
Illuminating the Gray Zone: Non-intrusive Gray Failure
Localization in Server Operating Systems

Shenglin Zhang
Nankai University & HL-IT

Tianjin, China

Yongxin Zhao
Nankai University
Tianjin, China

Xiao Xiong
Nankai University
Tianjin, China

Yongqian Sun∗
Nankai University &

TKL-SEHCI
Tianjin, China

Xiaohui Nie
CNIC, CAS

Beijing, China

Jiacheng Zhang
Nankai University
Tianjin, China

Fenglai Wang
Huawei Technologies

Nanjing, China

Xian Zheng
Huawei Technologies

Nanjing, China

Yuzhi Zhang
Nankai University
Tianjin, China

Dan Pei
Tsinghua University &

BNRist
Beijing, China

ABSTRACT
Timely localization of the root causes of gray failure is essential for
maintaining the stability of the server OS. The previous intrusive
gray failure localization methods usually require modifying the
source code of applications, limiting their practical deployment. In
this paper, we propose GrayScope, a method for non-intrusively
localizing the root causes of gray failures based on the metric data
in the server OS. Its core idea is to combine expert knowledge with
causal learning techniques to capture more reliable inter-metric
causal relationships. It then incorporates metric correlations and
anomaly degrees, aiding in identifying potential root causes of gray
failures. Additionally, it infers the gray failure propagation paths
between metrics, providing interpretability and enhancing opera-
tors’ efficiency in mitigating gray failures. We evaluate GrayScope’s
performance based on 1241 injected gray failure cases and 135 ones
from industrial experiments in Huawei. GrayScope achieves the
𝐴𝐶@5 of 90% and interpretability accuracy of 81%, significantly
outperforming popular root cause localization methods. Addition-
ally, we have made the code publicly available to facilitate further
research.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

∗Yongqian Sun is the corresponding author. Email: sunyongqian@nankai.edu.cn

HL-IT, TKL-SEHCI, and BNRist are short for Haihe Laboratory of Information Tech-
nology Application Innovation, Tianjin Key Laboratory of Software Experience and
Human Computer Interaction, and Beijing National Research Center for Information
Science and Technology, respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663834

KEYWORDS
Gray Failure, Server Operating System, Root Cause Localization,
Causal Discovery
ACM Reference Format:
Shenglin Zhang, Yongxin Zhao, Xiao Xiong, Yongqian Sun, Xiaohui Nie,
Jiacheng Zhang, Fenglai Wang, Xian Zheng, Yuzhi Zhang, and Dan Pei.
2024. Illuminating the Gray Zone: Non-intrusive Gray Failure Localization
in Server Operating Systems. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering (FSE
Companion ’24), July 15–19, 2024, Ipojuca (Pernambuco), Brazil. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3663529.3663834

1 INTRODUCTION
Servers support countless applications and services, serving as the
core of large-scale data management and a key component in pro-
viding network services [18]. Server operating system (OS) acts
as an intermediary between applications and the server hardware.
They provide essential services such as resource allocation, sched-
uling, input/output processing, and security management, enabling
applications to run efficiently and securely on hardware.

In server OS, the complex interactions between components can
easily lead to performance or availability issues. A significant con-
cern is gray failure, a critical state where the server OS is between
healthy and unhealthy and can cause system instability or opera-
tional efficiency decrease [14, 15, 24]. Gray failures include severe
performance degradation, random packet loss, flaky I/O, memory
thrashing, capacity pressure, and non-fatal exceptions [15]. It has
been shown that gray failures are the root cause of many cata-
strophic failures in the real world [24]. For instance, a gray failure
causing high disk I/O wait times in the server OS can slow down
database applications that rely heavily on disk operations. Gray
failures occur frequently but are difficult to localize, making trou-
bleshooting time-consuming and inaccurate.

Due to the lack of practical fine-grained diagnostic tools, it is
labor-intensive to localize gray failures accurately, requiring trial-
and-error troubleshooting by operators. We have investigated the
server OS failure tickets atHuawei Cloud and found that the average
time from the occurrence of a gray failure to localizing its root cause

https://orcid.org/0000-0003-0330-0028
https://orcid.org/0009-0005-6603-3539
https://orcid.org/0000-0002-5456-873X
https://orcid.org/0000-0003-0266-7899
https://orcid.org/0000-0002-0371-854X
https://orcid.org/0009-0001-1591-0862
https://orcid.org/0009-0007-8767-2676
https://orcid.org/0009-0002-5089-1975
https://orcid.org/0000-0002-6729-925X
https://orcid.org/0000-0002-5113-838X
https://doi.org/10.1145/3663529.3663834
https://doi.org/10.1145/3663529.3663834

FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

is about eight hours, with some lasting several weeks. Such failures
significantly impact the performance and availability of systems,
yet research on root cause localization for gray failures is relatively
scarce. Some intrusive methods rely on modifying the source code
of applications (e.g., Panomara [14] and OmegaGen [24]), limiting
their practical deployment due to high modification costs and long
localization cycles.

In server OS, metrics are quantifiable measures that provide in-
sights into performance and operational status. These metrics are
collected non-intrusively, ensuring the monitoring process does
not interfere with the system’s normal functioning or degrade
its performance. Several metrics serve as measures of application
performance, known as Key Performance Indicators (KPIs), e.g., av-
erage response time. Anomalies on KPIs often signal potential gray
failures [21] (hereinafter, we use “KPI” to denote the metrics of
applications and apply “metric” to represent other types of met-
rics). Therefore, operators swiftly undertake mitigation measures
to prevent further damage once a KPI exhibits anomalies. In recent
years, a collection of metric-based root cause localization methods
has been proposed for distributed systems, such as microservices,
Web services [6, 20, 23, 27, 30, 32, 36, 37, 46]. These methods can be
roughly divided into statistical, graph-based, and feature learning
methods [38]. Statistical methods [23, 37], which use traditional
statistical analysis methods for root cause localization, are easily
affected by data noise. However, in the server OS, the varying work-
load and the complex interdependencies between components can
generate significant noise in the metric data. This noise can obscure
the statistical patterns these methods rely on, leading to inaccurate
root cause localization. Feature learning methods [20, 46] that use
machine learning techniques to learn feature models from metric
data for root cause localization, often relying on many high-quality
labeled cases. It presents a significant challenge in server OS envi-
ronments, where the specific manifestations of failures can vary
widely across different configurations. As a result, neither statistical
nor feature learning methods designed for distributed systems are
appropriate in localizing the root cause of gray failures in server
OS. Causality graph-based methods, which learn causal graphs
and obtain potential root cause lists, have shown superior perfor-
mance in real-world root cause localization [27, 30, 32, 36]. They are
promising for non-intrusive metric-based gray failure localization
in server OS.

Based on the observations above, our objective is to design a
causality graph-based method to localize the root causes of gray fail-
ures in server OS non-intrusively, accurately, and timely. However,
it faces the following challenges:
(1) Complex causal relationships between metrics. Usually, there
are hundreds of metrics in a server OS. The metric data changes dy-
namically in the server OS over time, and the relationships between
these metrics also evolve dynamically. Previous works apply only
causal learning techniques, such as the PC algorithm [39] or the
Granger causality test [10], to construct the causal graph, making
the causal graph too large and complex for root cause inference.
(2) Underutilization of the correlations. When a gray failure occurs,
usually, some metrics become anomalous. The anomaly degree of
metrics helps prioritize exploration in the root cause inference, fo-
cusing on metrics potentially involved in the gray failure. Previous
works usually utilize root cause inference techniques like random

walk [34] or Page Rank [1] by considering only the anomaly degree
of metrics while ignoring the correlations between each metric and
the gray failure. However, the correlation between metrics and the
gray failure can guide the root cause inference method to localize
the metrics causing the gray failure. Ignoring this correlation can
degrade the performance of root cause inference.
(3) Interpretability. Gray failures in system components can spread
with data flow or shared resources, potentially expanding the im-
pact on the entire system. A lack of information about the propaga-
tion paths of gray failures can affect the efficiency of operators in
mitigating failures.

In this paper, we propose a novel method, GrayScope, tailored
for gray failures in server OS and can non-intrusively, timely, and
accurately localize the root cause of gray failures. The main contri-
butions of this paper are as follows:
(1) To the best of our knowledge, GrayScope is the first work target-
ing root cause localization of gray failures for server OS in a non-
intrusive manner. It significantly improves operators’ efficiency in
diagnosing and mitigating failures.
(2) To learn more reliable causal relationships between metrics,
GrayScope integrates expert knowledge with causal learning tech-
niques to learn the metric causality graph, addressing the first
challenge. Moreover, it combines partial correlation with anomaly
degree to localize root causes, addressing the second challenge.
In addition, we present a simple yet effective failure propagation
path inference technique to infer the gray failure propagation paths
between metrics, addressing the third challenge.
(3) To evaluate the performance of GrayScope, we collect the data
of 1241 gray failures from 16 different server OSes in Huawei. Our
results show that GrayScope achieves the top 5 accuracy (𝐴𝐶@5) of
90% and the average top 5 accuracy (𝐴𝑣𝑔@5) of 82%, significantly
outperforming advanced failure localization methods designed for
distributed systems. To ensure better reproducibility, we have made
our code publicly available [11]. We also validate GrayScope’s per-
formance using gray failure cases collected from the industrial
environment.

2 BACKGROUND
2.1 Preliminaries
2.1.1 Gray Failure. When at least one component perceives the
server OS as unhealthy while observers observe the server OS as
healthy, the server OS is experiencing a gray failure [14, 15, 24].
Gray failures include performance degradation, capacity pressure,
flaky I/O, memory thrashing, random packet loss, and non-fatal
exceptions. They lead to a critical state where the server OS is
between healthy and unhealthy states. The server OS can still de-
liver some normal functions but operates in a mode of decreased
performance or degraded functionality.

2.1.2 KPI and Metric. The assessment of application performance
and server OS state frequently relies on two principal categories of
indicators: Key Performance Indicator (KPI) and metric [30]. KPIs
(e.g., average response time, error rate, and page view count) are
indicators used to assess and monitor the performance of appli-
cations. They provide valuable information about the operational
state of applications, user experience, and system efficiency. Metrics

Illuminating the Gray Zone: Non-intrusive Gray Failure Localization in Server Operating Systems FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil

Figure 1: The KPI and some metrics in a server OS during a
gray failure caused by CPU exhaustion.

(e.g., CPU utilization, memory utilization, and network throughput),
on the other hand, indicate the status of the server OS’s founda-
tional components. An anomalous metric, suggesting an anomaly
in a server OS, can potentially cause a KPI anomaly. However, not
all metric anomalies cause KPI to be anomalous, as minor or tran-
sient fluctuations in server OS component performance do not
necessarily translate to a degradation in application performance.

In server OS, gray failures are often accompanied by anomalies
in KPIs [15]. To quickly mitigate these gray failures, it is essential to
localize the root cause of the gray failure upon detecting anomalies
in KPIs. KPI is variant in different applications [4]. In this work,
the application scenarios we study mainly include GaussDB [16]
(an enterprise-grade distributed relational database from Huawei),
Redis [5], Kafka [47], and Tomcat [29]. With the domain knowl-
edge of operators, we choose the database throughput as the KPI
for GaussDB, the database request response time for Redis, the mes-
sage production rate per second for Kafka, and the Servlet request
processing time for Tomcat.

2.1.3 Problem Statement. Our objective is to design an accurate
and efficient method for identifying root cause metrics to assist
operators in quickly repairing gray failures in server OS. Specifically,
when a gray failure occurs in a server OS, and an application’s KPI
is detected as anomalous, we collect all relevant metrics from that
server OS. We aim to provide operators with a ranked list of root
cause metrics and the possible gray failure propagation paths for
each potential root cause. Given that an anomaly of a component
can propagate through the server OS [9], and multiple metrics may
exhibit anomalies during a gray failure [51], localizing the root
causes (recognizing a small set of root cause metrics) is crucial for
mitigating gray failures as operators can take targeted mitigation
measures to prevent recurrence, optimize system performance. For
instance, consider a scenario involving CPU exhaustion gray failure,
where the identified root cause metric is CPU utilization. This
metric indicates the CPU is overused, leading to system slowdowns
or performance degradation. This information allows operators to
investigate processes or applications that consume excessive CPU
resources. Note that gray failure detection is beyond the scope of
this paper.

2.2 Motivation
We obtain a collection of gray failure cases from Huawei’s server
OSes. A common symptom observed across all cases is the degra-
dation or interruption of application performance. Once a KPI is
anomalous, operators will act swiftly to mitigate the gray failure to
prevent further damage. Analyzing these cases provided insights
for designing a gray failure localization framework. Due to confi-
dentiality reasons, we have to hide the details of these cases.

Gray failures are common and can propagate in server OS.
Gray failures typically exhibit a typical evolution pattern along the

temporal dimension: Initially, the system may experience minor
failures (latent failures) that are often suppressed. Gradually, the
system transits to partial failure, where some but not all function-
alities are compromised (gray failures). Ultimately, the continued
spread of partial failures may lead to a system crash (complete
failures) [15]. Gray failures are the root of many catastrophic fail-
ures [24]. They can cause severe damage, including inconsistencies,
"zombie" behavior, and data loss, which operators cannot ignore.

Given that modern server OS consists of many highly inter-
active components across layers, when one component becomes
unhealthy, it will likely impact the performance of other compo-
nents (possibly all), affecting the system’s regular operation. Con-
sequently, timely and accurate localization and mitigation of gray
failures in server OS are crucial for ensuring their high availability.
However, current research on the root cause localization of gray
failures in server OS is scarce. The root cause localization methods
designed for failures in distributed systems might be ineffective for
server OS gray failures due to limitations of the methods (such as
the inability to learn dependencies accurately, the need for manual
labels, etc.). Therefore, we propose GrayScope for localizing the
root causes of gray failures in server OS.

Expert knowledge is essential for accurate causality learn-
ing. Identifying causal relationships is a critical task that involves
the intersection of causality and machine learning [44]. Previous
research has successfully explored causal relationships within time
series data through diverse methodologies [27, 30, 32, 36]. Neverthe-
less, these studies frequently overlook the valuable expert knowl-
edge on causality, deeply rooted in the extensive experience of
operators who have managed numerous system failures. It leads to
uncertain or inaccurate causality, which degrades the performance
of the gray failure localization process. Incorporating engineers’
rich diagnostic experience can reduce this uncertainty and enhance
causality accuracy [2, 12, 44].

Our examination of eight gray failure cases in server OS collected
from Huawei determined that the fusion of expert knowledge is cru-
cial in identifying the root causes of gray failures. Specifically, we
use three popular methods, including Granger causality tests [10],
PC algorithm [39], and PCTS algorithm [30], to construct metric
causality graphs. By incorporating expert knowledge, we corrected
erroneous edges. Subsequently, we employ the Root Cause Infer-
ence module (see Section 3.4) of GrayScope to infer the root causes
of gray failures. As listed in Table 1, the results underscore the crit-
ical importance of expert knowledge in accurately localizing gray
failure root causes. When constructing causality graphs using vari-
ous methods, fusing expert knowledge corrects some erroneously
learned causal relationships. Moreover, after integrating expert
knowledge, there is a noticeable improvement in the accuracy of
root cause localization.

Root cause metric exhibits anomaly during a gray failure
and correlates with the KPI. Since applications often rely on
various underlying components, metrics reflecting the health or
performance of these components directly relate to the applica-
tion’s overall performance. For example, high CPU utilization can
lead to extended response times for processing requests. Similarly,
excessive disk utilization or memory leaks can affect application
performance. As shown in Fig. 1, the KPI exhibited anomaly and
represented a gray failure in server OS. The root cause of this

FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

Table 1: The number of edges in the causality graph constructed by different methods and the results of gray failure localization
(✓for accurate localization and × for inaccurate localization).

Method Disk
Failure_1

Disk
Failure_2

Delay
Failure_1

Delay
Failure_2

Packet Loss
Failure_1

Packet Loss
Failure_2

CPU
Failure_1

CPU
Failure_2

Granger causality tests [10] w knowledge 76 (✓) 92 (✓) 88 (✓) 81 (✓) 42 (✓) 142 (✓) 63 (✓) 54 (✓)
Granger causality tests [10] w/o knowledge 297 (×) 345 (×) 152 (✓) 153 (✓) 155 (×) 395 (×) 210 (✓) 217 (×)

PC algorithm [39] w knowledge 12 (×) 42 (✓) 7 (×) 6 (×) 16 (✓) 15 (×) 31 (✓) 3 (×)
PC algorithm [39] w/o knowledge 59 (×) 95 (×) 40 (×) 43 (×) 54 (✓) 64 (×) 60 (×) 53 (×)
PCTS algorithm [30] w knowledge 32 (✓) 47 (✓) 52 (✓) 50 (×) 48 (✓) 45 (✓) 64 (✓) 43 (×)
PCTS algorithm [30] w/o knowledge 40 (✓) 51 (×) 69 (✓) 63 (×) 73 (✓) 48 (✓) 64 (✓) 89 (×)

Multivariate
Time Series

Causality
Skeleton

Causal
Inference

Causality Graph
Learning

Root Cause
Inference

Root Cause
List

Path Search
Algorithm

 Propagation Path
Inference

Data
Collection

Anomaly
Detection

 Gray Failure
Report

Figure 2: The framework of GrayScope.

gray failure was high CPU utilization, which led to extended re-
sponse times for processing. During the gray failure, the metrics
“mem_utilization” and “cpu_utilization” also showed anomalies,
while the metric “nic_in_packets” appeared normal. Although the
anomaly degree of “mem_utilization” is higher, “cpu_utilization”
correlates more with the KPI when the gray failure occurred. As a
result, the correlation between metrics and the KPI, as well as the
anomaly degree of metrics, are crucial for accurately identifying
the root cause of the gray failure.

3 APPROACH
3.1 Overview
As shown in Fig. 2, GrayScope consists of four key modules:
(1) Data Collection and Anomaly Detection (§3.2). GrayScope
uses metric collection tools to collect runtime monitoring metrics
from multiple data sources at fixed intervals in server OS. It then
triggers root cause localization when an anomaly in KPI is detected.
(2) Causality Graph Learning (§3.3). In root cause localization,
GrayScope first constructs a metric causality structure graph by
plugging relevant metrics in a skeleton graph based on expert
knowledge. It then analyzes causal relationships between metrics
using an observation window for causality testing. By integrating
the metric causality structure graph with the causal relationships
between metrics, a metric causality graph is derived, represent-
ing how various metrics affect KPI and their mutual interactions.
Therefore, GrayScope focuses on relevant metrics rather than all
available data, reducing the chance of spurious correlations. The de-
rived metric causality graph captures the evolving causal structure,

considering direct and indirect relationships between metrics and
the target KPI, overcoming the challenge introduced by complex
causal relationships between metrics (the first challenge).
(3) Root Cause Inference (§3.4). Inspired by the random walk
algorithm, GrayScope considers the weighted combination of the
correlation between metrics and KPI, as well as the anomaly degree
of metrics themselves, as the transition probabilities for the walk.
Starting from the anomalous KPI, GrayScope randomly traverses
along the metric causality graph to generate a potential root cause
ranking list. Integrating the correlation provides a dynamic assess-
ment of potential root causes, mitigating the underutilization of
the correlations (the second challenge).
(4) Propagation Path Inference (§3.5). Finally, GrayScope com-
bines the metric causality graph with the potential root cause rank-
ing list to infer possible propagation paths of the root cause within
the server OS. This provides an interpretable explanation of how
the gray failure spreads through the server OS, aiding operators in
implementing targeted mitigation strategies, thus addressing the
challenge of interpretability (the third challenge).

3.2 Data Collection and Anomaly Detection
By real-timemonitoring of server OSmetrics, operators can promptly
identify and resolve performance issues, ensuring that server OS
meets user requirements. The Data Collection module gathers mul-
tiple runtime information from the server OS across various data
sources, including system calls, applications, and process commu-
nications. Gala-gopher [8] is an eBPF-based low-overhead probe
framework for monitoring and collecting data on server OS net-
work, memory, disk I/O, and scheduling states. It allows for config-
uring existing collection probes based on business needs. We deploy
gala-gopher on each server OS to collect monitoring metrics, setting
the data collection interval at five seconds. Prometheus [35] is an
open-source service monitoring system and time-series database,
providing a generic data model and fast data collection, storage,
and query interfaces. We employ Prometheus to collect metric data
from each server OS at given intervals.

As described in Section §2.1.3, gray failures, when they occur, can
lead to a degradation in application performance, with anomalies in
KPI. Therefore, before localizing the root cause of gray failures, we
first require an anomaly detection algorithm to identify anomalies
in KPI and report the gray failure occurring in the system. Further-
more, according to Pearl’s concept of cause-effect [33], if there is a
causal relationship between two variables, a change in one variable
will lead to a change in the other. Usually, the root cause metrics
will also exhibit anomalies during the gray failure, as anomalous
metrics could be the potential root causes of an abnormal KPI [30].

Illuminating the Gray Zone: Non-intrusive Gray Failure Localization in Server Operating Systems FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil

Timestamp: 1698030369485,
Server OS: server_os_1
Resource: {
 Anomalous KPI: redis_sli_rtt_nsec,
 Anomaly Score: 9.42558,
 Cause Metrics: [
 {
 Metric: tcp_link_retran_packets,
 Anomaly Score: 5.03055
 },
 {
 Metric: tcp_link_avl_snd_wnd,
 Anomaly Score: 4.79047
 },
 {
 Metric: nic_tc_sent_drop,
 Anomaly Score: 4.57826
 },
 ...
]
}

 Gray Failure Report

Figure 3: An example of gray failure report.

We use gala-anteater [7] to detect anomalies in metrics and KPIs,
as it integrates various time series anomaly detection algorithms,
enabling real-time anomaly detection for different scenarios and
applications. Additionally, it provides anomaly scores for each met-
ric, which provides crucial input for the downstream Root Cause
Inference module. Specifically, it collects data in real-time from
Prometheus and outputs the moment when the anomaly has oc-
curred, the anomalous KPI, and the anomaly scores for all metrics.
Finally, it generates a gray failure report, as shown in Fig. 3.

3.3 Causality Graph Learning
Previous research [6, 27, 30, 32, 36] has shown that learning effective
causality graphs is crucial for failure root cause localization. Numer-
ous studies have utilized the PC algorithm [39] to learn causality
graphs between metrics. However, the PC algorithm can only learn
instantaneous causal relationships and fails to report the extensive
continuous causal relationships between time series [30]. Other
works [31, 32, 40, 45] have employed Granger causality tests [10],
a method of time series analysis used to test for causality between
two time series, to learn causality graphs between metrics. Its basic
idea is that if the past values of time series 𝑋 can better predict the
current value of another time series 𝑌 , and 𝑌 ’s past values do not
provide a better prediction for𝑋 ’s current value, then we can say𝑋
Granger-causes 𝑌 . However, in our scenario, it results in numerous
false causal relationships, leading to low accuracy in root cause lo-
calization. Therefore, we propose a causality graph learning model
that combines expert knowledge with Granger causality tests.

Based on the data sources of the collected metrics, we categorize
the monitoring metrics into six dimensions: performance-related
metrics, CPU-related metrics, memory-related metrics, network-
relatedmetrics, disk-relatedmetrics, and TCP-relatedmetrics, which
we refer to as meta metrics. The causal relationships between these
six categories of meta-metrics serve as a benchmark for causality
testing between metrics. As shown in Fig. 4(a), leveraging expert
knowledge of gray failure patterns, we construct a causality skele-
ton graph of meta metrics for server OS gray failures. It is worth not-
ing that expert knowledge is considered a one-shot cost. GrayScope
enables users to categorize data gathered based on specific appli-
cation scenarios and draw upon historical instances of failures to

KPIDISK

CPU

NIC

MEM

TCP

disk_read

disk_write

sli_tps

cpu_util

cpu_irq

tcp_srtt

mem_util

nic_rx

disk_read

disk_write

sli_tps

cpu_util

nic_rx

…

disk_read

disk_write

sli_tps

cpu_util

nic_rx
…

(a)

(b)

(c)

(d)

Figure 4: Construction of the causality graph in GrayScope.
(a): meta-metric causality skeleton graph; (b): monitoring
metrics plugging-in; (c): metric causality structure Graph; (d):
metric causality graph.

establish the causality skeleton graph. This method not only di-
minishes the continual reliance on expert intervention but also
augments the adaptability and scalability of GrayScope in response
to evolving scenarios.

We assume metric 𝑋 is not a Granger cause of 𝑌 . We estab-
lish a multivariate regression model with an appropriate𝑚𝑎𝑥𝑙𝑎𝑔

and perform an F-statistical test to compare the fit of models with
and without 𝑋 ’s lagged terms. We determine whether to reject
the null hypothesis based on the F-statistic and significance level
𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . If the null hypothesis is rejected, it indicates that vari-
able 𝑋 Granger causes variable 𝑌 .

As shown in Fig. 4(a), in the expert-knowledge-based causality
skeleton graph constructed, we insert the top 𝑚 related metrics
with the highest anomaly scores for each category of meta-metrics
into the respective types as shown in Fig. 4(b), resulting in the
metric causality structure graph, as shown in Fig. 4(c). Specifically,
in the causality skeleton graph, the network meta-metrics point
towards the CPU meta-metrics, suggesting that, based on expert
knowledge, network-related metrics might be the root cause of
CPU-related metrics. After plugging each meta-metric, their cor-
responding related metrics maintain full connectivity, meaning all
network-related metrics point towards every CPU-related metric.
However, causal relationships between two time series do not al-
ways exist [32]. Therefore, we utilize the 𝑤-minute observation
window data before the gray failure report time for testing. We
perform the Granger causality test for all related metrics using time
series data from the most recent𝑤-minute window obtained from
gala-gopher. If the test confirms a causal relationship, we retain
the current edge; otherwise, we remove it. Finally, we preserve the
subgraph containing the anomalous KPI, resulting in the learned
metric causality graph, as shown in Fig. 4(d).

3.4 Root Cause Inference
Random walk algorithms are based on randomness and are com-
monly used to simulate random graph traversal. They inspire our

FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

proposed root cause inference algorithm. Identifying root causes
should prioritize metrics highly correlated with KPI [27]. Addition-
ally, root cause metrics usually exhibit anomalies during a gray
failure [30]. Therefore, the random walk should consider the cor-
relation between each metric and the anomalous KPI and each
metric’s anomaly degree.

To infer the root cause, we apply a random walk on the obtained
causality graph. Specifically, we assume a transition probability
matrix 𝐻 , where each element in 𝐻 represents the transition prob-
ability between any two metrics. Suppose there are metrics 𝑣𝑖 and
𝑣 𝑗 in the causality graph, with an edge from 𝑣 𝑗 to 𝑣𝑖 , the transition
probability between 𝑣 𝑗 and 𝑣𝑖 is calculated as follows:

First, compute the partial correlation coefficient 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑣 𝑗)
between 𝑣 𝑗 and the KPI. Then, calculate the relative anomaly degree
of 𝑣 𝑗 using the anomaly score:

𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣 𝑗) =
𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑠𝑐𝑜𝑟𝑒 (𝑣 𝑗)

𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑠𝑐𝑜𝑟𝑒 (𝑣𝑖) + 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑠𝑐𝑜𝑟𝑒 (𝑣 𝑗)
(1)

The transition probability matrix 𝐻 between metrics is obtained by
weighting the partial correlation coefficients and relative anomaly
degrees. Given the causality graph and the transition probability
matrix 𝐻 , the visitor starts from 𝑣𝐾𝑃𝐼 , calculating the probabilities
for forward, backward, and self-transitions, and randomly walks
along the graph. We calculate the matrix 𝐻 ′ in random walk as
follows:
(1) Forward step (walk from result metric to cause metric):

𝐻 ′𝑖, 𝑗 = 𝜆 · 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑣 𝑗) + (1 − 𝜆) · 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣 𝑗) (2)

where 𝜆 ∈ [0, 1] is the weight that controls the contribution of par-
tial correlation coefficient with the anomalous KPI and the anomaly
degree of the metric.
(2) Backward step (walk from cause metric to result metric):

𝐻 ′𝑗,𝑖 = 𝜌 · (𝜆 · 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑣𝑖) + (1 − 𝜆) · 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣𝑖)) (3)
where 𝜌 is a parameter controlling the impact of the backward step
and 𝜌 ∈ [0, 1].
(3) Self step (stay in the present metric):

𝐻 ′𝑗, 𝑗 = max[0, 𝐻 ′𝑗, 𝑗 − 𝐻
′𝑚𝑎𝑥
𝑗,𝑘
] (4)

𝐻
′𝑚𝑎𝑥
𝑗,𝑘

= max𝐻 ′
𝑗,𝑘

(5)
where 𝑣𝑘 is a neighboring metric of 𝑣 𝑗 . If the algorithm reaches a
metric and the probability of transitioning to a neighboring metric
is low, then this metric is likely the root cause, and we consider
that the walker should stay at this metric.

Finally, we get 𝐻 by normalizing every row of 𝐻 ′. The next
metric in the sequence of adjacent metrics is randomly selected for
visiting. The probability of visiting each metric is proportional to its
anomaly degree and correlation with the anomalous KPI. We record
the times each metric is visited and arrange them in descending
order as the root cause localization result.

3.5 Propagation Path Inference
Localizing gray failures is crucial for rapidly taking necessary mea-
sures to mitigate them. Studying the propagation paths of gray
failures can assist operators in identifying critical metrics along the
gray failure propagation path, improve their confidence about the

gray failure localization result, shorten the mitigation time of the
gray failure, and enhance system availability.

Our goal is to deduce the gray failure propagation path from
𝑣𝑟𝑜𝑜𝑡 to 𝑣𝐾𝑃𝐼 , based on the current anomalous KPI 𝑣𝐾𝑃𝐼 obtained
from the Anomaly Detection module and the potential root cause
metric 𝑣𝑟𝑜𝑜𝑡 from the Root Cause Inference module. To achieve this,
we designed a method that combines the metric causality graph
with each metric’s anomaly score, the anomalous KPI 𝑣𝐾𝑃𝐼 , and
the root cause metric 𝑣𝑟𝑜𝑜𝑡 to infer potential propagation paths, as
shown in Algorithm 1. We aim to find the shortest path with the
metrics’ highest cumulative anomaly score as the most likely gray
failure propagation path [36].

Algorithm 1: GrayScope Gray Failure Propagation Path
Inference
Input: anomalous KPI: 𝑣𝐾𝑃𝐼 ; root cause metric: 𝑣𝑟𝑜𝑜𝑡 ; metrics’

anomaly score: 𝐴𝑆 ; metric causality graph:𝐺
Output: gray failure propagation 𝑝𝑎𝑡ℎ from 𝑣_𝑟𝑜𝑜𝑡 to 𝑣_𝐾𝑃𝐼

1 𝐺 ′ ← construct the undirected graph based on𝐺
2 𝑉 ← vertices set based on𝐺 ′

3 𝐸 ← edge set based on𝐺 ′

4 𝑤𝑖,𝑗 ← 0 // weight of edge 𝑒𝑖,𝑗 ∈ 𝐸
5 foreach edge 𝑒𝑖,𝑗 ∈ 𝐸 do
6 𝑤𝑖,𝑗 =

2
𝐴𝑆 [𝑖]+𝐴𝑆 [𝑗]

7 end
8 foreach vertex 𝑣 ∈ 𝑉 do
9 𝑑𝑖𝑠𝑡 [𝑣] = ∞ // Initial distance

10 𝑝𝑟𝑒𝑣 [𝑣] = 𝑈𝑁𝐷𝐸𝐹𝐼𝑁𝐸𝐷 // Previous vertex

11 end
12 𝑑𝑖𝑠𝑡 [𝑣𝑟𝑜𝑜𝑡] = 0 // Distance from source to source

13 𝑄 = ∅ // Priority queue to hold vertices

14 foreach vertex 𝑣 ∈ 𝑉 do
// Add each vertex to the priority queue

15 𝑄.ADD-WITH-PRIORITY(v, dist[v])
16 end
17 while𝑄 ≠ ∅ do

// Extract vertex with min distance

18 𝑢 =𝑄.EXTRACT-MIN()
19 if u == 𝑣𝐾𝑃𝐼 then

// Break if destination vertex is reached

20 break
21 end
22 foreach neighbor 𝑣 of 𝑢 do
23 𝑎𝑙𝑡 = 𝑑𝑖𝑠𝑡 [𝑢] + 𝑤𝑢,𝑣
24 if 𝑎𝑙𝑡 < 𝑑𝑖𝑠𝑡 [𝑣] then
25 𝑑𝑖𝑠𝑡 [𝑣] = 𝑎𝑙𝑡
26 𝑝𝑟𝑒𝑣 [𝑣] = 𝑢

// Update priority in the queue

27 𝑄.DECREASE-PRIORITY(v, alt)
28 end
29 end
30 end
31 return 𝑝𝑎𝑡ℎ from 𝑣𝑟𝑜𝑜𝑡 to 𝑣𝐾𝑃𝐼 using 𝑝𝑟𝑒𝑣 []

4 EVALUATION
We aim to answer the following research questions (RQs):

Illuminating the Gray Zone: Non-intrusive Gray Failure Localization in Server Operating Systems FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil

Table 2: Dataset information

Dataset
#CPU

Exhaustion
#Disk IO
High Load

#Network
Latency

#Network
Packet Loss

GaussDB 0 78 62 83
Redis 0 196 46 32
Kafka 20 0 94 187
Tomcat 192 0 134 117

RQ1: How effective is GrayScope in root cause localization?
RQ2: Does each component of GrayScope contribute significantly
to GrayScope’s performance?
RQ3: How accurate is GrayScope in inferring propagation paths?
RQ4: What is the impact of different hyperparameters?

4.1 Experimental Setup
Dataset.To comprehensively evaluate the performance ofGrayScope,
we establish a cluster environment in Huawei, comprising five phys-
ical host machines and 11 virtual machines. EulerOS, a Linux distri-
bution developed by Huawei based on Red Hat Enterprise Linux to
provide OS for server and cloud environment [52], is installed on
each of these 16machines, and extensive experiments are conducted
on them. Four popular applications are deployed across these server
OSes to ensure comprehensive experimentation. We use the chaos
engineering experimental tool Chaosblade [3] for gray failure sim-
ulation to simulate network latency, packet loss, disk IO high load,
and CPU exhaustion. In our experiments, each gray failure simu-
lation lasts for two minutes, with an interval of approximately 20
minutes between injection operations to minimize the interaction
effects between different gray failures. We inject 1241 gray failures,
including 212 gray failures caused by CPU exhaustion, 274 caused
by disk IO high load, 336 caused by network latency, and 419 caused
by network packet loss. Table 2 lists the detailed information about
the dataset. Various types of gray failures may introduce perfor-
mance degradation for different applications; hence, different types
of gray failures are injected into the server OS hosting different
applications. Specifically, CPU exhaustion does not affect the per-
formance of GaussDB or Redis applications. Therefore, the gray
failures caused by CPU exhaustion are not injected in these two
applications. Similarly, the gray failures caused by disk IO high load
do not impact the performance of Kafka or Tomcat applications, so
these are not injected in these two application scenarios.

Implementation. GrayScope is implemented using Python 3.8.
We have made the source code publically available [11]. All of the
experiments are conducted on each server OS. As for the hyper-
parameters, in the Granger causality test, the significance level
threshold 𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and the maximum lag order𝑚𝑎𝑥𝑙𝑎𝑔 are set
to 0.05 and 2, respectively. The parameter 𝜌 , controlling the influ-
ence of the backward steps in the random walk, is set to 0.2. The
parameter 𝑐𝑜𝑟𝑟_𝑝𝑟𝑜𝑝 , which controls the weights of the partial
correlation coefficient and the anomaly degree of metrics, is set to
0.2. We will discuss these parameters in Section 4.5.

Baselines.We select the following approaches as baselines be-
cause these approaches use different types of techniques to localize
the root causes of gray failures at the metric level, which aligns
with the goal of GrayScope: (1) CauseInfer [4] constructs causality

graphs based on the PC algorithm, uses a DFS strategy to traverse
the causality graph, and infers potential root cause metrics based on
anomaly scores. We set the sliding window length𝑤 = 36. (2) Mi-
croCause [30] applies a path condition time series (PCTS) algorithm
to learn the dependency graph of metrics and employs a tempo-
ral cause-oriented random walk (TCORW) algorithm to rank root
cause metrics. We set 𝜌 = 0.5 and 𝜆 = 0.1, where 𝜌 is a parameter
controlling the impact of the backward step and 𝜆 controls the con-
tribution of metric’s causal relationship with the anomalous KPI and
the anomaly degree of the metric. (3) TS-InvarNet [13] constructs
an invariant network by modeling each pair of time series. The
parameter lag order 𝐿𝑎𝑔𝑠 is set to 3. (4) CIRCA [19] constructs the
skeleton based on system architecture and uses regression-based
hypothesis testing (RHT) and descendant adjustment methods to
infer failure root cause metrics in the graph. Its training and testing
window lengths are set to 110 and 10, respectively.

Evaluation metrics. To evaluate GrayScope and baseline meth-
ods, we use 𝐴𝐶@𝑘 and 𝐴𝑣𝑔@𝑘 to assess their outcomes. These
metrics are the most commonly used in the literature [19, 30, 50].
𝐴𝐶@𝑘 represents the probability that the top 𝑘 results given by
each method include the real root causes of all given gray fail-
ure cases. A higher 𝐴𝐶@𝑘 value, especially for smaller 𝑘 , indicates
greater method accuracy in identifying root causes. Since the search
space is smaller, the methods with higher 𝐴𝐶@𝑘 can significantly
improve the efficiency of operators in troubleshooting gray failures.
Given a set of gray failure cases 𝐴, 𝐴𝐶@𝑘 is calculated as follows:

𝐴𝐶@𝑘 =
1
|𝐴|

∑︁
𝑎∈𝐴

∑
𝑖≤𝑘 𝑅𝑎 [𝑖] ∈ 𝑉𝑎
𝑚𝑖𝑛(𝑘, |𝑉𝑎 |)

(6)

where 𝑅𝑎 [𝑖] is the ranking result of all metrics for a gray failure
case 𝑎, and 𝑉𝑎 is the actual root cause set for the gray failure case
𝑎. 𝐴𝑣𝑔@𝑘 evaluates the overall performance of each method by
calculating the average 𝐴𝐶@𝑘 . 𝐴𝑣𝑔@𝑘 is calculated as follows:

𝐴𝑣𝑔@𝑘 =
1
𝑘

∑︁
1≤ 𝑗≤𝑘

𝐴𝐶@ 𝑗 (7)

4.2 Overall Performance (RQ1)
Table 3 lists the performance of different methods across four ap-
plication scenarios. The complexity is analyzed by comparing the
time required to localize each gray failure case. It takes 8.74 s for
GrayScope, 307.72 s for CauseInfer [4], 19.71 s for MicroCause [30],
9.96 s for TS-InvarNet [13], and 2.40 s for CIRCA [19]. GrayScope
achieves a satisfactory gray failure localization efficiency.GrayScope
demonstrates superior performance compared to all baseline meth-
ods, achieving an impressive𝐴𝐶@5of 0.90. Specifically,GrayScope’s
accuracy at 𝐴𝐶@5 is 10% higher than that of TS-InvarNet [13], the
best-performing baseline method. Regarding overall performance,
GrayScope outperforms others, with its 𝐴𝑣𝑔@5 reaching 0.82, a
relative improvement of 18% compared with the second place. In-
tegrating expert knowledge for capturing more accurate causal
relationships and combining partial correlation with anomaly de-
gree for root cause inference empowers GrayScope’s success.

Except for CIRCA [19], all other baseline methods ignore the
significance of expert experience, which is essential for accurately
identifying the root causes of gray failures in server OS. However,

FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

Table 3: Effectiveness of root cause localization

Method
All GaussDB Redis Kafka Tomcat

𝐴𝐶@3 𝐴𝐶@5 𝐴𝑣𝑔@5 𝐴𝐶@3 𝐴𝐶@5 𝐴𝑣𝑔@5 𝐴𝐶@3 𝐴𝐶@5 𝐴𝑣𝑔@5 𝐴𝐶@3 𝐴𝐶@5 𝐴𝑣𝑔@5 𝐴𝐶@3 𝐴𝐶@5 𝐴𝑣𝑔@5

GrayScope 0.86 0.90 0.82 0.96 0.97 0.95 0.97 0.97 0.91 0.81 0.85 0.80 0.77 0.86 0.70
CauseInfer [4] 0.23 0.25 0.21 0.39 0.41 0.37 0.42 0.49 0.40 0.14 0.15 0.12 0.09 0.10 0.08
MicroCause [30] 0.68 0.75 0.64 0.69 0.73 0.67 0.75 0.84 0.69 0.57 0.63 0.55 0.71 0.79 0.65
TS-InvarNet [13] 0.68 0.80 0.63 0.87 0.93 0.81 0.86 0.93 0.81 0.49 0.66 0.46 0.60 0.74 0.55

CIRCA [19] 0.51 0.64 0.50 0.74 0.83 0.73 0.92 0.95 0.88 0.39 0.57 0.38 0.21 0.39 0.22
C1 0.71 0.82 0.66 0.89 0.93 0.83 0.85 0.92 0.79 0.55 0.73 0.50 0.65 0.76 0.59
C2 0.27 0.34 0.26 0.47 0.54 0.45 0.42 0.47 0.40 0.18 0.24 0.17 0.15 0.21 0.15
C3 0.58 0.74 0.59 0.64 0.68 0.64 0.71 0.77 0.68 0.46 0.73 0.53 0.55 0.76 0.55
C4 0.73 0.80 0.69 0.70 0.75 0.69 0.84 0.88 0.78 0.68 0.73 0.67 0.71 0.81 0.66
C5 0.54 0.73 0.52 0.74 0.96 0.70 0.88 0.95 0.82 0.31 0.51 0.31 0.38 0.64 0.38

CIRCA [19] localizes root causes based on metric data distribution,
which is easily impacted by the data noise in server OS. The unsatis-
factory performance of CauseInfer [4] is attributed to its use of the
PC algorithm, which fails to learn continuous causal relationships
in time series, and its reliance on DFS for root cause inference based
solely on whether metrics are anomalous, leading to inaccuracy.
MicroCause’s [30] reduced accuracy is due to learning some incor-
rect metric causality relationships. TS-InvarNet [13] localizes root
causes based on the out-degree size of nodes in the causality graph,
neglecting the failure propagation process across the entire causal
network. Its inference results are limited as they consider only local
features surrounding the nodes.

4.3 Contribution of Key Components (RQ2)
To demonstrate the effectiveness of different critical components in
GrayScope (causality graph construction; root cause inference), we
reconfiguredGrayScope by removing or substituting its components
with standard and state-of-the-art techniques, creating five variants,
C1-C5. (1) C1 removes the skeleton graph from GrayScope and only
uses causal inference between metrics (Granger causality test) to
build the causality graph. (2) C2 uses the PC algorithm instead of
the Granger causality test and combines it with a skeleton graph
based on expert knowledge for causality graph construction. (3)
C3 relies solely on partial correlation coefficients for root cause
inference. (4) C4 bases root cause inference only on the anomaly
degrees of metrics. (5) C5 uses DFS instead of the random walk for
root cause localization.

Table 3 lists GrayScope’s superior performance across various ap-
plication scenarios compared to all the variants mentioned above,
demonstrating each component’s significance. When the skele-
ton graph is removed (C1), both AC@5 and Avg@5 degrade. The
results indicate that the skeleton graph can capture causal rela-
tionships between different metrics, thereby accurately learning
inter-metric causal relationships by combining causal learning tech-
niques. AC@5 and Avg@5 decrease when the PC algorithm replaces
the Granger causality test (C2), suggesting that the Granger causal-
ity test is more effective in learning the continuous causal rela-
tionships in time series than the PC algorithm. The performance
becomes worse when relying solely on partial correlation coeffi-
cients or solely on the anomaly degrees of metrics (C3 & C4). The
reason is that both partial correlation coefficients and anomaly
degrees of metrics can provide effective assistance for root cause
inference, and both should be considered simultaneously during the
inference process. When DFS replaces the random walk (C5), the

performance degrades as judging whether a metric is the root cause
solely based on whether the metric is anomalous is not enough.

4.4 Interpretability (RQ3)
To the best of our knowledge, no standard in the academic or in-
dustrial community can definitively determine the accuracy of a
given failure propagation path. Accordingly, we conducted a ran-
dom sampling of 200 cases wherein GrayScope accurately identified
the root cause at the top 1 position. Following this, we invited the
expertise of two seasoned operators, each possessing a minimum of
five years of operational experience, to assess the potential gray fail-
ure propagation paths delineated by GrayScope in these instances.
Their task was to ascertain the correctness or incorrectness of these
paths. When discrepancies arose between the assessments provided
by the two operators, a third experienced operator was engaged
to adjudicate, thereby ensuring the fidelity and impartiality of the
evaluation.

The results indicated that out of the sampled 200 cases,GrayScope
correctly identified the gray failure propagation path in 163 cases.
We reasonably infer that GrayScope can accurately provide the
correct gray failure propagation path with an accuracy rate of 81.5%,
which assists operators in rapidly mitigating the gray failures.

4.5 Hyperparameters Sensitivity (RQ4)
We will discuss the impact of four hyperparameters of GrayScope.
Figure 5 shows the variation of AC@5 with different hyperparame-
ter settings.
(1) The significance level threshold. 0.05 is an ordinary signifi-
cance level, and we aim to ensure that our conclusions are statis-
tically significant. Hence, 𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is usually set to less than
0.05. When 𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 changes from 0.01 to 0.05, the performance
of GrayScope remains relatively stable. Setting the 𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to
the expected value of 0.05 is more reasonable for determining the
existence of causality, resulting in better model performance.
(2) Maximum lag order. This parameter represents the maximum lag
order in the Granger causality test. GrayScope performs optimally
when𝑚𝑎𝑥𝑙𝑎𝑔 is set to 2. When𝑚𝑎𝑥𝑙𝑎𝑔 varies from 1 to 5, the𝐴𝐶@5
of GrayScope remains almost unchanged. The experiment shows
that GrayScope is insensitive to changes in𝑚𝑎𝑥𝑙𝑎𝑔.
(3) Parameter controlling the impact of a backward step in the
random walk. Here, we change 𝜌 from 0 to 1, and the results show
that when 𝜌 is greater than 0, the 𝐴𝐶@5 of GrayScope tends to
stabilize. GrayScope performs optimally when 𝜌 is set to 0.2.

Illuminating the Gray Zone: Non-intrusive Gray Failure Localization in Server Operating Systems FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil

0.01 0.02 0.03 0.04 0.05
p threshold

0.1

0.3

0.5

0.7

0.9

S
co

re

1 2 3 4 5
maxlag

0.1

0.3

0.5

0.7

0.9

S
co

re

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0.1

0.3

0.5

0.7

0.9

S
co

re

0.1 0.2 0.3 0.4 0.5
λ

0.1

0.3

0.5

0.7

0.9

S
co

re

AC@3 AC@5 Avg@5

Figure 5: Parameters sensitivity on GrayScope.

disk_util

sli_tps

cpu_user_
msec

disk_
wspeed

cpu_total_
used_per

anomaly
detection

root cause
inference

trigger

CPU exhaustion

disk_util

sli_tps

tcp_link_
srtt

disk_
wareq

network latency

disk_
wspeed sli_tps

disk IO high load

cpu_iowait
_msec

Figure 6: Gray failure cases: the red arrows represent the gray
failure propagation path.

(4) Weight of partial correlation coefficient and anomaly degree. As
can also be seen in the experiments in Section §4.3, the anomaly
degree has a more significant impact on the accuracy of the results
than the partial correlation coefficient. Therefore, we set 𝜆 to be
less than or equal to 0.5. When 𝜆 changes from 0.1 to 0.5, the𝐴𝐶@5
of GrayScope remains almost unchanged. Overall, GrayScope works
best when 𝜆 is set to 0.2.

4.6 Threats to Validity
A primary threat to the internal validity of our study lies in the
implementation process of GrayScope. Our implementation is based
on mature frameworks to mitigate this potential threat and has
undergone rigorous checks and testing.

Regarding the external validity of our research, a potential threat
lies in our study subjects. All our studies use data collected from
four application scenarios in Huawei’s server OS. However, we
believe that our approach possesses sufficient generality. Server
OS business scenarios in other companies or domains may have
different characteristics, such as metric fluctuations and anomaly
propagation. Our study’s accuracy and efficiency might not directly
apply to other application scenarios. In the future, GrayScope will
include further evaluations to make it applicable to a broader range
of application scenarios.

5 DISCUSSION
5.1 Case Study
GrayScope has been deployed in Huawei Cloud for four months
to help operators timely and accurately localize gray failures for

server OSes. GrayScope is deployed on each server OS and is trig-
gered when a KPI becomes anomalous. We further evaluate the
performance of GrayScope based on a dataset collected from the
industrial environment of Huawei Cloud, denoted as 𝑪 . There are
135 server OS gray failure cases in 𝑪 . Among 48 cases caused by net-
work latency, GrayScope’s AC@3 reached 0.83; in 50 cases caused
by disk IO high load, the AC@3 achieved 0.98; and among 37 cases
caused by high memory utilization, the AC@3 attained 0.94. It took
GrayScope 6.97 s to localize the root cause of each gray failure on
average.

To gain insights into the gray failure localization process of
GrayScope, we utilize three cases from dataset 𝑪 to illustrate the
step-by-step workflow employed by GrayScope, as shown in Fig. 6.
(1) CPU exhaustion. When the Anomaly Detection module of
GrayScope detected anomalies in the performance metric sli_tps of
the GaussDB application, it triggered GrayScope to conduct root
cause localization. GrayScope identified cpu_user_msec (the amount
of time that the CPU has spent executing processes in user mode)
as the primary culprit behind the gray failure and provides the
possible propagation path of the gray failure. According to the
results provided by GrayScope, this gray failure was attributed to
an application process consuming a significant amount of CPU
time (cpu_user_msec ↑), resulting in insufficient CPU resources for
processing disk I/O, leading to disk operations being queued for pro-
cessing (disk_util ↓), ultimately causing a decrease in the throughput
of the GaussDB application (sli_tps ↓). With the root cause localiza-
tion result, operators promptly investigated suspicious processes
with high CPU utilization and quickly took measures to restore the
performance of GaussDB.
(2) Network latency.When network instability led to increased
response time (tcp_link_srtt ↑), the number of requests received
by GaussDB from users within a unit of time decreased, resulting
in reduced disk I/O demands (disk_util ↓), ultimately manifesting
as degradation in GaussDB performance (sli_tps ↓). After receiving
the gray failure ticket generated by GrayScope, operators inspected
and configured network-related devices on the server OS, promptly
mitigating this gray failure.
(3) Disk IO high load. The underlying logic involved suspicious
processes heavily utilizing disk write bandwidth (disk_wspeed ↑),
causing GaussDB to lack sufficient disk I/O resources for data write
operations, resulting in performance degradation (sli_tps ↓). When
operators received the gray failure ticket generated by GrayScope,
they quickly identified and addressed suspicious processes with
high disk write resource utilization.

Based on the above analysis, it is evident that the measures taken
byGrayScope to provide gray failure paths offer greater convenience
to operators and strengthen their acceptance of root causes.

FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

5.2 Lessons Learned
Our experiments on gray failure cases from the industrial environ-
ment of Huawei Cloud reveal that the current industrial practice of
gray failure root cause localization relies heavily on the intuition
from operators’ diagnosing experience. Therefore, this paper ex-
plores the significance of expert knowledge for accurate root cause
localization. Furthermore, the anomaly scores of metrics, serving
as preliminary evidence of potential root causes in the gray fail-
ures, are crucial for the effective operation of GrayScope. Based
on the conducted experiments, we draw attention to two primary
limitations of GrayScope as follows:
(1) GrayScope currently relies on expert knowledge when learning
causal graphs, as operators typically expect failure localization so-
lutions to be compatible with their existing knowledge. However,
it may limit the flexibility and accuracy of GrayScope’s implemen-
tation. To resolve this issue, future iterations of GrayScope will
explore mechanisms to enhance the autonomy of the causal learn-
ing process, which can learn and update causal graphs with minimal
human intervention, thereby balancing the need for expert insight
with the benefits of automated learning.
(2) In the current version of GrayScope, the input requires the anom-
aly scores of various metrics, which depend on the accuracy of
the anomaly detection methods and the reliability of the anomaly
score calculations. In the future, we plan to design a module to
measure the degree of metric anomalies, eliminating the need to
input anomaly scores into the method directly.

6 RELATEDWORK
6.1 Causal Discovery
The PC algorithm [39] determines the presence or absence of edges
(connections) between variables by employing statistical indepen-
dence tests and conditional independence relationships and is par-
ticularly useful for inferring causal relationships from observational
data. CauseInfer [4], MS-Rank [26], and AutoMap [28] apply PC
algorithm to construct causal graphs based on performance metrics
(e.g., latency). ServiceRank [27] extracts the causal relationships
between services. MicroCause [30] uses an improved PC algorithm
to learn the causal relationship of each point of the time series.
However, due to the high computational complexity, the PC algo-
rithm requires a lot of computational resources and time, making it
inappropriate for server OS with limited computational resources
for gray failure localization. Moreover, the PC algorithm’s high
sensitivity to data distribution makes their results unstable.

The Granger causality test [10] has been used by many methods
to analyze the causality of time series [31, 32, 40]. For instance,
DyCause [32] performs the Granger causality test to get the degree
of influence of the service on the front-end application and other
services. However, these methods may learn inaccurate causality by
overlooking the valuable knowledge of experts regarding causality,
thereby degrading the performance of the gray failure localization.

Some other approaches employ novel techniques to learn causal
relations. For example, REASON [42] proposes a hierarchical graph
neural network-based causal discovery method to learn interdepen-
dent causation frommultivariate time series. However, constructing
and training hierarchical graph neural networks to model causal
relationships require substantial computational resources, which

is inappropriate for our scenario where only little computational
resources can be used for gray failure localization in a server OS.
FRL-MFPG [6] introduces a method (MFPG-FC) to map failure
propagation, effectively handling dependencies in microservice ar-
chitectures. However, it may face challenges in scenarios like server
OS, where microservice-specific failure patterns do not apply.

6.2 Root Cause Localization
DFS-based methods [4, 22] and BFS-based methods [32, 36] tra-
verse the graph more dependent on anomaly detection results. Both
DFS and BFS can become computationally expensive and less ef-
ficient as the size of the metrics’ causality graph increases. More-
over, these methods might localize multiple potential root causes
without distinguishing which are more likely or impactful. Some
works adopt random walk and its variants [6, 26–28, 30, 41, 42] or
PageRank [25, 43, 48, 49] to rank and localize root causes. How-
ever, these works usually ignore the correlations between metrics
and KPIs, making the root cause inference inaccurate. Some ap-
proaches [17, 19] link causal inference interventions to root cause
localization, utilizing causal methods to discover the root cause.
These approaches rely on the distribution of metric data to localize
root causes, hence the accuracy of localization is susceptible to the
data noise in server OS. Other approaches utilize machine learning
techniques to automatically learn a microservices system’s nor-
mal and various failure states from metrics, aiming to accomplish
root cause localization tasks. For example, HRLHF [44] compares
the temporal causal mechanism between normal and abnormal
periods in microservices, aiding in anomaly attribution for each
sub-component. TS-InvarNet [13] is based on the assumption of
the stability of relationships between KPIs, aiming to mine and
interpret state changes of invariants for root cause localization.
Nevertheless, the performance of these approaches in gray fail-
ure localization for server OS is primarily hindered by their high
computational cost that cannot be guaranteed in a server OS.

7 CONCLUSION
This paper investigates the root cause localization problem of gray
failures in server OS.We introduceGrayScope, a methodology for lo-
calizing root causes by mining causal relationships between metrics
and gray failure propagation patterns. Integrating expert knowl-
edge with causal learning techniques ensures more reliable learning
of metric causal graphs. The combination of partial correlation and
anomaly degree enhances the accuracy of root cause inference. The
recommendation of propagation paths enhances the interpretabil-
ity of the results. We conducted extensive evaluation experiments
based on the 1241 injected gray failures in Huawei to verify the
effectiveness ofGrayScope. Empirical results relying on the 135 gray
failure cases in the industrial environment affirm the robustness
and efficacy of GrayScope in achieving accurate and efficient root
cause localization. We have made the source code publicly available
for further research.

ACKNOWLEDGMENTS
This work is supported by the Advanced Research Project of China
(No. 31511010501), and the National Natural Science Foundation of
China (62272249, 62302244, 62072264).

Illuminating the Gray Zone: Non-intrusive Gray Failure Localization in Server Operating Systems FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil

REFERENCES
[1] Monica Bianchini, Marco Gori, and Franco Scarselli. 2005. Inside PageRank.

ACM Transactions on Internet Technology (TOIT) 5, 1 (2005), 92–128. https:
//doi.org/10.1145/1052934.1052938

[2] Mattia Carletti, Chiara Masiero, Alessandro Beghi, and Gian Antonio Susto. 2019.
Explainable Machine Learning in Industry 4.0: Evaluating Feature Importance in
Anomaly Detection to Enable Root Cause Analysis. In 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC). IEEE, Los Alamitos, CA,
21–26. https://doi.org/10.1109/SMC.2019.8913901

[3] Chaosblade. 2024. Open Source Repository of Chaosblade. https://github.com/
chaosblade-io/chaosblade

[4] Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. 2014. CauseInfer: Auto-
matic and distributed performance diagnosis with hierarchical causality graph in
large distributed systems. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE, Los Alamitos, CA, 1887–1895. https://doi.org/10.1109/
INFOCOM.2014.6848128

[5] Shanshan Chen, Xiaoxin Tang, Hongwei Wang, Han Zhao, and Minyi Guo. 2016.
Towards Scalable and Reliable In-Memory Storage System: A Case Study with
Redis. In 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, Los Alamitos, CA, 1660–1667.
https://doi.org/10.1109/TrustCom.2016.0255

[6] Yuhua Chen, Dongqi Xu, Ningjiang Chen, and Xu Wu. 2023. FRL-MFPG:
Propagation-aware fault root cause location for microservice intelligent opera-
tion and maintenance. Information and Software Technology 153 (2023), 107083.
https://doi.org/10.1016/j.infsof.2022.107083

[7] Gala-anteater. 2024. Open Source Repository of Gala-anteater. https://gitee.
com/openeuler/gala-anteater

[8] Gala-gopher. 2024. Open Source Repository of Gala-gopher. https://gitee.com/
openeuler/gala-gopher

[9] Janos Gertler. 2002. Fault Detection and Diagnosis in Engineering Systems.
Control Engineering Practice 9, 10 (2002), 1037–1038. https://doi.org/10.1201/
9780203756126

[10] Clive WJ Granger. 1969. Investigating causal relations by econometric models
and cross-spectral methods. Econometrica: journal of the Econometric Society 37,
3 (1969), 424–438. https://doi.org/10.2307/1912791

[11] GrayScope. 2024. Open Source Repository of GrayScope. https://gitee.com/
milohaha/grayscope

[12] Shiqi Hao, Yang Liu, Yu Wang, Yuan Wang, and Wenming Zhe. 2022. Three-
Stage Root Cause Analysis for Logistics Time Efficiency via Explainable Machine
Learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. ACM, New York, NY, USA, 2987–2996. https://doi.
org/10.1145/3534678.3539024

[13] Zijun Hu, Pengfei Chen, Guangba Yu, Zilong He, and Xiaoyun Li. 2022. TS-
InvarNet: Anomaly Detection and Localization based on Tempo-spatial KPI
Invariants in Distributed Services. In 2022 IEEE International Conference on Web
Services (ICWS). IEEE, Los Alamitos, CA, 109–119. https://doi.org/10.1109/
ICWS55610.2022.00031

[14] Peng Huang, Chuanxiong Guo, Jacob R Lorch, Lidong Zhou, and Yingnong Dang.
2018. Capturing and Enhancing In Situ SystemObservability for Failure Detection.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 1–16.

[15] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. 2017. Gray Failure: The Achilles’ Heel
of Cloud-Scale Systems. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems. ACM, New York, NY, USA, 150–155. https://doi.org/10.1145/
3102980.3103005

[16] Ltd. Huawei Technologies Co. 2022. Introduction to Huawei Cloud Database
GaussDB. In Database Principles and Technologies–Based on Huawei GaussDB.
Springer, Berlin, 287–312. https://doi.org/10.1007/978-981-19-3032-4_8

[17] Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi,
and Murat Kocaoglu. 2022. Root Cause Analysis of Failures in Microservices
through Causal Discovery. Advances in Neural Information Processing Systems 35
(2022), 31158–31170.

[18] M Frans Kaashoek, Dawson R Engler, Gregory R Ganger, and Deborah AWallach.
1996. Server operating systems. In Proceedings of the 7th workshop on ACM
SIGOPS European workshop: Systems support for worldwide applications. ACM,
New York, NY, USA, 141–148. https://doi.org/10.1145/504450.504478

[19] Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and
Dan Pei. 2022. Causal Inference-Based Root Cause Analysis for Online Service
Systems with Intervention Recognition. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA,
3230–3240. https://doi.org/10.1145/3534678.3539041

[20] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang,
Xiaohui Nie, Li Cao, Wenchi Zhang, Kaixin Sui, et al. 2022. Actionable and
Interpretable Fault Localization for Recurring Failures in Online Service Systems.
In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, New York, NY,
996–1008. https://doi.org/10.5281/zenodo.6955909

[21] Zhong Li, Yuxuan Zhu, andMatthijs Van Leeuwen. 2023. A Survey on Explainable
Anomaly Detection. ACM Transactions on Knowledge Discovery from Data 18, 1
(2023), 1–54. https://doi.org/10.1145/3609333

[22] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang
Li, Jiayu Ou, and Zheshun Wu. 2021. MicroHECL: High-Efficient Root Cause
Localization in Large-Scale Microservice Systems. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, Los Alamitos, CA, 338–347. https://doi.org/10.1109/ICSE-
SEIP52600.2021.00043

[23] Ping Liu, Yu Chen, Xiaohui Nie, Jing Zhu, Shenglin Zhang, Kaixin Sui, Ming
Zhang, and Dan Pei. 2019. FluxRank: A Widely-Deployable Framework to Auto-
matically Localizing Root CauseMachines for Software Service FailureMitigation.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, Los Alamitos, CA, 35–46. https://doi.org/10.1109/ISSRE.2019.00014

[24] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, Detecting and
Localizing Partial Failures in Large System Software. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Association,
Carlsbad, CA, 559–574.

[25] Xianglin Lu, Zhe Xie, Zeyan Li, Mingjie Li, Xiaohui Nie, Nengwen Zhao, Qingyang
Yu, Shenglin Zhang, Kaixin Sui, Lin Zhu, et al. 2022. Generic and Robust Perfor-
mance Diagnosis via Causal Inference for OLTP Database Systems. In 2022 22nd
IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
IEEE, Los Alamitos, CA, 655–664. https://doi.org/10.1109/CCGrid54584.2022.
00075

[26] MengMa,Weilan Lin, Disheng Pan, and PingWang. 2019. MS-Rank: Multi-Metric
and Self-Adaptive Root Cause Diagnosis for Microservice Applications. In 2019
IEEE International Conference on Web Services (ICWS). IEEE, Los Alamitos, CA,
60–67. https://doi.org/10.1109/ICWS.2019.00022

[27] Meng Ma, Weilan Lin, Disheng Pan, and Ping Wang. 2021. ServiceRank: Root
Cause Identification of Anomaly in Large-Scale Microservice Architectures. IEEE
Transactions on Dependable and Secure Computing 19, 5 (2021), 3087–3100. https:
//doi.org/10.1109/TDSC.2021.3083671

[28] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping
Wang. 2020. AutoMAP: Diagnose Your Microservice-based Web Applications
Automatically. In Proceedings of The Web Conference 2020. ACM, New York, NY,
USA, 246–258. https://doi.org/10.1145/3366423.3380111

[29] Luciano Manelli, Giulio Zambon, Luciano Manelli, and Giulio Zambon. 2020.
Introducing JSP and Tomcat. Beginning Jakarta EE Web Development: Using JSP,
JSF, MySQL, and Apache Tomcat for Building Java Web Applications (2020), 1–53.

[30] Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin
Zhang, Chenyang Jia, Zhaogang Wang, and Dan Pei. 2020. Localizing Failure
Root Causes in a Microservice through Causality Inference. In 2020 IEEE/ACM
28th International Symposium on Quality of Service (IWQoS). IEEE, Los Alamitos,
CA, 1–10. https://doi.org/10.1109/IWQoS49365.2020.9213058

[31] Meike Nauta, Doina Bucur, and Christin Seifert. 2019. Causal Discovery with
Attention-Based Convolutional Neural Networks. Machine Learning and Knowl-
edge Extraction 1, 1 (2019), 19. https://doi.org/10.3390/make1010019

[32] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. 2021. Faster, deeper,
easier: crowdsourcing diagnosis of microservice kernel failure from user space.
In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, New York, NY, 646–657. https://doi.org/10.1145/
3460319.3464805

[33] Judea Pearl et al. 2000. Models, reasoning and inference. Cambridge, UK: Cam-
bridgeUniversityPress 19, 2 (2000), 3.

[34] Karl Pearson. 1905. The Problem of the Random Walk. Nature 72, 1865 (1905),
294–294. https://doi.org/10.1038/072342a0

[35] Prometheus. 2024. Open Source Repository of Prometheus. https://github.com/
prometheus/prometheus

[36] Juan Qiu, Qingfeng Du, Kanglin Yin, Shuang-Li Zhang, and Chongshu Qian.
2020. A Causality Mining and Knowledge Graph Based Method of Root Cause
Diagnosis for Performance Anomaly in Cloud Applications. Applied Sciences 10,
6 (2020), 2166. https://doi.org/10.3390/app10062166

[37] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He,
Min Li, and Wei Ding. 2019. 𝜖-diagnosis: Unsupervised and Real-time Diagnosis
of Small- window Long-tail Latency in Large-scale Microservice Platforms. In
The World Wide Web Conference. ACM, New York, NY, USA, 3215–3222. https:
//doi.org/10.1145/3308558.3313653

[38] Jacopo Soldani and Antonio Brogi. 2022. Anomaly Detection and Failure Root
Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey. ACM
Computing Surveys (CSUR) 55, 3 (2022), 1–39. https://doi.org/10.1145/3501297

[39] Peter Spirtes and Clark Glymour. 1991. An Algorithm for Fast Recovery of
Sparse Causal Graphs. Social science computer review 9, 1 (1991), 62–72. https:
//doi.org/10.1177/089443939100900106

[40] Alex Tank, Ian Covert, Nicholas Foti, Ali Shojaie, and Emily B Fox. 2021. Neural
Granger Causality. IEEE Transactions on Pattern Analysis and Machine Intelligence
44, 8 (2021), 4267–4279. https://doi.org/10.1109/TPAMI.2021.3065601

[41] Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, and Haifeng Chen.
2023. Incremental Causal Graph Learning for Online Root Cause Analysis. In

https://doi.org/10.1145/1052934.1052938
https://doi.org/10.1145/1052934.1052938
https://doi.org/10.1109/SMC.2019.8913901
https://github.com/chaosblade-io/chaosblade
https://github.com/chaosblade-io/chaosblade
https://doi.org/10.1109/INFOCOM.2014.6848128
https://doi.org/10.1109/INFOCOM.2014.6848128
https://doi.org/10.1109/TrustCom.2016.0255
https://doi.org/10.1016/j.infsof.2022.107083
https://gitee.com/openeuler/gala-anteater
https://gitee.com/openeuler/gala-anteater
https://gitee.com/openeuler/gala-gopher
https://gitee.com/openeuler/gala-gopher
https://doi.org/10.1201/9780203756126
https://doi.org/10.1201/9780203756126
https://doi.org/10.2307/1912791
https://gitee.com/milohaha/grayscope
https://gitee.com/milohaha/grayscope
https://doi.org/10.1145/3534678.3539024
https://doi.org/10.1145/3534678.3539024
https://doi.org/10.1109/ICWS55610.2022.00031
https://doi.org/10.1109/ICWS55610.2022.00031
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1007/978-981-19-3032-4_8
https://doi.org/10.1145/504450.504478
https://doi.org/10.1145/3534678.3539041
https://doi.org/10.5281/zenodo.6955909
https://doi.org/10.1145/3609333
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ISSRE.2019.00014
https://doi.org/10.1109/CCGrid54584.2022.00075
https://doi.org/10.1109/CCGrid54584.2022.00075
https://doi.org/10.1109/ICWS.2019.00022
https://doi.org/10.1109/TDSC.2021.3083671
https://doi.org/10.1109/TDSC.2021.3083671
https://doi.org/10.1145/3366423.3380111
https://doi.org/10.1109/IWQoS49365.2020.9213058
https://doi.org/10.3390/make1010019
https://doi.org/10.1145/3460319.3464805
https://doi.org/10.1145/3460319.3464805
https://doi.org/10.1038/072342a0
https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus
https://doi.org/10.3390/app10062166
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3501297
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1109/TPAMI.2021.3065601

FSE Companion ’24, July 15–19, 2024, Ipojuca (Pernambuco), Brazil S. Zhang, Y. Zhao, X. Xiong, Y. Sun, X. Nie, J. Zhang, F. Wang, X. Zheng, Y. Zhang, D. Pei

Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. ACM, New York, NY, USA, 2269–2278. https://doi.org/10.1145/
3580305.3599392

[42] Dongjie Wang, Zhengzhang Chen, Jingchao Ni, Liang Tong, Zheng Wang, Yanjie
Fu, and Haifeng Chen. 2023. Interdependent Causal Networks for Root Cause
Localization. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. ACM, New York, NY, USA, 5051–5060. https://doi.
org/10.1145/3580305.3599849

[43] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk
Kopru, and Tao Xie. 2021. Groot: An Event-graph-based Approach for Root Cause
Analysis in Industrial Settings. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, Los Alamitos, CA, 419–429.
https://doi.org/10.1109/ASE51524.2021.9678708

[44] Lu Wang, Chaoyun Zhang, Ruomeng Ding, Yong Xu, Qihang Chen, Wentao Zou,
Qingjun Chen, Meng Zhang, Xuedong Gao, Hao Fan, et al. 2023. Root Cause
Analysis for Microservice Systems via Hierarchical Reinforcement Learning
from Human Feedback. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. ACM, New York, NY, USA, 5116–5125.
https://doi.org/10.1145/3580305.3599934

[45] Gary White, Jaroslaw Diuwe, Erika Fonseca, and Owen O’Brien. 2021. MMRCA:
MultiModal Root Cause Analysis. In International Conference on Service-Oriented
Computing. Springer, Springer-Verlag, Berlin, 177–189. https://doi.org/10.1007/
978-3-031-14135-5_14

[46] Canhua Wu, Nengwen Zhao, Lixin Wang, Xiaoqin Yang, Shining Li, Ming Zhang,
Xing Jin, Xidao Wen, Xiaohui Nie, Wenchi Zhang, et al. 2021. Identifying Root-
Cause Metrics for Incident Diagnosis in Online Service Systems. In 2021 IEEE
32nd International Symposium on Software Reliability Engineering (ISSRE). IEEE,
Los Alamitos, CA, 91–102. https://doi.org/10.1109/ISSRE52982.2021.00022

[47] Han Wu, Zhihao Shang, and Katinka Wolter. 2020. Learning to Reliably Deliver
Streaming Data with Apache Kafka. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, Los Alamitos, CA,
564–571. https://doi.org/10.1109/DSN48063.2020.00068

[48] Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao. 2021.
MicroDiag: Fine-grained Performance Diagnosis for Microservice Systems. In
2021 IEEE/ACM International Workshop on Cloud Intelligence (CloudIntelligence).
IEEE, Los Alamitos, CA, 31–36. https://doi.org/10.1109/CloudIntelligence52565.
2021.00015

[49] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root
Cause Localization of Performance Issues in Microservices. In NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. IEEE, Los Alamitos,
CA, 1–9. https://doi.org/10.1109/NOMS47738.2020.9110353

[50] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao
Jing, TianjunWeng, Xinmeng Sun, and Xiaoyun Li. 2021. MicroRank: End-to-End
Latency Issue Localization with Extended Spectrum Analysis in Microservice
Environments. In Proceedings of the Web Conference 2021. ACM, New York, NY,
USA, 3087–3098. https://doi.org/10.1145/3442381.3449905

[51] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuanzong
Zhang, Zikai Chen, Xiangzhong Zheng, Xiaohui Nie, Gang Wang, et al. 2020.
Understanding and handling alert storm for online service systems. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Practice. ACM, New York, NY, USA, 162–171. https://doi.org/10.
1145/3377813.3381363

[52] Minghui Zhou, Xinwei Hu, and Wei Xiong. 2022. openEuler: Advancing a Hard-
ware and Software Application Ecosystem. IEEE Software 39, 2 (2022), 101–105.
https://doi.org/10.1109/MS.2021.3132138

Received 2024-02-08; accepted 2024-04-18

https://doi.org/10.1145/3580305.3599392
https://doi.org/10.1145/3580305.3599392
https://doi.org/10.1145/3580305.3599849
https://doi.org/10.1145/3580305.3599849
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1145/3580305.3599934
https://doi.org/10.1007/978-3-031-14135-5_14
https://doi.org/10.1007/978-3-031-14135-5_14
https://doi.org/10.1109/ISSRE52982.2021.00022
https://doi.org/10.1109/DSN48063.2020.00068
https://doi.org/10.1109/CloudIntelligence52565.2021.00015
https://doi.org/10.1109/CloudIntelligence52565.2021.00015
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1145/3377813.3381363
https://doi.org/10.1145/3377813.3381363
https://doi.org/10.1109/MS.2021.3132138

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Motivation

	3 Approach
	3.1 Overview
	3.2 Data Collection and Anomaly Detection
	3.3 Causality Graph Learning
	3.4 Root Cause Inference
	3.5 Propagation Path Inference

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance (RQ1)
	4.3 Contribution of Key Components (RQ2)
	4.4 Interpretability (RQ3)
	4.5 Hyperparameters Sensitivity (RQ4)
	4.6 Threats to Validity

	5 Discussion
	5.1 Case Study
	5.2 Lessons Learned

	6 Related Work
	6.1 Causal Discovery
	6.2 Root Cause Localization

	7 Conclusion
	Acknowledgments
	References

