
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Interpretable Failure Localization for Microservice Systems Based on Graph
Autoencoder

YONGQIAN SUN, Nankai University, China

ZIHAN LIN, Nankai University, China

BINPENG SHI, Nankai University, China

SHENGLIN ZHANG∗, Nankai University, China

SHIYU MA, Nankai University, China

PENGXIANG JIN, Alibaba (Beijing) Software Services Co., Ltd., China

ZHENYU ZHONG, Nankai University, China

LEMENG PAN, AI Application Research Center, Huawei Technologies Co., China

YICHENG GUO, AI Application Research Center, Huawei Technologies Co., China

DAN PEI, Tsinghua University, China

Accurate and efficient localization of root cause instances in large-scale microservice systems is of paramount importance. Unfortunately,
prevailing methods face several limitations. Notably, some recent methods rely on supervised learning which necessitates a substantial
amount of labeled data. However, labeling root cause instances is time-consuming and laborious, especially with multiple modalities
of data including logs, traces, metrics, etc.Moreover, some approaches favor deep learning for localization but lack interpretability and
continuous improvement mechanisms.

To address the above challenges, we propose DeepHunt, a novel root cause localization method based on multimodal data analysis.
Firstly, DeepHunt introduces Root Cause Score (RCS) by integrating reconstruction errors and failure propagation patterns (upstream-
downstream relationships), imparting interpretability to the localization of root causes. Then, it embraces Graph Autoencoder (GAE)
to address the limitation imposed by scarce labeled data. It employs data augmentation to mitigate the adverse effects of insufficient
historical training samples. We evaluate DeepHunt on two open-source datasets, and it outperforms existing methods when facing a
zero-label cold start. DeepHunt can be further improved by continuously fine-tuning through a feedback mechanism.

CCS Concepts: • Computing methodologies→ Artificial intelligence; • Computer systems organization→ Reliability; •
Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: Microservice, Failure localization, Self-supervised learning

1 INTRODUCTION

With the rising popularity of cloud-native applications, microservice architecture has emerged as an increasingly
attractive choice due to its reliability and scalability [11]. However, the inherent complexity and dynamism of mi-
croservices make failures an unavoidable challenge. A single failure in a microservice instance can propagate to other
interconnected instances, gradually amplifying its impact, potentially resulting in significant financial losses [56].
∗Shenglin Zhang is the corresponding author.

Authors’ addresses: Yongqian Sun, sunyongqian@nankai.edu.cn, Nankai University, Binhaixin Qu, Tianjin Shi, China; Zihan Lin, linzihan@mail.nankai.
edu.cn, Nankai University, Binhaixin Qu, Tianjin Shi, China; Binpeng Shi, shibinpeng@mail.nankai.edu.cn, Nankai University, Binhaixin Qu, Tianjin
Shi, China; Shenglin Zhang, zhangsl@nankai.edu.cn, Nankai University, Binhaixin Qu, Tianjin Shi, China; Shiyu Ma, mashiyu@mail.nankai.edu.cn,
Nankai University, Binhaixin Qu, Tianjin Shi, China; Pengxiang Jin, jinpengxiang.jpx@alibaba-inc.com, Alibaba (Beijing) Software Services Co., Ltd.,
Chaoyang Qu, Beijing Shi, China; Zhenyu Zhong, zyzhong@mail.nankai.edu.cn, Nankai University, Binhaixin Qu, Tianjin Shi, China; Lemeng Pan,
panlemeng@huawei.com, AI Application Research Center, Huawei Technologies Co., China; Yicheng Guo, guoyicheng3@huawei.com, AI Application
Research Center, Huawei Technologies Co., China; Dan Pei, peidan@tsinghua.edu.cn, Tsinghua University, Haidian Qu, Beijing Shi, China.

Manuscript submitted to ACM 1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Yongqian Sun and Zihan Lin, et al.

Trace

Log

Metric

S1 S2 S3 S4

S5 S6 S7

Request

Unit: milliseconds

3097

2022-05-01 00:00:03

2022-05-01 00:00:04

2022-05-01 02:02:54

2022-05-01 23:59:59

S3 | severity: info, message: received conversion request

S5 | severity: debug, message: request complete

S5 | severity: error, message: request error

S1 | Request finished in 0.3097s 200 application/grpc

2490 1394

1883
1975

2356

Fig. 1. The multimodal data of a microservice system. S1 - S7 are different microservice instances. The values in the trace represent
the latency of an invocation.

An illustration case is the failure of the microservice instances on Amazon Web Services in December 2021, which
reverberated throughout the entire network. It took more than four hours to pinpoint the root cause, leading to
substantial economic repercussions [4]. Consequently, it is critical to localize microservice system failures promptly and
effectively. As businesses expand and demand increases, the microservice system’s scale and complexity also escalate.
This evolution renders traditional root cause localization methods reliant on human labor increasingly inadequate to
meet the requirements. Thus, the adoption of automated methods becomes imperative.

Extensive research has been dedicated to the automatic localization of failure root causes, aiming to quickly identify the
system instance responsible for failures. The monitoring data used for this task encompasses three distinct modalities,
namely traces [11, 24, 29, 52], logs [9, 28, 54, 57], and metrics [27, 33, 34, 40]. Traces record invocations between
microservices. Logs contain runtimemessages andwarnings. Metrics monitor resource usage and performance indicators.
Fig. 1 shows examples of these three modalities. We use unimodal to refer to a single data modality, while multimodal

means combining two or more data modalities. Earlier methods rely primarily on unimodal data for failure localization.
However, recent studies have revealed that more valuable insights can be obtained by combining all three modalities, as
they provide a complete view of the overall system status [56]. Consequently, an increasing number of approaches [22, 56]
fused multimodal data to localize root causes more effectively.

Nonetheless, unimodal and multimodal approaches encounter a significant limitation: striking a balance between
performance and the manual labeling overhead. Existing methods can achieve impressive performance but usually
require extensive high-quality labeled data. For example, DiagFusion [56] and Déjàvu [26] need to label each historical
failure’s root cause and failure type. However, obtaining sufficient labeled data is highly challenging for two main
reasons. First, deep learning-based approaches typically necessitate prolonged data collection to acquire enough training
data. This challenge is amplified by the frequent changes in microservice systems due to software and hardware updates,
causing frequent data distribution shifts. Second, manually annotating such a large volume of training data requires
intensive effort from the operator. A similar work RCLIR [6] shows that labeling 1000 root cause cases requires four
experienced operators to spend nearly a month. No current approach can simultaneously guarantee high performance
while reducing manual effort satisfactorily. Overcoming this limitation is imperative for effective root cause localization
in continuously evolving microservice systems.
Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 3

A promising method to address this limitation is to employ self-supervised learning (SSL) [31]. SSL enables models to
extract supervisory signals from large amounts of unlabeled historical data through pretext tasks, reducing dependence
on manual labels [19]. Common SSL tasks include reconstruction tasks, contrastive learning, prediction tasks, etc. (more
details can be seen in Section 2.2). SSL has been successfully employed in many domains, including computer vision,
natural language processing, and graph learning [18, 32]. Given the straightforward implementation and adaptation of
reconstruction tasks, along with the advantages of graph neural networks for modeling the structure of microservice
systems, we choose to use a Graph Autoencoder (GAE), which is a reconstruction task (more details can be seen in
Section 3.1). However, to the best of my knowledge, SSL has not yet been effectively applied for localizing root cause
instances of microservice failures due to three major challenges:

(1) Challenge 1: Lack of an interpretable method to quantify root causes. The results of failure root cause
localization need to be interpretable to help operators take appropriate measures for failure mitigation. However,
the SSL models (e.g., GAE) often lack interpretability, which hinders operators from making the right decisions
and reduces their trust in the localization results.

(2) Challenge 2: The models lack continuous learning capability. Once deployed, existing approaches cannot
continuously learn and adapt to new data or tasks. However, new failures persistently emerge as the system
operates, evolves, upgrades [38], receives maintenance [37], and undergoes changes [36]. As the system changes
gradually, the performance of deployed models will become increasingly misaligned, eventually necessitating
full retraining to restore efficacy. According to our investigations, operators can provide incremental feedback to
the root cause localization system. This enables on-the-job learning to improve model performance dynamically.
However, current methods are static and cannot effectively leverage operator feedback.

(3) Challenge 3: The requirement of graph autoencoders for a large amount of historical training data.
Training a specific GAE model typically requires a significant amount of historical data, although these data do
not require labeling. We have verified this in Fig. 3. Insufficient training samples make it challenging to ensure
the model’s effectiveness, consequently impacting the quality of the features. However, obtaining such data can
be challenging in real-world scenarios, particularly when a system is newly online or undergoes substantial
changes.

To address the aforementioned challenges, we propose DeepHunt, an interpretable failure root cause localization
method based on GAEs. We devise an interpretable and learnable root cause score, which provides a quantified root
cause probability for each instance, addressing Challenge 1. Furthermore, a feedback mechanism has been incorporated
to tackle Challenge 2. During online localization, operators can contribute valuable feedback labels based on diagnostic
results. DeepHunt can then fine-tune its parameters based on the feedback, enabling continuous learning. Lastly, in the
GAE training process, we introduce a data augmentation module to address Challenge 3.

Our contributions are summarized as follows:

(1) We propose DeepHunt, a GAE-based method for failure root cause instance localization. DeepHunt achieves
a zero-label cold start and demonstrates commendable performance without necessitating an abundance of
labeled failure samples for training. Moreover, it enhances its generalization capabilities by incorporating a
data augmentation module during training.

(2) We design a root cause score that combines reconstruction error and failure propagation pattern to execute an
interpretable process for quantifying root causes. This overcomes the challenge of SSL’s lack of interpretability.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Yongqian Sun and Zihan Lin, et al.

(3) We design a feedback mechanism to ensure continuous fine-tuning of DeepHunt through operators’ feedback.
This addresses the challenge of the SSL model’s lack of continuous learning capability. Additionally, we propose
a ranking-oriented loss function, which performs better when dealing with the imbalance between the root
cause instances and non-root cause instances.

(4) Extensive experiments on the datasets collected from two benchmark microservice systems demonstrate Deep-
Hunt’s effectiveness and efficiency. The outcomes demonstrate that DeepHunt achieves a 90+% A@5 accuracy
in both datasets, even when trained with merely 1% of labeled failure samples. DeepHunt’s implementation is
publicly available1 to promote transparency and reproducibility. We make the dataset D1 used in our work
publicly available2.

2 BACKGROUND

2.1 Microservice Systems and System Behavior Graphs

Microservice systems divide a large application into several small, autonomous services, with each service dedicated
to fulfilling a specific business function. Each service can be independently deployed, extended, and managed, and
communicate with each other through lightweight communication mechanisms such as remote procedure calls (RPC).

Referring to the example in Fig. 2 , we introduce some essential terms and concepts:
System instance. A microservice system consists of multiple types of instances, including microservice instances

and host instances. We refer to them collectively as system instances (or instances for short). These system instances
collectively constitute a microservice system and serve as a foundation for achieving high availability, scalability, and
failure tolerance.

Dependency relationship. There are various dependencies between system instances, such as invocation relation-
ships between microservice instances, deployment relationships between microservice instances and host instances,
etc. The impact of a failure can propagate along the direction of dependency relationships, resulting in cascading failures
and making online failure root cause instance localization more challenging.

Multimodal feature. To identify the root cause instances of failures, operators meticulously monitor the system
and record monitoring data. Traces, logs, and metrics are three common modalities of monitoring data that stand as
the three pillars of microservice systems’ observability [56]. In this paper, we concentrate on these three modalities
since they collectively encompass more extensive and comprehensive failure information. To fuse the three modalities
together, we extract a unified vector representation from them as the multimodal feature for each system instance (see
Section 4.2 for details).

System behavior graph. To depict the attributes of system instances and the diverse interdependencies among
them, we conceptualize a microservice system utilizing a system behavior graph (SBG). A SBG is a directed graph,
𝐺 = (𝑉 , 𝐸, 𝐹). 𝑉 is the set of all candidate instances in a microservices system. An edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 indicates an actual
invocation or deployment from instance 𝑣 𝑗 to instance 𝑣𝑖 , which can be interpreted as 𝑣 𝑗 depending on 𝑣𝑖 . 𝐹 is the
feature vectors extracted from the multimodal monitoring data of each instance (see Section 4.2.2). In our work, we
aggregate monitoring data on a minute-by-minute basis. This allows us to model the microservice system as an SBG
every minute, taking into account various monitoring data and the relationships involving invocation and deployment.
Considering that the features of nodes and edges in SBG vary over time, we construct an SBG every minute. Fig. 2
shows how to construct an SBG from a microservice system when a failure occurs. SBGs provide valuable insights into
1https://github.com/bbyldebb/DeepHunt
2https://github.com/bbyldebb/Aiops-Dataset

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 5

𝑆1

𝑆2

𝑆1

𝑆2

𝑆3
𝑆3

𝑆4

𝑆4

𝑆5 𝑆5

𝑆6

𝑆7

𝑆6

𝑆7

𝐻1

𝐻1

𝐻2

𝐻2

𝐻3

𝐻3

Microservice
Instance

Host
Instance

Normal
Instance

Abnormal
Instance

Invocation Deployment Dependency

SBGgenerate

generate

generate

generate

Log
data

Metric
data

Trace
data

Deployment
data

Construct

Fig. 2. A demonstration of constructing a system behavior graph (SBG) from a microservice system. In this illustration, the microservice
system is simplified. The SBG’s dependencies originate from invocation and deployment relationships. The instances within the
SBG denote either microservice instances or host instances, each instance has a feature vector extracted from monitoring data as
attributes.

the interactions and dependencies between various instances, helping to understand the system’s overall behavior and
potential points of failure.

Root cause instance. Root cause instances are the primary system instances that trigger system failures, such as
𝑆4 in Fig. 2. These instances are responsible for system performance degradation, functional failures, or other issues.
Given the intricate dependencies between system instances, the failure of a root cause instance can propagate to some
other cases through these relationships, leading to widespread failures. Promptly identifying the root cause instance
when a system failure occurs is crucial, enabling appropriate measures to be taken to resolve the issue and enhance
system performance. We aim to identify the real root cause instances for failures in microservices systems.

2.2 Self-Supervised Learning and Graph Autoencoders

Self-supervised learning (SSL) is a machine learning paradigm that leverages the inherent information within data for
training models, eliminating the need for manual labeling. In contrast to supervised learning, SSL does not depend on
external labels; instead, it designs pretext tasks that enable model learnings [19]. These tasks generate pseudo-labels
automatically, compelling the model to extract meaningful features from the data to address the problem. Common SSL
tasks include reconstruction tasks [44], prediction tasks (e.g., language modeling [42], image inpainting [41]), generative
adversarial networks [10], and contrastive learning [43].

Among them, graph autoencoders (GAEs) are effective tools for handling graph data. GAEs combine graph neural
networks (GNNs) and autoencoders (AEs) for representation learning and reconstruction of graph data. The training
process of GAEs is accomplished by minimizing the reconstruction error, which measures the difference between
the reconstructed and original graphs. Benefiting from the graph convolution mechanisms of GNNs (e.g., GCN [21],
GraphSAGE [12], GAT [47]), GAEs enable vertices to learn representations not only of themselves but also of their
neighbors by aggregating and propagating information. This allows for capturing the dependency relationships within
the graph structure.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Yongqian Sun and Zihan Lin, et al.

In this paper, we model a microservice system as an SBG and employ GAEs to learn the underlying dependency
patterns within and between the system instances. When a failure occurs, the reconstruction error of each system
instance can serve as a crucial indicator for identifying the culprit system instances.

2.3 Problem Statement

A formal description of localizing the root cause instances of a failure in microservice systems is as follows. For a
failure F, given the trace data T, log data L, metric dataM, and deployment data D in time window before and after the
failure, we extract the multimodal data’s features and dependencies to construct a system behavior graph 𝐺 = (𝑉 , 𝐸, 𝐹),
where𝑉 is the collection of system instances, 𝐸 is the collection of dependencies, and 𝐹 is the multimodal data’s feature
matrix. The objective is to find the set of root cause instances {𝑉𝑟𝑐 } which are responsible for this failure. To address
the challenges outlined, the localization approach should 1) possess an interpretable root cause localization method, 2)
be continuously upgraded and optimized based on operators’ feedback, and 3) not require too much labeled historical
data. In addition, please note that failure detection is not within our research scope in this paper, and there are already
many methods available [11, 39, 56].

3 MOTIVATIONS

In this section, we introduce the motivation behind DeepHunt.

3.1 Why GAE?

To reduce the dependence of model training on manual labeling, we employ SSL [31]. As mentioned in Section 2.2,
common SSL tasks include reconstruction tasks, prediction tasks, generative adversarial networks, and contrastive
learning. Among them, prediction tasks require the manual design of complex and difficult tasks that may require
domain expertise and experience [32]. Generative adversarial networks encounter challenges such as unstable training
process, potential mode collapse, and high training complexity [45], all of which necessitate careful manual adjustments.
As for contrastive learning, the method of selecting negative samples is likely to affect the performance of the model,
requiring complex designs of sampling strategies [31]. In contrast, reconstruction tasks such as autoencoders do not
require task-specific guidance and do not necessitate intricate task design, making their implementation and adaptation
more straightforward [31].

Autoencoders are commonly used self-supervised learning models, and their reconstruction errors have been widely
applied for metric anomaly detection [1, 2, 8, 16, 25, 50, 60]. Since microservice systems exhibit a graph structure, we
employ GAE to capture complex structures and dependencies effectively.

3.2 Observation

When a failure occurs in a microservice system, it will not only affect one instance (i.e., the root cause instance), but it
can also propagate to other instances in multiple ways [48]. Thus, the root cause instance in a microservice system
should exhibit both local and global features. We will demonstrate this idea through an empirical study of 63 failure
cases collected from a microservice system for e-commerce.

3.2.1 Reconstruction Error. As mentioned earlier, the reconstruction error is commonly employed for anomaly detection
as it indicates the extent to which data deviates from the expected normal pattern. Therefore, in this work, we explore
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 7

1 2 3 4 5 6-10 11+
Ranking of root cause instances

0
10
20
30
40
50

Co
un

t

Fig. 3. The distribution of root cause instances according to reconstruction errors in 63 failure cases. GAE is trained using SBG
samples constructed from normal uptime data.

whether it could be beneficial for root cause instance localization. We find that the reconstruction errors of the root
cause instances indeed rank higher.

Specifically, we utilize the collected historical data to construct SBGs to train a GAE and reconstruction errors for
each instance. Subsequently, we rank instances in descending order based on their reconstruction errors and obtain
the ranking information for root case instances. The results are displayed in Fig. 3, where the root cause instances
show high rankings (within the top five) in most failure cases, suggesting that the reconstruction error is an effective
feature for root cause instance localization. Additionally, in approximately 30% of failure cases we collected, the root
cause instance is not ranked first. Therefore, accurately localizing the root cause using only reconstruction errors is
challenging.

3.2.2 Failure Propagation Pattern. As previously discussed, failures demonstrate a propagation behavior within mi-
croservice systems, where an initial failure in a root cause instance may extend to some other instances. Consequently,
when a failure occurs, the monitoring data of multiple instances may exhibit anomalies, leading to elevated recon-
struction errors that can complicate the process of identifying the root cause instance. For example, consider a partial
SBG of a certain failure F depicted in Fig. 4, where nodes denote system instances, values adjacent to instances de-
note reconstruction errors, edges between instances denote dependencies, and arrows denote the direction of failure
propagation. The root cause instance of this failure is 𝑆4. However, instances 𝑆1, 𝑆2, 𝑆3, and 𝑆5 also exhibit abnormal
behavior, influenced by the propagation of the failure. To make things worse, 𝑆2 and 𝑆5 exhibit higher reconstruction
errors due to the more pronounced anomalies they present. This highlights that relying solely on reconstruction error
for localizing the root cause instance is inadequate, as it does not account for failure propagation. To enhance the
accuracy of root cause instance localization, it is imperative to further investigate the role of failure propagation pattern
in conjunction with reconstruction error.

In real-world microservice systems, SBG is much more complex than what is shown in Fig. 4. Therefore, to accurately
localize failure root causes, we need to combine reconstruction error and failure propagation pattern efficiently and
effectively to jointly model them. Additionally, operators expect good interpretability, such as which instance becomes
anomalous earlier, and how a failure propagates across different instances. This aids them in promptly determining
whether the result is correct and taking corresponding measures to mitigate the failure.

3.2.3 Feedback. GAE is trained by reconstructing the SBGs constructed from historical data, a process that does not
require manual labeling. However, the method will inevitably mislocalize for some failures, and it remains difficult to
correctly localize the root cause instances of similar failures without feedback to help the method make corrections.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Yongqian Sun and Zihan Lin, et al.

3.59
0.09

5.76

3.93

𝑆6

𝑆7

𝑆4

𝑆5

𝑆2

𝑆3

𝑆1

0.14
3.13

2.47

Fig. 4. An example of a partial SBG for a certain failure F, where the truth root cause instance is 𝑆4.

Failure Root Cause Instances
{𝑆4}F

Fig. 5. The feedback label provided for failure F.

Therefore, we expect the method can leverage labeled failure cases to enhance performance. For instance, in the failure
case described in Fig. 4, providing the root cause instance label, such as Fig. 5, as supervisory information can help
extract useful insights. Due to the small number of labeled historical failure cases in most scenarios, operators’ feedback
on root cause instances can help improve the method’s performance.

4 DESIGN

4.1 Design Overview

To precisely and interpretably localize the root cause of the microservice system, we propose a multimodal-data based
approach, DeepHunt. The framework of DeepHunt, as shown in Fig. 6, consists of four components: SBG construction,
offline training, interpretable online localization, and feedback.

In SBG construction, DeepHunt unifies and fuses logs, metrics, and traces information, and then constructs SBGs by
using the deployment topology. For interpretable online localization, DeepHunt proposes a root cause score to combine
reconstruction error and failure propagation pattern (addressing challenge 1). In offline training, to solve the problem
of insufficient labeled failure cases and normal training data (challenge 3), DeepHunt adopts GAE, a typical SSL method
for graph data, and performs data augmentation. At last, DeepHunt achieves continuous learning and optimization
through a feedback mechanism (addressing challenge 2).

4.2 SBG Construction

Current studies commonly employ two methods to fuse multimodal data: unifying them into standard events [55?
, 56], or unifying them into vectors through feature extraction [22, 58]. Considering that events in various works have
varying definitions and additional embedding operations are required before feeding them into the neural network, the
latter approach is adopted in our work to ensure simplicity and generalization. In the SBG construction phase, DeepHunt
commences with multimodal serialization to standardize data from diverse modalities into a time series, followed by a
modal-wise feature extraction process. Finally, SBGs are constructed.

4.2.1 Multimodal Serialization. Inspired by the work [22], we serialize different data modalities with the following
rules.
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 9

Log

Metric

Trace

SBG Construction Offline Training Feedback

Feature
Vector

Historical
Samples

Data Augmentation

Realtime Failure
Samples

Root Cause Scorer

Interpretable
Online Localization

Errors Root Cause
Score

Online & Offline Flow Online Only Flow Offline Only Flow

Fine-tune

Labeled Failure
Samples

GAE

Results

Operator

Feedback

TopologyDeployment

SBG
Samples

Invocation

Fusion

Generate

Rank

Train

Fig. 6. The framework of DeepHunt .

Traces. The trace data consists of chain-structured records of user request paths, including details like latency and
status codes. Inspired by previous work [30, 51], we extract features including latency, request count, and status codes
for each callee instance. The structural information of the traces is extracted as dependencies that are used as partial
edges of the SBG. These data are transformed into multivariate time series by computing metrics such as the average
latency per minute, the total number of requests per minute, and the frequency of various status codes per minute. We
extract the trace multivariate time series 𝐻 (𝑖)

trace for each instance 𝑖 .
Logs.The logging behavior ofmicroservices can be highly variable and dependent on developers’ expertise, presenting

challenges in ensuring consistent log semantics [14]. Moreover, extracting log semantics often requires computation-
ally intensive natural language processing, which may hinder real-world applicability [22]. To maintain lightweight
preprocessing, we focus on modeling log template occurrences rather than semantics. We utilize Drain [13] to parse
logs into templates, removing variables from logs. To avoid excessive templates and sparse features, we group log
templates based on frequency and fluctuation. Templates with low frequency and minimal fluctuations are consolidated,
while high-frequency or highly fluctuating ones remain separate. For log templates that did not appear in the historical
records, we handle them as follows. Given the infrequency of new templates in most scenarios, we pre-define a time
series to track the frequency of occurrences of new log templates. However, if an abundance of new templates arises, it
may necessitate retraining to update the feature engineering component accordingly. We then treat the occurrences per
minute of a template group as a time series to construct a multivariate log time series. For each instance 𝑖 , we extract
the log time series 𝐻 (𝑖)

log . This provides a compact representation capturing log-based temporal patterns and dynamics
without heavy natural language processing.

Metrics. The metric data is inherently represented as a time series of performance indicators. We employ resampling
and nearest-neighbor interpolation to standardize all metric intervals to one minute. Constructing multivariate time
series simply involves aligning all metric data by timestamp. We extract the metric multivariate time series 𝐻 (𝑖)

metric for
each instance 𝑖 .

4.2.2 Modal-wise Feature Extraction. We perform 𝑧-score standardization [46] using a sliding historical window on
multivariate time series 𝐻 (𝑖)

modal, where modal ∈ {trace, log,metric}, to normalize different magnitudes. To simplify

feature extraction and avoid excessive overhead, we directly treat the standardized data �̂� (𝑖)
modal as features. Specifically,

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Yongqian Sun and Zihan Lin, et al.

for each instance 𝑖 at time 𝑡 , the feature vector 𝐹 (𝑖)modal = �̂�
(𝑖)
modal (𝑡). We take the union of all features. Next, we concatenate

the features into a fused feature vector 𝐹 (𝑖) =
(
𝐹
(𝑖)
trace

𝐹 (𝑖)log

𝐹 (𝑖)metric

)
. This achieves preliminary fusion across metrics,

logs, and traces. Further inter-modality relationships are learned through the GAE model.

4.2.3 SBG Construction. As shown in Fig. 6, we extract the topology from the deployment relationships within the
deployment data and the invocation relationships within the trace data to form the nodes and edges of the SBG. The
feature vectors extracted from multimodal monitoring data for each instance are utilized as node attributes in the SBG.
The SBG represents the state of a microservices system within a short period and evolves dynamically.

4.3 Offline Training

Consequently, GAE is designed to learn the system’s normal patterns, generating elevated reconstruction errors as
indicative features for root cause localization. During the offline training phase, DeepHunt trains a GAE using SBGs
constructed from historical data.

4.3.1 Model Structure. The GAE in DeepHunt consists of an encoder and a decoder, each comprising several layers of
graph neural networks. The operation of the 𝑘-th layer (𝑘 = 1, 2, . . . , 𝑁) of the encoder or decoder is formulated as

ℎ
(𝑘)
N(𝑖) = 𝑎𝑔𝑔

(
ℎ
(𝑘−1)
𝑗

,∀𝑗 ∈ N (𝑖)
)
,

ℎ
(𝑘)
𝑖

= 𝑛𝑜𝑟𝑚

(
𝜎

(
𝑊 (𝑘) · 𝑐𝑜𝑛𝑐𝑎𝑡

(
ℎ
(𝑘−1)
𝑖

, ℎ
(𝑘)
N(𝑖)

)))
.

(1)

where ℎ (𝑘)
𝑖

is the 𝑘-th layer’s representation of instance 𝑖 ,N(𝑖) is the set of neighbors of instance 𝑖 , 𝑎𝑔𝑔 is the operation
of aggregating the features of the neighbors (e.g., calculating the mean value), 𝑐𝑜𝑛𝑐𝑎𝑡 is the operation of concatenating
the feature vectors of the current instance, and 𝑛𝑜𝑟𝑚 is the normalization operation,𝑊 (𝑘) is the weight matrix of the
𝑘-th layer, and 𝜎 is the LeakyReLU activation function [35].

In each layer of the encoder and decoder, information about the neighbors of each instance is obtained through
neighbor sampling and aggregation. The encoder takes the SBG as input and performs graph convolution operations
to capture the dependencies within and between instances. The encoder gradually reduces the dimensionality of
the instance representation and finally maps it to a low-dimensional latent space. The decoder takes the feature
representations from the latent space and the structural information of the SBG as input. It then applies graph
convolution operations to reconstruct the features of each instance.

4.3.2 Data Augmentation. Usually, increasing the number of training samples for GAE makes the reconstruction error
more helpful in determining anomalous behaviors [3]. However, in certain scenarios, like newly deploying a system
or undergoing significant changes, it is challenging to acquire adequate historical data for training in the short term.
Enhancing the model’s performance with limited training data is an important consideration, and data augmentation
emerges as a common practice in this scenario.

Unlike traditional augmentation techniques used for images, such as rotation or cropping, SBGs, being graph data,
require consideration of structural and feature modifications within the graph. In DeepHunt, GAE primarily focuses
on instance features, thus leading towards augmenting the information within these instance features. Additionally,
we conduct data augmentation aiming to introduce scenarios that might occur but are not included in the training
set. However, altering the graph structure might introduce improbable scenarios that could mislead the model, like

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 11

establishing invocation dependencies between entirely unrelated instances. Consequently, our choice learns towards
augmenting changes in instance features.

To conduct data augmentation, we randomly mask features of each instance in the SBGs before feeding them into
GAE. The data agumentation process is controlled by a probability called the masking rate. Obviously, the masking rate
is an important parameter, and it should be neither too low nor too high. So, we demonstrate the effect of different
masking rates on the model’s performance in Fig. 10. Our core idea for augmentation is to mimic data absence by
masking input features, reducing the possibility of the model overly relying on specific features during training, which
compels the model to learn more robust and generalized features. The evaluation experiments in Section 5.3 validated
the effectiveness of data augmentation.

4.3.3 Training. The training objective of GAE is to reconstruct feature vectors of instances in SBGs while minimizing
reconstruction error. We use mean squared error (MSE) to measure the reconstruction error. Because microservice
systems are typically stable most time, GAE learns the normal patterns of the systems through training.

4.4 Interpretable Online Localization

Even though we recognize that reconstruction error and failure propagation pattern can serve as features indicating the
root cause (see in Section 3.2), quantifying how these two types of features relate to the root cause remains unknown.
In this section, we introduce how DeepHunt provides an interpretable approach to localize the root cause. Our core
idea is to calculate a root cause score for each instance and subsequently rank the instances based on it. This process
consists of two parts: calculating reconstruction error and quantifying failure propagation pattern.

4.4.1 Calculate Reconstruction Error. When a failure occurs, the entire system has likely undergone some minor
changes. Therefore, we typically analyze root causes not only at the moment of failure but also consider the data
preceding the failure. This allows us to obtain reconstruction errors for multiple time intervals. Therefore, our initial
consideration is to aggregate the reconstruction errors from multiple time intervals to obtain local features reflecting
the state of instances. A simple and common method is to take the average of the reconstruction errors across all time
intervals. However, the contribution of features from different time intervals to root cause determination may not be
equal. Therefore, a more effective method is to apply weighted averaging to the reconstruction errors of each time
interval using different importance weights. This can be achieved by employing a fully-connected layer (denoted as
𝐹𝐶1) in the process.

4.4.2 Quantify Failure Propagation Pattern. As mentioned in Section Section 3.2.2, the failure propagation pattern
contributes to achieving more accurate root cause instance localization. Fortunately, regardless of the SBG’s structural
complexity, any anomalous instance has only four potential first-order upstream and downstream conditions, as depicted
in Fig. 7. We remove the self-loop in the SBG because it does not significantly contribute to failure propagation analysis.
These four conditions also apply to certain special scenarios of anomalous instances:

1) Instances lacking upstream or downstream instances can be regarded as having an upstream or downstream
instance with a reconstruction error of 0;

2) Instances with bidirectional dependencies (such as 𝑆7 and 𝐻3 in Fig. 7) can be considered as having the same
instance for both upstream and downstream;

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Yongqian Sun and Zihan Lin, et al.

Focused
Anomalous
Instance

Upstream
Instance

Downstream
Instance

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛4

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝐻1

𝐻2

𝐻3

Fig. 7. The four possible states for any anomalous instance in an SBG. Operators consider that the focused anomalous instances in
𝑆𝑡𝑎𝑡𝑒1 and 𝑆𝑡𝑎𝑡𝑒2 are more likely to be the root cause instances.

3) Instances with multiple upstream or downstream instances (such as 𝑆5, 𝑆2 in Fig. 7) can be consolidated into one,
with the reconstruction error being the maximum value, indicating the most anomalous part of the upstream or
downstream instances.

After operators’ confirmation, anomalous instances in 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 are more likely to be the root
cause than those in𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 and𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛4, as the anomalies in the former two conditions are not caused by failure
propagation.

Consequently, we can quantify the failure propagation pattern through the anomaly degrees (reconstruction errors) of
each instance itself, its first-order upstream and first-order downstream instances, enhancing the root cause probabilities
of the anomalous instances in𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 and𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2. We combine the local features of each instance itself, its first-
order upstream instance, and its first-order downstream instance into a three-dimensional vector. A graph aggregation
layer (denoted as 𝐺𝐴) is designed to quantify the failure propagation pattern of the SBG. Subsequently, we use another
fully-connected layer (denoted as 𝐹𝐶2) to combine each dimension of 𝐺𝐴’s output with different importance weights,
calculating the root cause score. 𝐹𝐶1, 𝐺𝐴, and 𝐹𝐶2 mentioned above collectively form the root cause scorer.

4.4.3 Root Cause Score. As mentioned earlier, we require an interpretable approach to integrate reconstruction errors
and failure propagation patterns for improved localization accuracy. Consequently, we employ a root cause scorer
(comprising layers 𝐹𝐶1, 𝐺𝐴, 𝐹𝐶2) to calculate the root cause score for each instance, facilitating later interpretability in
the localization process. Throughout the learning procedure, DeepHunt ensures that the root cause score is positively
associated with the root cause probability of each instance. Finally, DeepHunt performs online localization by sorting
each instance in descending order based on their root cause scores. Specifically, the calculation of the root cause score

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 13

Table 1. A toy example of the initialization of𝑊1 and𝑊2.

Window_Size 𝑊1 𝑊2

10 [0.1, 0.1, 0.1, . . . , 0.1, 0.1]10 [1, 0, 0]

𝑅𝐶𝑆 (𝑖) of instance 𝑖 is as follows:

𝐹 (𝑖) =𝑊1 · 𝐸𝑟𝑟𝑜𝑟𝑠𝑤𝑖𝑛𝑑𝑜𝑤 (𝑖) ,

𝐹
(𝑖)
𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

=

©«
𝐹 (𝑖)

𝐹
(𝑖)
𝑑𝑜𝑤𝑛

𝐹
(𝑖)
𝑢𝑝

ª®®®¬ =
©«

𝐹 (𝑖)

𝐴𝑔𝑔

(
𝐿 (𝑗) ,∀𝑗 ∈ 𝑉 (𝑖)

𝑑𝑜𝑤𝑛

)
𝐴𝑔𝑔

(
𝐿 (𝑘) ,∀𝑘 ∈ 𝑉 (𝑖)

𝑢𝑝

) ª®®®¬ ,
𝑅𝐶𝑆 (𝑖) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊2 · 𝐹 (𝑖)𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

) .

(2)

where𝑊1 and𝑊2 represent the weight matrix of 𝐹𝐶1 and 𝐹𝐶2 respectively. 𝐸𝑟𝑟𝑜𝑟𝑠𝑤𝑖𝑛𝑑𝑜𝑤 (𝑖) and 𝐹 (𝑖) denote the
sequence of reconstruction errors in the time window we take and the overall reconstruction error of instance 𝑖 ,
respectively.𝐴𝑔𝑔 denotes the method of aggregating the features of the upstream or downstream instances. In this study,
we select the𝑚𝑎𝑥 function as we focus on the most anomalous parts during the feature aggregation process. 𝑉 (𝑖)

𝑑𝑜𝑤𝑛

and 𝑉 (𝑖)
𝑢𝑝 denote the sets of first-order downstream and upstream instances in the SBG. 𝐹 (𝑖)

𝑑𝑜𝑤𝑛
and 𝐹 (𝑖)𝑢𝑝 represent the

features aggregated from the features of instances in 𝑉 (𝑖)
𝑑𝑜𝑤𝑛

and 𝑉 (𝑖)
𝑢𝑝 , respectively. 𝐹 (𝑖)

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛
denotes the quantified

failure propagation pattern.

4.4.4 Interpretability of Online Localization. We elucidate the significance of each parameter within the root cause
scorer to render the process of root cause score calculation transparent. 𝐹𝐶1 is employed to compute the reconstruction
errors across multiple time intervals, reflecting the state of an instance within a time window. Consequently, the number
of parameters in the weight matrix𝑊1 of 𝐹𝐶1 is equal to the length of the window (a hyperparameter Window_Size),
with each parameter individually denoting the importance weight of different time intervals within that window. The
role of 𝐹𝐶2 is to calculate the root cause score from the failure propagation pattern. Thus, the weight matrix𝑊2 of
𝐹𝐶2 contains three parameters, representing the importance weights of the reconstruction error of each instance, its
first-order upstream instance, and its first-order downstream instance when calculating root cause score.

It is worth noting that for the calculation of the root cause score for each instance,𝑊1 and𝑊2 are shared. Under the
initial conditions, we adopt a fixed initialization for𝑊1 and𝑊2 instead of random initialization, and a toy example
is shown in Table 1. The fixed initialization serves as the foundation for DeepHunt to achieve a zero-label cold start.
When no labels are available, DeepHunt computes root cause scores using initialized parameters. In this scenario, we
assume uniform importance for each time interval within the time window and do not consider the upstream and
downstream components in the failure propagation pattern when calculating root cause scores. At this stage, DeepHunt
resembles an “inexperienced operator.” Subsequently, through feedback, it learns and adjusts weights from feedback
samples provided by operators, gradually becoming “experienced.” After receiving the operator’s feedback, DeepHunt
continues to update𝑊1 and𝑊2. The refined𝑊1 and𝑊2 after feedback fine-tuning are presented in Section 5.6.

4.5 Feedback

We implement a feedback mechanism that enables operators to interact with DeepHunt, providing valuable input to
progress its performance. For a failure case, the operator can provide feedback information based on the output of

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Yongqian Sun and Zihan Lin, et al.

DeepHunt: confirming correctly localized cases and correcting wrongly localized ones. For cases where DeepHunt fails
to localize the root cause, the operator can point out the real root cause instance(s) of the failure, as shown in Fig. 5.
DeepHunt then translates the feedback information from operators into a label vector 𝑌 = [0, 0, . . . , 1, . . . , 0], and the
value of the 𝑖-th dimension indicates whether the 𝑖-th instance is a root cause (1 denotes root cause, and 0 denotes
non-root cause). Note that the feedback phase can be periodically triggered or manually initiated.

Our training objective is to maximize the root cause score for root cause instances. However, in real systems,
the number of non-root cause instances is significantly larger than the number of root cause instances. A typical
cross-entropy loss function struggles to address such an imbalanced ratio of instance quantities. Although DéjàVu [26]
introduced a weighted binary cross-entropy, it doesn’t fully mitigate this issue. To address this, we propose a ranking-
oriented loss function (referred to as ranking loss) that ignores the influence of irrelevant instances on the optimization
direction:

𝐿𝑠 = − 1
𝑁

𝑁∑︁
𝑗=1

𝐾𝑗∑︁
𝑖=1

max{𝑅𝐶𝑆 (𝑖)
𝑗

− 𝑅𝐶𝑆 𝑗 · 𝑌𝑗 , 0}. (3)

where 𝑁 denotes the total number of fine-tuned cases, 𝐾𝑗 denotes the number of instances of the 𝑗-th case, 𝑌𝑗 denotes
the true labels of the 𝑗-th case, 𝑅𝐶𝑆 𝑗 denotes the root cause score vector for all instances in the 𝑗-th case, and 𝑅𝐶𝑆 (𝑖)

𝑗

denotes the root cause score for the 𝑖-th instance within that case.
A loss function based on cross-entropy calculates the deviation between the output value and the true label (0 or 1)

of each instance, resulting in the domination of loss values for non-root cause instances due to their overwhelming
number. Consequently, the model tends to predict all instances as non-root causes. The ranking loss addresses this issue
by calculating loss values only for instances ranked before the true root cause instances, and not for instances ranked
after the true root cause instances, thus mitigating the impact of non-root instances that are numerically dominant. By
minimizing the ranking loss, the model gradually optimizes towards prioritizing the ranking of root cause instances
before non-root cause instances, aligning with the objective of our work.

5 EVALUATION

In this section, we evaluate the performance of DeepHunt using the datasets collected from two microservice systems.
We aim to answer the following research questions (RQs):
RQ1: How effective is DeepHunt in failure root cause instance localization?
RQ2: Does each component of DeepHunt have significant contributions to DeepHunt’s performance?
RQ3: Is the computational efficiency of DeepHunt sufficient for failure diagnosis in the real world?
RQ4: What is the impact of different hyperparameter settings?
RQ5: How do the parameters of DeepHunt’s interpretability module change after fine-tuning with feedback?

5.1 Experimental Setup

5.1.1 Dataset. To evaluate the performance of DeepHunt, we conduct extensive experiments on two datasets D1 and D2
collected from two microservice systems under different business backgrounds and architectures. Detailed information
is listed in Table 2. The systems that produce D1 and D2 are as follows:

(1) D1. D1 is collected from a simulated e-commerce system with microservice architecture. The system comprises
46 system instances, including 40 microservice instances and 6 virtual machines. Its pattern of user requests is
consistent with that of a real-world e-commerce system. Additionally, the failure cases in this dataset are derived

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 15

Table 2. Detailed information of datasets.

Dataset # Instances # Normal # Failure # Records Failure Types

D1 46 3,714 210
trace 44,858,388

Container hardware failure

log 66,648,685
Container network failure

metric 20,917,746
Node CPU failure
Node disk failure
Node memory failure

D2 18 12,297 133
trace 214,337,882

JVM memory failure

log 21,356,870

JVM CPU failure

metric 12,871,809

Container memory failure
Container CPU failure
Container network failure
Container disk failure

from real-world failures and are replayed in batches. The recorded failures were then labeled with their respective
root cause instances. We have opened source the raw data and root cause labels of failures for D13.

(2) D2. D2 is collected from the management system of a top-tier commercial bank. The system comprises 18 system
instances, including web servers, application servers, databases, and dockers. Due to the non-disclosure agreement,
we cannot make this dataset publicly available. Two experienced operators examined the failure records from
January 2021 to June 2021 and labeled the root cause instances of each failure. The labeling process was conducted
separately by each operator, and they cross-checked their labels with each other to ensure consensus. This dataset
has been used in the International AIOps Challenge 2022 4.

5.1.2 Baseline Methods. We select nine advanced methods as the baseline methods, including non-deep learning-based
methods (i.e., MicroHECL [29], MicroRank [52], AutoMAP [34], TraceRCA [24], Microscope [27], RCD [17]), which
employ techniques such as traditional machine learning, statistical models, or graph algorithms; and three supervised
deep learning-based methods (i.e., DéjàVu [26], Eadro [22], DiagFusion [56]). More details can be found in Section 7.
Among the baseline methods, MicroHECL, MicroRank, and TraceRCA utilize trace, AutoMAP, RCD, Microscope, and
DéjàVu utilize metric, and Eadro and DiagFusion utilize the three modalities of data including trace, log, and metric. We
configure the parameters (e.g., significance level, feature dimension) of all these methods according to their original
settings depicted in the above works.

5.1.3 Evaluation Metrics. As stated in Section 2.3, DeepHunt aims to localize the root cause instances for failures. We
carefully choose evaluation metrics to better reflect the comprehensive performance of all selected methods. More
specifically, we employ Top-k accuracy (A@k) and Top-5 average accuracy (Avg@5) as the evaluation metrics. A@k
quantifies the probability that the top-k instances output by each method indeed contain the root cause instance.
Formally, given 𝐴 as the test set of failures, |𝐴| as the size of the test set, 𝑅𝐶𝑎𝑡 as the ground truth root cause instance of
failure 𝑎, 𝑅𝐶𝑎𝑝 [𝑘] as the top-k root cause instances set of failure 𝑎 generated by a method, A@k is defined as:

𝐴@𝑘 =
1
|𝐴|

∑︁
𝑎∈𝐴

1, if 𝑅𝐶𝑎𝑡 ∈ 𝑅𝐶𝑎𝑝 [𝑘] ,

0, otherwise.
(4)

3https://github.com/bbyldebb/Aiops-Dataset
4https://aiops-challenge.com/

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Yongqian Sun and Zihan Lin, et al.

Avg@5 evaluates a method’s overall capability in localizing the root cause instance. In practice, operators often examine
the top five results. Avg@5 is calculated by:

𝐴𝑣𝑔@5 =
1
5

∑︁
1≤𝑘≤5

𝐴@𝑘. (5)

5.1.4 Implementation. We implement DeepHunt and baselines with Python 3.9.13, PyTorch 1.12.1, scikit-learn 1.1.2,
and DGL 0.9.0 respectively. We run the experiments on a server with 12 × Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
and 128G RAM (without GPUs). We repeat every experiment five times and take the average result to reduce the effect
of randomness.

5.2 Overall Performance (RQ1)

In DeepHunt, we utilize the data from non-failure periods to train the GAE. The failure cases with root cause labels are
utilized to evaluate the effectiveness (test set) and simulate the feedback information provided by operators (training
set). We split the failure cases into training and test sets chronologically. Specifically, for the evaluation in Table 3,
we allocate the first 30% of failure cases as the training set and the remaining 70% as the test set. To demonstrate the
effectiveness of DeepHunt, we compare its performance on both D1 and D2 with the baseline methods. The performance
comparison result is shown in Table 3.

The labeling ratio in the table indicates the percentage of samples used for supervised learning. DeepHunt achieves
the best performance overall. Without the utilization of labels (the labeling ratio is 0%), DeepHunt has already achieved
good performance. With a labeling ratio as low as 1%, DeepHunt performs closely rivals or even surpasses most baseline
methods. As mentioned earlier, DeepHunt does not necessarily require a large amount of labeled data to start and
even can initiate with a zero-label cold start (see in Section 4.4.4). As the number of feedback samples increases, the
localization accuracy of DeepHunt gradually improves. Take 30% labeling ratio as an example, supervised methods
begin to exhibit a certain level of root cause instance localization capability. DeepHunt outperforms all baseline methods,
demonstrating an improvement in A@5 ranging between 16% to 455%.

Compared to baseline methods that do not utilize supervised information, DeepHunt learns from historical runtime
data and failure cases to enhance the accuracy of root cause localization. Additionally, the limitations in robustness
to noise restrict the accuracy of these unsupervised methods. In scenarios with limited labels, DeepHunt offers the
following two advantages compared to supervised baseline methods: 1) it utilizes SSL to learn normal patterns from
historical runtime data and extracts reconstruction errors as effective features for root cause instance localization;
2) its parameters of both the GAE (trained through SSL) and the root cause scorer are well-initialized, relying less on
supervised manual labels of historical failure cases.

Since DeepHunt is a deep learning-based method, we pay extra attention to how it compares with other deep
learning-based methods. We focus on two main points:

1) How does each method perform under different labeling ratios? We conduct experiments using supervised
samples ranging from 0% to 50% and present the results for Avg@5 in Fig. 8. The experimental results reveal that
DeepHunt achieves remarkable performance with limited supervised information. As the labeling ratio increases,
DeepHunt shows an upward trend in its performance. However, the improvement becomes less significant once the
labeling ratio reaches a certain threshold, such as 1% in D1 and 25% in D2. This suggests that DeepHunt does not
necessarily require a large number of supervised information for optimal performance. Moreover, DeepHunt consistently
delivers higher accuracy with the same labeling ratio compared to other methods. This indicates that DeepHunt is highly
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 17

Table 3. Effectiveness of root cause instance localization. (“-” means this method does not need labeled samples for training.)

Method D1 D2

Labeling ratio A@1 A@3 A@5 Avg@5 Labeling ratio A@1 A@3 A@5 Avg@5

DeepHunt
0% 0.780 0.898 0.959 0.889 0% 0.445 0.772 0.903 0.716
1% 0.795 0.905 0.966 0.894 1% 0.498 0.781 0.910 0.741
25% 0.797 0.902 0.966 0.895 25% 0.783 0.935 0.944 0.900
30% 0.803 0.912 0.966 0.898 30% 0.785 0.936 0.946 0.901

DéjàVu 30% 0.473 0.701 0.793 0.670 30% 0.583 0.733 0.817 0.714
Eadro 30% 0.310 0.446 0.484 0.413 30% 0.214 0.386 0.454 0.361
DiagFusion 30% 0.333 0.500 0.648 0.493 30% 0.398 0.552 0.750 0.532
MicroHECL - 0.091 0.232 0.386 0.236 - 0.068 0.240 0.414 0.242
MicroRank - 0.144 0.218 0.259 0.209 - 0.208 0.365 0.541 0.369
AutoMAP - 0.279 0.574 0.729 0.531 - 0.128 0.271 0.421 0.283
TraceRCA - 0.243 0.310 0.338 0.302 - 0.241 0.368 0.459 0.362
Microscope - 0.074 0.113 0.227 0.127 - 0.030 0.078 0.241 0.117
RCD - 0.095 0.124 0.174 0.128 - 0.106 0.167 0.220 0.170

effective in failure root cause instance localization, making it a valuable option for practical deployment, particularly in
scenarios where obtaining a large amount of labeled data is challenging or time-consuming.

2) How stable is each method’s performance in multiple experiments on the same training data?We repeat
the experiments for each method five times without setting the random seed. To ensure the effectiveness of supervised
baseline methods, we set the supervision rate to 30%. We then visualize the results using box plots in Fig. 9. It clearly
indicates that the stability of DeepHunt is significantly higher than that of the other methods. We attribute this higher
stability to the fact that, unlike other methods that rely on random initialization, the large number of uptime data
used to train the GAE provides good initialization parameters for DeepHunt. As a result, when the training sample size
is limited, the model experiences notably less uncertainty from stochastic operations like stochastic gradient (SGD)
compared to other methods. This robustness and stability further highlight the effectiveness and reliability of DeepHunt
in failure root cause instance localization.

Table 4. Contributions of components.

Method A@1 A@3 A@5 Avg@5

D1

DeepHunt 0.795 0.905 0.966 0.894
C1 0.759 0.901 0.961 0.882
C2 0.488 0.770 0.814 0.706
C3 0.780 0.898 0.959 0.889
C4 0.544 0.829 0.891 0.776
C5 0.776 0.898 0.959 0.888

D2

DeepHunt 0.498 0.781 0.910 0.741
C1 0.426 0.774 0.871 0.699
C2 0.447 0.726 0.873 0.687
C3 0.445 0.772 0.903 0.716
C4 0.138 0.436 0.776 0.457
C5 0.432 0.765 0.896 0.706

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Yongqian Sun and Zihan Lin, et al.

pic

308216628

August 2023

1 Introduction

0% 1% 5% 10% 25% 50%
0

0.2

0.4

0.6

0.8

1
0.89
0.71

0.47

Avg@5 (D1)

0% 1% 5% 10% 25% 50%
0

0.2

0.4

0.6

0.8

1
0.90
0.81
0.64

0.37

Avg@5 (D2)

Eadro DéjàVu
DiagFusion DeepHunt

Deep
Hun

t

Déjà
Vu

Diag
Fu

sio
n
Ead

ro

0.4

0.6

0.8

1

Avg@5 (D1)

Deep
Hun

t

Déjà
Vu

Diag
Fu

sio
n
Ead

ro

0.4

0.6

0.8

1

Avg@5 (D2)

1

Fig. 8. Performance of the deep learning-based methods with different labeling ratios.

pic

308216628

August 2023

1 Introduction

0% 1% 5% 10% 25% 50%
0

0.2

0.4

0.6

0.8

1
0.89
0.71

0.47

Avg@5 (D1)

0% 1% 5% 10% 25% 50%
0

0.2

0.4

0.6

0.8

1
0.90
0.81
0.64

0.37

Avg@5 (D2)

Eadro DéjàVu
DiagFuison DeepHunt

Deep
Hun

t

Déjà
Vu

Diag
Fu

sio
n
Ead

ro

0.4

0.6

0.8

1

Avg@5 (D1)

Deep
Hun

t

Déjà
Vu

Diag
Fu

sio
n
Ead

ro

0.4

0.6

0.8

1

Avg@5 (D2)

1

Fig. 9. Stability of the deep learning-based methods.

5.3 Ablation Study (RQ2)

To evaluate the effects of the five key technique contributions of DeepHunt: 1) the data augmentation module; 2) the GAE;
3) the feedback phase; 4) the root cause scorer; 5) the ranking loss, we create five variants of DeepHunt. C1: Remove the
data augmentation module. C2: Replace GAE with an autoencoder built upon non-graph neural networks. C3: Remove
the feedback phase. C4: Replace our root cause scorer with random forest regression [5]. C5: Replace our ranking loss
with loss function proposed in DéjàVu [26].

Table 4 lists that DeepHunt outperforms all the variants on D1 and D2, demonstrating each component’s significance.
In C1, the decrease in accuracy highlights the effectiveness of the data augmentation module. In C2, the replaced
autoencoder disregards the inter-instance dependency information while learning the system’s normal pattern, resulting
in a decline in feature quality and ultimately impacting DeepHunt’s performance. C3 demonstrates the continuous
learning capability of DeepHunt, enabling it to fine-tune itself through feedback from operators continually. C4 shows
that the necessity of providing interpretability to DeepHunt is affirmed, as other interpretable traditional methods (such
as random forest) fail to deliver satisfactory performance. In C5, our proposed ranking-oriented loss function exhibits
superior advantages in handling the imbalance between root cause instances and non-root cause instances compared to
the loss function proposed in DéjàVu.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 19

Furthermore, DeepHunt can adapt to the dynamic addition and removal of instances. To verify this, we conduct
additional experiments in which we manually introduce changes in the number of instances. Specifically, we randomly
remove 20% of the instances in the training set to simulate the addition of instances in the test set and randomly remove
20% of the non-root cause instances in the test set to simulate the removal of instances in the test set. We create other
four variants of DeepHunt. C6: Randomly remove 20% of instances in the training set. C7: Remove the feedback phase
in the context of C6. C8: Randomly remove 20% of instances in the test set. C9: Remove the feedback phase in the
context of C8. For each variant, we repeat the experiment five times and average the results.

Table 5. Performance under the dynamic addition and removal of instances.

Method A@1 A@3 A@5 Avg@5

D1

DeepHunt 0.795 0.905 0.966 0.894
C6 0.788 0.904 0.966 0.892
C7 0.781 0.898 0.959 0.890
C8 0.806 0.918 0.978 0.908
C9 0.801 0.913 0.966 0.904

D2

DeepHunt 0.498 0.781 0.910 0.741
C6 0.473 0.766 0.886 0.721
C7 0.439 0.768 0.901 0.715
C8 0.523 0.815 0.916 0.763
C9 0.482 0.807 0.925 0.757

The results are shown in Table 5. The outcomes of C6 and C8 indicate that the dynamic addition and removal of
instances have little impact on the accuracy of DeepHunt. Notably, removing instances in the test set (C8) reduces the
number of candidate instances, thereby decreasing the difficulty of localization, which increases accuracy instead. The
accuracy of C7 and C9 is lower than that of C6 and C8, respectively, suggesting that the feedback phase positively
affects DeepHunt’s adaptation to the dynamic deletion of instances.

5.4 Efficiency (RQ3)

We record the running time of all methods and compare them in Table 6. It shows that DeepHunt can localize the root
cause instances of a failure within 1 second on average online. This demonstrates that DeepHunt can meet the needs of
online diagnosis.

Offline training time is not sensitive because it does not need to be retrained frequently. However, we note a significant
difference in DeepHunt’s offline training time between the two datasets. Offline training time is typically affected by
feature engineering, model structure, optimization algorithms, and hyperparameter settings. We use the same model
structure, optimization algorithm, and similar hyperparameter settings on datasets D1 and D2, so they cannot be the
key factors. Specifically, we use the same model structure for both datasets to ensure consistent model complexity. We
choose Adaptive Moment Estimation (Adam) [20] as the optimization algorithm for its adaptive learning rate, reducing
the need for hyperparameter tuning and ensuring efficient and stable model convergence. Feature engineering time
mainly depends on data volume and complexity, which differs between datasets. As presented in Table 2, there is a
significant difference in the number of samples used for GAE training (# Normal) between the two datasets. Additionally,
the amount of trace data in D2 is an order of magnitude larger than that in D1. These result in a greater time overhead for
constructing SBG samples on the D2 dataset. In summary, feature engineering is the key factor influencing DeepHunt’s
offline training time.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Yongqian Sun and Zihan Lin, et al.

Table 6. Training time (Offline) and average time to diagnose a failure case (Online). (“-” means this method does not need training)

Method
D1 D2

Offline(s) Online(s) Offline(s) Online(s)

DeepHunt 629.892 0.169 1961.616 0.262
DéjàVu 429.048 0.318 381.421 0.192
Eadro 1126.162 5.370 399.251 0.432

DiagFusion 613.919 4.145 308.020 3.297
MicroHECL - 12.233 - 4.193
MicroRank - 42.540 - 28.877
AutoMAP - 3.845 - 0.667
TraceRCA - 34.731 - 92.956
Microscope - 26.685 - 8.548

RCD - 27.072 - 19.283

8 16 32 64 128 256
0.4

0.6

0.8

1

Hidden_Dim

0 0.2 0.4 0.6 0.8
0.4

0.6

0.8

1

Noise_Rate

1 2 3 4 5
0.4

0.6

0.8

1

Num_Layers

2 6 10 14 20
0.4

0.6

0.8

1

Window_Size

5 10 50 100 150 200
0.4

0.6

0.8

1

Max_Epoch

0.001 0.005 0.01 0.1
0.4

0.6

0.8

1

Init_LR

Avg@5 (D1) Avg@5 (D2)

Fig. 10. The effectiveness of DeepHunt under different hyperparameters.

It’s worth noting that Microscope has been analyzing online for longer than DeepHunt, even though it’s a simple
metric-based approach. The computational complexity of the PC algorithm used by Microscope is exponentially related
to the number of nodes. When the number of metrics increases, the PC algorithm needs to perform more conditional
independence tests and graph searches, which increases the computational burden. There are quite a number of metrics
in datasets D1 and D2, and the possible combinations of graph structures increase with them, which increases the
complexity of the search and causes the algorithm to take more time to find the optimal graph structure. So the online
time of Microscope is longer compared to DeepHunt.
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 21

5.5 Hyperparameter Sensitivity (RQ4)

We discuss the effect of six hyperparameters of DeepHunt. Fig. 10 shows how Avg@5 changes with different hyperpa-
rameters.

The number of neurons in the hidden layer (Hidden_Dim). The performance of DeepHunt demonstrates
relative stability when varying the number of neurons in the hidden layer. It is not a sensitive parameter for DeepHunt.

The ratio of masked features (Noise_Rate). Randomly masking a certain proportion of features indeed leads to
an improvement in the performance of DeepHunt. However, when the proportion of injected noise is excessively high,
it can compromise the characteristics of the original samples, resulting in a notable decline in performance.

The number of hidden layers in encoder/decoder (Num_layers). As the number of hidden layers increases,
the model becomes more complex, resulting in overfitting with limited samples. DeepHunt experiences a degradation
in performance when this parameter becomes excessive. This parameter needs to be set based on the specific sample
conditions, and we set it to 1 in our study.

The size of the data time window around the failure occurrence used for root cause localization (Win-
dow_Size). DeepHunt exhibits an overall trend of performance improvement followed by a decline with varying window
sizes. Clearly, a window that is too small fails to encompass complete failure information, while an excessively large
window contains too much irrelevant data. In our study, setting it to 10 proves to be a suitable choice.

The maximum number of epochs for fine-tuning during feedback (Max_Epoch).We implement an early stop
strategy during fine-tuning, which might lead to the performance of DeepHunt being insensitive to Feedback_Epoch.
Nevertheless, we still advise against setting this parameter excessively high, especially when dealing with small sample
sizes.

The initialization learning rate for fine-tuning during feedback (Init_LR).We employ the adaptive learning
rate algorithm Adam [20] during fine-tuning. Nonetheless, the init_LR remains a critical hyperparameter, influencing
the speed and effectiveness of convergence in fine-tuning. In our study, a learning rate setting of 0.01 is deemed an
appropriate choice.

5.6 Interpretation of Localization Results (RQ5)

We have described the interpretability of DeepHunt for root cause instance localization in Section 4.4.4. In this section,
we show in detail the parameters𝑊1 and𝑊2 obtained by fine-tuning the root cause scorer in D1 and D2 during feedback
respectively, where𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 is set to 10.

The 𝐹𝐶1 layer of the root cause scorer, used to calculate the overall reconstruction error of each instance, initializes
each parameter in𝑊1 to 0.1. In Fig. 11, we present the heatmaps of the fine-tuned parameters for the two datasets, each
exhibiting a failure case. Intriguingly, the results differ: in D1, the largest weight appears at the first minute after the
failure onset, whereas in D2, the largest one appears at the fifth minute the failure occurs. We analyze that this scenario
relates to the observational characteristics inherent in the datasets. In D1, most root cause instances exhibit anomalous
fluctuations earlier than the non-root cause instances. Conversely, in D2, most root cause instances tend to persist in
anomalies for an extended period compared to the non-root cause ones.

The 𝐺𝐴 layer and the 𝐹𝐶1 layer quantify the failure propagation pattern for each instance. They utilize three
parameters𝑊2 = (𝛼, 𝛽,𝛾), representing the importance weight of self, downstream, and upstream dependencies,
respectively. They are initialized as (1, 0, 0), respectively, signifying no aggregation of dependencies by default. We
froze the parameter 𝛼 and exclusively fine-tune 𝛽 and 𝛾 . Table 7 shows the fine-tuned parameters for the two datasets.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Yongqian Sun and Zihan Lin, et al.

T-5 T-4 T-3 T-2 T-1 T T+1 T+2 T+3 T+4

RC

Non-RC

Non-RC

W1 0.09 0.08 0.08 0.06 0.08 0.13 0.11 0.10 0.10 0.12

0.42 1.1 0.46 0.74 16.03 39.96 23.06 22.61 18.08 23.35

1.49 1.08 1.04 0.88 28.06 1.22 0.93 0.69 1.2 1.26

0.93 1.3 0.7 0.71 12.44 27.31 11.97 13.46 16.0 11.59
0.06

0.08

0.10

0.12

(a) D1

T-5 T-4 T-3 T-2 T-1 T T+1 T+2 T+3 T+4

RC

Non-RC

Non-RC

W1 0.01 -0.12 -0.03 -0.17 -0.16 0.06 0.03 -0.02 0.13 0.20

2.57 0.82 0.92 0.91 1.07 2.09 2.06 2.03 2.28 3.91

0.79 1.31 2.65 0.57 2.2 1.32 0.46 1.23 2.78 0.5

5.21 2.37 4.69 1.01 0.53 0.56 0.85 4.49 2.86 1.08 0.1

0.0

0.1

0.2

(b) D2

Fig. 11. The heatmap of weights𝑊1 of 𝐹𝐶1 layer within a window. Values within cells represent reconstruction errors, while color
shades illustrate weight magnitude. T-/+𝑖 represents the 𝑖-th minute before/after the failure. “RC” denotes root cause instances,
“Non-RC” denotes non-root cause instances.

Table 7. The parameters𝑊2 of 𝐹𝐶2 layer in the root cause scorer after fine-tuning.

Dataset 𝛼 𝛽 𝛾

D1 1.000 0.020 0.009
D2 1.000 0.133 -0.002

The outcomes indicate a higher significance of downstream dependencies over upstream dependencies, and the weight
of the upstream ones even displays negativity in D2. This suggests that the local features of upstream instances are less
important for quantifying root causes, to the extent that higher ones diminish the probability of being a root cause.

6 DISCUSSION

6.1 Limitations and Future Works

When a failure occurs, it is crucial to swiftly localize the instance of the culprit. Operators often require accurate
and detailed information to pinpoint the root cause of the failure. This includes not only identifying the location of
the root cause instance but also obtaining more specific results, such as the failure type. However, DeepHunt cannot
currently determine the failure type. This limitation arises because the reconstruction errors extracted by the GAE
reflect the anomalies of the instance as a whole, but it’s difficult to capture the nuanced failure details within the
instance. Addressing this limitation would be an important area for future improvements in DeepHunt.

Based on the work of DeepHunt, a potential avenue for future work could involve training a failure-type classifier
using a smaller amount of labeled data. The accurate localization provided by DeepHunt helps narrow down the scope
of determining the root cause, ideally requiring only the data from the root cause instance to train the classification
Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 23

model rather than the data of the entire system. Additionally, the GAE serves another purpose of performing feature
dimensionality reduction, allowing for the extraction of a high-quality, low-dimensional representation of the initial
features. This dimensionality reduction can help reduce the number of parameters required for the failure type classifier.

6.2 Concerns about Deployment and Validity

Deploying DeepHunt in real-world microservice systems may encounter some concerts: (1) DeepHunt needs to adapt
to dynamic microservice architectures. DeepHunt utilizes GraphSage layers in the GAE model that can learn the
aggregation of neighboring nodes. GraphSage enables individual nodes to update their representations by leveraging
information from neighboring nodes while facilitating the model’s adaptation to diverse neighbor structures and
characteristics across nodes. This flexibility enables DeepHunt to handle the dynamic increase and decrease of instances
in real-world deployments. (2) Incomplete monitoring of modalities. Some production systems may not monitor all
three modalities (trace, log, and metric) simultaneously. DeepHunt integrates the various modalities into a unified
time-series data representation and subsequently extracts features for fusion. This approach ensures that DeepHunt
is not reliant on any specific modal data and can accommodate any combination of the three modalities. However, it
is important to note that the lack of monitoring data from certain modalities could compromise the observability of
failures and subsequently reduce the accuracy of localization.

This study faces two main threats. Firstly, the limited size of the D1 and D2 datasets used in this study. These datasets
may be less complex and dynamic compared to real-world industrial microservice systems. Secondly, we evaluate
DeepHunt on two datasets, which cannot represent all microservice systems. However, it is important to note that the
two datasets are still valuable for evaluation. The datasets are sourced from different systems with diverse architectures
and business operations. The validity and generalizability of DeepHunt are supported by the successful results obtained
in our experiments. So, we believe that DeepHunt holds promise for application in larger industrial microservice systems
with more complex failure scenarios.

7 RELATEDWORK

Table 8. Comparison of existing representative methods. DL-based is short for deep learning-based. M, L, and T are short for Metric,
Log, and Trace.

Method DL-based Modality Pros Cons

DéjàVu ✓ M • Providing fine-grained failure diagnosis for recurring failures; • Requiring a large number of labeled failure cases for training.
• An interpretable module is provided. • Not fusing the multimodal data.

Eadro ✓ M, L, T • Fusing multimodal data; • Requiring a large number of labeled failure cases for training.
• Investigating the close connection between detection and localization. • The number of output layer neurons must be equal to that of system instances.

DiagFusion ✓ M, L, T • Fusing the multimodal data; • Requiring a large number of labeled failure cases for training.• Overcoming the challenge of unbalanced types of failures.

MicroHECL × T
MicroRank × T
AutoMAP × M • Not requiring labeled failure cases for training. • Lack of a learning process from historical data, limited accuracy;
TraceRCA × M • Based on interpretable methodologies. • Not fusing the multimodal data.
Microscope × M

RCD × M

Non-deep learning-based methods.Many studies aim to capture the interactions between system components
during failures by proposing dependency graphs. Examples of such works include MicroRCA [49], MS-Rank [33],
and its extension AutoMAP [34]. Some works construct more fine-grained graphs to capture causal relationships
between metrics, e.g., MicroCause [39], Microscope [27], and RCD [17]. However, the effectiveness of these approaches
heavily relies on the accuracy of the relational graphs and the appropriate setting of parameters. This reliance on

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Yongqian Sun and Zihan Lin, et al.

graph accuracy and parameter tuning reduces their applicability and limits their effectiveness in real-world scenarios.
MEPFL [59], TraceRCA [24], MicroHECL [29], and MicroRank [52] utilize trace information to localize the root cause
service. However, these approaches often focus more on the global characteristics of the system and may overlook the
local characteristics of individual service instances. PDiagnosis [15] combines metrics, logs, and traces to identify root
causes. It employs lightweight anomaly detection in all three modalities to detect anomalous patterns. Based on a voting
strategy, the most severe component is selected as the root cause. However, PDiagnosis does not take into account
the topological characteristics of the microservice system. Nezha [53] converts multimodal data into a unified event
representation and extracts event patterns by constructing and mining the event graph. It then compares event patterns
between failure-free and failure-occurrence phases to localize the root cause interpretively. Nezha primarily localizes
root causes in code regions and resource types, differing somewhat from the instance-level localization approach in this
paper. ShapleyIQ [23] employs multimodal data to build a causal graph for root cause localization via counterfactual
evaluation and Shapley values. It utilizes a first principles model based on physical laws and historical observations to
evaluate counterfactual effects. However, this method relies on constructing physical law-based models, whose accuracy
hinges on precise assumptions about system behavior. Deviations from these assumptions may result in inaccurate
estimations of causal relationships.

Deep learning-based methods. In recent years, there has been a growing trend in using graph neural networks
(GNNs) to capture and learn the topological features of microservices. DéjàVu [26] learns metrics features and topological
features of microservice systems using Gated Recurrent Unit (GRU) [7] and Graph Attention Networks (GAT) [47] for
fine-grained diagnosis of recurring failures. Eadro [22]unifies data of different modalities into vectors and performs
joint training for anomaly detection and root cause localization. DiagFusion [56] unifies data from different modalities
into events, performs unified embedding representation, and learns from historical failure cases to identify root cause
instances and failure types. However, all these methods have a limitation in that they require a large number of high-
quality labeled failure cases for method training; otherwise, it is difficult to achieve good performance. Furthermore,
Eadro and DiagFusion have a specific requirement where the number of output neurons should equal the number of
instances in the system. This constraint limits their applicability in scenarios where the number of nodes dynamically
changes, such as in systems with dynamic scaling or evolving architectures.

We compare existing representative methods in Table 8, summarizing their classification, data modalities used, pros,
and cons. DeepHunt refines the cons of these methods, summarized as 1) learning from historical unlabeled data and
feedback from failure cases; 2) reducing the requirement for large amounts of labeled data; 3) adapt to the dynamic
increase and decrease of instances; 4) providing interpretability for results.

8 CONCLUSION

In this work, we conduct an extensive study aiming to enhance the effectiveness of failure root cause instance localization
while reducing reliance on heavily labeled data. Leveraging the principles of self-supervised learning, particularly
Graph Autoencoder (GAE), we propose DeepHunt. By integrating reconstruction errors and failure propagation patterns
(upstream-downstream relationships), DeepHunt introduces the root cause score to measure root causes interpretably.
Furthermore,DeepHunt achieves zero-label cold start and continuous ongoing refinement through a feedbackmechanism
we designed. Experimental results on two datasets demonstrate that DeepHunt is more effective, stable, and less reliant
on labeled failure cases than prevailing deep learning-based methods.

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 25

REFERENCES
[1] Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. 2021. Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection

and Localization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (Virtual Event, Singapore) (KDD ’21).
Association for Computing Machinery, New York, NY, USA, 2485–2494. https://doi.org/10.1145/3447548.3467174

[2] Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly detection using reconstruction probability. Special lecture on IE 2, 1
(Dec. 2015), 1–18. https://api.semanticscholar.org/CorpusID:36663713

[3] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. 2020. Usad: Unsupervised anomaly detection on
multivariate time series. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 3395–3404.

[4] AWS. 2021. Summary of the AWS Service Event in the Northern Virginia (US-EAST-1) Region. https://aws.amazon.com/cn/message/11201/
[5] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5–32.
[6] Yiran Cheng, Bo Cheng, Pengxiang Jin, Yongqian Sun, Xiaohui Nie, Nengwen Zhao, Shenglin Zhang, and Dan Pei. 2022. Effective Attribute Selection

for Multi-dimensional Root Cause Analysis. In 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE). IEEE, 321–331.
[7] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning

Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. (2014). https://doi.org/10.48550/arXiv.1406.1078
arXiv:arXiv:1406.1078

[8] Liang Dai, Tao Lin, Chang Liu, Bo Jiang, Yanwei Liu, Zhen Xu, and Zhi-Li Zhang. 2021. SDFVAE: Static and Dynamic Factorized VAE for Anomaly
Detection of Multivariate CDN KPIs. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing
Machinery, New York, NY, USA, 3076–3086. https://doi.org/10.1145/3442381.3450013

[9] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep
Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS ’17). Association
for Computing Machinery, New York, NY, USA, 1285–1298. https://doi.org/10.1145/3133956.3134015

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative
Adversarial Networks. Commun. ACM 63, 11 (oct 2020), 139–144. https://doi.org/10.1145/3422622

[11] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan Ding, Tao Xie, and Liangfei Su. 2020. Graph-Based Trace Analysis for
Microservice Architecture Understanding and Problem Diagnosis. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 1387–1397. https://doi.org/10.1145/3368089.3417066

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[13] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE
International Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017, Ilkay Altintas and Shiping Chen (Eds.). IEEE, Los Alamitos,
CA, 33–40.

[14] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R. Lyu. 2021. A Survey on Automated Log Analysis for Reliability
Engineering. ACM Comput. Surv. 54, 6, Article 130 (jul 2021). https://doi.org/10.1145/3460345

[15] Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. 2021. Diagnosing Performance Issues in Microservices with Heterogeneous Data Source.
In 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, Los Alamitos, CA, 493–500. https://doi.org/10.1109/ISPA-BDCloud-
SocialCom-SustainCom52081.2021.00074

[16] Tao Huang, Pengfei Chen, and Ruipeng Li. 2022. A Semi-Supervised VAE Based Active Anomaly Detection Framework in Multivariate Time
Series for Online Systems. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for Computing
Machinery, New York, NY, USA, 1797–1806. https://doi.org/10.1145/3485447.3511984

[17] Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu. 2022. Root Cause Analysis of Failures in
Microservices through Causal Discovery. In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc., 31158–31170. https://proceedings.neurips.cc/paper_files/paper/2022/file/
c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf

[18] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia Makedon. 2021. A Survey on Contrastive Self-
Supervised Learning. Technologies 9, 1 (2021). https://doi.org/10.3390/technologies9010002

[19] Longlong Jing and Yingli Tian. 2021. Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence 43, 11 (2021), 4037–4058. https://doi.org/10.1109/TPAMI.2020.2992393

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[21] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. (2016). https://doi.org/10.48550/arXiv.

1609.02907 arXiv:arXiv:1609.02907
[22] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R. Lyu. 2023. Eadro: An End-to-End Troubleshooting Framework for Microservices

on Multi-Source Data. In Proceedings of the 45th International Conference on Software Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE
Press, New Jersey, USA, 1750–1762. https://doi.org/10.1109/ICSE48619.2023.00150

Manuscript submitted to ACM

https://doi.org/10.1145/3447548.3467174
https://api.semanticscholar.org/CorpusID:36663713
https://aws.amazon.com/cn/message/11201/
https://doi.org/10.48550/arXiv.1406.1078
https://arxiv.org/abs/arXiv:1406.1078
https://doi.org/10.1145/3442381.3450013
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3368089.3417066
https://doi.org/10.1145/3460345
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00074
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00074
https://doi.org/10.1145/3485447.3511984
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://doi.org/10.3390/technologies9010002
https://doi.org/10.1109/TPAMI.2020.2992393
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
https://arxiv.org/abs/arXiv:1609.02907
https://doi.org/10.1109/ICSE48619.2023.00150

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Yongqian Sun and Zihan Lin, et al.

[23] Ye Li, Jian Tan, Bin Wu, Xiao He, and Feifei Li. 2023. ShapleyIQ: Influence Quantification by Shapley Values for Performance Debugging of
Microservices. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 4. 287–323.

[24] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang, Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, Xiaohui Nie, Kaixin
Sui, and Dan Pei. 2021. Practical root cause localization for microservice systems via trace analysis. In 2021 IEEE/ACM 29th International Symposium
on Quality of Service (IWQOS) (IWQOS ’21). IEEE, Los Alamitos, CA, 1–10. https://doi.org/10.1109/IWQOS52092.2021.9521340

[25] Zeyan Li, Wenxiao Chen, and Dan Pei. 2018. Robust and unsupervised kpi anomaly detection based on conditional variational autoencoder. In 2018
IEEE 37th International Performance Computing and Communications Conference (IPCCC). IEEE, Los Alamitos, CA, 1–9. https://doi.org/10.1109/
PCCC.2018.8710885

[26] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang, Xiaohui Nie, Li Cao, Wenchi Zhang, Kaixin Sui, Yanhua Wang,
Xu Du, Guoqiang Duan, and Dan Pei. 2022. Actionable and Interpretable Fault Localization for Recurring Failures in Online Service Systems. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Singapore,
Singapore) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA, 996–1008. https://doi.org/10.1145/3540250.3549092

[27] Jinjin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint Performance Issues with Causal Graphs in Micro-service Environments. In
Service-Oriented Computing. Springer International Publishing, Cham, 3–20. https://doi.org/10.1007/978-3-030-03596-9_1

[28] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016. Log Clustering Based Problem Identification for Online Service
Systems. In Proceedings of the 38th International Conference on Software Engineering Companion (Austin, Texas) (ICSE ’16). Association for Computing
Machinery, New York, NY, USA, 102–111. https://doi.org/10.1145/2889160.2889232

[29] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang Li, Jiayu Ou, and Zheshun Wu. 2021. MicroHECL: High-
Efficient Root Cause Localization in Large-Scale Microservice Systems. In Proceedings of the 43rd International Conference on Software Engineering:
Software Engineering in Practice (Virtual Event, Spain) (ICSE-SEIP ’21). IEEE Press, Los Alamitos, CA, 338–347. https://doi.org/10.1109/ICSE-
SEIP52600.2021.00043

[30] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang, Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and Dan Pei. 2020.
Unsupervised detection of microservice trace anomalies through service-level deep bayesian networks. In 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE) (ISSRE ’20). IEEE, Los Alamitos, CA, 48–58. https://doi.org/10.1109/ISSRE5003.2020.00014

[31] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. 2023. Self-Supervised Learning: Generative or Contrastive.
IEEE Transactions on Knowledge and Data Engineering 35, 1 (Jan. 2023), 857–876. https://doi.org/10.1109/TKDE.2021.3090866

[32] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S. Yu. 2022. Graph Self-Supervised Learning: A Survey. IEEE Trans. on
Knowl. and Data Eng. 35, 6 (may 2022), 5879–5900. https://doi.org/10.1109/TKDE.2022.3172903

[33] Meng Ma, Weilan Lin, Disheng Pan, and Ping Wang. 2022. Self-Adaptive Root Cause Diagnosis for Large-Scale Microservice Architecture. IEEE
Transactions on Services Computing 15, 3 (June 2022), 1399–1410. https://doi.org/10.1109/TSC.2020.2993251

[34] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping Wang. 2020. AutoMAP: Diagnose Your Microservice-Based Web
Applications Automatically. In Proceedings of The Web Conference 2020 (Taipei, Taiwan) (WWW ’20). Association for Computing Machinery, New
York, NY, USA, 246–258. https://doi.org/10.1145/3366423.3380111

[35] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities improve neural network acoustic models. In Proc. icml, Vol. 30.
Atlanta, GA, 3. https://api.semanticscholar.org/CorpusID:16489696

[36] Ajay Mahimkar, Carlos Eduardo de Andrade, Rakesh Sinha, and Giritharan Rana. 2021. A Composition Framework for Change Management. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association for Computing Machinery, New York, NY,
USA, 788–806. https://doi.org/10.1145/3452296.3472901

[37] Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates, Yin Zhang, Joanne Emmons, Brian Huntley, and Mark Stockert. 2011. Rapid Detection
of Maintenance Induced Changes in Service Performance. In Proceedings of the Seventh COnference on Emerging Networking EXperiments and
Technologies (Tokyo, Japan) (CoNEXT ’11). Association for Computing Machinery, New York, NY, USA, Article 13, 12 pages. https://doi.org/10.1145/
2079296.2079309

[38] Ajay Anil Mahimkar, Han Hee Song, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer Yates, Yin Zhang, and Joanne Emmons. 2010. Detecting
the Performance Impact of Upgrades in Large Operational Networks. SIGCOMM Comput. Commun. Rev. 40, 4 (aug 2010), 303–314. https:
//doi.org/10.1145/1851275.1851219

[39] Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia, Zhaogang Wang, and Dan Pei. 2020. Localizing
Failure Root Causes in a Microservice through Causality Inference. In 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS).
IEEE, Los Alamitos, CA, 1–10. https://doi.org/10.1109/IWQoS49365.2020.9213058

[40] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. 2021. Faster, Deeper, Easier: Crowdsourcing Diagnosis of Microservice Kernel Failure from
User Space. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021).
Association for Computing Machinery, New York, NY, USA, 646–657. https://doi.org/10.1145/3460319.3464805

[41] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. 2016. Context Encoders: Feature Learning by Inpainting.
(2016). https://doi.org/10.48550/arXiv.1604.07379 arXiv:1604.07379

[42] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. (2018).

Manuscript submitted to ACM

https://doi.org/10.1109/IWQOS52092.2021.9521340
https://doi.org/10.1109/PCCC.2018.8710885
https://doi.org/10.1109/PCCC.2018.8710885
https://doi.org/10.1145/3540250.3549092
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.1109/TKDE.2022.3172903
https://doi.org/10.1109/TSC.2020.2993251
https://doi.org/10.1145/3366423.3380111
https://api.semanticscholar.org/CorpusID:16489696
https://doi.org/10.1145/3452296.3472901
https://doi.org/10.1145/2079296.2079309
https://doi.org/10.1145/2079296.2079309
https://doi.org/10.1145/1851275.1851219
https://doi.org/10.1145/1851275.1851219
https://doi.org/10.1109/IWQoS49365.2020.9213058
https://doi.org/10.1145/3460319.3464805
https://doi.org/10.48550/arXiv.1604.07379
https://arxiv.org/abs/1604.07379

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Interpretable Failure Localization for Microservice Systems Based on Graph Autoencoder 27

[43] Yann LeCun Raia Hadsell, Sumit Chopra. 2006. Dimensionality Reduction by Learning an Invariant Mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE, Los Alamitos, CA, 1735–1742. https://doi.org/10.1109/CVPR.2006.100

[44] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1988. Learning Representations by Back-Propagating Errors. In Neurocomputing:
Foundations of Research. MIT Press, Cambridge, MA, USA, 696–699.

[45] Divya Saxena and Jiannong Cao. 2021. Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions. ACM Comput. Surv.
54, 3, Article 63 (may 2021), 42 pages. https://doi.org/10.1145/3446374

[46] Luai A. Shalabi, Zyad Shaaban, and Basel Kasasbeh. 2006. Data Mining: A Preprocessing Engine. Journal of Computer Science 2, 9 (Sept. 2006),
735–739. https://doi.org/10.3844/jcssp.2006.735.739

[47] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. stat 1050,
20 (Feb. 2017), 10–48550.

[48] Yaohui Wang, Guozheng Li, Zijian Wang, Yu Kang, Yangfan Zhou, Hongyu Zhang, Feng Gao, Jeffrey Sun, Li Yang, Pochian Lee, Zhangwei Xu,
Pu Zhao, Bo Qiao, Liqun Li, Xu Zhang, and Qingwei Lin. 2021. Fast Outage Analysis of Large-Scale Production Clouds with Service Correlation
Mining. In Proceedings of the 43rd International Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, Los Alamitos, CA, 885–896.
https://doi.org/10.1109/ICSE43902.2021.00085

[49] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root Cause Localization of Performance Issues in Microservices. In
NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium (Budapest, Hungary). IEEE Press, Los Alamitos, CA, 1–9. https:
//doi.org/10.1109/NOMS47738.2020.9110353

[50] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang,
and Honglin Qiao. 2018. Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications. In Proceedings of
the 2018 World Wide Web Conference (Lyon, France) (WWW ’18). International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 187–196. https://doi.org/10.1145/3178876.3185996

[51] Tianyi Yang, Jiacheng Shen, Yuxin Su, Xiao Ling, Yongqiang Yang, and Michael R. Lyu. 2022. AID: Efficient Prediction of Aggregated Intensity
of Dependency in Large-Scale Cloud Systems. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering
(Melbourne, Australia) (ASE ’21). IEEE Press, Los Alamitos, CA, 653–665. https://doi.org/10.1109/ASE51524.2021.9678534

[52] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, ZichengHuang, Linxiao Jing, TianjunWeng, Xinmeng Sun, and Xiaoyun Li. 2021. MicroRank:
End-to-End Latency Issue Localization with Extended Spectrum Analysis in Microservice Environments. In Proceedings of the Web Conference 2021
(Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY, USA, 3087–3098. https://doi.org/10.1145/3442381.3449905

[53] Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. 2023. Nezha: Interpretable fine-grained root causes analysis
for microservices on multi-modal observability data. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 553–565.

[54] Yue Yuan, Wenchang Shi, Bin Liang, and Bo Qin. 2019. An approach to cloud execution failure diagnosis based on exception logs in openstack. In
2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, Los Alamitos, CA, 124–131.

[55] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and Dongmei Zhang. 2022. Deeptralog: Trace-log combined
microservice anomaly detection through graph-based deep learning. In Proceedings of the 44th International Conference on Software Engineering.
623–634.

[56] Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng Zhang, Sibo Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin, Dai
Zhang, Zhenyu Zhu, and Dan Pei. 2023. Robust Failure Diagnosis of Microservice System through Multimodal Data. IEEE Transactions on Services
Computing (2023), 1–14. https://doi.org/10.1109/TSC.2023.3290018

[57] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun Li, Yingnong Dang, Qingwei Lin, Murali Chintalapati, Saravanakumar
Rajmohan, and Dongmei Zhang. 2021. Onion: Identifying Incident-Indicating Logs for Cloud Systems. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 1253–1263. https://doi.org/10.1145/3468264.3473919

[58] Chenyu Zhao, Minghua Ma, Zhenyu Zhong, Shenglin Zhang, Zhiyuan Tan, Xiao Xiong, LuLu Yu, Jiayi Feng, Yongqian Sun, Yuzhi Zhang, et al. 2023.
Robust multimodal failure detection for microservice systems. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 5639–5649.

[59] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and Chuan He. 2019. Latent Error Prediction and Fault Localization for
Microservice Applications by Learning from System Trace Logs. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery,
New York, NY, USA, 683–694. https://doi.org/10.1145/3338906.3338961

[60] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture
model for unsupervised anomaly detection. In International conference on learning representations. ICLR, Kigali, Rwanda. https://openreview.net/
forum?id=BJJLHbb0-

Manuscript submitted to ACM

https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1145/3446374
https://doi.org/10.3844/jcssp.2006.735.739
https://doi.org/10.1109/ICSE43902.2021.00085
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1109/ASE51524.2021.9678534
https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1109/TSC.2023.3290018
https://doi.org/10.1145/3468264.3473919
https://doi.org/10.1145/3338906.3338961
https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-

	Abstract
	1 Introduction
	2 Background
	2.1 Microservice Systems and System Behavior Graphs
	2.2 Self-Supervised Learning and Graph Autoencoders
	2.3 Problem Statement

	3 Motivations
	3.1 Why GAE?
	3.2 Observation

	4 Design
	4.1 Design Overview
	4.2 SBG Construction
	4.3 Offline Training
	4.4 Interpretable Online Localization
	4.5 Feedback

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance (RQ1)
	5.3 Ablation Study (RQ2)
	5.4 Efficiency (RQ3)
	5.5 Hyperparameter Sensitivity (RQ4)
	5.6 Interpretation of Localization Results (RQ5)

	6 Discussion
	6.1 Limitations and Future Works
	6.2 Concerns about Deployment and Validity

	7 Related Work
	8 Conclusion
	References

