEE Int. Conf.
Comput. Commun. (INFOCOM), May 2007, pp. 2180–2188.

[15] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, ‘‘Towards highly reliable enterprise network services via infer-
ence of multi-level dependencies,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 13–24, 2007.

[16] H. Yan et al., ‘‘Argus: End-to-end service anomaly detection and localiza-
tion from an ISP’s point of view,’’ in Proc. IEEE INFOCOM, Mar. 2012,
pp. 2756–2760.

[17] B. Nguyen, Z. Ge, J. Van der Merwe, H. Yan, and J. Yates, ‘‘Absence:
Usage-based failure detection in mobile networks,’’ in Proc. 21st Annu.
Int. Conf. Mobile Comput. Netw., 2015, pp. 464–476.

[18] D. Liu et al., ‘‘FOCUS: Shedding light on the high search response time in
the wild,’’ in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

[19] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J.Wang, and H. Yan, ‘‘Detecting and
localizing end-to-end performance degradation for cellular data services,’’
in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

YONGQIAN SUN received the B.S. degree in sta-
tistical specialty from Northwestern Polytechnical
University in 2012. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science, Tsinghua University, Beijing, China. His
current research interests include anomaly detec-
tion, root cause localization, and high performance
switching in datacenter.

YOUJIAN ZHAO received the B.S. degree from
Tsinghua University in 1991, theM.S. degree from
the Shenyang Institute of Computing Technology,
Chinese Academy of Sciences, in 1995, and the
Ph.D. degree in computer science from Northeast-
ern University, China, in 1999. He is currently a
Professor with the Computer Science Department,
TsinghuaUniversity. His research interests include
high speed Internet architecture, switching and
routing, and high-speed network equipment.

YA SU received the B.S. degree from the Uni-
versity of Electronic Science and Technology of
China in 2016. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Tsinghua University, Beijing, China. His current
research interests include data analysis, model
development, and machine learning.

DAPENG LIU received the B.S. degree from the
Harbin Institute of Technology in 2010 and the
Ph.D. degree from Tsinghua University, Beijing,
China, in 2016. He is currently a Senior Engineer
at Baidu, Inc. His current research interests include
monitoring, anomaly detection and troubleshoot-
ing, data analysis, and machine learning.

10922 VOLUME 6, 2018

Yongqian Sun received the B.S. degree in sta-
tistical specialty from Northwestern Polytechnical
University, Xi’an, China, in 2012, and Ph.D. in
computer science from the Department of Computer
Science and Technology, Tsinghua University, Bei-
jing, China, in 2018. He is currently an associate
professor with the College of Software, Nankai Uni-
versity, Tianjin, China. His research interests include
anomaly detection and root cause localization in
service management.

Chenyu Zhao received her B.S. and M.S. degrees in
software engineering from the College of Software,
Nankai University, Tianjin, China, in 2020 and 2023,
respectively. Her research interests are focused on
anomaly detection and root cause analysis.

Shiyu Ma received her B.S. degree in software
engineering from the College of Software, Nankai
University, Tianjin, China, in 2022. She is currently
a master’s student at the College of Software, Nankai
University. Her research interests include failure
diagnosis and root-cause localization.

Junhua Kuang received his B.S. degree in software
engineering from the College of Software, Nankai
University, Tianjin, China, in 2024. He is currently a
master’s student at the College of Software, Nankai
University. His research interests include anomaly
detection and anomaly localization.

Bolin Zhu received his B.S. in software engineering
from the College of Software, Nankai University,
Tianjin, China, in 2023. He is currently a master’s
student in the Computer Science and Technology
Department, Nanjing University. His research inter-
ests include the reasoning of large language models.

Lemeng Pan received his Ph.D. in Statistics from
the University of Maryland College Park, Maryland,
USA. He is currently a research scientist at Huawei
Technologies Co., Ltd.

Yicheng Guo received his B.S. degree in particle
and nuclear physics from University of Science and
Technology of China in 2014, and Ph.D. degree in
particle and nuclear physics from the Department of
Modern Physics, University of Science and Technol-
ogy of China, Hefei, China, in 2019. He is currently
a senior engineer at Huawei Technologies Co., Ltd.

 

Dan Pei received the B.E. and M.S. degrees in
computer science from the Department of Computer
Science and Technology, Tsinghua University, Bei-
jing, China, in 1997 and 2000, respectively, and the
Ph.D. degree in computer science from the Com-
puter Science Department, University of California,
Los Angeles (UCLA) in 2005. He is currently an
associate professor in the Department of Computer
Science and Technology at Tsinghua University, Bei-
jing, China. His research interests include network
and service management in general. He is an IEEE

senior member and an ACM senior member.


	Introduction
	Related Work
	Motivation and Problem Statement
	Motivation
	The Role of Metric in Failure Diagnosis
	The Role of Log in Failure Diagnosis
	The Role of Trace in Failure Diagnosis
	Multimodal Data Fusion

	Problem Statement

	Preliminaries
	Temporal Knowledge Graph
	R-GCN
	GRU

	APPROACH
	Overview
	Multimodal Temporal Knowledge Graph Construction
	Microservice-Oriented Graph Embedding
	Failure Diagnosis
	Online Diagnosis and Update
	Computational Complexity Analysis

	Evaluation
	Experimental Setup
	Overall Performance (RQ1)
	Contribution of Key Components (RQ2)
	Contribution of Each Modality (RQ3)
	Computational Efficiency (RQ4)
	Effect of Hyperparameters (RQ5)

	Discussion
	Lessons Learned
	Data Collection Granularity
	Effectiveness
	Flexibility
	Scalability

	Threats to Validity
	Limitations

	CONCLUSION
	References
	Biographies
	Shenglin Zhang
	Yongxin Zhao
	Sibo Xia
	Shirui Wei
	Yongqian Sun
	Chenyu Zhao
	Shiyu Ma
	Junhua Kuang
	Bolin Zhu
	Lemeng Pan
	Yicheng Guo
	Dan Pei


