
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Diagnosing Performance Issues for Large-Scale
Microservice Systems with Heterogeneous

Graph
Lei Tao, Xianglin Lu, Shenglin Zhang, Member, IEEE, Jiaqi Luan, Yingke Li, Mingjie Li,

Zeyan Li, Qingyang Yu, Hucheng Xie, Ruijie Xu, Chenyuan Hu, Canqun Yang, Dan Pei, Senior Member,
IEEE,

Abstract—The availability of microservice systems is critical to business operations and corporate reputation. However, the dynamics
and complexity of microservice systems introduce significant challenges to the performance issue diagnosis of large-scale
microservice systems. After investigating hundreds of real-world performance issue cases in Tencent, we find that previous
troubleshooting approaches fail to accurately localize root causes because they overlook the inconsistency between causality and
calling relationships. Therefore, we propose a novel approach, MicroDig, to diagnose performance issues for large-scale microservice
systems. Specifically, MicroDig constructs a heterogeneous propagation graph to capture the causal relationships between calls and
microservices. It then conducts a heterogeneity-oriented random walk (HORW) to pinpoint the culprit microservice. Extensive
evaluation experiments have been conducted to evaluate MicroDig’s performance on 60 real-world performance issues collected from
Tencent, 80 manually injected ones collected from a widely used open-source microservice system and 128 performance issues
collected from an e-commerce system used by a top-tier global commercial bank. MicroDig achieves 94.1%, 85.5% and 93.8% top-3
accuracy on the three datasets, respectively, significantly outperforming six popular baseline methods. Additionally, we have shared our
success stories and learned lessons from the deployment of MicroDig in Tencent.

Index Terms—Microservice systems, performance issue diagnosis, heterogeneous propagation graph

✦

1 INTRODUCTION

M ICROSERVICE architecture is a scheme to develop a
single application into a set of small services [1].

Each microservice is developed and runs independently and
communicates with each other through lightweight com-
munication mechanisms. However, with the rapid evolution
and scale expansion of microservice systems, reliability, and
availability maintenance are challenging due to the inherent
dynamics and complexity [2], [3], [4]. Nevertheless, pow-
erful system performance and high-quality user experience
are critical to underpinning the reputation and profitability
of the enterprise, otherwise may cause significant losses. For
example, the estimated cost of Amazon’s downtime for an
hour during the most prominent promotional event is as
high as 100 million dollars [5].

Therefore, operators make great efforts to maintain sys-
tem performance. They monitor system health by configur-
ing and collecting SLIs (Service Level Indicators) such as
QPS (Queries Per Second), response time, and success rate.

• Lei Tao, Shenglin Zhang, Jiaqi Luan, and Yingke Li are with
Nankai University, Tianjin, China. E-mail: {leitao, yingkeli, ji-
aqiluan}@mail.nankai.edu.cn, zhangsl@nankai.edu.cn.

• Xianglin Lu, Mingjie Li, Zeyan Li, Qingyang Yu, and Dan Pei are with
Tsinghua University, Beijing, China. They are also with Beijing National
Research Center for Information Science and Technolog. E-mail: {luxl20,
lmj18, zy-li18, yqy17}@mails.tsinghua.edu.cn, peidan@tsinghua.edu.cn.

• Canqun Yang is with the National Supercomputing Center of Tianjin,
Tianjin, China. E-mail: canqun@nudt.edu.cn.

• Hucheng Xie, Ruijie Xu, and Chenyuan Hu are with Tencent, Inc.,
Beijing, China. E-mail: {toraxie, rjxu, cheneyhu}@tencent.com.

Lei Tao and Xianglin Lu contribute equally to this work.
Shenglin Zhang is the corresponding author.

They also configure the corresponding SLOs (Service Level
Objects) for user-facing microservices to evaluate system
performance, e.g., keeping response time under 10ms while
handling 1000 QPS [6]. When the status of a user-facing
service fails to meet the predefined SLO, the microservice
system is considered anomalous, and a performance issue
will be generated. Since different operation teams usually
manage different services, it is necessary to localize the
culprit microservice when a performance issue happens,
so as to assign the performance issue ticket to the right
operation team. However, a microservice system consists of
a large number of services (In this paper, we use “microser-
vice” and “service” interchangeably). For example, the e-
commerce system of Alibaba contains more than 30,000
services [2]. In addition, the internal relationships of the
services are dynamic and complex [7], [8], [9]. Anomalies
can propagate among services, causing availability issues of
different services simultaneously. Thus, manual localization
is laborious and time-consuming. According to IBM’s statis-
tics [10], root cause localization takes the longest time in
the entire performance issue handling period, which needs
to be optimized urgently. Therefore, our work focuses on
efficiently localizing the culprit (i.e., the root cause service)
when a performance issue (i.e., an SLO violation) occurs in
the microservice system.

Some existing works [11], [12], [13] proposed to localize
the root cause service via trace analysis. The service-level
traces are collected from the distributed tracing framework,
which records the complete service invocation process of
each request execution in the microservice system. However,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

with the increasing number of microservices and requests,
the storage requirements also tremendously increase, which
brings about significant overheads. For example, in eBay, the
microservice systems produce nearly 150 billion traces per
day [14]. Therefore, more and more enterprises, including
Tencent, choose to retain the end-to-end aggregated calls
between every two services instead of the entire traces.

Some works are carried out on the aggregated call data.
The method proposed in [15] recommends the most similar
historical anomalies through pattern matching for root cause
localization. However, it depends heavily on sufficient sam-
ples of historical performance issues and the high coverage
of issue types, leaving it impractical. Other works employ
causal graph-based methods for root cause localization.
However, calling relationships (used in [2], [7], [16]) are
insufficient to build causal graphs (see §4 for more details),
while causality mining algorithms (used in [17], [18]) suffer
from high computational cost and low accuracy when the
number of microservices is enormous. Therefore, a more
practical root-cause localization approach for microservice
systems is urgently needed.

In this paper, we propose an accurate and efficient
method, MicroDig, to localize the root cause for large-scale
microservice systems. The foundation of MicroDig is that
dynamic calling relationships are not equivalent to causality,
which will be further elaborated on in §4. When a perfor-
mance issue occurs in MicroDig, we first identify its associ-
ation calls to avoid the interference of irrelevant microser-
vices. Then, since the relationship between microservices is
complex and dynamic, we build a causal graph based on the
calling relationships near the occurrence time of the perfor-
mance issue. To address the inconsistency between causality
and calling relationships, we apply both microservices and
their calls as nodes to build a heterogeneous propagation
graph through causal relationships, whose edges represent
causal relationships. Usually, a ranking algorithm is used on
a causal graph to get the root cause. However, traditional
ranking algorithms cannot be directly applied to hetero-
geneous causal graphs. Thus, we propose a novel ranking
algorithm, Heterogeneity-Oriented Random Walk (HORW),
combining correlation coefficient and anomaly detection
results for candidate culprits ranking.

Extensive evaluation experiments have been conducted
to evaluate the performance of MicroDig using 60 real-world
performance issues collected from Tencent, a top-tier global
multimedia service provider serving over 1 billion daily
active users, 80 manually injected performance issues col-
lected from a widely used open-source microservice system
Train-Ticket [19] and 128 performance issues collected from
an e-commerce system used by a top-tier global commercial
bank. Experimental results show that MicroDig ranks the
root-cause microservices at the top 3 in 94.1%, 85.5% and
93.8% performance issues on the real-world and simulated
datasets, respectively, significantly outperforming six pop-
ular baseline methods by 16.0%, 32.2% and 88.5%. Further-
more, we also discuss the success stories and lessons learned
from the deployment of MicroDig in Tencent. To facilitate
follow-up studies, our code is released at [20].

To sum up, our work has the following main contribu-
tions:

• After investigating hundreds of performance issue
cases of Tencent, we identified a valuable problem,
i.e., the inconsistency of causality and calling rela-
tionships.

• We propose MicroDig to localize the root cause of
performance issues for large-scale microservice sys-
tems. Its core technologies include the construction
of the heterogeneous graph and HORW. The former
aims to accurately model causality based on calling
relationships. The latter is designed to rank the sus-
picious services on the heterogeneous graph to find
the culprit.

• We deploy the prototype of MicroDig in Tencent. The
deployment demonstrates the superior performance
of MicroDig in root cause localization for large-scale
microservice systems.

2 RELATED WORK

Some work utilizes microservice invocation traces for root
cause localization. TraceRank [21] calculates the suspi-
ciousness of each service based on the anomalous traces
associated with the service, and conducts random walk
on the service call graph to pinpoint anomalous services.
TraceAnomaly [11] first performs anomaly detection on
traces based on Variational Autoencoder (VAE) and then
identifies the service corresponding to the longest anoma-
lous call as the root cause. TraceRCA [12] applies a unified
indicator to measure the possibility of service becoming the
root cause according to the number of anomalous traces
that pass through the service. Sage [13] builds an impact
graph between services based on domain knowledge and
applies deep learning algorithms to perform counterfac-
tual reasoning on the graph. However, with the dramatic
increase in the number of services, storing data in the
form of a trace is prohibitively expensive. Therefore, the
above methods are inappropriate for Tencent’s large-scale
microservice systems, and we did not compare them in the
evaluation experiments.

Some researchers work on the aggregated invocation
data of pairwise services. We divide the related work into
the following categories. The first category is based on fault
similarity matching. For example, the method proposed
in [15] localizes the root cause service by calculating the
similarity between the new fault graph and historical fault
graphs and recommends the most similar fault graphs la-
beled by experts. Although this type of method is unsu-
pervised, it still needs enough historical fault samples of
different types for pattern matching which is hard to obtain
in practice. Therefore, this type of method is impractical,
and it is not considered in our comparative evaluation.

Other localization methods consist of two key steps:
causal graph construction and ranking on the graph. In
terms of graph construction, some methods utilize the
calling relationship to construct. FChain [22] pinpoints the
culprit component by analyzing the anomalous change
points of different components and the invocation topology,
which catches the inter-component dependency informa-
tion. MonitorRank [16] achieves ranking by implementing
the personalized PageRank algorithm on the call graph.
MicroRCA [7] constructs an anomaly graph based on the

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

calling relationship and deployment relationship between
services and employs Personalized Pagerank to localize the
root cause service on the anomaly subgraph. It heavily relies
on the information of real-time service deployment, which is
dynamically changing and cannot be easily obtained in our
scenario. Therefore, we did not take it as a baseline method
in our evaluation experiments. MicroHECL [2] first de-
tects service anomalies and then analyzes possible anomaly
propagation paths according to different types of fault
propagation modes on the call graph, and ranks candidate
root causes through correlation analysis. However, calling
relationship and causality are not completely equivalent as
mentioned in §4 so that it is inaccurate for such methods
to construct causal relationships directly by calling relation-
ships. Furthermore, some methods employ causality mining
algorithms to build causal graphs and perform localization.
MS-Rank [23], CloudRanger [3], and ServiceRank [17] utilize
conditional independence tests for mining dynamic causal
relationships between services for impact graph building
and rank the services on the graph based on the random
walk. Specifically, ServiceRank constructs the impact graph
based on PC algorithm and identifies the root cause based
on the second-order random walk. Nevertheless, when the
number of services in a microservice system is enormous,
using causality mining algorithms will be less efficient and
accurate. After construction, most of the above methods
apply random walk or pagerank algorithms on the graph
to get the root cause, and also some methods determine
the root cause by searching directly on the causal graph.
CauseInfer [18] collects connection information to build a
service dependency graph, uses depth-first search to find
the leaf nodes along the anomalous path, and calculates the
anomaly score based on Z-Score to get the final ranking.
Microscope [24] constructs the causal graph with calling
relationships and causal mining algorithms, searches all
boundary nodes as candidate services along the reverse
direction, and ranks them according to their similarity with
the performance metric. It is difficult for such methods
to guarantee the effectiveness of root cause localization
when the causality mining algorithm or anomaly detection
algorithm is inaccurate or untrustworthy.

Considering the practicability of the algorithm and the
fairness of the evaluation, we choose the latest or most
influential algorithm for each type of method as the baseline
comparison in the experimental part.

3 BACKGROUND

3.1 Microservice System
A microservice system decomposes large applications into
multiple independent microservices, each with its area of
responsibility. It is designed to handle discrete tasks and
enables independent development, deployment, and main-
tenance of services. When processing a user request, a
microservice-based application may invoke many internal
services to collectively generate its response to provide
business support for the application.

The microservices in the system are loosely coupled.
They communicate with each other through simple inter-
faces or protocols such as RESTful (Representational State
Transfer) APIs (Application Programming Interfaces) and

Fig. 1. A toy example of the call process in the microservice system

RPCs (Remote Function Calls). In general, the communica-
tion relationship of microservices presents a mesh structure.
Thus, we model the communications as a graph, where the
vertices represent the microservices and the edges point
from the caller to the callee providing the service. An
example of the call process is shown in Fig. 1, which
depicts a basic synchronous service request. The example
involves three microservices, A, B, and C, whose relation-
ships are represented with arrows, i.e., A calls B (denoted
as A call−−→ B), and B calls C (denoted as B call−−→ C). The
processing logic of service A consists of three parts. The
first is the pre-call logic, and then the downstream service is
called. After the call returns, the post-call logic is executed.
So do services B and C.

The anomaly of a particular service in the microservice
system can propagate to and affect other services. The main
reason is that the return result of the upstream call is
determined by that of the downstream call. For example,
in the case of Fig. 1, when the performance of service C
degrades, it will cause an increase in response time, the
duration of B call−−→ C increases, and so does the duration of
A

call−−→ B. Similarly, if service C cannot handle B’s request
due to overloading and returns an exception, it usually
results in an exception of A call−−→ B. This does not mean
that the downstream call will cause the anomaly of the
upstream call in every performance issue, but the anomaly
of the upstream call may be caused by the anomaly of the
downstream call.

Fig. 2. An example of port-level calls and the related performance issue

3.2 Performance Monitoring
3.2.1 Data Record
There are many solutions for distributed tracing of service
calls, such as Jaeger [25], Zipkin [26], and OpenTeleme-
try [27]. However, as the number of microservices increases,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

the cost of storing all traces becomes unbearable. To mitigate
the storage pressure, only storing aggregated end-to-end
call data has become a better choice for some enterprises,
including Tencent. For end-to-end pairwise call records,
multiple call fields are reserved within each predefined
period (e.g., 1 minute). The most basic collection items are
the number of anomalous calls, including exception calls
and timeout calls, and the total number of calls. In the
call information retained by Tencent, in addition to the
service names of the caller (client) and callee (server), the
corresponding ports are also recorded. One microservice can
communicate with others through different ports which are
responsible for different types of functions, e.g., functions
supporting different protocols. For example, as shown in
Fig. 2 (a), Service A and B have three and two different
ports, respectively. Service A calls Service B via p2

call−−→ p4

and p1
call−−→ p5. This type of port-level call data collected by

the monitoring system in Tencent is used in the remaining
parts.

3.2.2 Performance Issue Diagnosis

In a real-world production environment, the primary per-
formance concern of a microservice is its high latency and
low availability, which can be perceived from the number
of timeout calls and exception calls, respectively. Perfor-
mance issues can arise for various reasons, e.g., limited host
resources, hardware availability, and network instability.
When a service has performance issues, the anomalies will
propagate along the calling topology, which may eventually
affect the external services provided by the microservice
system. To guarantee superior user experience, operators
configure SLIs and SLOs to monitor the availability of
microservice systems. When a service running state fails
to meet the SLO standard, a performance issue will be
detected. Due to the large number of services, complex
and dynamic relationships, and the inconsistency between
the calling relationship and the causal relationship in the
microservice system, determining the root cause remains
challenging.

4 MOTIVATION

4.1 Motivating Example

Some works take the calling relationship as the causality of
anomaly propagation [2], [7], [16], which is oversimplified in
our scenario. Fig. 2 (b) shows a real performance issue where
A, B, and C represent three microservices, respectively.

The number of anomalous calls of both A
call−−→ B

and B
call−−→ C increase as shown in Fig. 2. However, as

operators dug into the details, they found no meaningful
error reports ofC . On the other hand, those calls fromB (i.e.,
B

call−−→ C) are anomalous. This is because B had exhausted
the file descriptors and failed to set up new connections to
C . As calling data is recorded by callers in Tencent, such
anomalies contributed to the anomaly rate of B call−−→ C

as well. In conclusion, the anomaly rates of A call−−→ B and
B

call−−→ C are confounded by the system resources of B [28].
Hence, B is the root cause service in this case, which cannot

be localized by searching along the calling relationship. Af-
ter investigating hundreds of performance issues of Tencent,
we found that over 35% of performance issues suffer from
such problems.

4.2 Heterogeneous Propagation Graph

Based on the above observations, we found that a call’s
anomaly cannot be just directly attributed to the down-
stream service. Instead, both the caller and the callee can
contribute to this situation. Therefore, it is not sufficient to
capture the anomaly propagation only with the calling rela-
tionship. In this paper, we propose a graphical model [28],
i.e., a heterogeneous propagation graph, to describe the causal
relationship more precisely than the calling relationship.
As shown in Fig. 3, a heterogeneous propagation graph
considers both observed variables for each call (e.g., the
anomaly rate R(A,B) of A call−−→ B) and unobserved ones
for services (e.g., the anomaly rate R(A) of the service A
itself).

R(A,B) R(B,C) R(C,D)

R(A) R(B) R(C) R(D)

Fig. 3. The graphical model of A call−−−→ B
call−−−→ C

call−−−→ D. R(A,B)

represents the anomaly rate of A call−−−→ B and R(A) is the anomaly rate
of the service A itself.

Based on the call and return mechanism of the mi-
croservice system, we can easily identify the causal rela-
tionship between upstream and downstream calls. Specif-
ically, R(A,B) describes all the possible anomalies after the
invocation starts, which consist of those in B (i.e., R(B))
or the subsequent callings from B. Besides, the motivating
example mentioned in §4.1 illustrates that such an anomaly
can also arise in A. Hence, we propose to link all services to
related calls (i.e., the dashed arrows in Fig. 3).

The missing edges in Fig. 3 encode our assumptions.
As the anomaly rates of services are unobserved in this
work, we assume that services are deployed independently
to simplify our model, e.g.,R(A) andR(B) are independent.
Furthermore, we assume that two calls without a joint node
are not directly related, e.g., there is no arrow from R(C,D)
to R(A,B) in Fig. 3. We leave a complete model for future
work.

5 MicroDig
5.1 Overview

Fig. 4. The framework of MicroDig.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

Fig. 4 shows the core framework of MicroDig. When the
monitoring component of the microservice system detects
an SLO violation, MicroDig is triggered to localize the cul-
prit. Three key phases make up MicroDig. First, in the associ-
ation calls identification phase, MicroDig search from the is-
sue microservice to find candidate microservices associated
with the performance issue (§5.2). Second, a heterogeneous
propagation graph is constructed with inter-microservice
calls and candidate microservices as nodes in the heteroge-
neous propagation graph construction phase (§5.3). Third,
in the phase of culprit service localization, a heterogeneity-
oriented random walk algorithm is proposed to perform
microservice ranking on the heterogeneous graph (§5.4).

5.2 Association Call Identification

Large-scale microservice systems usually generate plenty of
service calls in a short time. As mentioned in §3.2, only core
fields, including the number of calls, exception calls, and
timeout calls per minute, are stored. When a performance
issue (i.e., an SLO violation) is detected, there are lots of
calls near the issue. Analyzing all recorded calls is not
only inefficient but also leads to poor root-cause localization
accuracy. The main reason is that a large number of service
calls are irrelevant to the performance issue, so we need to
identify related microservice calls.

As discussed in §3.2, the data provided by Tencent
contains the calling port of each microservice (i.e., on the
port level), but our objective is to select the culprit microser-
vice (i.e., on the service level). In order to more accurately
ascertain the microservices associated with the performance
issue, we first choose to build a calling graph of port level.
Then we retain related calls and corresponding microser-
vices by performing BFS (Breadth-First Search) and anomaly
detection on the graph. As shown in Fig. 5(a), a circle
represents a port-level node, the ports in the same dotted
ellipse belong to the same microservice, the orange port-
level nodes are issue-irrelevant, and calls denoted by dashed
lines denote non-anomalous ones. Finally, the port-level
nodes in the graph are aggregated to the service level, as
shown in Fig. 5(b). We detect anomalous ports first because
if we perform port aggregation first, an anomalous port-
level call may be overwhelmed by the normal calls of the
same microservice, which may cause the root cause services
to be filtered out at this step.

5.2.1 Construction of Association Graph
Since the recorded data encode the calling relationship
among microservice ports, a call graph with service ports as
nodes can be easily constructed. Then, we consider all port-
level nodes on the call graph that belong to the microservice
may suffer from the performance issue. Starting from these
nodes, two BFSes are performed along and against the
direction of the calling edges. The sub-graph consisting of all
traversed port-level nodes associated with the issue service
is the port-level association graph.

To capture the propagation pattern of the performance
issue and further, narrow down the number of candidate
root causes, we perform anomaly detection using an effi-
cient and widely used anomaly detection method (called
k-sigma) for each edge (i.e., call) in the association graph. It

learns parameters µ and σ from historical data and treats
the value exceeding (µ − k ∗ σ, µ + k ∗ σ) as anomalies. In
this work, we take k as 3, because the system in Tencent also
has some fluctuations in the normal state.

We consider a call anomalous when the value of the call’s
exception rate or timeout rate is detected as anomalous.
Given an issue starting at time point t, we use each call’s
exception rate or timeout rate from t−ϕ to t+ψ for anomaly
detection. Data within [t−ϕ− δ, t−ϕ) are used to learn the
parameters of the normal pattern.

5.2.2 Data Merge
We conduct anomaly detection based on the port-level data
instead of the service-level data because an anomaly at the
port level, which indicates that the service containing the
port experiences anomalous behavior, may be overwhelmed
if we conduct anomaly detection based on the service-level
data aggregated from the port-level data. Based on the
above steps, edges with anomalies in the association graph
are retained. Since the graph we get is a port-level associa-
tion graph, and our objective is to localize the culprit service,
we need to merge the call data of ports and construct the
service-level association graph.

Let p be a node of the port-level association graph.
We denote all the ports of a given service S as P (S). To
construct the service level graph, we merge all the port-
level nodes of the same service S to one node denoted as
S = {p ∈ P (S)}. The anomaly rate R(S, S′) of an edge
S

call−−→ S′ at the service level integrates the number of
anomalous calls F (p, p′) and that of the total calls N(p, p′)

for each related port-level edge p call−−→ p′. For time point t,
Rt(S, S

′) is calculated as:

Rt(S, S
′) =

∑
p∈S,p′∈S′ Ft(p, p

′)∑
p∈S,p′∈S′ Nt(p, p′)

(1)

Finally, the association graph at the service level whose
nodes are all relevant to the issue service is constructed.
Meanwhile, we can obtain a time series of anomaly rates for
S

call−−→ S′: R(S, S′) = (Rt−ϕ, Rt−ϕ+1, ..., Rt+ψ).

5.3 Heterogeneous Propagation Graph Construction
The association graph constructed is directed, and the direc-
tion of its edges represents the calling relationship between
services. However, as mentioned in §4, the calling relation-
ship is not equivalent to the causal relationship. Therefore,
the association graph cannot be directly used as a causal
graph for root cause localization. We propose to build a
heterogeneous propagation graph that reflects the causal
relationship between the calls and the services based on the
association graph.

As shown in Fig. 5(c) and line 2 and line 10 in Alg.1,
we first abstract the edges in the association graph (i.e.,
edge S1 −→ S2, edge S2 −→ S3, . . .) as call nodes (denoted
as C12, C23, . . .) and the nodes in the association graph as
service nodes (denoted as S1, S2, . . .). Then, we add edges
between these nodes in the causal graph as follows.
The edge between a call node and a service node. Since the
caller and callee of one service call are the immediate cause
of the call, we add two edges from both the caller and callee

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Fig. 5. The construction process of heterogeneous propagation graph

Algorithm 1 Heterogeneous propagation graph construc-
tion
Input: G: association graph at service level.
Output: Gh: Heterogeneous propagation graph.

1: Gh ← initialize the heterogeneous propagation graph
2: Gh.addNodes(G.edges())
3: for all S ∈ G.nodes() do
4: for all Cout ∈ G.outEdges(S) do
5: for all Cin ∈ G.inEdges(S) do
6: Gh.addEdge(Cout, Cin)
7: end for
8: end for
9: end for

10: Gh.addNodes(G.nodes())
11: for all C ∈ G.edges() do
12: caller, callee← splitCall(C)
13: Gh.addEdge(caller, C)
14: Gh.addEdge(callee, C)
15: end for

service nodes to each call node, respectively, as shown by
the green dashed edges in Fig. 5(c) and line 11-15 in Alg. 1.
The edge between two different call nodes. Our key insight
is that the anomaly of the downstream call can cause the
anomaly of the upstream call. Therefore, for adjacent calls
on the service call chain, we argue that the downstream call
is the direct cause of the upstream call and we thus add
an edge from the downstream call node to the upstream
call node, as shown by the solid blue edges in Fig. 5(c). For
instance, as shown in Fig. 5(b) and line 3-9 in Alg.1, edge
S2 −→ S4 and edge S2 −→ S3 are direct downstream calls of
edge S1 −→ S2 in the association graph, so an edge from the
call node C24 to the call node C12 and an edge from the call
node C23 to the call node C12 are added to the propagation
graph, respectively.

Since the calling relationships and their corresponding
metric data do not reflect the causal relationship between
service nodes, we do not add edges between different
service nodes in the propagation graph. Finally, a hetero-
geneous propagation graph with different types of nodes
and edges is constructed.

Note that in a propagation graph, the edges point from
the causes to the effects. To perform root cause localization,
we flip every edge in the propagation graph and make the
edges point from the effects to their causes.

5.4 Root Cause Service Localization

To localize the culprit (root cause) service in the heteroge-
neous propagation graph, we propose a novel method called
Heterogeneity-Oriented Random Walk (HORW) which fully
considers the characteristics of heterogeneity, and innovates
in the calculation of transition probability.

5.4.1 Transition Weight Calculation
There are two types of edges in the heterogeneous propaga-
tion graph: (1) edges that connect two different call nodes
and (2) those that connect one call node and one service
node.

For the first type of edges, suppose the start and end
nodes of an edge are C12 and C23, respectively. Since we
have already obtained the time series data of the anomaly
rates of C12 and C23, i.e., R(S1, S2) and R(S2, S3), respec-
tively, we apply the correlation coefficient of R(S1, S2) and
R(S2, S3) as the weight of the edge from C12 to C23.

For the second type of edges, it seems impossible to
determine which service node has a larger causal influence
on a given call node since we only have monitoring data of
service calls. To address this problem, we use all service
call information related to a service node (not only the
node on the service-level association graph) to calculate
the anomaly score of the service node, and assign different
transition wights for the edges from the calling node to the
caller/callee service node according to their service anomaly
scores. The details are described as follows.

For a given service S, we denote its upstream service
set as SU = {S′ | S′ call−−→ S} and its downstream service
set as SD = {S′ | S call−−→ S′}. Let θ(S′) be the anomaly
indicator of S′. When any related port-level call between
S and S′ is detected as anomalous, θ(S′) = 1. Otherwise,
θ(S′) = 0. Finally, the anomaly score of the given service S,
αS measures the anomalous ratio of its related services as:

αS =
|{S′ | S′ ∈ SU ∪ SD, θ(S′) = 1}|

|SU ∪ SD|
(2)

Given a call node C connecting two service nodes Scaller
and Scallee in the heterogeneous propagation graph, let
ωcaller be the weight of the edge from C to Scaller and
ωcallee be the weight of the edge from C to Scallee. Re-
call that we have obtained the weights between different
call nodes according to the first type of edges. We sum
the weights of all the out (in) edges between C and its

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Algorithm 2 Heterogeneity-Oriented Random Walk
Input: G: weighted heterogeneous propagation graph with

M call nodes and L service nodes, T: transition proba-
bility matrix of G, ε(C): the initial score of call node C ,
and κ: the number of iterations.

Output: P: The root cause probability of each node.
1: for all call nodes C in G do
2: A(C)← ε(C)/

∑M
i=1 ε(Ci)

3: end for
4: V← 0 {the number of times each node is visited}
5: for i = 1 to κ do
6: n← Randomly pick a call node according to A
7: for j = 1 to M + L do
8: n ← Randomly pick the next node according to

T(n)
9: V(n)← V(n) + 1

10: end for
11: end for
12: P = V/

∑M+L
j=1 Vj

associated call nodes, denoted as ηout (ηin). Intuitively, we
will partition ∆η = ηin − ηout between ωcaller and ωcallee
equally when ∆α = α(Scaller) − α(Scallee) = 0 and more
(less) for ωcaller when ∆α > 0 (∆α < 0). β is a preset
hyperparameter, which is related to the accuracy of anomaly
service detection. It can well mitigate the impact of wrong
anomaly. Finally, ωcaller and ωcallee are calculated using
(3), where sgnx is −1, 0, 1 when x < 0, x = 0, x > 0,
respectively.

ωcaller = max(0,∆η) ∗ [0.5 + β sgn(∆α)]

ωcallee = max(0,∆η) ∗ [0.5− β sgn(∆α)]
(3)

5.4.2 Heterogeneity-Oriented Random Walk (HORW)
We now get an initial weighted heterogeneous graph. But
it cannot be directly used for root cause localization yet,
because a native random walker may be stuck in a node
without out-edges, no matter how irrelevant those nodes
are to the performance issue. Therefore, we add an addi-
tional backward edge to each pair of nodes linked by only
one directed edge in the heterogeneous propagation graph,
whose weight is ρ times the weight of the original edge, so
that the random walker can flexibly explore the nodes with
high pattern similarity. We also add a self-loop edge to each
service node in the graph, whose weight is the max of all the
in-edge weights of the node. After all the steps above, the
weighted heterogeneous graph is finally constructed, and
we can get a transition probability matrix T by normalizing
the out-edge weights of each node. Then, we propose Alg. 2
to rank the root cause services.

Before sorting, we take the call nodes related to the issue
service as the random walk entry nodes. The initial scores of
these nodes are set to 1, and the others are set to 0. In Alg. 2,
we first normalize the initial score of each call node to their
initialization probability (line 1-3). Then, we apply HORW
on graph G and get the final probability vector P (line 4-
12). Finally, we can sort all the nodes in the heterogeneous
graph according to P. We filter out the call nodes in the
sorting results, and the remaining is the root cause ranking
result of the candidate service nodes.

6 EXPERIMENT

We conduct a variety of experimental studies to answer the
following research questions.

RQ1: How accurate is MicroDig in performance issue
diagnosis?

RQ2: Can MicroDig efficiently diagnose a performance
issue for large-scale microservice systems?

RQ3: Whether the core components of MicroDig signifi-
cantly contribute to the performance of MicroDig?

6.1 Dataset
We evaluate the performance of MicroDig using 60 real-
world performance issues collected from Tencent, a top-
tier global multimedia service provider housing services for
over 1 billion daily active users, 80 manually injected ones
collected from Train-Ticket [19], a widely used open-source
microservice system and 128 performance issues collected
from an e-commerce system used by a large bank. To help
readers further extend this work in the future, we release
our code at [20].

(a) Port-level

(b) Service-level

Fig. 6. CDF of the number of port-level and service-level nodes in A

6.1.1 Real-world Production Microservice System
The operators of Tencent have configured SLOs for impor-
tant user-facing services. We collected 60 real-world perfor-
mance issues according to SLO violations in a subsystem
of Tencent’s video business with more than 8,000 microser-
vices. Each case was examined by professional operators of
Tencent to point out the root cause. The time span of the data
collection ranged from December 2021 to July 2022. The data
recorded the number of anomalous calls (including timeout

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

calls and exception calls) and the total calls per minute. The
cumulative distribution function (CDF) of the number of
port-level and service-level nodes are shown in Fig. 6. We
can observe that 80% of performance issues associated with
20,000+ port-level nodes and 4,000+ service-level nodes. We
denote the real-world dataset of Tencent as A hereinafter.

6.1.2 Open-source Microservice System
Train-Ticket [19] is a Web-based online ticket booking mi-
croservice system, containing 41 microservices. It has been
widely used in previous works [11], [12], [19]. We used Ku-
bernetes [29] for container orchestration and management
on 7 physical machines. We injected 6 types of performance
issues (i.e., network loss, network corruption, network delay,
memory stress, CPU stress, and pod failure). Each perfor-
mance issue lasted for about five minutes. We collected a
total of 80 performance issues injected on different services.
We denote the dataset collected from Train-Ticket as B
hereinafter.

6.1.3 E-commerce Microservice System
The dataset is derived from a simulated e-commerce system
built upon a microservice architecture by the China Con-
struction Bank Corporation, a top-tier global commercial
bank. This system mirrors authentic business traffic and
encompasses performance issues extrapolated from real-
world scenarios, including various types of performance
issues such as CPU, memory, disk, network, and process-
related issues. We collected a total of 128 performance issue
cases covering 15 types of performance issues. We denote
the dataset collected from e-commerce microservice system
as C hereinafter.

Table 1 presents the quantity and proportion of cases
with inconsistent causality and calling relationships men-
tioned in §4.1 in datasets A, B and C. It is evident that A, B
and C are significantly affected by these problems, with A
experiencing a higher prevalence of such problems.

TABLE 1
The proportion of cases with inconsistencies between causality

relationships and calling relationships

Dataset #Inconsistency #Total Proportion

A 21 60 35%
B 20 80 25%
C 19 128 15%

6.2 Performance Metric and Baselines
Following existing works [2], [12], [16], [30], we select three
metrics for evaluation.

6.2.1 Performance Metric
Top-k Accuracy (AC@k). AC@k represents the probability
that the true root causes of a performance issue case are
covered by the top-k recommended root causes. When k is
small, the higher the AC@k, the more accurate the method is
in identifying the root cause. Due to the small search space, a
method with a higher AC@k can greatly improve operators’
efficiency in troubleshooting. Given a set of performance

issue cases A, AC@k is calculated by (4), where Ua is the
ranked root cause list of case a output by a given method,
and Va is the correct root cause set of case a. Here we choose
k = 1, 3, 5, respectively.

AC@k =
1

|A|
∑
a∈A

|{i | Ua[i] ∈ Va, 0 < i ≤ k}|
min(k, |Va|)

(4)

Average Top-k Accuracy (Avg@k). Avg@k represents
the overall performance of a method in terms of AC@k,
calculated by Avg@k = 1

k

∑
1≤n≤k AC@n.

Mean Reciprocal Rank (MRR). MRR focuses on the
position of the correct root cause in the list of the ranked
root causes output by a method. If the correct answer is
not in the ranked list, the rank can be considered positive
infinity [2]. The calculation of MRR is shown in (5).

MRR =
1

|A|
∑
a∈A

1 / Ia, Ia = {i | Ua[i] ∈ Va} (5)

6.2.2 Baselines
For a comprehensive evaluation, we compare MicroDig
with several state-of-the-art baseline approaches. We select
six approaches for comparison, namely Microscope [24],
ServiceRank [17], MicroHECL [2], MonitorRank [16], Trac-
eRCA [12] and TraceRank [21]. These approaches are all
related to causal relationship or calling relationship mining
and have achieved superior root cause localization perfor-
mance in their scenarios. In our experiment, we set each
method’s parameter best for accuracy. For example, the
threshold of the p-value is set to 0.02 in Microscope, the
hyperparameter α of the PC-algorithm and β of the second-
order random walk used in ServiceRank are set to 0.01 and
0.7, respectively. We set the detection window of Micro-
HECL to 10 minutes after the performance issue occurs, and
the correlation threshold is set to 0.5. The weight of the back-
ward edges and the hyperparameter α in MonitorRank are
set to 0.2 and 0.85, respectively. We set the main parameters,
δfs, δad, and k, in TraceRCA to 0.1, 1, and 100, respectively,
to achieve optimal results. Meanwhile, in TraceRank, both
d and ρ are configured to 0.5. These methods conduct root
cause localization through the performance metrics of each
service. Since our dataset only contains the monitoring data
of calls, we aggregate each service’s call data to obtain its
metric data. Specifically, we take the anomaly rate of service
as the performance metric of the service, which can be
calculated as:∑

p∈S

[∑
S′∈SD,p′∈S′ Ft(p, p

′) +
∑
S′∈SU ,p′∈S′ Ft(p

′, p)
]

∑
p∈S

[∑
S′∈SD,p′∈S′ Nt(p, p′) +

∑
S′∈SU ,p′∈S′ Nt(p′, p)

]
6.3 Localization Accuracy of MicroDig (RQ1)

To evaluate the effectiveness of MicroDig, we conduct a
series of experimental studies on the above three datasets.
The overall performance is listed in Table 2. Experimental
results show that MicroDig outperforms existing baselines
conspicuously. Specifically, on dataset A, MicroDig is bet-
ter than MicroHECL, the best-performed baseline, by 4%,
18.3%, and 23.5% on AC@1, AC@2, and AC@3, respectively.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

TABLE 2
The accuracy of MicroDig and the baseline methods

Method Dataset A Dataset B Dataset C
AC@1 AC@2 AC@3 Avg@3 ⇑ Avg@3 MRR AC@1 AC@2 AC@3 Avg@3 ⇑ Avg@3 MRR AC@1 AC@2 AC@3 Avg@3 ⇑ Avg@3 MRR

ServiceRank 50.8% 55.7% 57.4% 54.6% 50.0% 0.55 31.8% 40.9% 56.1% 42.9% 74.1% 0.49 18.4% 40.2% 58.6% 39.1% 88.5% 0.41
MonitorRank 49.2% 61.9% 71.4% 60.8% 34.7% 0.62 34.8% 50.0% 59.1% 48.0% 55.6% 0.51 16.4% 28.9% 41.4% 28.9% 155.0% 0.37

TraceRCA 61.5 % 72.7% 75.8% 70.0% 17.0% 0.70 12.0% 16.9% 22.9% 17.3% 331.8% 0.22 15.6% 25.4% 31.8% 24.3% 203.3% 0.29
TraceRank 16.9% 20.3% 20.3% 19.2% 326.6% 0.20 12.0% 24.2% 40.7% 25.6% 191.8% 0.31 25.0% 30.0% 36.4% 30.5% 141.6% 0.40
Microscope 50.8% 70.4% 75.4% 65.5% 25.0% 0.64 36.4% 57.6% 68.2% 54.1% 38.1% 0.55 13.3% 39.1% 43.0% 31.8% 131.8% 0.40
MicroHECL 61.9% 73.8% 76.2% 70.6% 16.0% 0.71 42.4% 53.0% 74.2% 56.5% 32.2% 0.57 14.1% 30.5% 30.5% 25.0% 194.8% 0.34

MicroDig 64.4% 87.3% 94.1% 81.9% - 0.78 61.3% 77.4% 85.5% 74.7% - 0.74 49.2% 78.1% 93.8% 73.7% - 0.70

The Avg@3 of MicroDig is 81.9%, 16% higher than the second
place. In addition, MicroDig ranks correct root causes high
in the ranking lists, and its MRR reaches 0.78, which is
9.9% higher than other methods at least. On dataset B,
MicroDig achieves at least a 44.6% improvement on AC@1
over other baselines. The most commonly used indicators
in comprehensive evaluation are Avg@3 and MRR, where
MicroDig achieves 32.2% and 29.8% improvement over base-
line methods at least, respectively. On dataset C, MicroDig
demonstrates significantly superior performance compared
to other baselines, showcasing its stability and robustness in
root cause identification.

Since the baseline methods refers to the overall per-
formance indicators of each service, anomalies of a few
calls may be submerged in a large number of normal calls,
resulting in misdiagnosis. In addition, Microscope’s strategy
of searching along anomalous paths and retaining only
marginal anomalous services is imperfect. When mistakes
occur in anomaly detection or the causality mining pro-
cess, the localization effect can be greatly affected. As for
ServiceRank, the causal relationship between services relies
entirely on the mining of the PC-algorithm. However, the
efficiency and accuracy of the algorithm are low when there
are a large number of nodes. The first step in both Trac-
eRCA and TraceRank involves detecting anomalous calls,
where the accuracy of call anomaly detection significantly
impacts their performance. Over-reliance on call anomaly
detection can reduce their adaptability across other Trace
datasets. MicroHECL searches the call graph based on the
propagation patterns of different types of anomalies. Moni-
torRank mainly uses calling relationships to construct causal
relationships. The localization performances of MicroHECL
and MonitorRank are poor due to the inconsistency between
calling relationships and causality, as discussed in §4.

6.4 Localization Efficiency of MicroDig (RQ2)

To evaluate the execution efficiency of each method, we give
the average elapsed time of each method on datasets A, B
and C, respectively. As listed in Table 3, MicroDig achieves
the best efficiency on dataset A with 24.72 seconds per case.
The main reason for the efficiency is the construction of
the association graph and the applied anomaly detection,
which filters out most of the irrelevant service-port items.
The low time complexity of the heterogeneous graph con-
struction also contributes a lot. Dataset B and C are collected
from different systems with fewer microservice instances,
resulting in notably shorter average elapsed time for all the
approaches. The elapsed time of MicroDig is influenced by
both the number of microservice instances and the anoma-

TABLE 3
The average elapsed time in diagnosing a performance issue

Method Time (s) of
dataset A

Time (s) of
dataset B

Time (s) of
dataset C

MicroScope 3712.93 0.43 14.9
ServiceRank 552.09 0.10 101.2
MicroHECL 81.61 0.06 1.30

MonitorRank 79.63 0.11 1.51
TraceRCA 420.6 0.09 1.45
TraceRank 821.5 0.19 14.1

MicroDig w/o AD 549.10 0.22 1.81
MicroDig 24.72 0.18 1.32

lous calls per case. Specifically, the quantity of microser-
vice instances affects the size of the call graph and the
computational overhead of random walks. Moreover, the
number of anomalous calls impacts the size of the anoma-
lous association graph. For dataset A, collected from Ten-
cent’s truly Internet-scale microservice deployments, each
case comprises over 8000 real-world microservice instances,
resulting in many anomalous calls. Consequently, MicroDig
and the baseline methods exhibit longer processing times on
dataset A than on datasets B and C, with MicroDig notably
faster than baseline methods in comparison. It demonstrates
MicroDig’s scalability in truly Internet-scale microservice
deployments. Through the above analysis, the efficiency of
MicroDig satisfies the requirement to localize the root cause
quickly in online large-scale microservice systems.

6.5 Ablation Study (RQ3)
In order to evaluate the impact of heterogeneous causal
graph, hyperparameter β, and anomaly detection on the
accuracy and time consumption of MicroDig, we conduct
the following ablation experiments.

6.5.1 Performance of Heterogeneous Propagation Graph
To show the importance of the heterogeneous propagation
graph (HPG) in improving the accuracy of root cause lo-
calization, we conduct the following ablation experiments.
We replace the HPG from MicroDig with a homogeneous
propagation graph (with services as nodes and calling rela-
tionships as edges). The accuracy of MicroDig and MicroDig
without HPG are listed in Table 4, which shows the im-
portance of the proposed HPG. Specifically, the HPG brings
at least 5.6%, 14.4%, 6.8%, 9.1%, and 5.4% improvements
on AC@1, AC@2, AC@3, Avg@3, and MRR for MicroDig on
dataset A, respectively. On dataset B, MicroDig achieves a
22.6% improvement on AC@1 over MicroDig without HPG.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

In the most commonly used Avg@3 and MRR, MicroDig
with HPG is 17.8% and 13.8% higher than MicroDig without
HPG, respectively. On dataset C, MicroDig without the HPG
exhibits decreases of 2.3%, 14.8%, 19.6%, 12.2%, and 0.06
in AC@1, AC@2, AC@3, Avg@3, and MRR, respectively,
compared to MicroDig. The HPG abstracts the call edge as
a node, which preserves the data integrity of the call edge,
and avoids the inconsistency between causality and calling
relationships, achieving more accurate root cause service
localization.

6.5.2 Impact of Hyperparameter β to HORW

In this part, we will discuss the impact of hyperparameter β
in our method. In a complex microservice system, anomaly
service detection accuracy cannot be fully guaranteed. At
this time, the hyperparameter β is required. It can mitigate
the impact of wrong anomaly service detection results on
the root cause localization results. From Fig. 7, we can
obtain that the best AC@1, AC@2 and AC@3 of MicroDig
are achieved when β is set to 0.1 on dataset A. For dataset
B, the highest level, i.e., AC@1, AC@3 and Avg@3 of Mi-
croDig reaches 61.3%, 85.5% and 74.7% when β is set to 0.1,
respectively. On dataset C, when β is set to 0.1 and 0.15,
MicroDig’s AC@1, AC@2, AC@3, and Avg@3 are generally
close, although slightly higher when β is set to 0.1.

As demonstrated in §5.4, the value of β is related to data
quality, where higher data quality corresponds to greater
anomaly service detection accuracy, and β tends to approach
0, and vice versa. The value of β may vary for different
datasets. We set β=0.1 for datasets A, B, and C, respectively,
because MicroDig achieves the best accuracy across all three
datasets when β=0.1.

0.00 0.05 0.10 0.15 0.20
(a) Dataset

0.4

0.6

0.8

1.0
AC@1 AC@2 AC@3 Avg@3

0.00 0.05 0.10 0.15 0.20
(b) Dataset

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20
(c) Dataset

0.4

0.6

0.8

1.0

Fig. 7. The accuracy of MicroDig as β varies on three datasets

6.5.3 Performance of Anomaly Detection
MicroDig detects anomalies before building the heteroge-
neous propagation graph. Service nodes without anomaly
will be removed and will not participate in the subse-
quent root cause localization steps. As shown in Table 4,
anomaly detection evidently affects the results of MicroDig
on datasetA. MicroDig completely surpasses MicroDig with-
out anomaly detection (AD) on dataset A. Although the ac-
curacy of these two approaches are comparable on datasets
B and C, the number of service nodes in B and C is much
smaller than that in A, and the calling relationship is much
simpler. As shown in Table 3, the operation efficiency of
MicroDig is much higher than that of MicroDig without
anomaly detection. The reason for the above results is
that anomaly detection helps MicroDig avoid the interfer-
ence of normal service nodes, which greatly reduces the
time of building heterogeneous propagation graphs and the
HORW.

7 DISCUSSION

7.1 Success Story

The approach we proposed has been successfully applied in
a system of Tencent’s video business. This system includes
more than 8000 microservices housing services for tens of
millions of users with more than 1 billion requests per day.
The deployment environment is shown in Fig. 8.

Fig. 8. The deployment environment and running process of MicroDig.

The agents are responsible for collecting call data in
microservices in real time and handing it over to storage.
When the monitoring component of the microservice system
generates an SLO performance issue, MicroDig is triggered.
It first requests the calling data from the storage. After
analysis and diagnosis, MicroDig provides possible root
cause services and then sends them to the Message Queue
(MQ). Finally, the system sends the performance issue and
candidate root cause list to operators in the form of web
pages, emails, and messages.

Before deploying our approach, root cause localization is
labor-intensive and error-prone. Usually, it takes operators
30-60 minutes to manually localize the root cause. Therefore,
performance issues cannot be mitigated in a timely and
accurate manner, which may cause user complaints. After

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

TABLE 4
The accuracy of MicroDig when the heterogeneous propagation graph (HPG) or anomaly detection (AD) is removed

Method Dataset A Dataset B Dataset C
AC@1 AC@2 AC@3 Avg@3 ⇑ Avg@3 MRR AC@1 AC@2 AC@3 Avg@3 ⇑ Avg@3 MRR AC@1 AC@2 AC@3 Avg@3 ⇑ Avg@3 MRR

MicroDig w/o HPG 61.0% 76.3% 88.1% 75.1% 9.1% 0.74 50.0% 66.1% 74.2% 63.4% 17.8% 0.65 46.9% 63.3% 74.2% 61.5% 19.8% 0.64
MicroDig w/o AD 30.5% 61.0% 71.2% 54.2% 51.1% 0.51 46.8% 72.6% 83.9% 67.8% 10.2% 0.66 47.5% 65.0% 75.0% 62.5% 17.9% 0.65

MicroDig 64.4% 87.3% 94.1% 81.9% - 0.78 61.3% 77.4% 85.5% 74.7% - 0.74 49.2% 78.1% 93.8% 73.7% - 0.70

Fig. 9. The root cause localization result of a real case according to a
heterogeneous propagation graph (left) or a call graph (right).

applying MicroDig, operators are freed from the complicated
troubleshooting work. They can accurately diagnose the
root cause and greatly shorten the root cause localization
time to less than one minute.

Take a real-world performance issue that occurred at
20:42 on December 22, 2021, as an example. The sudden
traffic increase on S3 leads to a service performance issue.
Since there are a large number of service nodes related to
this performance issue, Fig. 9 only shows part of the nodes.
The star symbol and the gray mark in this figure represent
the real root cause and issue service, respectively. In ad-
dition, the dashed ellipse represents the root cause output
by the root cause localization method. It can be seen from
the right picture of Fig. 9 that the calling relationship-based
methods are more inclined to approach downstream nodes
to find the root cause according to the transition probability.
This is why it skips the real root cause S4 and walks toward
S7 repeatedly. The heterogeneous graph constructed by
MicroDig is shown in the left picture of Fig. 9. Because each
call is abstracted as a call node, three issue nodes are related
to S3 in the heterogeneous propagation graph. MicroDig
takes the issue call node (i.e., C23, C34) as the entry node of
root cause localization. With the call nodes, neither (S4, S7)
nor (S4, S6) is upstream/downstream causal relationships.
Although there are some false positives in anomaly detec-
tion, MicroDig finds the correct root cause by evaluating the
similarity of the calling nodes during the random walk. This
case is associated with a total of 5740 services. MicroDig
pinpointed the root cause of the performance issue in 58
seconds, proving that our solution is effective and efficient.

7.2 Lessons Learned

After applying MicroDig in Tencent, we notice a real case
due to parameter transmission between two downstream
calls sent by the same service. Specifically, denote the up-
stream service as A and it calls two services in turn, namely

B and C . In this case, A transmitted the value returned by
A

call−−→ B as a parameter for A call−−→ C . Unfortunately,
although A

call−−→ B did not throw exceptions, the return
result of A call−−→ B was invalid or broken, which caused
an anomaly of A call−−→ C . The effect of such an anomaly is
not reflected in the calling relationship. As a result, MicroDig
only localized the performance issue service C , because C
was the service that produced an anomaly directly. In the
follow-up troubleshooting, operators continued to check the
error log supplemented by prior knowledge and found that
the root cause was an error in the incoming parameters.
Although this situation is rare, in the future, we will gather
more information and knowledge to further enhance Mi-
croDig.

Theoretically, integrating more data sources, like metrics
and logs, could enhance MicroDig’s accuracy. For now, Mi-
croDig can incorporate metrics, in addition to traces, as cru-
cial inputs for constructing its anomalous association graph.
We will expand the model to integrate more data sources,
such as logs, to further improve MicroDig’s accuracy in
future work.

7.3 Threats to Validity
The major threat to interval validity lies in our implementa-
tion of the four baseline methods, which are based on our
understanding as they are not publicly available. To mitigate
this threat, several authors have carefully checked the code.

The threat to external validity mainly lies in the two
adopted datasets, which may not represent various mi-
croservice systems. In the future, we will apply MicroDig
to more different companies to mitigate this threat. On the
other hand, as we focus on the root cause localization at
the service level, detailed data, such as metrics of physical
machines, are omitted. We leave the in-depth root cause
localization of fusing multiple types of data as future work.

The threat to construction validity mainly lies in the used
hyper-parameters and metrics. To reduce this threat, on the
one hand, we select the hyper-parameters of MicroDig and
the baseline methods through grid search. On the other
hand, we apply the most widely used effectiveness and
efficiency metrics following the existing works [2], [23], [30],
[31].

8 CONCLUSION

In this paper, we propose an approach named MicroDig
for automatic root cause localization of performance issues
in large-scale microservice systems. MicroDig identifies the
association calls and builds a heterogeneous propagation
graph based on the dynamic microservice invocations. It
then applies HORW to find the patterns of anomaly prop-
agation and pinpoint the culprit service. The effectiveness

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

and efficiency of MicroDig are proved using both real-world
performance issues collected from Tencent and manually
injected ones collected from Train-Ticket and China Con-
struction Bank Corporation. MicroDig achieves superior per-
formance compared to four popular root cause localization
methods. Moreover, we have shared our success stories and
learned lessons from MicroDig’s deployment in Tencent.
Specifically, MicroDig significantly shortens the performance
issue diagnosis time from 30-60 minutes to less than one
minute. In future work, metrics and logs of microservices
can be fused to pinpoint the root cause more accurately.

REFERENCES

[1] J. Lewis and M. Fowler”, “Microservices,” https://martinfowler.c
om/articles/microservices.html, 2014, [Online].

[2] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou,
and Z. Wu, “Microhecl: High-efficient root cause localization in
large-scale microservice systems,” in 43rd IEEE/ACM International
Conference on Software Engineering: Software Engineering in Practice,
ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021. IEEE, 2021, pp.
338–347.

[3] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen,
“Cloudranger: Root cause identification for cloud native systems,”
in 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID 2018, Washington, DC, USA, May 1-4,
2018. IEEE Computer Society, 2018, pp. 492–502.

[4] L. Weng, Y. Hu, P. Huang, J. Nieh, and J. Yang, “Effective
performance issue diagnosis with value-assisted cost profiling,”
in Proceedings of the Eighteenth European Conference on Computer
Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023, G. A. D. Luna,
L. Querzoni, A. Fedorova, and D. Narayanan, Eds. ACM, 2023,
pp. 1–17.

[5] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu,
Y. Dang, and D. Zhang, “An empirical investigation of incident
triage for online service systems,” in Proceedings of the 41st Inter-
national Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019.
IEEE / ACM, 2019, pp. 111–120.

[6] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability
Engineering: How Google Runs Production Systems. O’Reilly Media,
Inc, 2016.

[7] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause
localization of performance issues in microservices,” in NOMS
2020 - IEEE/IFIP Network Operations and Management Symposium,
Budapest, Hungary, April 20-24, 2020. IEEE, 2020, pp. 1–9.

[8] Li Wu and Johan Tordsson and Erik Elmroth and Odej Kao,
“Causal inference techniques for microservice performance di-
agnosis: Evaluation and guiding recommendations,” in IEEE In-
ternational Conference on Autonomic Computing and Self-Organizing
Systems, ACSOS 2021, Washington, DC, USA, September 27 - Oct. 1,
2021. IEEE, 2021, pp. 21–30.

[9] R. Wang and S. Ying, “Saas software performance issue diagnosis
using independent component analysis and restricted boltzmann
machine,” Concurr. Comput. Pract. Exp., vol. 32, no. 14, 2020.

[10] Y. Han, “Enterprise Operation’s Top 3 Factors of Lengthy MTTR
and Ways to Reduce Them,” https://community.ibm.com/comm
unity/user/aiops/blogs/yok-han1/2019/06/12/enterprise-ope
rations-top-3-factors-of-lengthy-mtt, 2019, [Online].

[11] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang,
L. Mo, J. Zeng, W. Xue, and D. Pei, “Unsupervised detection of
microservice trace anomalies through service-level deep bayesian
networks,” in 31st IEEE International Symposium on Software Re-
liability Engineering, ISSRE 2020, Coimbra, Portugal, October 12-15,
2020. IEEE, 2020, pp. 48–58.

[12] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang,
L. Yan, Z. Wang, Z. Chen, W. Zhang, X. Nie, K. Sui, and D. Pei,
“Practical root cause localization for microservice systems via trace
analysis,” in 29th IEEE/ACM International Symposium on Quality of
Service, IWQOS 2021, Tokyo, Japan, June 25-28, 2021. IEEE, 2021,
pp. 1–10.

[13] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,”
in ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021. ACM, 2021, pp. 135–151.

[14] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and
L. Su, “Graph-based trace analysis for microservice architecture
understanding and problem diagnosis,” in ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020. ACM, 2020, pp. 1387–1397.

[15] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and
V. Muntés-Mulero, “Graph-based root cause analysis for service-
oriented and microservice architectures,” Journal of Systems and
Software, vol. 159, p. 110432, 2020.

[16] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a
service-oriented architecture,” in ACM SIGMETRICS / International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’13, Pittsburgh, PA, USA, June 17-21, 2013. ACM, 2013,
pp. 93–104.

[17] M. Ma, W. Lin, D. Pan, and P. Wang, “Servicerank: Root cause
identification of anomaly in large-scale microservice architec-
tures,” IEEE Trans. Dependable Secur. Comput., vol. 19, no. 5, pp.
3087–3100, 2022.

[18] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic
and distributed performance diagnosis with hierarchical causality
graph in large distributed systems,” in 2014 IEEE Conference on
Computer Communications, INFOCOM 2014, Toronto, Canada, April
27 - May 2, 2014. IEEE, 2014, pp. 1887–1895.

[19] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial sur-
vey, benchmark system, and empirical study,” IEEE Trans. Software
Eng., vol. 47, no. 2, pp. 243–260, 2021.

[20] “MicroDig,” https://github.com/hburning/MicroDig, 2022,
[Online].

[21] G. Yu, Z. Huang, and P. Chen, “Tracerank: Abnormal service
localization with dis-aggregated end-to-end tracing data in cloud
native systems,” Journal of Software: Evolution and Process, p. e2413,
2021.

[22] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “Fchain: Toward black-box
online fault localization for cloud systems,” in IEEE 33rd Inter-
national Conference on Distributed Computing Systems, ICDCS 2013,
8-11 July, 2013, Philadelphia, Pennsylvania, USA. IEEE Computer
Society, 2013, pp. 21–30.

[23] M. Ma, W. Lin, D. Pan, and P. Wang, “Ms-rank: Multi-metric and
self-adaptive root cause diagnosis for microservice applications,”
in 2019 IEEE International Conference on Web Services, ICWS 2019,
Milan, Italy, July 8-13, 2019. IEEE, 2019, pp. 60–67.

[24] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance
issues with causal graphs in micro-service environments,” in
Service-Oriented Computing - 16th International Conference, ICSOC
2018, Hangzhou, China, November 12-15, 2018, Proceedings, ser. Lec-
ture Notes in Computer Science, vol. 11236. Springer, 2018, pp.
3–20.

[25] “Jaeger,” https://www.jaegertracing.io/, 2022, [Online].
[26] “Zipkin,” https://zipkin.io/, 2022, [Online].
[27] “OpenTelemetry,” https://opentelemetry.io/, 2022, [Online].
[28] J. Pearl, Causality : models, reasoning, and inference, 2nd ed. Cam-

bridge University Press, 2009.
[29] “Kubernetes,” https://kubernetes.io/, 2022, [Online].
[30] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap:

Diagnose your microservice-based web applications automati-
cally,” in WWW ’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020. ACM / IW3C2, 2020, pp. 246–258.

[31] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia,
Z. Wang, and D. Pei, “Localizing failure root causes in a microser-
vice through causality inference,” in 28th IEEE/ACM International
Symposium on Quality of Service, IWQoS 2020, Hangzhou, China, June
15-17, 2020. IEEE, 2020, pp. 1–10.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

Lei Tao received his M.S. degree in software en-
gineering from Nankai University, Tianjin, China,
in 2022. He is currently a Ph.D. student at the
College of Software at Nankai University, Tianjin,
China. His research interests include anomaly
detection and failure diagnosis.

Xianglin Lu received the B.S. degree in informa-
tion security from the School of Cyberspace Se-
curity, Beijing University of Posts and Telecom-
munications, Beijing, China, in 2020. She is cur-
rently an M.S. student at the Institute for Network
Sciences and Cyberspace, Tsinghua University,
Beijing, China. Her research interests include
anomaly detection and failure diagnosis.

Shenglin Zhang received B.S. in network engi-
neering from the School of Computer Science
and Technology, Xidian University, Xi’an, China,
in 2012 and Ph.D. in computer science from Ts-
inghua University, Beijing, China, in 2017. He is
currently an associate professor with the College
of Software, Nankai University, Tianjin, China.
His current research interests include failure
detection, diagnosis, and prediction for service
management. He is an IEEE Member.

Jiaqi Luan is a senior undergraduate in the
College of Software at Nankai University, Tianjin,
China. Her research interests include anomaly
detection, root cause localization, and data se-
curity.

Yingke Li received her B.S. degree in software
engineering from the School of Information En-
gineering, Minzu University of China, Beijing,
China, in 2018. She is currently an M.S. student
in the College of Software at Nankai University,
Tianjin, China. Her research interests include
anomaly detection and failure diagnosis.

Mingjie Li received his B.S. degree in computer
science from the Department of Computer Sci-
ence and Technology, Tsinghua University, Bei-
jing, China, in 2018. He is currently a Ph.D. can-
didate in the Department of Computer Science
and Technology at Tsinghua University, Beijing,
China. His research interests include root cause
localization and software engineering.

Zeyan Li received his B.S. degree from Ts-
inghua University, Beijing, China, in 2018. He is
currently a Ph.D. candidate in the Department of
Computer Science and Technology at Tsinghua
University, Beijing, China. His primary research
focuses on artificial intelligence for IT operations.

Qingyang Yu received his B.S. degree in Soft-
ware Engineering from Shandong University, Ji-
nan, China, in 2014. He received his M.S. de-
gree in Computer Technology from the Univer-
sity of Chinese Academy of Sciences, Beijing,
China, in 2017. He is currently a Ph.D. candi-
date in the Department of Computer Science
and Technology at Tsinghua University, Beijing,
China. His research interests lie in anomaly de-
tection and failure diagnosis.

Hucheng Xie received his B.S. and M.S. de-
grees in computer science from Harbin Insti-
tute of Technology, Harbin, China, in 2013 and
2015, respectively. His research interests in-
clude DevOps observation and telemetry. He is
currently an engineer with Tencent, Inc., Shen-
zhen, China.

Ruijie Xu received his B.S. degree in computer
science from Lingnan Normal University, Zhan-
jiang, China, in 2016. His research interests in-
clude AIOps observation and telemetry. He is
currently an algorithm researcher with Tencent,
Inc., Shenzhen, China.

Chenyuan Hu received his B.S. degree in com-
puter science from the East China University
of Technology, Nanchang, China, in 2012. His
research interests include cloud-native observ-
ability and service management in general. He
is currently a senior engineer with Tencent, Inc.,
Shenzhen, China.

Canqun Yang received his M.S. degree from
the National University of Defense Technology
in 1995 and his Ph.D. in 2008. He is currently a
researcher at the College of Computer Science,
National University of Defense Technology, and
serves as the director of the National Supercom-
puting Center in Tianjin. His primary research
areas include high-performance computing and
industrial software.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

Dan Pei received the B.E. and M.S. degrees in
computer science from the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity, Beijing, China, in 1997 and 2000, respec-
tively, and the Ph.D. degree in computer science
from the Computer Science Department, Univer-
sity of California, Los Angeles (UCLA) in 2005.
He is currently an associate professor in the
Department of Computer Science and Technol-
ogy at Tsinghua University, Beijing, China. His
research interests include network and service

management in general. He is an IEEE senior member and an ACM
senior member.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3402172

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on June 05,2024 at 01:35:31 UTC from IEEE Xplore. Restrictions apply.

