
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Efficient Multivariate Time Series Anomaly Detection Through Transfer
Learning for Large-Scale Software Systems

YONGQIAN SUN, Nankai University, China

MINGHAN LIANG, Nankai University, China

SHENGLIN ZHANG∗, Nankai University, China

ZEYU CHE, Nankai University, China

ZHIYAO LUO, Nankai University, China

DONGWEN LI, Nankai University, China

YUZHI ZHANG, Nankai University, China

DAN PEI, Tsinghua University, China

LEMENG PAN, Huawei Technologies Co., Ltd, China

LIPING HOU, Huawei Technologies Co., Ltd, China

Timely anomaly detection of multivariate time series (MTS) is of vital importance for managing large-scale software systems. However,
many deep learning-based MTS anomaly detection models require long-term MTS training data to achieve optimal performance,
which often conflicts with the frequent pattern changes observed in software systems. Moreover, the training overhead of vast MTS in
large-scale software systems is unacceptably high. To address these issues, we design OmniTransfer , a model-agnostic framework that
combines weighted hierarchical agglomerative clustering with an adaptive transfer learning strategy, making many state-of-the-art
(SOTA) MTS anomaly detection models efficient and effective. Extensive experiments using real-world data from a large web content
service provider and a network operator show that OmniTransfer significantly reduces the model initialization time by 46.49% and the
training cost by 74.51%, while maintaining high accuracy in detecting anomalies.

CCS Concepts: • Software and its engineering → Maintaining software.

Additional Key Words and Phrases: Transfer Learning, Multivariate Time Series, Multivariate Time Series Clustering, Anomaly
Detection

∗S. Zhang is the corresponding author.

Authors’ addresses: Yongqian Sun, sunyongqian@nankai.edu.cn, Nankai University, Tianjin, China; Minghan Liang, minghanliang@mail.nankai.edu.cn,
Nankai University, Tianjin, China; Shenglin Zhang, ShenglinZhang@nankai.edu.cn, Nankai University, Tianjin, China; Zeyu Che, czy@mail.nankai.edu.cn,
Nankai University, Tianjin, China; Zhiyao Luo, luozhiyao@mail.nankai.edu.cn, Nankai University, Tianjin, China; Dongwen Li, lidongwen@mail.nankai.
edu.cn, Nankai University, Tianjin, China; Yuzhi Zhang, zyz@nankai.edu.cn, Nankai University, Tianjin, China; Dan Pei, peidan@tsinghua.edu.cn, Tsinghua
University, Beijing, China; Lemeng Pan, panlemeng@huawei.com, Huawei Technologies Co., Ltd, Shenzhen, China; Liping Hou, houliping1@huawei.com,
Huawei Technologies Co., Ltd, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Yongqian Sun, et al.

1 32

Temporal Dimension

Time(day)

M
et

ri
cs

M
u
lt

iv
ar

ia
te

 T
im

e
S

er
ie

s
Periodicity

Aperiodicity

Anomalies

Noise

Fig. 1. The MTS of entities in large-scale IT infrastructure.

ACM Reference Format:
Yongqian Sun, Minghan Liang, Shenglin Zhang, Zeyu Che, Zhiyao Luo, Dongwen Li, Yuzhi Zhang, Dan Pei, Lemeng Pan, and Liping
Hou. 2024. Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems. 1, 1
(October 2024), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

With the rapid development of the Internet, the scale of software systems has grown exponentially. There are thousands
of entities such as containers, virtual machines, and physical machines deployed in IT infrastructure[4, 11, 25, 27, 43, 44].
Anomaly detection is critical to the quality of service (QoS) management since it helps operators identify anomalous
behaviors, improve system stability, and reduce economic losses[27, 34, 41, 47]. Operators configure multiple monitoring
metrics for each entity to monitor the running status. These metrics are usually collected continuously at predefined
intervals. As shown in Fig. 1, the monitored metrics of an entity form a multivariate time series (MTS), including system
metrics (e.g., CPU load, memory usage, network throughput, and disk I/O) and user-perceived metrics (e.g., average
response latency, page visits, and access error rates).

Recently, a series of deep learning-based MTS anomaly detection models have been proposed[2, 7, 9, 22, 23, 33, 38, 53],
but they suffer from some limitations. First, they need a long initialization time 1 to perform well. For instance,
OmniAnomaly [33] and InterFusion [23] require several weeks of training data. However, operators want to reduce
the initialization time when there is a pattern change, such as configuration upgrades or adding new entities. Second,
training a model for each entity is impractical as large-scale IT infrastructures have massive entities. Third, the optimal
algorithm varies for different scenarios. For example, GDN [9] focuses on the correlation between metrics, while
InterFusion [23] also considers temporal dependencies. Therefore, a framework that can effectively reduce initialization
time and training overhead and be effective for all models is needed.
1MTS’s model initialization time[28] is defined as the time lag between when the model is launched and when it becomes well trained, mainly influenced
by the length of historical data the model needs.

Manuscript submitted to ACM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems3

Time(day)

M
u

lt
iv

ar
ia

te
 T

im
e

S
er

ie
s

Fig. 2. An example of MTS phase shifts: two MTS are similar in shape but have a time lag.

There have been some works trying to address the challenges above. CTF[35] utilizes clustering and transfer learning
to reduce the training overhead of large-scale MTS anomaly detection. Nevertheless, CTF still requires a long model
initialization time and only works for the RNN+VAE models[33]. OmniCluster[45] is a model-agnostic framework
for large-scale MTS anomaly detection that reduces the training overhead by clustering. However, it is suitable for
long-term MTS (i.e., seven days), resulting in a longer initialization time for anomaly detection. Additionally, CTF and
OmniCluster only train the final fine-grained model at the cluster level, which may not apply to all entities within a
cluster due to minor shape differences.

Nevertheless, clustering combined with transfer learning is a promising approach to solve these problems [46]. By
reducing the number of models through clustering, the training overhead is reduced. Then, fine-tuning the pre-trained
model to a new pattern with short-term data can reduce the initialization time. Note that we denote the MTS and
models in the source domain as the base MTS and base models, respectively, and the MTS and models in the target
domain as the target MTS and target models. However, there are still some challenges when applying clustering and
transfer learning.

(1) High diversity of MTS. As shown in Fig. 1 and Fig. 2, the diversity of MTS includes patterns, irregular noise,
anomalies, and phase shifts. MTS can be generated by various entities with diverse patterns (i.e., different periodicity,
amplitude, trend, etc.). Large-scale software systems use different servers to serve users across a wide geographical
area, resulting in similar MTS patterns with a time delay. These diversities can affect the distance calculation of MTS
and lead to poor clustering performance.

(2) Aperiodic metrics may reduce the clustering performance. Fig. 1 displays the MTS of different entities. The
metrics in the top MTS are with different strengths of periodicity. Many user-perceived metrics and system metrics
related to user behavior exhibit periodicity. However, there are also aperiodic metrics that are unrelated to user behavior.
The first three metrics have regular shapes and strong periodicity, which are important for identifying patterns and
clustering. The last three metrics do not have regular shapes and contain frequent noise, which will interfere with
distance calculation. OmniCluster[45] uses a fixed empirical threshold to remove weak periodicity metrics and keep
strong periodicity metrics directly. It may delete metrics with key information and keep metrics with interference. For

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Yongqian Sun, et al.

example, the fourth and fifth metrics in Fig. 1 are challenging to define the strength of periodicity they are. It is vital to
keep as much information as possible while reducing the interference of aperiodic metrics on clustering.

(3) Selection of transfer strategy. There are various strategies for transferring parameters from the base model to
the target model. Full parameter transfer and partial parameter transfer strategy are two typical strategies. In most
cases, we have the following three observations: (a) The distances between the base and target MTS are various, making
the optimal transfer strategy of each target MTS different. (b) The optimal transfer strategies for different models are
diverse for the same dataset. (c) The optimal transfer strategies for different datasets are diverse for the same model.
Therefore, we need to use adaptive transfer strategies to achieve better detection performance.

In this paper, we propose OmniTransfer , an efficient, unsupervised, and model-agnostic framework for MTS anomaly
detection. In the offline training stage, OmniTransfer uses a weighted hierarchical agglomerative clustering (W-HAC)
method to cluster the data. It can handle data diversity issues and mitigate the impact of aperiodic metrics. Then,
OmniTransfer trains a base model for each cluster. When transferring the model to a new pattern MTS, OmniTransfer

assigns it to the nearest cluster and fine-tunes the base model by an adaptive transfer strategy.
The main contributions of our work are as follows:
(1) We propose OmniTransfer , an efficient, unsupervised, and model-agnostic framework for MTS anomaly detection

that can significantly reduce the initialization time and the training overhead for large-scale IT infrastructure. Omni-

Transfer uses clustering and transfer learning techniques to transfer the knowledge from well-trained base models to
target models. To the best of our knowledge, this is the first model-agnostic framework based on transfer learning for
state-of-the-art (SOTA) MTS anomaly detection models.

(2) We propose innovative strategies to improve the effectiveness of diversified MTS clustering. We weight metrics
based on periodicity to reduce the impact of non-periodic metrics and use phase alignment to eliminate the impact of
phase shifts.

(3) We propose an adaptive transfer strategy. It can automatically select either full or partial parameter transfer
strategy according to the distance between the target MTS and the base MTS cluster centroid.

(4) We apply OmniTransfer on ten SOTA anomaly detection models and conduct experiments with real-world datasets
from two top-tier enterprises. Experimental results show that OmniTransfer reduces the initialization time by 46.49%
and the training cost by 74.51% on average while maintaining high accuracy in detecting anomalies. Furthermore, we
make our source code and the labeled datasets publicly available[1] to make it easier for researchers to understand our
work.

The rest of this paper is organized as follows. Section 2 introduces our motivation for proposing this framework,
Section 3 discusses the background, Section 4 discusses the details of the method, Section 5 describes our experimental
approach and results, and Section 6 introduces the related work in the same field. Section 7 summarizes lessons learned,
future work, and limitations.

2 MOTIVATION

This section elaborates on our motivations by answering the following three questions:

(1) Why do we need to reduce training overhead?
(2) Why do we need to reduce model initialization time?
(3) Why do we need to provide a general framework?

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems5

Table 1. MTS anomaly detection models’ training overhead.

Model Training Time(1M Entities)

OmniAnomaly[33] 1.57 years
InterFusion[23] 1.41 years
SDFVAE[7] 5.28 weeks
DAGMM[53] 6.09 months
USAD[2] 5.72 weeks
GDN[9] 2.19 weeks

TranAD[38] 4.89 weeks
DOMI[34] 5.15 weeks

SLA-VAE[15] 6.07 weeks
MTAD-GAT[49] 3.22 months

(a
)

V
al

u
e

Train Test Time

Entity Change

(b
)

V
al

u
e

(c
)

V
al

u
e

Simulated Training Data for One Day

Split of Training Data and Test Data

Fig. 3. An example of the impact of addition and change of software systems on model initialization time.

2.1 Why do we need to reduce training overhead

Deep learning requires the same distribution between the training and test data, and it is necessary to train a model
for each entity because of different data distributions. It will generate a large number of models and a huge training
overhead. Such an unacceptable training overhead prevents deep learning-based MTS anomaly detection models from
being applied to large-scale software systems.

2.2 Why do we need to reduce model initialization time?

Due to the rapid expansion of the Internet, additions and changes of web service entities become more and more
frequent[21, 29, 48, 50]. The additions of web service entities generally refer to the horizontal expansion of the service,
deploying the original service to a new node, and the monitoring data on the new node lacks the historical training data
in a short period. The change of the web service entity includes the release, upgrade, and configuration modification of
the service, which will lead to changes in the service running status. Changes, such as less traffic and lower CPU usage
due to configuration modifications, are expected.

We use two cases to illustrate the impact of the addition and change of software systems on model initialization time
in Fig. 3. Fig. 3a shows a typical entity which uses sufficient data for five days to train the model. For the first case,

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Yongqian Sun, et al.

Va
lu

e

Time

Anomaly Type

Fig. 4. Five common anomaly types and the result of six SOTA MTS anomaly detection performances for different anomaly types.

Table 2. MTS anomaly type.

Anomaly Type Characteristic

Global Anomalies Exhibiting extreme values compared
to all the remaining data.

Contextual Anomalies Deviating from the neighboring time points.

Pattern Anomalies Having different basic patterns
compared to normal patterns.

Frequency Anomalies Displaying unusual frequency compared
to the overall frequency.

Trend Anomalies Deviating from the underlying
trend of the time series.

Fig. 3b simulates the scenario of insufficient training data when a new entity is added, which starts on the fifth day
and has only one day of data for training. Generally, we use 𝐹1 to evaluate the anomaly detection (§5.1 for details). We
use OmniAnomaly[33] to get 𝐹1 corresponding to the three types of entities corresponding to Fig. 3 a, b, and c on the
entire dataset. The 𝐹1 of the entities of type a is 0.99, while the 𝐹1 of the entities of type b is only 0.70. Therefore, the
model training is insufficient due to the lack of training data. For the second case, the entities of type c have a shift
change in the training data, resulting in the inconsistency between the distribution of some training data and test data.
Correspondingly, the 𝐹1 of this type is 0.31, which is particularly poor.

The above two cases fully illustrate the problem of poor detection performance due to the long model initialization
time in the scenarios of addition and change of software systems. Thus proving the necessity of reducing the model
initialization time for anomaly detection.
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems7

2.3 Why do we need to provide a general framework?

Different deep models use dedicated designs to detect MTS anomalies in different scenarios. Existing experimental
results show that many SOTA models perform differently on different MTS anomaly types. We cite the experimental
results of empirical research [10] on many public datasets. The research introduces five anomaly types, shown in Table
2. The upper part of Fig. 4 shows a demo of different anomaly types. The lower part of Fig. 4 shows the detection
performance of six SOTA models on five anomaly types. The best-performing model is different for each anomaly
type. These anomaly types may correspond to different business scenarios. Global anomalies often correspond to
obvious business interruptions. For example, excessive traffic causes the service to be temporarily unavailable, often
accompanied by an abnormal increase in global resource indicators such as CPU and memory. Trend anomalies may
indicate resource configuration changes, modifying the JVM heap and stack configuration, causing the memory size
occupied by the new service to steadily increase compared to the occupancy before the change.

Different models have distinct characteristics, making each one suitable for handling different types of anomalies.
Therefore, the primary objective of this paper is not to investigate the detection capabilities of various anomaly detection
models for different types of anomalies. Instead, it aims to propose a general framework that can enhance the transfer
learning capabilities of each anomaly detection algorithm.

3 BACKGROUND

3.1 MTS Anomaly Detection and Clustering

MTS anomaly detection. The collected data of each entity forms an MTS with M metrics and N time points as a
matrix 𝑋 ∈ 𝑅𝑀×𝑁 . Observing longer data segments reveals discernible specific patterns within MTS. Whenever data
deviations from the patterns, it signals an anomaly, potentially indicating a fault in the entity. For each time 𝑡 , it is
necessary to determine whether 𝑋𝑡 ∈ 𝑅𝑀 is an anomaly. To quickly catch these anomalies, we usually take a data
segment 𝑋ℎ = (𝑋𝑡−𝑊 , 𝑋𝑡−𝑊 +1, ..., 𝑋𝑡) of length𝑊 to assist in studying the patterns and further identifying whether
𝑋𝑡 is an anomaly [9, 33]. Note that both predicted-based and reconstruction-based methods can be represented by such
data segments.

MTS anomaly detection models. There have been many SOTA MTS anomaly detection models proposed, which
we can categorize based on their structures. The first type is models consisting of fully connected layers (i.e., Dense
layers) [2, 53], typically using a reconstruction-based architecture as depicted in Fig. 5a. The second type is models
consisting of specialized layers such as recurrent neural network (RNN), convolutional neural network (CNN), graph
neural network (GNN), and attention [7, 9, 15, 23, 33, 34, 38, 49]. These models usually use either a reconstruction-based
or predicted-based architecture and are shown in Fig. 5b and Fig. 5c. The specialized layers can capture more effective
features for anomaly detection. For instance, CNN, attention, and GNN help capture inter-metric dependence, while
RNN can capture the temporal dependence of MTS.

MTS clustering methods. There have been many studies on MTS clustering, which can be categorized into two
types: traditional clustering methods and deep learning-based methods. The first type of method typically employs
either the original MTS or low-dimensional representations extracted by traditional machine learning techniques such
as principal component analysis (PCA) and inverse correlation variance transformation [13, 19, 20, 40]. Dynamic time
warping (DTW), shape-based distance (SBD), and Euclidean distance are often used to measure the difference between
MTS. However, these methods usually can not handle the interference of aperiodicity. Meanwhile, DTW and SBD
require high computation overhead. The second type of method [35, 45] uses low-dimensional representations extracted

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Yongqian Sun, et al.

'x

Dense6

Dense5

Dense4

Dense3

Dense2

Dense1

x

z

Decoder

Encoder

(a)

x

'x

RNN or

CNN or

Attention

Dense

z

RNN or

CNN or

Attention

Dense

Decoder

Encoder

(b)

y

x

GNN

Attention

or RNN

or CNN

Dense

(c)

Fig. 5. The neural network architecture of MTS anomaly detection models. (a) Reconstruction-based models with the same modules.
(b) Reconstruction-based models with different modules. (c) Prediction-based models with different modules.

by deep learning-based models for clustering. The low-dimensional representations are usually free of noise and can
improve clustering efficiency [35, 45]. However, these low-dimensional features lose much information and are usually
relevant to subsequent tasks, for example, anomaly detection. Moreover, training deep learning-based models requires
significant computing and time resources. To overcome these limitations, we propose a task-agnostic clustering method,
which ensures the efficiency, effectiveness, and robustness of clustering.

3.2 Transfer Learning

Transfer learning, which focuses on transferring knowledge across domains, is a promising machine learning methodol-
ogy to solve problems such as insufficient training data and time-consuming training processes[52]. Transfer learning
utilizes the knowledge from sufficient source domain data to help the task on the target domain lacking training data.
Surveys[31, 52] summarize approaches to transfer learning into four approaches based on “what to transfer”. They are
the instance-transfer approach, the feature-representation-transfer approach, the parameter-transfer approach, and the
relational-knowledge-transfer approach. The instance-transfer approach reuses part of the source domain’s data by
reweighting or sampling importance in the target domain. The feature-representation-transfer approach improves the
performance of the target task by learning a good feature representation from the source domain to the target domain.
The parameter-transfer approach aims to share model parameters and prior distributions between the source and the
target domains. The relational-knowledge-transfer approach aims to discover the statistical correlation between the
source and the target domain data.

This paper uses the parameter-transfer approach, combining pre-training and fine-tuning. Transferring the pre-
trained model to the target task is usually better than training from scratch[37], which has three main reasons: (1) The
performance of the initial model is generally better than that of the randomly initialized model; (2) The learning speed
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems9

Offline Training

Transfer Learnning Online Detection

Base MTS

Target MTS H
Matching to C

Cluster C

Shape Library

Base Model
of Cluster C

Fine-tuned Model
for Target MTS H

Detection

Results

Base Model

Training

Adaptive

Transfer

Anomaly

Detection

W-HAC

Fig. 6. The overview of OmniTransfer .

of the fine-tuning is faster than learning from scratch, and the convergence is better; (3) The final performance of the
model has better generalizability than training only with target domain data.

However, fully transferring parameters may lead to negative transfer due to the differences in the prior distributions
of the source and target domains [5]. To address this, AT-GP [5] and AnoTransfer [46] propose adaptive transfer
strategies to automatically select between full parameter transfer and partial parameter transfer strategy. AnoTransfer
uses the normalized cross-correlation to measure the distance among the KPIs. AT-GP formulates the transfer learning
problem as a unified Gaussian Process model. They both avoid negative transfer during the transfer learning and
achieve better generalizability.

4 APPROACH

4.1 Overview

We propose a model-agnostic framework, named OmniTransfer , to reduce initialization time and training overhead of
MTS anomaly detection. Fig.6 shows the overview of OmniTransfer , which includes three main stages: offline training,
transfer learning, and online detection.

The offline training stage comprises two steps: weighted hierarchical agglomerative clustering (W-HAC) and base
model training. Fig. 7 illustrates the process of W-HAC. To reduce interference from aperiodic metrics, we weigh the
contribution of metrics to clustering based on their strength of periodicity. Besides, we address the problem of the MTS
phase shifts. Thus, W-HAC can group MTS with similar shapes, addressing the first and second challenges. In the base
model training stage, OmniTransfer trains a base model that can be used for transfer learning by using several MTS
segments near the cluster centroid.

The target MTS undergoes transfer learning and online detection stages sequentially. First, we match the short-term
data of the target MTS to an appropriate cluster and then use an adaptive transfer strategy to fine-tune the corresponding
base model. The adaptive transfer strategy selects the best transfer strategy based on the distance between the target
MTS and its corresponding cluster centroid, which solves the third challenge. Finally, in the online detection stage, we
use the fine-tuned model to detect anomalies in the target MTS.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Yongqian Sun, et al.

Offline

MTS

Baseline

Extraction

Periodic

Weight

Sliced

Segments

Phase

Alignment
Clustering

Fig. 7. The overall process of W-HAC.

4.2 Preprocessing

Data preprocessing is crucial for offline training, transfer learning, and online detection stages since it is hard to
guarantee that all monitoring data is ideally collected in large-scale IT infrastructure. According to the previous
experience [46], the proportion of missing points is typically less than 5%. We can fill in these missing points directly
by utilizing linear interpolation. Another widely used preprocessing step for time series is standardization, which is
useful for eliminating the impact of amplitude by scaling the data to a standard normal distribution. The process of
standardization is given by (1),

X
′ 𝑗 =

X𝑗 −𝑚𝑒𝑎𝑛(X𝑗)
𝑠𝑡𝑑 (X𝑗)

(1)

where 𝑋 𝑗 ∈ 𝑅𝑁 is the 𝑗th metric after filling in the missing value, and X
′ 𝑗 ∈ 𝑅𝑁 is the 𝑗th metric after standardization.

4.3 Offline Training

4.3.1 Weighted Hierarchical Agglomerative Clustering. The W-HAC (illustrated in Fig. 7) aims to reduce the diversity of
MTS and thus lower the training overhead of anomaly detection models. The specific steps of W-HAC are as follows:

Baseline extraction.Noise and anomalies can significantly impact the normal pattern of MTS and increase the diversity
of MTS patterns, as mentioned in the first challenge. To address this issue, we extract the baselines (normal patterns) of
MTS by removing extreme values and applying a moving average. Extreme values are more likely to be anomalies and
their ratio is often less than 5%[24, 45, 46]. Therefore, W-HAC removes the top 5% data that deviates from the mean
value and then uses linear interpolation to fill the vacancies. Then, W-HAC applies the moving average to reduce the
impact of noise.

Periodic weights. To determine the strength of periodicity of each metric in MTS, we use the cumulative mean
normalized difference (𝐶𝑀𝑁𝐷)[8], which is an improved version of the autocorrelation-based approach and well suited
for long-term data. 𝐶𝑀𝑁𝐷 is given by (2), where 𝜏 is an empirical candidate periodicity value, such as one hour, one
day, one week, or one month.

𝑑 (𝜏) =
𝑁−𝜏∑︁
𝑖=1

(u𝑖 − u𝑖+𝜏)2

𝐶𝑀𝑁𝐷 (𝜏) = 𝑑 (𝜏)
[(1/𝜏)∑𝜏𝑗=1 𝑑 (𝑗)]

(2)

For each metric in the MTS, we calculate the 𝐶𝑀𝑁𝐷 and then average them across the entity dimension to obtain
P ∈ 𝑅𝑀 , where𝑀 is the number of metrics in the MTS. The smaller P𝑗 , the stronger the periodicity of the 𝑗 th metric. We
aim to assign high weights to strong periodic metrics in clustering. Thus, we compute the periodic weight PW ∈ R𝑀

by PW = P−𝛼 , where 𝛼 is a hyperparameter. A larger value of 𝛼 leads to a greater weight difference between metrics
with different levels of periodicity.
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems11

Segmentation of MTS. After computing the baseline and periodic weights, we slice MTS into short-term segments,
denoted as MTS𝑠𝑒𝑔 ∈ 𝑅𝑀×𝑛 , that match the length of the target MTS. Here, 𝑛 represents the time points after
segmentation.

Instead of MTS entities, we use MTS segments as input for clustering and transfer learning to reduce model
initialization time and training cost. The use of shorter MTS segments allows for the selection of suitable clusters
corresponding to the base model. When performing anomaly detection for a new MTS data segment, the models can be
fine-tuned well with less data. Moreover, using complete entities for transfer learning requires longer data for cluster
matching and model fine-tuning. Additionally, the entity data needs to be as consistent in length as possible. Clustering
entities of different lengths tend to be less accurate.

Phase alignment. We then combine PW to align the phase shift because discussing the phase shift for aperiodic
metrics is less meaningful.

First, we get the pivot PVT of the entire offline segments D according to (3). The weighted Euclidean distance
between twoMTS𝑠𝑒𝑔 can be calculated by (4).

PVT = arg min
A∈D

∑︁
B∈D

𝐸𝑢𝑐𝑤 (A,B) (3)

𝐸𝑢𝑐𝑤 (A,B) = (A − B)2 × PW (4)

Next, we use weighted normalized cross-correlation (𝑁𝐶𝐶𝑤) to estimate the best phase shift for all MTS𝑠𝑒𝑔 to align to
PVT. 𝑠 ∈ [−𝑛 + 1, 𝑛 − 1] denotes the possible phase shifts. To retain short-term information, we use (5) to wrap round
MTS.

A(𝑠) = (A1,A2, . . . ,A𝑛)

B(𝑠) =
{

(B𝑛−𝑠+1, . . . ,B𝑛,B1, . . . ,B𝑛−𝑠) 𝑠 ≥ 0,
(B−𝑠+1, . . . ,B𝑛,B1, . . . ,B−𝑠) 𝑠 < 0.

(5)

𝑁𝐶𝐶𝑤 reaches the maximum value when 𝑠 is close to the real phase shift, which is given by (6).

𝐶𝐶𝑤 (A,B, 𝑠, 𝑗) =
𝑛∑︁
𝑖=1

A(𝑠) 𝑗
𝑖
· B(𝑠) 𝑗

𝑖
· PW𝑗

𝑁𝐶𝐶𝑤 (A,B, 𝑠) =
𝑀∑︁
𝑗=1

𝐶𝐶𝑤 (A,B, 𝑠, 𝑗)
| |A(𝑠) 𝑗 | |2 · | |B(𝑠) 𝑗 | |2

(6)

The best phase shift 𝑠∗ obtained by (7).

𝑠∗ = arg max
𝑠∈[−𝑛+1,𝑛−1]

𝑁𝐶𝐶𝑤 (PVT,MTS𝑠𝑒𝑔, 𝑠) (7)

Finally, we align the phase shift 𝑠∗ ofMTS𝑠𝑒𝑔 to getMTS
′
𝑠𝑒𝑔 .

Clustering. OmniTransfer gets the clustering result using hierarchical agglomerative clustering (HAC) and the
weighted Euclidean distance. HAC with average linkage is adopted for the following reasons. (1) The HAC algorithm
is robust to the extreme value because it clusters on the rank of distances rather than the value. (2) Each data in the
cluster have the same effect on the distance measure, making the distance measure transitive. After clustering, several
segments near the cluster centroid are saved for base model training.

4.3.2 Base Model Training. The VAE-based algorithms [7, 23, 33] model the relationship between the latent variable
𝑧 and the observed variable 𝑥 . They typically train their models by optimizing the Evidence Lower Bound (ELBO)

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Yongqian Sun, et al.

described in (8), which is comprised of a reconstruction probability and a regularization term. 𝑝𝜃 is a generative model
that represents the real posterior of the data, while 𝑞𝜙 is an inference model aiming to estimate the posterior. The
𝐷𝐾𝐿 term represents the Kullback-Leibler divergence[18]. On the other hand, AE-based and prediction-based models
[2, 9, 38, 53] focus on reconstructing or predicting the target. These models train by minimizing the difference between
the target and output in (9).

L1 = E𝑞𝜙 (𝑧 |𝑥) [log𝑝𝜃 (𝑥 |𝑧)] − 𝐷𝐾𝐿 [𝑞𝜙 (𝑧 |𝑥) | |𝑝𝜃 (𝑧)] (8)

L2 = MSE(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡) (9)

4.4 Transfer Learning

Transfer preparations. To train the target model for each target MTS, OmniTransfer utilizes a base model 𝐸, which is
selected based on the cluster centroid’s proximity to the target short-term data H ∈ 𝑅𝑀×𝑛 . First, we perform baseline
extraction and phase alignment to get H

′
. Then, we calculate the distance between H

′
and the centroid of each cluster

and select the closest one and its corresponding base model for transfer learning. We use H to fine-tune the base model.
Adaptive transfer strategy. We propose an adaptive transfer strategy that automatically selects whether to transfer

full parameters or partial parameters for each target MTS. When the target MTS and the nearest cluster centroid
are relatively similar, we use the full parameter transfer strategy and fine-tune the entire base model’s parameters
directly. Otherwise, we employ the partial parameter transfer strategy. Specifically, we initialize a target model with
random parameters and load part of the base model’s parameters into the target model. First, we update the remaining
parameters while keeping the transferred parameters fixed. Then we fine-tune all of the parameters of the target model.

Distance measurement. We use a distance measurement to help decide which transfer strategy to select for each
target MTS. The anomaly score measures the deviation between the target data and the normal pattern learned by the
base model. We use the summation across all time points anomaly scores as the distance score. To avoid the impact of
anomalies and noise in the data, we remove the top 5% of the anomaly scores. The distance score is defined as (10),
where 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒

′
𝐸
is obtained by removing extreme values from either (11) or (12).

𝐷𝑖 𝑓 𝑓 𝑆𝑐𝑜𝑟𝑒𝐸 (H) = 𝑠𝑢𝑚(𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒
′
𝐸 (H)) (10)

The threshold value 𝛽 for 𝐷𝑖 𝑓 𝑓 𝑆𝑐𝑜𝑟𝑒 is usually determined by experienced operators or initialized by referring to
some entities in the dataset. Empirically, applying the initial 𝛽 is sufficient to achieve good results. As the data volume
increases, the optimal value for 𝛽 can be updated to further enhance the detection performance.

Transfer layer selection.We adopt the partial parameter transfer strategy when there is a significant difference
between the target MTS and its corresponding base model. We select specific layers based on the models’ capabilities
and characteristics for transferring. As mentioned in § 3.1, these SOTA MTS anomaly detection models fall into two
categories based on their structures. For the former type, their outer layers focus on more general tasks and capture
more generic features [3, 36, 42], while the inner layers are designed to capture more task-specific features [12, 39].
For the latter, the specialized layers (e.g., RNN, CNN, attention, and GNN) capture more generic features, while the
fully connected layers focus more on specific tasks [6, 16, 26, 32, 35]. It is recommended to transfer the parameters of
the outer layers or the specialized layers when adopting the partial parameter transfer strategy, as they learn generic
features that are often not specific to a particular task.

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems13

4.5 Online Detection

We use the fine-tuned model for online detection. For the VAE-based models, their anomaly score corresponds to the
negative reconstruction probability, which is given by (11). log 𝑝𝜃 (𝑥 |𝑧) denotes the reconstruction probability of each
observed variable 𝑥 . The smaller the reconstruction probability, the greater the probability that this data point is an
anomaly. For the AE-based models and prediction-based models, we calculate the anomaly scores according to (12),
which measures the difference between the target and the output. A greater difference indicates a higher probability
that the data point is an anomaly.

In addition, determining the anomaly score threshold is crucial to identify the anomaly points. To obtain the best
results, we use grid search to select the optimal threshold from the available range during evaluation.

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒1 = −E𝑞𝜙 (𝑧 |𝑥) [log𝑝𝜃 (𝑥 |𝑧)] (11)

𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒2 = MSE(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡) (12)

In previous grid search selection of the optimal threshold selection, the selection was based on the test set. We also
prepared validation sets, but in a previous work we used a method called the "Tree Based Pipeline Optimization Tool"
to optimize the machine learning pipeline, this article used a test set to select the best threshold, so this article also used
a test set based approach to select the best threshold.

5 EVALUATION

In this section, we first introduce the experimental setup, including dataset, experiment environment, evaluation
metrics, and hyperparameters of OmniTransfer . Then, we conduct extensive experiments to evaluate the performance
of OmniTransfer and answer the following research questions:

RQ1. How does the effectiveness and efficiency of OmniTransfer compare to baseline methods?
RQ2. How much initialization time can OmniTransfer reduce compared to non-transfer learning methods?
RQ3. How much do the key techniques contribute to the overall performance?
RQ4. How well does the W-HAC perform compared to other clustering methods?
RQ5. How does the transfer strategy threshold influence the performance?

5.1 Experimental Setup

Dataset and environment. In this work, we use two MTS datasets, Dataset1 is derived from the operating systems and
service data of a multitude of servers, which monitors the system software data and application performance data when
the machines provide services to the users. Dataset2 encompasses software system data from wireless base stations of
one of the world’s leading Internet Service Providers (ISPs). It provides a comprehensive reflection of the monitoring
data, capturing both user behavior and service status, offering valuable insights into the performance and operational
dynamics of the wireless communication infrastructure.

More specific details are shown in Table 3. We do not use public datasets (e.g., SWaT and WADI[30], SMD[33], SMAP
and MSL[17]), mainly because the number of entities is too small (i.e., less than 55 entities).

Please note that we only choose 400 entities from millions for evaluation since the labeling is time-consuming.
In real-world scenarios, additions or upgrades are relatively rare occurrences. To simulate MTS pattern changes, we
employ different entities from the original dataset. To be more specific, we randomly choose 50% of the entities for
training models offline, while the remaining 50% represent newly added entities used for transfer learning and online

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Yongqian Sun, et al.

Table 3. Dataset details.

Dataset1 Dataset2

Entity type Web server Wireless base station
Number of entities 400 400
Number of metrics 19 25

Base model training data duration 7 days 14 days
Transfer training data duration 1 day 1 day

Test data duration 2 days 7 days
Anomaly proportion 5.52% 5.18%

Table 4. Hyperparameters settings. 𝑒𝑝𝑜𝑐ℎ𝑏 , 𝑒𝑝𝑜𝑐ℎ𝑓 and 𝑒𝑝𝑜𝑐ℎ𝑝 denote the epochs of base model training, full-parameters transfer
strategy fine-tuning, and partial-parameters transfer strategy fine-tuning, respectively. 𝑙𝑟𝑏 , 𝑙𝑟 𝑓 and 𝑙𝑟𝑝 denote the learning rate
similarly.

Model
Dataset1 Dataset2

𝑒𝑝𝑜𝑐ℎ𝑏 𝑙𝑟𝑏 𝑒𝑝𝑜𝑐ℎ𝑓 𝑙𝑟 𝑓 𝑒𝑝𝑜𝑐ℎ𝑝 𝑙𝑟𝑝 𝛽 𝑒𝑝𝑜𝑐ℎ𝑏 𝑙𝑟𝑏 𝑒𝑝𝑜𝑐ℎ𝑓 𝑙𝑟 𝑓 𝑒𝑝𝑜𝑐ℎ𝑝 𝑙𝑟𝑝 𝛽

OmniAnomaly 50 0.001 10 0.0005 10 0.001 868 50 0.001 10 0.0005 10 0.001 107
InterFusion 10 0.0005 10 0.0003 20 0.0005 807 10 0.0005 10 0.0003 20 0.0005 1039
SDFVAE 100 0.001 10 0.001 20 0.001 2430 100 0.002 20 0.0005 20 0.0005 364
DAGMM 500 0.001 20 0.002 50 0.006 7157 500 0.001 20 0.005 50 0.003 9917
USAD 100 0.001 5 0.0001 24 0.001 223 100 0.001 5 0.0002 10 0.001 132
GDN 50 0.005 10 0.0005 30 0.005 2195 50 0.005 10 0.0005 20 0.005 1152

TranAD 100 0.0005 10 0.0005 20 0.005 199 100 0.0005 10 0.0001 20 0.0001 24
DOMI 100 0.001 10 0.001 20 0.0005 849 100 0.002 10 0.0005 20 0.001 126
SLAVAE 100 0.001 20 0.0005 10 0.001 2164 100 0.0001 20 0.0005 10 0.0005 251

MTAD-GAT 50 0.001 30 0.001 40 0.001 633 30 0.001 10 0.001 40 0.001 247

Table 5. Selected anomaly detection models.

Model Structure Characteristics

OmniAnomaly[33] RNN+VAE For the first time, handling temporal dependence and stochasticity
of MTS and learning robust representation.

InterFusion[23] 1D-CNN+RNN+HVAE Novelly employing HVAE to obtain inter-metric
embeddings and temporal embeddings.

SDFVAE[7] 2D-CNN+RNN+VAE Making use of time invariance in MTS to enhance
the robustness and noise-resistance.

DAGMM[53] AE+GMM Using joint optimization to address the
decoupling problem in the model learning.

USAD[2] AE+GAN The combined use of AE and GAN results in
a more stable and faster model training process.

GDN[9] GNN+Attention GNN can accurately capture the correlations among metrics.

TranAD[38] AE+Attention+GAN Enabling powerful multi-modal feature extraction
and adversarial training improves stability.

DOMI[34] 1D-CNN+GMM+VAE Learning potential representations of machine instances
to capture their normal patterns.

SLAVAE[15] 1D-CNN+RNN+VAE Active learning is employed to update the online model
with a small number of uncertain samples.

MTAD-GAT[49] GNN+Attention Leveraging two parallel graph attention layers to learn the
relationships between different metrics dynamically.

detection. The online data is labeled by experienced operators based on real service faults using the labeling tools
provided by CTF[35]. The source code of OmniTransfer and the datasets are publicly available in [1]. All experiments
are run on a server with two 16C32T Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz, one NVIDIA(R) Tesla(R) V100S, and
192 GB RAM.

Evaluationmetrics. OmniTransfer outputs an anomaly score for each point and determines whether it is an anomaly
by a threshold. Thus, MTS anomaly detection can be regarded as a binary classification problem. We use the 𝐹1 to
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems15

evaluate the effectiveness, which is given by (13). 𝑇𝑃 represents True Positives, 𝐹𝑃 represents False Positives, and 𝐹𝑁

represents False Negatives. The 𝐹1 of each dataset is obtained using the micro-average method. By enumerating all
possible thresholds, we obtain the best 𝐹1 for each model, denoted by 𝐹 ∗1 . Additionally, we record the time required for
model training to evaluate efficiency.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(13)

Hyperparameters.We use the best empirical values for most parameters based on experimental results. Specifically,
We set the sliding window length for the moving average to 12 and 4 for the two datasets, respectively. The exponents
𝛼 for the periodic weights applied to different metrics during clustering are 1 for the two datasets. We use 5 and 20
segments closest to the centroid for each cluster to train the base models for the two datasets, respectively. For all MTS,
we slice them using a sliding window with a length of 60. The epoch and learning rate of each base model training,
full-parameters transfer strategy fine-tuning, and partial-parameters transfer strategy fine-tuning are presented in
Table 4. The best threshold 𝛽 is shown in Table 4.

Point-Adjust strategy. In our experimental evaluation, we employed the Point-Adjust (PA) strategy, a widely
recognized protocol in time-series anomaly detection that adjusts the anomaly predictions by considering the entire
contiguous segment as detected if at least one point within it exceeds the anomaly threshold. This method is particularly
effective in scenarios where the detection of any anomaly within a period is sufficient to trigger necessary actions,
thereby providing a practical approach to assess the performance of our anomaly detection models.

Validation set. In our experimental evaluation, we used the validation set to select the threshold. The first half of
the labeled test set is used as the verification set to select the threshold value of the abnormal score. The F1 score of the
second half of the test set is calculated by using the calculated threshold value, and the result is added to table 6 in
Section 5.2.

5.2 OmniTransfer vs. Baseline Models

To demonstrate the effectiveness and efficiency of OmniTransfer , we compare it with OmniCluster[45], one model/entity,
CTF[35], JumpStarter[28], and Uni-AD[14]. In addition, we have incorporated one of the most representative pre-training
models, "One Fits All" [51], given that time series pre-training models have been extensively studied recently. One Fits
All model avoids changing the self attention and feedforward layers of residual blocks in the pre training language or
image model, and can produce equivalent or the most advanced performance in all major time series analysis tasks. The
details are as follows: (1) OmniCluster is a model-agnostic framework for MTS anomaly detection. (2) One model/entity
involves training a separate model for each MTS. (3) CTF is a transfer-based framework to achieve scalable anomaly
detection. (4) JumpStarter is an MTS anomaly detection model that jump-starts quickly with a short initialization time.
(5) Uni-AD is a transformer-based model that works well for model sharing. OmniTransfer , OmniCluster, and one
model/entity are model-agnostic training frameworks or strategies that can be combined with various deep anomaly
detection models.

To demonstrate the advantages of the PA strategy, we also compared it with the case where the PA strategy was not
used.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Yongqian Sun, et al.

Table 6. The overall performance of OmniTransfer compared to baseline models.

Model
Dataset1

OmniTransfer OmniCluster one model/entity

𝐹 ∗1 Time (s) Validation 𝐹 ∗1 Not PA 𝐹 ∗1 𝐹 ∗1 Time (s) Validation 𝐹 ∗1 Not PA 𝐹 ∗1 𝐹 ∗1 Time (s) Validation 𝐹 ∗1 Not PA 𝐹 ∗1
OmniAnomaly 0.9721 1212.99 0.9452 0.6795 0.5169 560.47 0.4751 0.5758 0.7000 9888.25 0.6369 0.4933
InterFusion 0.9047 1585.63 0.8892 0.6706 0.5830 566.56 0.5209 0.5609 0.4769 8884.94 0.4286 0.76
SDFVAE 0.8512 209.73 0.8426 0.6447 0.4922 178.02 0.4155 0.4916 0.6055 638.93 0.5217 0.8445
DAGMM 0.8738 244.48 0.8521 0.6764 0.7104 137.37 0.5639 0.5653 0.8245 2947.47 0.7642 0.7377
USAD 0.8539 80.16 0.8318 0.693 0.7468 109.04 0.7084 0.6334 0.7875 691.77 0.7184 0.602
GDN 0.8037 54.55 0.7756 0.481 0.6806 42.81 0.6129 0.4253 0.7405 265.27 0.6872 0.5189

TranAD 0.9714 114.53 0.9208 0.909 0.7797 102.10 0.7084 0.7389 0.8538 591.67 0.8144 0.9388
DOMI 0.8849 156.58 0.8529 0.6215 0.6418 119.56 0.5421 0.5542 0.7138 623.65 0.5871 0.6473
SLAVAE 0.8417 142.54 0.7122 0.6641 0.4831 101.34 0.4508 0.4539 0.5817 603.45 0.4428 0.5514

MTAD-GAT 0.9414 1149.95 0.9098 0.6417 0.6466 305.06 0.6072 0.4792 0.9064 1666.67 0.8413 0.6837

JumpStarter 0.4211 4786.67 0.5227 0.458 - - - - - - - -
CTF 0.8661 4965.61 0.3456 0.7257 - - - - - - - -

Uni-AD 0.6232 119.95 0.5489 0.5759 - - - - - - - -
One Fits All 0.9218 5216.18 0.9127 0.7642 - - - - - - - -

Model
Dataset2

OmniTransfer OmniCluster one model/entity

𝐹 ∗1 Time (s) Validation 𝐹 ∗1 Not PA 𝐹 ∗1 𝐹 ∗1 Time (s) Validation 𝐹 ∗1 Not PA 𝐹 ∗1 𝐹 ∗1 Time (s) Validation 𝐹 ∗1 Not PA 𝐹 ∗1
OmniAnomaly 0.974 1430.14 0.9489 0.9106 0.7885 522.63 0.7109 0.5179 0.6316 7791.65 0.5892 0.6446
InterFusion 0.9235 1131.33 0.8962 0.8085 0.6756 479.01 0.6013 0.4819 0.4639 5870.73 0.3872 0.5621
SDFVAE 0.8673 572.95 0.8127 0.7799 0.446 230.75 0.4321 0.5232 0.819 1402.87 0.7356 0.8453
DAGMM 0.9439 271.29 0.8907 0.851 0.8048 133.57 0.7519 0.7066 0.9047 2923.78 0.8265 0.7658
USAD 0.9355 138.39 0.8839 0.8334 0.7138 93.01 0.6692 0.5664 0.8514 665.19 0.7691 0.8753
GDN 0.9525 46.03 0.9088 0.7835 0.7503 17.15 0.6873 0.5429 0.9382 301.17 0.8819 0.7619

TranAD 0.9323 201.93 0.8873 0.8467 0.8566 82.40 0.7863 0.8196 0.5273 704.29 0.479 0.3334
DOMI 0.9316 309.25 0.7429 0.7537 0.8136 87.35 0.5421 0.6931 0.8426 1059.76 0.5871 0.7431
SLAVAE 0.8589 465.77 0.7122 0.6308 0.8136 216.20 0.4508 0.6109 0.8025 1304.03 0.4428 0.6706

MTAD-GAT 0.9757 262.68 0.9133 0.7814 0.5338 204.87 0.4802 0.4672 0.7682 506.35 0.6945 0.7439

JumpStarter 0.649 5359.1 0.4852 0.5227 - - - - - - - -
CTF 0.8788 6187.86 0.4454 0.7645 - - - - - - - -

Uni-AD 0.5978 23.30 0.5196 0.5931 - - - - - - - -
One Fits All 0.9167 5971.93 0.8792 0.7831 - - - - - - - -

We combine these frameworks/methods with ten typical unsupervised MTS anomaly detection methods: Omni-
Anomaly, InterFusion, SDFVAE, DAGMM, USAD, GDN, TranAD, DOMI, SLAVAE, and MTAD-GAT. These models
focus on different challenges in MTS anomaly detection and have different structures. Table 5 shows the structure
and characteristics of these selected models. The results of these methods are presented at the top of Table 6. CTF is
designed specifically for the RNN+VAE model, JumpStarter is not based on deep learning and cannot be combined with
OmniTransfer , and Uni-AD designed a special model based on the transformer. The results of these three baselines are
shown at the bottom of Table 6 OmniTransfer outperforms all baselines in effectiveness and is more efficient than all
baseline models except for OmniCluster. We will try to analyze the reasons for this result in detail.

Compare with OmniCluster. On Dataset1, OmniTransfer outperforms OmniCluster by 14.34% to 88.06%, while on
Dataset2, OmniTransfer outperforms OmniCluster by 8.84% to 94.46%. We attribute this to OmniTransfer improving the
clustering method and OmniTransfer training a better model for each MTS. OmniTransfer applies periodic weighting to
the metrics instead of removing some metrics directly, which allows for a more comprehensive use of information.
In contrast, OmniCluster compresses MTS in the temporal dimension and removes some metrics, resulting in a loss
of both shape and metric information. OmniTransfer uses transfer learning to train a suitable model for each MTS,
whereas OmniCluster trains a base model for each cluster.

The training time of OmniTransfer is 29.94% and 52.24% higher than OmniCluster on two datasets. Because
OmniCluster only trains base models without fine-tuning. Nevertheless, effectiveness is usually more important than
efficiency in practice, making OmniTransfer a superior solution to OmniCluster.
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems17

Comparison with one model/entity. In terms of 𝐹1, OmniTransfer achieves an average improvement of 27.84%
and 31.67% on the two datasets, respectively. When using a single entity model, ideally, with sufficient training data,
the detection results are similar to those of the migration base model. One model/entity uses only short-term MTS
for training, which is insufficient for deep learning-based models. However, in most cases, when there is insufficient
training data for online entities, if a single entity model is not used based on the migration base model, the model
training will be insufficient due to insufficient training data, resulting in poor detection results. Moreover, training the
model from scratch usually takes longer to converge. As the amount of data increases, the training overhead increases
significantly. Furthermore, OmniTransfer reduces the training overhead by 75.95% and 73.07%. After clustering, the
number of basic models is much smaller than the number of entities. Fine-tuning is performed on the basic model,
the model converges faster, the number of training rounds required is smaller, and the overall training cost is lower.
Therefore, the performance and efficiency of one model/entity strategy are unsatisfactory. In contrast, OmniTransfer

performs better by maximizing the use of the base MTS to train the base model. The overall training overhead of
OmniTransfer benefits from only a small number of base models that need to be trained and the base models help
accelerate the convergence of the target model training.

Comparison with not PA. The results show that OmniTransfer still outperforms most of the other baseline models.
However, every model’ 𝐹 ∗1 is notably diminished without the application of the PA strategy, which may be due to
insufficient accuracy in data collection or in the precision of anomaly labeling. This could be the reason why other
baseline studies all employ the PA strategy.

Comparison with CTF. The CTF is specifically designed for RNN+VAE-based models, particularly for Omni-
Anomaly. Therefore we only compare the performance of OmniTransfer+OmniAnomaly with CTF. The 𝐹1 of Omni-

Transfer+OmniAnomaly is approximately 10% higher than CTF. CTF produces a fine-tuned model at the cluster level,
which cannot be deployed perfectly to each MTS. The training time of CTF is more than four times that of Omni-

Transfer+OmniAnomaly on two datasets. This is because CTF fine-tunes cluster-level models based on a dataset-level
pre-trained model. As the difference between the source domain and the target domain of CTF is significant, it requires
more MTS and training epochs during fine-tuning.

Comparison with JumpStarter. JumpStarter successfully reduces model initialization time by sampling from the
data and reconstructing the data for anomaly detection based on the sample. However, its 𝐹1 is significantly lower and
the training time is much longer compared to OmniTransfer . JumpStarter uses only uses short-term data to sample and
reconstruct the normal value, which is usually sufficient. And the outlier-resistant sampling method may not always
successfully remove anomaly points in highly volatile metrics, limiting the performance of JumpStarter. Additionally,
the complicated sampling process in JumpStarter increases the training time seriously.

Comparison with Uni-AD. Uni-AD employs model sharing to address the challenges posed by large-scale, diverse,
and dynamic MTS. Based on transformer encoder layers, Uni-AD can model diverse patterns for different monitored
entities. On Dataset1, the training time of Uni-AD is similar to OmniTransfer and has less training time on Dataset2,
because it uses model sharing to reduce the number of models and the model structure of the transformer is light-
weighted. However, its 𝐹1 is significantly lower compared to OmniTransfer . Uni-AD focuses on a large amount of data
with the same pattern and performs poorly when the patterns among different entities diverge.

Comparison with One Fits All. When compared with the OmniTransfer versions of 10 models, the F1* of One Fits
All is relatively balanced, ranking 4th on Dataset1 and 9th on Dataset2. Additionally, in terms of efficiency, OmniTransfer

performs much better than One Fits All. The training time for One Fits All is more than 10 times longer than the average

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Yongqian Sun, et al.

Length of training data (day)

sc
or

e

D
at

as
et

2
D

at
as

et
1

Length of training data (day)

Fig. 8. The performance of OmniTransfer and one model/entity with different initialization time. ‘*’ denotes the corresponding result
of combining OmniTransfer , and without ‘*’ denotes the result of one model/entity strategy.

Table 7. Ablation experiment.

Model Dataset1 Dataset2

OmniTransfer C1 C2 C3 C4 C5 C6 C7 OmniTransfer C1 C2 C3 C4 C5 C6 C7

OmniAnomaly 0.9721 0.6452 0.8239 0.8018 0.694 0.775 0.9675 0.9675 0.974 0.6371 0.8092 0.9297 0.703 0.9194 0.9739 0.974
InterFusion 0.9047 0.566 0.6963 0.7686 0.6944 0.8115 0.9037 0.9037 0.9235 0.7184 0.6128 0.8564 0.6702 0.8818 0.8948 0.9061
SDFVAE 0.8512 0.6513 0.7111 0.7825 0.635 0.7163 0.8463 0.8485 0.8673 0.8473 0.8169 0.7114 0.7252 0.7959 0.8588 0.8626
DAGMM 0.8738 0.8011 0.7476 0.8249 0.7798 0.861 0.8647 0.8669 0.9439 0.9056 0.9172 0.871 0.8588 0.9439 0.9165 0.9439
USAD 0.8539 0.7834 0.8394 0.809 0.8267 0.8535 0.8313 0.8535 0.9355 0.8952 0.8043 0.7653 0.7928 0.9166 0.9289 0.9337
GDN 0.8037 0.763 0.792 0.7572 0.7548 0.7969 0.7742 0.7969 0.9525 0.8764 0.823 0.8601 0.9164 0.9488 0.9335 0.9488

TranAD 0.9714 0.9472 0.9643 0.9575 0.8733 0.9679 0.9485 0.9717 0.9323 0.8528 0.9069 0.9001 0.915 0.927 0.9309 0.9313
DOMI 0.8849 0.7914 0.7529 0.7731 0.7482 0.7608 0.8752 0.7608 0.9316 0.8247 0.8258 0.7953 0.8683 0.9241 0.9286 0.9241
SLAVAE 0.8417 0.7914 0.6368 0.7625 0.7196 0.7039 0.8158 0.7039 0.8589 0.8264 0.8011 0.6939 0.7136 0.7852 0.8427 0.7852

MTAD-GAT 0.9414 0.9109 0.8829 0.8983 0.7255 0.9407 0.9365 0.9407 0.9757 0.9265 0.9331 0.9238 0.6227 0.9714 0.9683 0.9715

training time of OmniTransfer on both Dataset1 and Dataset2. However, as a single model, One Fits All has a higher F1*
than the most single models, indicating its strong general applicability.

Comparison with Validation set. It is evident that the OmniTransfer version continues to outperform the other
models, even though the validation F1* scores for each model are slightly lower than the F1* scores.

5.3 Effect on Reducing Model Initialization Time

In this section, we conduct experiments on ten anomaly detection models to verify the effect of OmniTransfer in
reducing model initialization time. We increase the initialization time for the two datasets from one day to five days
and one day to seven days. Fig. 8 demonstrates that OmniTransfer outperforms one model/entity by 16.53% and
21.48% with one day and two days of training data on average. OmniTransfer using two days of training data performs
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems19

almost the same as one model/entity using all training data. This highlights its ability to significantly reduce model
initialization time. Specifically, the pre-training knowledge of the basic model based on offline data is used, and only
a small amount of online data is needed to achieve good detection results, reducing the model initialization time.
Moreover, the performance of both OmniTransfer and one model/entity improves as the initialization time increases.
However, for OmniTransfer , the performance becomes stable after using less than two days of training data, while for
one model/entity, the performance of most models is unsatisfactory with less than three days of training data.

5.4 Ablation Experiment

To demonstrate the effect of five key technologies in OmniTransfer : (1) clustering; (2) weighting metrics; (3) aligning
phases; (4) transfer learning; (5) adaptive transfer strategy, we reconfigure OmniTransfer to create seven variants. C1:
Only one base model is trained for transfer learning, and the data used to train the base model are randomly selected.
C2: All metrics have the same weights when aligning phase shift and clustering. C3: Do not align the phase shift. C4:
The base model is directly used for anomaly detection. C5: Use the full parameter transfer strategy for all MTS. C6:
Use the partial parameter transfer strategy for all MTS. C7: Use the weighted Euclidean distance to select the transfer
strategy. Table 7 shows the results of each variant.

Effect of clustering. With an 𝐹1 of lower than 0.57, the performance of C1 is far from satisfactory. The large
difference between the base MTS and the target MTS makes transfer learning challenging. Clustering can effectively
group MTS with similar shapes, making it easy to transfer the knowledge of base MTS to target MTS.

Effect of metric weighting. C2 has relatively poor performance on both datasets regardless of the algorithms. The
reason is that aperiodic metrics are irregular, and can have a negative impact on clustering. Generally, the distance
between two aperiodic metrics can be considerable even though the periodic metrics in the same entities are relatively
similar. Besides, aperiodic metrics can make the target MTS and the corresponding cluster centroid not being very
similar. Therefore, it is indispensable to weighting these aperiodic metrics.

Effect of phase alignment. C3 needs more training overhead and has a poor performance than OmniTransfer .
Without phase alignment, the diversity of MTS patterns increases, resulting in more clusters and more base models.
Therefore, the training overhead increases dramatically. Additionally, it is difficult to match the target data with the
appropriate cluster without phase alignment. Transfer learning can not be effective when the target data and the base
model training data differ significantly.

Effect of transfer learning. C4 directly uses the base model of each cluster for anomaly detection. Although the
target MTS should be reasonably similar to its matching cluster centroid, there are still many tiny differences. These
differences make the 𝐹1 relatively poor. It is indispensable to transfer model parameters and fine-tune the base model.

Effect of adaptive transfer strategy. OmniTransfer with an adaptive transfer strategy performs better than using
a fixed transfer strategy. When the target MTS and its corresponding base cluster centroid are similar, it is better to
transfer full parameters because more parameters can carry more valuable knowledge learned from the offline training
stage. However, many target MTS have relatively large shape differences compared to the centroid. It is better to transfer
partial parameters to avoid negative transfer problems. By automatically selecting the best transfer strategy for each
target MTS, OmniTransfer gets the highest 𝐹1.

Effects of the distance measurement of adaptive transfer strategy. Compared with C7, OmniTransfer has an
improvement in the detection performance on most models. The weighted Euclidean distance measures the difference
between the target MTS and the cluster centroid. However, we aim to transfer the knowledge in the base model to help

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Yongqian Sun, et al.

Table 8. Comparison of clustering methods.

Model Dataset1 Dataset2

OmniTransfer TICC FCFW M2PCA SPCA+AED OmniTransfer TICC FCFW M2PCA SPCA+AED

OmniAnomaly 0.9721 0.7209 0.7384 0.7341 0.6697 0.974 0.6339 0.6281 0.6494 0.6485
InterFusion 0.9047 0.6097 0.5528 0.6988 0.6949 0.9235 0.7006 0.6313 0.7897 0.8442
SDFVAE 0.8512 0.7231 0.7137 0.7399 0.71 0.8673 0.8327 0.8483 0.861 0.8663
DAGMM 0.8738 0.8537 0.8225 0.7886 0.8420 0.9439 0.8825 0.8965 0.8922 0.8937
USAD 0.8539 0.8167 0.8216 0.8157 0.8128 0.9355 0.9004 0.9014 0.8879 0.8933
GDN 0.8037 0.8022 0.7934 0.8033 0.7793 0.9525 0.8806 0.8778 0.8877 0.8599

TranAD 0.9714 0.9499 0.95 0.9564 0.9524 0.9323 0.8492 0.8426 0.8439 0.831
DOMI 0.8849 0.7439 0.7361 0.7515 0.7264 0.9316 0.8249 0.8628 0.8527 0.8362
SLAVAE 0.8417 0.7196 0.6709 0.7288 0.7047 0.8589 0.8251 0.8283 0.8477 0.8336

MTAD-GAT 0.9414 0.8933 0.9032 0.9009 0.9028 0.9757 0.9367 0.9355 0.9276 0.9296

D
at

as
et

1
D

at
as

et
2

OmniAnomaly InterFusion SDFVAE DAGMM USAD

GDN TranAD DOMI SLAVAE MTAD-GAT

D
at

as
et

1
D

at
as

et
2

(a) The first five models

(b) The last five models

Fig. 9. The performance of different 𝛽 . (The horizontal axis represents the value of 𝛽 . The red vertical dotted line denotes the optimal
𝛽 , the blue vertical solid line denotes the 𝛽

′
determined by some segments, the green horizontal dotted line denotes the performance

of full parameter transfer strategy, the horizontal solid line denotes the performance of partial parameter transfer strategy.)

detect anomalies in the target MTS. The 𝐷𝑖 𝑓 𝑓 𝑆𝑐𝑜𝑟𝑒 measures the degree of match between the target MTS and the
knowledge in the base model.

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems21

5.5 Effectiveness of the Clustering Method.

To verify the advantages of the W-HAC in OmniTransfer , we select four baseline clustering methods for comparison:
TICC[13], FCFW[20], Mc2PCA[19], SPCA+AED[40]. We replace the clustering methods in OmniTransfer and use the
anomaly detection performance as the clustering performance. Table 8 shows that the W-HAC’s 𝐹1 improves by 15.35%
and 12.80% averagely on two datasets. We try to analyze the reasons. In general, these methods can not resist noise
and anomaly interference, and some can not capture MTS shape features well. Specifically, TICC is only suitable for
short-term data, and it is difficult for TICC to cluster one-day data. FCFW uses all metrics data, which can be interfered
with aperiodic metrics. SPCA+AED and Mc2PCA use PCA to reduce the dimension of MTS, which loses a lot of shape
information, resulting in inaccurate clustering.

5.6 Effect of Transfer Strategy Selection Threshold

Recall that 𝛽 is the threshold of 𝐷𝑖 𝑓 𝑓 𝑆𝑐𝑜𝑟𝑒 . To investigate the effect of 𝛽 , we conduct experiments with different values
of 𝛽 . Fig. 9 shows that the performance of OmniTransfer is higher than the worse single transfer strategy on two
datasets, regardless of the value of 𝛽 . Moreover, it can meet or even surpass the better single transfer strategy. The
performance of OmniTransfer on OmniAnomaly, InterFusion, SDFVAE, DOMI, and SLAVAE is sensitive to 𝛽 , while
other models are insensitive. For insensitive models, the value of 𝛽 will not greatly impact the experimental results.
Therefore, we can easily obtain the 𝛽 that makes each model perform well. For sensitive models, we randomly select
some entities (e.g., twenty segments with one day of two hundred entities) in the dataset to get 𝛽

′
, which can reach

the optimal 𝛽 performance. Short-term segments also allow us to determine 𝛽
′
earlier. We invited three experienced

operators, and it takes about one day to label 20 entities’ data, so we only need less than 3 days of manpower to start
the model, compared to 30 days for labeling 200 entities saves a lot of labor costs.

6 RELATEDWORK

6.1 MTS Clustering

There have been many studies on MTS clustering. SPCA+AED [40] proposes a hybrid method based on the PCA
similarity factor (SPCA) and the average-based Euclidean distance (AED). Nevertheless, employing SPCA results in
the loss of a significant amount of crucial information, and AED cannot address the phase shift problem. Toeplitz
Inverse Covariance-Based Clustering (TICC) [13] focuses on the subsequences segmentation and clustering of MTS
simultaneously. Segmentation is unnecessary in anomaly detection, and it is challenging for TICC to deal MTS with
more than 100 time points (about one day). Mc2PCA [19] constructs common projection axes as the prototype of each
cluster and uses the reconstruction error to assign the MTS. This method only considers the similarity within clusters,
without the dissimilarity among clusters. FCFW [20] uses a fuzzy c-means method based on feature-weighted distance
combining dynamic time warping (DTW) and shape-based distance (SBD). The time complexity of DTW is too high,
which is unacceptable for large-scale software systems. Moreover, DTW and SBD consider each metric’s shape features,
which can be interfered with aperiodic metrics. CTF [35] uses the low-dimensional features extracted by the pre-trained
anomaly detection model, which is task-specific and model structure-specific model[33]. OmniCluster [45] compresses
the temporal dimension of MTS with a one-dimensional convolutional autoencoder (AE) and uses a three-step feature
selection strategy to remove aperiodic metrics. However, the compressing and feature selection stages lose a lot of
useful information. And the feature selection depends on an empirical threshold, which is not general.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Yongqian Sun, et al.

6.2 MTS Anomaly Detection

There have been many studies on MTS anomaly detection. Both USAD and TranAD adversely train AE, and they take
advantage of the stability of AE and the ability to isolate anomalies of GAN. DAGMM combines AE and Gaussian
mixture model (GMM). It uses an AE to generate the low-dimensional features and reconstruction errors and feeds
them into GMM to get the anomaly score. TranAD uses a sequence encoder with self-attention to shorten the inference
time. OmniAnomaly uses the RNN+VAE structure to model the temporal dependence and stochasticity in MTS. Both
SDFVAE and InterFusion adopt the structure of RNN+CNN+VAE. SDFVAE resists noise by modeling time-invariant
and time-varying features. InterFusion employs a two-view embedding and prefiltering strategy to explicitly learn
the inter-metric and temporal dependencies. DOMI uses VAE+GMM to model the intrinsic multimodality of data by
obtaining complex latent representations. SLA-VAE uses semi-supervised VAE and active learning to enhance robustness.
GDN and MTAD-GAT are both prediction-based models. GDN uses structure learning and GNN to model the correlation
between metrics. MTAD-GAT leverages two parallel graph attention layers to learn the relationships between different
metrics dynamically.

However, the abovemodels face high training overhead when dealing with large-scale MTS data and long initialization
time. CTF, OmniCluster, JumpStarter, and Uni-AD successfully reduce the training overhead. CTF provides a solution
to reduce training overhead for RNN+VAE models [33], but it is not universal to other models. OmniCluster is a
model-agnostic framework that can reduce the training overhead. It trains a model for each cluster and directly uses it
for anomaly detection. However, it performs poorly when the shape of the target MTS and the cluster centroid differs.
JumpStarter uses the Compressed Sensing to reduce the model initialization time. However, due to only using short-term
data and a simple model structure, it can not capture complex patterns and long temporal dependence. Uni-AD uses a
model-sharing mechanism and transformer layers to model large-scale time series. However, it does not work well
when different entities’ patterns diverge. In short, none of the above solutions can reduce the training cost and model
initialization time while improving most SOTA models’ detection results.

7 DISCUSSION

In developing OmniTransfer , we have learned the following lessons. (1) The strength of periodicity is very important
for MTS clustering. The information obtained from weak periodicity metrics is limited and can even seriously affect
clustering. (2) The idea of adaptive transfer strategy and novel distance measurement for transfer strategy selection can
ensure that we can achieve the optimal transfer strategy for each target MTS. (3) Reducing the number of detection
models, reducing the scale of training data and accelerating model convergence speed are all effective solutions to
reduce training overhead.

In addition, we have some ideas for future work. (1) We design a model-agnostic framework OmniTransfer for
large-scale anomaly detection. The same ideas and key techniques can be used to reduce model initialization time and
training overhead for other tasks, such as the prediction and classification of large-scale MTS. (2) The weights employed
in the W-HAC method can be derived from prior knowledge or other methodologies, enhancing the clustering process
by incorporating additional information and improving accuracy. (3) In practical applications, 𝛽 can be randomly
selected at first, and be continuously updated with the supplement of data and manual feedback. The detection accuracy
of the model could gradually increase.

There are also some limitations in our work. We directly only use full parameter transfer and partial parameter
transfer strategies. When using partial parameter transfer strategies, the parameters of which layer to transfer are fixed

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems23

for each model. It can be further investigated how to choose which part of the parameters to transfer or to transfer
different parts of the parameters for different data to improve the effectiveness of transfer learning. Nevertheless, the
adaptive strategy has achieved good performance for most models, and a simple and elegant method is better than
complicated methods for a general framework.

8 CONCLUSION

This paper first clearly points out the limitations of existing methods in large-scale MTS scenarios. And we propose
OmniTransfer , a model-agnostic, unsupervised, and efficient anomaly detection framework to address these limitations.
OmniTransfer uses transfer learning to reduce model initialization time and training overhead effectively. We propose
W-HAC to reduce the interference of aperiodic metrics in clustering and improve the effect of transfer learning. Our
experiment results using real-world datasets from a large web content service provider and a network operator show
that OmniTransfer can reduce the initialization time by 46.49% and improve training efficiency by 74.51% compared to
baseline models. We believe OmniTransfer is useful for large IT infrastructure, especially when monitoring millions
of services that change frequently. OmniTransfer makes the anomaly detection models as rapidly deployable and
cost-effective as possible for the large-scale and changing MTS.

REFERENCES
[1] 2024. https://anonymous.4open.science/r/OmniTransfer
[2] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. 2020. USAD: UnSupervised Anomaly Detection on

Multivariate Time Series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (Virtual
Event, CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA, 3395–3404.

[3] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan Carlsson. 2016. Factors of Transferability for a Generic ConvNet
Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 9 (2016), 1790–1802.

[4] Andrea Borghesi, Martin Molan, Michela Milano, and Andrea Bartolini. 2022. Anomaly Detection and Anticipation in High Performance Computing
Systems. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022), 739–750. https://doi.org/10.1109/TPDS.2021.3082802

[5] Bin Cao, Sinno Jialin Pan, Yu Zhang, Dit-Yan Yeung, and Qiang Yang. 2010. Adaptive Transfer Learning. Proceedings of the AAAI Conference on
Artificial Intelligence 24, 1 (Jul. 2010), 407–412.

[6] Eva Cetinic, Tomislav Lipic, and Sonja Grgic. 2018. Fine-tuning Convolutional Neural Networks for fine art classification. Expert Systems with
Applications 114 (2018), 107–118.

[7] Liang Dai, Tao Lin, Chang Liu, Bo Jiang, Yanwei Liu, Zhen Xu, et al. 2021. SDFVAE: Static and Dynamic Factorized VAE for Anomaly Detection of
Multivariate CDN KPIs. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New
York, NY, USA, 3076–3086.

[8] Alain De Cheveigné and Hideki Kawahara. 2002. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical
Society of America 111, 4 (2002), 1917–1930.

[9] Ailin Deng and Bryan Hooi. 2021. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4027–4035.

[10] Li Dongwen, Zhang Shenglin, sun Yongqian, Guo Yang, Che Zeyu, Chen Shiqi, Zhong Zhenyu, Liang Minghan, Shao Minyi, Li Mingjie, Liu Shuyang,
Zhang Yuzhi, and Pei Dan. 2023. An Empirical Analysis of Anomaly Detection Methods for Multivariate Time Series. In 2023 IEEE International
Symposium on Software Reliability Engineering (ISSRE). IEEE Computer Society, Florence, Italy.

[11] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, et al. 2019. An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud & Edge Systems. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 3–18.

[12] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris. 2019. SpotTune: Transfer Learning Through
Adaptive Fine-Tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. 2017. Toeplitz inverse covariance-based clustering of multivariate time series data. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 215–223.

[14] Zilong He, Pengfei Chen, and Tao Huang. 2022. Share or Not Share? Towards the Practicability of Deep Models for Unsupervised Anomaly
Detection in Modern Online Systems. In 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE). 25–35. https:
//doi.org/10.1109/ISSRE55969.2022.00014

Manuscript submitted to ACM

https://anonymous.4open.science/r/OmniTransfer
https://doi.org/10.1109/TPDS.2021.3082802
https://doi.org/10.1109/ISSRE55969.2022.00014
https://doi.org/10.1109/ISSRE55969.2022.00014

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Yongqian Sun, et al.

[15] Tao Huang, Pengfei Chen, and Ruipeng Li. 2022. A Semi-Supervised VAE Based Active Anomaly Detection Framework in Multivariate Time
Series for Online Systems. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for Computing
Machinery, New York, NY, USA, 1797–1806. https://doi.org/10.1145/3485447.3511984

[16] Mohammad Ali Humayun, Hayati Yassin, Junaid Shuja, Abdullah Alourani, and Pg Emeroylariffion Abas. 2022. A transformer fine-tuning strategy
for text dialect identification. Neural Computing and Applications (2022), 1–10.

[17] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. 2018. Detecting Spacecraft Anomalies Using LSTMs
and Nonparametric Dynamic Thresholding. arXiv e-prints, Article arXiv:1802.04431 (Feb. 2018), arXiv:1802.04431 pages. arXiv:1802.04431 [cs.LG]

[18] James M Joyce. 2011. Kullback-leibler divergence. In International encyclopedia of statistical science. Springer, 720–722.
[19] Hailin Li. 2019. Multivariate time series clustering based on common principal component analysis. Neurocomputing 349 (2019), 239–247.
[20] Hailin Li and Miao Wei. 2020. Fuzzy clustering based on feature weights for multivariate time series. Knowledge-Based Systems 197 (2020), 105907.
[21] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj Singh, et al. 2020. Gandalf: An Intelligent, End-To-End Analytics Service for

Safe Deployment in Large-Scale Cloud Infrastructure. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20).
USENIX Association, Santa Clara, CA, 389–402.

[22] Zhihan Li, Youjian Zhao, Yitong Geng, Zhanxiang Zhao, Hanzhang Wang, Wenxiao Chen, Huai Jiang, Amber Vaidya, Liangfei Su, and Dan Pei.
2022. Situation-Aware Multivariate Time Series Anomaly Detection Through Active Learning and Contrast VAE-Based Models in Large Distributed
Systems. IEEE Journal on Selected Areas in Communications 40, 9 (2022), 2746–2765. https://doi.org/10.1109/JSAC.2022.3191341

[23] Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, et al. 2021. Multivariate time series anomaly detection and interpretation using
hierarchical inter-metric and temporal embedding. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
3220–3230.

[24] Zhihan Li, Youjian Zhao, Rong Liu, and Dan Pei. 2018. Robust and Rapid Clustering of KPIs for Large-Scale Anomaly Detection. In 2018 IEEE/ACM
26th International Symposium on Quality of Service (IWQoS). 1–10.

[25] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, et al. 2021. MicroHECL: High-Efficient Root Cause Localization
in Large-Scale Microservice Systems. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). 338–347.

[26] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. 2022. Frozen Pretrained Transformers as Universal Computation Engines. (2022).
[27] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping Wang. 2020. AutoMAP: Diagnose Your Microservice-Based Web

Applications Automatically. In Proceedings of The Web Conference 2020 (Taipei, Taiwan) (WWW ’20). Association for Computing Machinery, New
York, NY, USA, 246–258.

[28] Minghua Ma, Shenglin Zhang, Junjie Chen, Jim Xu, Haozhe Li, Yongliang Lin, et al. 2021. {Jump-Starting} Multivariate Time Series Anomaly
Detection for Online Service Systems. In 2021 USENIX Annual Technical Conference (USENIX ATC 21). 413–426.

[29] Minghua Ma, Shenglin Zhang, Dan Pei, Xin Huang, and Hongwei Dai. 2018. Robust and Rapid Adaption for Concept Drift in Software System
Anomaly Detection. In 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE). 13–24.

[30] Aditya P. Mathur and Nils Ole Tippenhauer. 2016. SWaT: a water treatment testbed for research and training on ICS security. In 2016 International
Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). 31–36.

[31] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22, 10 (2010),
1345–1359.

[32] Ravi K. Samala, Heang-Ping Chan, Lubomir Hadjiiski, Mark A. Helvie, Caleb D. Richter, and Kenny H. Cha. 2019. Breast Cancer Diagnosis in Digital
Breast Tomosynthesis: Effects of Training Sample Size on Multi-Stage Transfer Learning Using Deep Neural Nets. IEEE Transactions on Medical
Imaging 38, 3 (2019), 686–696.

[33] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust anomaly detection for multivariate time series through stochastic
recurrent neural network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2828–2837.

[34] Ya Su, Youjian Zhao, Ming Sun, Shenglin Zhang, Xidao Wen, Yongsu Zhang, et al. 2022. Detecting Outlier Machine Instances Through Gaussian
Mixture Variational Autoencoder With One Dimensional CNN. IEEE Trans. Comput. 71, 4 (2022), 892–905.

[35] Ming Sun, Ya Su, Shenglin Zhang, Yuanpu Cao, Yuqing Liu, Dan Pei, et al. 2021. Ctf: Anomaly detection in high-dimensional time series with
coarse-to-fine model transfer. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE, 1–10.

[36] Nima Tajbakhsh, Jae Y. Shin, Suryakanth R. Gurudu, R. Todd Hurst, Christopher B. Kendall, Michael B. Gotway, et al. 2016. Convolutional Neural
Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging 35, 5 (2016), 1299–1312.

[37] Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and
techniques. IGI global, 242–264.

[38] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. 2022. TranAD: Deep transformer networks for anomaly detection in multivariate time
series data. arXiv preprint arXiv:2201.07284 (2022).

[39] Grega Vrbančič and Vili Podgorelec. 2020. Transfer Learning With Adaptive Fine-Tuning. IEEE Access 8 (2020), 196197–196211.
[40] J Wu, SK Nguang, J Shen, G Liu, and YG Li. 2010. Robust H∞ tracking control of boiler–turbine systems. ISA transactions 49, 3 (2010), 369–375.
[41] Fanghua Ye, Zhiwei Lin, Chuan Chen, Zibin Zheng, and Hong Huang. 2021. Outlier-Resilient Web Service QoS Prediction. In Proceedings of the Web

Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY, USA, 3099–3110.

Manuscript submitted to ACM

https://doi.org/10.1145/3485447.3511984
https://arxiv.org/abs/1802.04431
https://doi.org/10.1109/JSAC.2022.3191341

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Efficient Multivariate Time Series Anomaly Detection Through Transfer Learning for Large-Scale Software Systems25

[42] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable are features in deep neural networks?. In Advances in Neural
Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.), Vol. 27. Curran Associates, Inc.

[43] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao Jing, et al. 2021. MicroRank: End-to-End Latency Issue Localization
with Extended Spectrum Analysis in Microservice Environments. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21).
Association for Computing Machinery, New York, NY, USA, 3087–3098.

[44] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Automatic Scaling for Microservices with an Online Learning Approach. In 2019
IEEE International Conference on Web Services (ICWS). 68–75.

[45] Shenglin Zhang, Dongwen Li, Zhenyu Zhong, Jun Zhu, Minghan Liang, Jiexi Luo, et al. 2022. Robust System Instance Clustering for Large-Scale
Web Services. In Proceedings of the ACM Web Conference 2022. 1785–1796.

[46] Shenglin Zhang, Zhenyu Zhong, Dongwen Li, Qiliang Fan, Yongqian Sun, Man Zhu, et al. 2022. Efficient KPI Anomaly Detection Through Transfer
Learning for Large-Scale Web Services. IEEE Journal on Selected Areas in Communications 40, 8 (2022), 2440–2455.

[47] Xu Zhang, Junghyun Kim, Qingwei Lin, Keunhak Lim, Shobhit O Kanaujia, Yong Xu, et al. 2019. Cross-dataset time series anomaly detection for
cloud systems. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 1063–1076.

[48] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues, Shan Lu, et al. 2021. Understanding and Detecting Software Upgrade Failures
in Distributed Systems. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 116–131.

[49] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai, J. Tong, and Q. Zhang. 2020. Multivariate Time-Series Anomaly Detection via
Graph Attention Network. In 2020 IEEE International Conference on Data Mining (ICDM). IEEE Computer Society, Los Alamitos, CA, USA, 841–850.

[50] Nengwen Zhao, Junjie Chen, Zhaoyang Yu, Honglin Wang, Jiesong Li, Bin Qiu, et al. 2021. Identifying Bad Software Changes via Multimodal
Anomaly Detection for Online Service Systems. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 527–539.

[51] Tian Zhou, Peisong Niu, xue wang, Liang Sun, and Rong Jin. 2023. One Fits All: Power General Time Series Analysis by Pretrained LM. In Advances
in Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 43322–43355. https://proceedings.neurips.cc/paper_files/paper/2023/file/86c17de05579cde52025f9984e6e2ebb-Paper-Conference.pdf

[52] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, et al. 2021. A Comprehensive Survey on Transfer Learning.
Proc. IEEE 109, 1 (2021), 43–76.

[53] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, et al. 2018. Deep Autoencoding Gaussian Mixture Model for
Unsupervised Anomaly Detection. In International Conference on Learning Representations.

Manuscript submitted to ACM

https://proceedings.neurips.cc/paper_files/paper/2023/file/86c17de05579cde52025f9984e6e2ebb-Paper-Conference.pdf

