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ABSTRACT
Automated incident management is critical for large-scale microser-
vice systems, including tasks such as anomaly detection (AD), fail-
ure triage (FT), and root cause localization (RCL). Currently, most
techniques focus only on a single task, overlooking shared knowl-
edge across closely related tasks. However, employing isolated
models for managing multiple tasks may result in inefficiencies,
delayed responses, a lack of systemic perspective, and complexity
in updates and operations. Therefore we propose ART, an unsuper-
vised framework that integrates a full-process solution covering
Anomaly detection, failure Triage, and Root cause localization. It
reaches the unification of multiple tasks by extracting the shared
knowledge. Specifically, we first conduct an empirical study to ana-
lyze how the shared knowledge embedded in anomalous deviations
manifests in AD, FT, and RCL. To better calculate deviations and ex-
tract shared knowledge, we sequentially model channel, temporal,
and call dependencies using Transformer Encoder, GRU, and Graph-
SAGE, respectively. Then unified failure representations enhance
the interpretability of abstract features with explicit semantic infor-
mation, serving as the basis for unsupervised multitask solutions.
Our evaluations on the datasets generated from two benchmark
microservice systems demonstrate that ART outperforms existing
methods in terms of AD (improving by 5.65% to 60.8%), FT (improv-
ing by 13.2% to 95.7%), and RCL (improving by 13.3% to 205%).
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1 INTRODUCTION
Microservice systems have become an essential part of our daily
lives. However, due to the dynamic and complex nature, incidents
(e.g., unplanned failures, outages) are inevitable, which bring huge
economic and reputational damage. In 2023 alone, the microservice
systems of several large internet companies such as Microsoft [4],
Google [2], and Alibaba Cloud [1] experienced large-scale incidents.
Furthermore, a 24-hour incident of mission-critical microservices
from AWS could result in a direct revenue loss of $3.4 billion [3].
Therefore, it is vital to ensure the quality of microservice systems
and manage incidents efficiently and effectively.
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Figure 1: An incident life-cycle: Prior Work vs. ART

As shown in Figure 1, a typical incident life-cycle includes four
stages [9, 13]: (1) Detection: The first step is to generate an alert
when anomalous system behavior is detected. (2) Triage: Next, the
incident is assigned to the appropriate engineering team after an
initial assessment of the incident type. (3) Diagnosis: Assigned
on-call engineers (OCEs) investigate various aspects of the inci-
dent and engage in multiple rounds of communication to localize
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the root cause. (4) Mitigation: OCEs take appropriate measures to
mitigate the incident and restore system health. Each stage is time-
consuming and labor-intensive. To reduce the burden on OCEs,
significant efforts have been devoted to automated solutions for
each stage except mitigation. Mitigation requires specific actions
by OCEs. Thus, a large portion of automated incident management
techniques primarily consists of anomaly detection (AD) [7, 22, 28,
36, 38, 41, 47, 55, 62, 63], failure triage (FT) [32, 35, 37, 48, 59, 61],
and root cause localization (RCL) [6, 12, 16, 19, 34, 52, 57, 58, 64].

At the start, OCEs have to combine single-task techniques to
address the challenges at different stages of the incident life-cycle.
But this approach requires redundant effort for multiple tasks
(e.g., personalized feature extraction, representation acquisition,
offline model training, data organization formats, configurations),
leading to extended Time-to-Mitigate (TTM) [53]. Furthermore,
oversimplified techniques to avoid tedious but effective model-
ing may introduce noise into subsequent tasks [27]. Therefore,
some researchers turn to multi-task techniques [27, 29, 31, 60, 66].
However, the latest ones also could not offer end-to-end modeling
covering AD, FT, and RCL, while requiring manual involvement.
Some techniques [27, 31, 60, 66] fall under supervised techniques,
which heavily rely on high-quality labels. Other techniques [29]
may require rules derived from experienced operators to construct
a causal graph. In practice, manual involvement makes these multi-
task techniques seriously overstretched.

OCEs call for an elegant and efficient unified modeling approach,
and self-supervised learning (SSL) provides a promising solution
[11]. By pretraining on massive amounts of unlabeled data, it ex-
tracts general representations which are then transferred to multi-
ple downstream tasks. However, directly applying SSL to incident
management encounters the following challenges:

(1) Complexity of the status of microservice systems in rep-
resentation learning. Due to the diverse dependencies, modeling
multimodal heterogeneous data, including metrics, logs, and traces,
generated from microservice systems is challenging. As shown in
Figure 2, a data channel refers to a single time series obtained from
the multimodal data serialization (see Section 4.2). Different chan-
nels impact each other (channel dependency, CHA). The channels
fluctuate over time (temporal dependency, TEM). Additionally, dif-
ferent instances interact with one another (call dependency, CAL).
These dependencies are prevalent in microservice systems. Such
complex and diverse data patterns call for a model capable enough
to extract features comprehensively. However, none of the existing
techniques [27, 31, 60–62] can adequately capture all three depen-
dencies.

(2) Interpretability of representations obtained through SSL.
Several studies in other domains aim for interpretability through
the semantic consistency of abstract features [8, 15]. However, in
incident management, most deep learning techniques [27, 28, 31,
60] pay no attention to the connection between features and the
semantics of the microservice system status. This unexplainable
black-box nature makes the model’s inference process and outputs
difficult to understand, potentially causing confusion for OCEs.

(3) Scarcity of labels for downstream tasks. Although the pre-
training phase of representation learning does not require manual
labels, SSL typically employs supervised fine-tuning to bridge the
gap to downstream tasks. However, manual labels are costly and
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Figure 2: An incident case: the multimodal data of the root
cause instance, i.e., metrics, logs and traces, and examples of
instance interactions

difficult to obtain in practice. Providing unsupervised solutions for
AD, FT, and RCL based on failure representations while achieving
superior performance is challenging.

To tackle these challenges, we propose ART, an unsupervised in-
cident management framework offering a comprehensive solution
for Anomaly detection, failure Triage, and Root cause localization
based on unified failure representations. Specifically, ART consists
of three modules that correspond to the above three challenges: (1)
Dependency-Aware Status Learning. We sequentially model chan-
nel, temporal, and call dependencies utilizing self-attention mech-
anisms, recurrent neural networks, and graph neural networks,
respectively. Integrating these dependencies enables the model to
more accurately predict the microservice system’s normal status
at the next time interval, which forms the foundation for calculat-
ing deviations. (2) Unified Failure Representation Acquisition. This
module calculates instance-level deviations based on predictions
and then aggregates them to obtain system-level deviations. The
two deviations introduce interpretability by linking each dimen-
sion of the representation vectors to the original data channel. (3)
Unsupervised Solutions for Diagnostic Tasks. Finally, the failure rep-
resentations are transferred to specific tasks in an unsupervised
manner through EVT thresholds, customized cut-tree-based clus-
tering, and correlation analysis, respectively. The contributions of
our work are summarized as follows:
• To the best of our knowledge, we are the first to propose an
end-to-end unsupervised incident management framework, ART,
which integrates AD, FT, and RCL. It reaches the unification of
multi-tasks by extracting the shared knowledge in an elegant
and efficient manner.

• We empirically study the shared knowledge embedded in anoma-
lous deviations across multi-tasks (Section 2.1). Inspired by it,
we define a unified failure representation that explicitly incor-
porates semantic information into abstract features, enhancing
interpretability and serving as the basis for multi-task solutions
(Section 4.3).

• To better calculate deviations and extract shared knowledge, ART
sequentially models channel, temporal, and call dependencies
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through Transformer Encoder, GRU, and GraphSAGE, respec-
tively (Section 4.2). Moreover, we identify the significance of the
dependency modeling orders both theoretically (Section 2.2) and
experimentally (Section 5.3).

• Extensive experiments are conducted on two popular microser-
vice systems, consisting of 46 and 18 instances, respectively
(Section 5). The results demonstrate ART’s effectiveness and
efficiency. Our source code and experimental data are publicly
available 1.

2 MOTIVATION
This section elaborates on our motivation by exploring the follow-
ing two topics: (1) Is there any shared knowledge among AD, FT,
and RCL? (2) How to extract the shared knowledge effectively?
The first topic aims to identify the commonalities among multiple
tasks, forming the foundation for unified modeling. The second
topic guides on effectively extracting these commonalities.

2.1 Is There Any Shared Knowledge among AD,
FT, and RCL?

To achieve unified modeling, we should identify the commonalities
across all stages of incident management. Anomalous deviation,
indicating the degree to which monitored objects (e.g., systems,
instances) deviate from normal expectations, has reached wide
success in incident management [42, 54, 62]. However, these tech-
niques treat closely related tasks as independent, failing to elevate
deviations to shared knowledge of the entire process.

Therefore, we conduct an empirical study to fully explore the
shared knowledge about the microservice status embedded in devia-
tions.We utilize the first 30% of the failure cases in dataset D1, which
are never included in the test set. It is adequate and representative
to support a valid analysis. More details about D1 are provided in
Section 5.1.1. Considering the continuity of the time series, we use
the previous time step’s value as the normal expectation for the
current time step, which means regarding the first-order difference
as an estimate of deviations. Then, as described in Section 4.3, we
obtain the unified failure representations, specifically instance-level
and system-level deviations (ILD and SLD). These 𝑘-dimensional
vectors reflect the fluctuations of each corresponding channel at
both the instance and system levels. Next, we analyze whether and
how the two forms of deviations manifest in multitasks.

2.1.1 Deviations Manifested in AD. We begin by computing the
statistics of the 𝐿1-norms of SLDs during failure and normal hours,
as presented in Table 1. ∥𝑆𝐿𝐷 ∥1 =

∑𝑘
𝑖=1 |𝑑𝑖 |, where 𝑑𝑖 denotes the

𝑖-th value of the 𝑘-dimensional vector. Deviations are typically
larger during the failure hours, which is intuitive. Specifically, the
∥𝑆𝐿𝐷 ∥1 in failure hours is 22% higher on average and 17% higher
at the median compared to normal hours. The percentile column
shows the proportion of values exceeding the ∥𝑆𝐿𝐷 ∥1 of normal
hours. During failures, these percentages reach 85% and 73% respec-
tively. The 𝐿1-norms of SLDs summarize the system fluctuations
by aggregating deviations across all data channels. This notable
distinction highlights deviations as an indicator of whether the
system is normal or not.

1https://github.com/bbyldebb/ART

Table 1: 𝐿1-norms of SLDs during failure and normal hours

System Status Metric Deviations: ∥𝑆𝐿𝐷 ∥1 Percentile

Failure Hours Mean 100.620 P85
Median 90.165 P73

Normal Hours Mean 82.716 P64
Median 77.147 P49

2.1.2 Deviations Manifested in FT. Next, we focus on the deviation
in each data channel of the system. On one hand, certain channels
serve as key indicators of failure types with good specificity, e.g., de-
viations in the duration channel can clearly distinguish between net-
work and non-network failures. On the other hand, some channels
are inherently volatile, regardless of failures. Still taking duration
as an example, it typically experiences significant fluctuations due
to non-failure factors like network load and transmission distance,
causing large deviations. To mitigate this interference and identify
core channels indicative of different failure types, we compute the
standardized SLD. The mean and variance for standardization are
derived from SLDs in normal hours, which act as an initialization
set to characterize the regular distribution of channels. We rank
the channels for each failure type by standardized deviations and
highlight the top five ones. The results, shown in Table 2, reveal that
different failure types correspond to different channels. For Con-
tainer Network failure, the most volatile channels include duration
in traces, connection_error in logs, and system.net.udp.in_errors in
metrics, corroborating our earlier point.

Notably, the standardization approach that removes the effect
of inherent channel fluctuations has some drawbacks. Firstly, it
requires a high-quality initialization set, which ideally includes
comprehensive channel fluctuation characteristics. Moreover, chan-
nels with significant fluctuations imply greater sensitivity and tend
to have a stronger discriminative power for system conditions.
Overlooking this may lead to difficulties in the rapid division of fail-
ure cases or even distinguishing subtle differences between failure
types. Thus, when conducting the channel-level analysis that maps
channel deviations to specific types, ultimately assigning incidents
to proper engineering teams, i.e., FT, we must balance the speci-
ficity of the channels with their discriminative power for concrete
system conditions to achieve better classification.

2.1.3 Deviations Manifested in RCL. Finally, we analyze the corre-
lations between system-level deviations (SLDs), and instance-level
deviations of root causes and non-root causes (𝐼𝐿𝐷𝑖 of instance 𝑖)
through cosine similarity. This analysis aims to determine whether
root causes have a higher correlation with system deviations. The
results are shown in Table 3. Non-root cause instances display
similarities all under 0.5. In contrast, root cause ones reach approx-
imately 71% and 76%, exceeding those of 83% and 90% of instances
in the entire system. This suggests that root cause instances often
contribute more to system fluctuations, exhibiting deviation pat-
terns more similar to SLD. This valuable insight serves as the basis
for the solution to RCL.

In summary, deviations are integral to the analysis process of all
three tasks, which contain shared knowledge. While both AD and



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Y. Sun, et al.

Table 2: Top5 channels with the largest deviations for different failure types

Failure Type Top5 Data Channels with the Largest Deviations

Container Hardware container_fs_inodes container_fs_usage_MB container_fs_writes container_memory_cache container_threads
Container Network duration severity_error connection_error service_log_other system.net.udp.in_errors

Node CPU system.disk.total system.fs.inodes.free system.fs.inodes.in_use system.fs.inodes.total system.load.15
Node Disk container_last_seen system.disk.free system.disk.pct_usage system.disk.total system.disk.used
Node Memory system.mem.pct_usage system.mem.real.pct_useage system.mem.real.used system.mem.usable system.mem.used

Table 3: Silimarity between SLDs and ILDs of root cause and
non-root cause instances

Instances Metric Cosine Similarity Percentile

Root Cause Mean 0.714 P83
Median 0.767 P90

Non-root Cause Mean 0.487 P46
Median 0.499 P48

FT deal with system-level changes, AD offers a broader understand-
ing of system deviation, indicating the presence of failure, whereas
FT involves a finer analysis by mapping channel fluctuations to
failure types. Conversely, RCL focuses on instances rather than the
entire system, identifying root causes from the many affected ones
that deviate from expectations.

Finding 1: Deviations, in the specific forms of instance-
level and system-level deviations, contain shared knowl-
edge about the microservice status, which assists in anom-
aly detection, failure triage, and root cause localization.

2.2 How to Extract the Shared Knowledge
Effectively?

Then, the challenge lies in fully exploiting the shared knowledge
in deviations. Essentially, the validity of deviations depends on the
accuracy of predictions. Thus, we need to adequately model the
status of complex microservice systems to obtain accurate predic-
tions. We analyze the three types of dependencies illustrated by the
incident case, as shown in Figure 2: (1) Channel dependency (CHA)
refers to the correlation between multimodal data channels within
a single modality and across different modalities. As the disk IO rate
decreases, the corresponding disk IO time rises, leading to a longer
response time for external requests. This is reflected in both metrics
and the duration of traces. (2) Temporal dependency (TEM) visual-
izes how channels change over time. When trained with normal
hours data, the model captures the fluctuations of each channel. For
example, disk_usage_rate moves smoothly while cpu_usage_rate
fluctuates significantly. Log printing also follows a fixed pattern,
with the associated channels remaining relatively stable. (3) Call
dependency (CAL) represents the interaction of instances due to
invocation and deployment. As a result of the cascading effect, in-
stances near the root cause exhibit anomalies, while those further
away or unrelated show no issues.

Additionally, in deep learning, extracted features become increas-
ingly abstract as the layers deepen and get closer to the output.
This phenomenon is observed in various fields such as CV and NLP
[33, 56, 65]. As a result, step-by-step feature extraction from shallow
to abstraction may guide the model to capture different levels of
representations, thereby improving generalization [20, 21]. Back
to the dependencies in microservice systems, CHA and TEM are
refined to the data channel level: CHA describes the association of
raw channels, and TEM handles complex fluctuation patterns over
time. And CAL models interactions at the instance level. Therefore,
ART extracts the three dependencies sequentially, from fine-grained
and shallow to coarse-grained and abstract, expecting better access
to the knowledge embedded in deviations.

Existing work covers the three dependencies mentioned above.
In concrete terms, AnoFusion [62] first focuses on CHA between
multimodal data. CloudRCA [61] andDiagFusion [60] consider TEM
and CAL, either directly or indirectly. Dejavu [31] and Eadro [27]
model the three dependencies comprehensively. However, Dejavu
uses convolution to capture CHA, which is limited by the receptive
field size. Eadro, on the other hand, only considers CHA within
a single modality, ignoring cross-modality connections. Addition-
ally, none of them consider the impact of feature extraction order.
In conclusion, the introduction of each dependency helps model
the status of microservice systems from a theoretical perspective.
Moreover, in the ablation experiment of Section 5.3, we validate
the effectiveness of the three dependencies and demonstrate the
importance of feature extraction order by comparing six different
combinations of these dependencies.

Finding 2: Combined consideration of channel, temporal,
and call dependencies is beneficial for shared knowledge
acquisition. And the order of feature extraction matters.

3 PRELIMINARIES
3.1 Self-supervised Learning
Self-supervised learning (SSL) is an unsupervised learning paradigm
leveraging inherent data information for model training. Through
pretext tasks such as reconstruction [45], generative adversarial
networks [14], contrastive learning [17], and prediction [44], pre-
trained models are acquired. Then the inner representations are
transferred to downstream tasks or other domains. On one hand,
SSL reduces reliance on labels during pre-training, requiring only
a small amount for fine-tuning downstream tasks, sometimes even
outperforming supervised models. On the other hand, SSL unifies
multiple tasks at the representation level. Unlike joint learning,
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which requires designing a joint loss function and more supervised
data for multitasks, SSL learns robust inner representations with
strong generalization. Therefore, we adopt SSL as the solution for
unified modeling.

3.2 Neural Networks
This section introduces the neural networks used to capture the
channel, temporal, and call dependencies.

Transformer Encoder. The self-attention mechanism in Trans-
former captures long-range information by calculating the correla-
tion between positions in the input sequence [50]. Specifically, we
use vectors representing different channels as input tokens, with
attention weights describing channel correlations. We employ only
the Transformer Encoder instead of a complete encoding and de-
coding architecture, driven by our primary emphasis on extracting
features through the self-attention mechanism while minimizing
parameter size and computational costs. Plenty of failure analy-
sis studies [23, 49] achieve good results in representation learning
with Transformer Encoder alone. In summary, ART chooses the
Transformer Encoder to capture channel dependency.

Gated Recurrent Unit. RNN [25] models temporal dependency
with deterministic hidden variables but struggles with long-term
dependency in time series. LSTM [24] and GRU [30] are proposed
to address this issue. Generally, GRU achieves comparable results to
LSTM with fewer parameters and a simpler structure. So we choose
GRU to capture the temporal dependency of the data channels.

GraphSAGE. GCN [26] fuses graphical features using convolu-
tion. However, it requires all nodes during training and becomes
unsuitable for changing graphs, which falls short of our expecta-
tions for the optimization of dynamic topology. In addition, GCN’s
full graph gradient updating is inefficient. GraphSAGE [18] ad-
dresses the issues by learning a function that generates embeddings
through sampling and aggregating features from a node’s local
neighborhood, instead of training individual embeddings for each
node. Additionally, GAT [51] assigns weights to nodes to differ-
entiate their importance, leading to higher training and inference
costs in large graphs. We opt for the Transformer Encoder to assign
attention coefficients at a finer-grained channel level. Therefore,
GraphSAGE is expected to capture call dependency between in-
stances for scalability and efficiency.

3.3 Problem Statement
Typically, operators continuously collect multimodal data (metrics,
logs, and traces) to ensure the reliability of microservice systems. As
shown in Figure 2, metrics are multivariate time series that monitor
hardware, system, and various services. Logs record system runtime
behavior as semi-structured text. A trace is made up of spans, each
corresponding to an invocation [43]. In addition, traces come with
duration, status code, and other annotations. We transform them
into time series as detailed in Section 4.2 and collectively call them
data channels, i.e., 𝑋 = {(𝑋M

𝑖
, 𝑋 L
𝑖
, 𝑋 T
𝑖
)}𝑁
𝑖=1, where at the 𝑖-th of

the 𝑁 instances, 𝑋M
𝑖

, 𝑋 L
𝑖
, 𝑋 T

𝑖
denotes metrics, logs and traces

after serialization respectively.
Our work attempts to build an end-to-end framework: Given 𝑋 ,

the AD module detects failures, denoted by the binary indicator 𝑦
(0 for normal, 1 for abnormal). If 𝑦 equals 1 multiple times within

a time window, it means a failure is detected and then the FT
module is triggered to make an initial assessment of the failure
type 𝑠 from a predefined failure library. Lastly, RCL estimates the
probability of each instance being the culprit, denoted by 𝑃 =

[𝑝1, . . . , 𝑝𝑁 ] ∈ [0, 1]𝑁 . The framework is built on a parameterized
model F : 𝑋 → (𝑦, 𝑠, 𝑃).

4 METHODOLOGY
4.1 Overview
As shown in Figure 3, ART consists of three modules. The offline
phase mainly involvesModule 1, Dependency-Aware Status Learning.
We utilize serialization and sliding windows to preprocess normal-
time multimodal data into window sequences. Then CHA, TEM,
CAL are captured in turn to train a model that predicts system states
in normal hours.Module 2, Unified Failure Representation Acquisition,
is designed to get two-level failure representations rich in semantic
information, which exposes the shared knowledge obtained from
SSL to anomalous deviations. For online diagnosis, we preprocess
the new-coming multimodal data into window sequences and feed
them into the trained model to get the predictions for the next time
steps. We continuously compute the deviation matrices between
the predictions and observations and then obtain the two-level
failure representations, which form the basis of AD, FT, and RCL.
Specifically, Module 3, Unsupervised Solutions for Diagnostic Tasks,
monitors whether a failure occurs, and if so, it determines the failure
type and then localizes the root cause instance.

4.2 Dependency-Aware Status Learning
This module trains a model through SSL with CHA,TEM, and CAL
captured, to predict the system’s normal states.

Multimodal Data Serialization. Referring to [27, 62], we trans-
form multimodal data (metrics, logs, and traces) into time series.
Briefly, metrics are time series requiring only regular preprocessing
steps such as normalization. For logs, we count the frequency of log
events after parsing to form the time series. For traces, we extract
key variables and transform them into multivariate time series by
computing statistics such as the average latency per minute, the
total number of requests per minute, etc. Then we concatenate to
obtain a fused multivariate time series𝑀 = [𝑀metric∥𝑀log∥𝑀trace].
Next, we employ resampling and nearest-neighbor interpolation
to standardize all metric intervals to one minute. By performing
𝑧-score standardization [5] using a sliding historical window on𝑀 ,
we can obtain a normalized input sequence𝑋 = {𝑋 (1) , . . . , 𝑋 (𝑇 ) } in
a time window.𝑇 is the length of the time window. The snapshot of
the microservice system at time t can be expressed as𝑋 (𝑡 ) ∈ R𝑁×𝐾 ,
where 𝑁 is the number of instances and 𝐾 is the number of data
channels. That is, 𝑥 (𝑡 )

𝑖, 𝑗
denotes the normalized value of channel 𝑗 on

instance 𝑖 at time 𝑡 . The above steps achieve the preliminary fusion
across metrics, logs, and traces, which has been proven effective by
a large number of studies [22, 27, 28, 62]. Further dependencies are
learned through SSL.

Multi-dependency Feature Extraction. As detailed in Section
3.2, we apply Transformer Encoder, GRU, and GraphSAGE to model
the CHA, TEM, and CAL of the microservice system in turn. We
are more concerned with the necessity of combining the three
dependencies and the optimal feature extraction order, which is
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theoretically analyzed in Section 2.2 and experimentally illustrated
in Section 5.3.

(1) Transformer Encoder for CHA. The system snapshot 𝑋 (𝑡 ) can
be analyzed from both instance and channel dimensions, i.e., the
rows and columns of the matrix. For CHA, we view 𝑋 (𝑡 ) as a set
of states of data channels. The state of each channel at time 𝑡 is
an N-dimensional vector, and each dimension represents the value
of that channel for the corresponding instance. ART treats each
channel’s N-dimensional description of themicroservice system as a
token that composes the input sequence of the Transformer Encoder.
Therefore, we need to transpose𝑋 (𝑡 ) to𝑋 ′(𝑡 ) ∈ R𝐾×𝑁 .We focus on
the multi-head self-attention mechanism, which assigns attention
weights to different channels and captures dependencies between
them. Formally, for the 𝑙-th head of the attention layer, the scaled
dot-product attention is defined as:

ℎ𝑒𝑎𝑑𝑙 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋 ′(𝑡 )𝑊𝑄

𝑙
, 𝑋 ′(𝑡 )𝑊𝐾

𝑙
, 𝑋 ′(𝑡 )𝑊𝑉

𝑙
) (1)

where 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑𝑣

)𝑉 ;𝑊𝑄

𝑙
,𝑊𝐾

𝑙
, and𝑊𝑉

𝑙

are linear projection weights with dimensions R𝑁×𝑑𝑣 for the 𝑙-th
head, and 𝑑𝑣 is the dimension for one head of the attention layer.

The Transformer Encoder usually consists of multiple trans-
former layers. Each transformer layer includes a multi-head self-
attention and a position-wise feed-forward network in which a
residual connection is employed around each of the two sub-layers,
followed by layer normalization [50]. Finally, we transpose the
output back to the dimensions R𝑁×𝐾 .

(2) GRU for TEM. Let 𝐻 ∈ R(𝑁×𝐾 )×𝑇 denotes the sequence of
updated snapshots. ART uses GRU to capture the TEM, which can
be formulated as:

𝑟 (𝑡 ) = 𝜎 (𝑊𝑖𝑟𝐻 (𝑡 ) +𝑊ℎ𝑟ℎ (𝑡−1) + 𝑏𝑟 )

𝑧 (𝑡 ) = 𝜎 (𝑊𝑖𝑧𝐻 (𝑡 ) +𝑊ℎ𝑧ℎ (𝑡−1) + 𝑏𝑧)

𝑛 (𝑡 ) = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑛𝐻 (𝑡 ) +𝑊ℎ𝑛 (ℎ (𝑡−1) ⊙ 𝑟 (𝑡 ) ) + 𝑏𝑛)

ℎ (𝑡 ) = (1 − 𝑧 (𝑡 ) ) ⊙ 𝑛 (𝑡 ) + 𝑧 (𝑡 ) ⊙ ℎ (𝑡−1)

(2)

where ℎ (𝑡 ) and ℎ (𝑡−1) are the hidden states, 𝑟 (𝑡 ) , 𝑧 (𝑡 ) , and 𝑛 (𝑡 )
are the reset, update, and new gates, respectively, 𝜎 is the sigmoid
function, ⊙ is the Hadamard product.𝑊 and 𝑏 are trainable pa-
rameters. ART takes the final hidden state as the latent features
of the snapshot at the next time step, i.e. 𝑓 (𝑇+1) = ℎ (𝑇 ) ∈ R𝑁×𝑑ℎ .
𝑑ℎ is the hidden size of GRU layers. Since we are still considering

TEM on the channel dimensions, we pack the dimension 𝑁 in 𝐻
into the batch in the implementation. The dependency on instance
dimensions, i.e., CAL, is modeled by GraphSAGE.

(3) GraphSAGE for CAL. To depict the attributes of instances and
the interactions among them, we introduce the concept of system
behavior graph (SBG). An SBG is a directed graph, 𝐺 = (𝑉 , 𝐸, 𝐹 ).
𝑉 is the set of all instances in a microservice system. An edge
(𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 represents an actual call or deployment from instance
𝑣 𝑗 to 𝑣𝑖 , which means 𝑣 𝑗 depends on 𝑣𝑖 . 𝐹 ∈ R𝑁×𝑑ℎ is the latent
features of each instance obtained from the previous steps. We
construct SBGs every minute, consistent with the granularity of
the monitoring data. Then GraphSAGE is applied to the snapshot’s
instance dimension modeling on SBGs, which consists of several
layers and the operation of the 𝑘-th layer is formulated as:

𝐹
(𝑘 )
N(𝑖 ) = 𝐴𝑔𝑔(𝐹

(𝑘−1)
𝑗

,∀𝑗 ∈ N (𝑖))

𝐹
(𝑘 )
𝑖

= 𝑁𝑜𝑟𝑚(𝜎 (𝑊 (𝑘 ) ·𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹 (𝑘−1)
𝑖

, 𝐹
(𝑘 )
N(𝑖 ) )))

(3)

where 𝐹 (𝑘 )
𝑖

is the 𝑘-th layer’s features of instance 𝑖 , N(𝑖) is the
set of neighbors of instance 𝑖 , 𝐴𝑔𝑔 is the operation of aggregating
the features of the neighbors (e.g., average),𝑊 (𝑘 ) is the learnable
weight matrix of the 𝑘-th layer, and 𝜎 is the LeakyReLU activation
function [40]. Information about the neighbors of each instance is
obtained through sampling and aggregation, capturing the depen-
dencies within and between instances layer by layer.

Offline Self-Supervised Training. Add an MLP to align the
dimensions of the dependency-aware latent space with that of
the snapshot. That is, the final output 𝑋 (𝑇+1) ∈ R𝑁×𝐾 serves as
the snapshot of the next time step obtained from the prediction
of the input snapshot sequence. ART adopts mean squared error
(MSE) between the prediction 𝑋 (𝑇+1) and the observation 𝑋 (𝑇+1)

as the loss function. We feed sequences of snapshots in normal
hours to train a model that predicts the normal expectations of the
microservice system.

4.3 Unified Failure Representation Acquisition
ART leverages anomalous deviations as the core to obtain two-level
failure representations, enhancing the interpretability with seman-
tic information. For a time window 𝑇 during the online diagnostic
phase, we use MSE between the prediction 𝑋 and the observation
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𝑋 to compute the deviation matrix, i.e., 𝐷 ∈ R𝑁×𝐾 .

𝐷
(𝑡 )
𝑖 𝑗

= (𝑋 (𝑡 )
𝑖 𝑗

− 𝑋 (𝑡 )
𝑖 𝑗

)2

𝐷𝑖 𝑗 = 𝐴𝑔𝑔({𝐷 (1)
𝑖 𝑗
, . . . , 𝐷

(𝑇 )
𝑖 𝑗

})
(4)

where 𝐴𝑔𝑔 is the aggregation operation (e.g., average) to elimi-
nate the effect of episodic fluctuations, 𝐷𝑖 𝑗 denotes the aggregated
deviation of instance 𝑖 on channel 𝑗 in the window 𝑇 .

Each row of 𝐷 represents the deviations of each instance over all
channels in the window and thus can be viewed as a set of instance-
level deviations, i.e., 𝐼𝐿𝐷 = {𝐼𝐿𝐷1, . . . , 𝐼𝐿𝐷𝑁 }. 𝐼𝐿𝐷𝑖 ∈ R𝐾 is the𝐾-
dimensional deviation vector of instance 𝑖 . Then aggregate the ILD
to obtain the system-level deviations (SLD). To reduce the noise,
we exclude normal and less abnormal instances from contributing
to the SLD in the aggregation process. Specifically, we compute the
𝐿1-norm of 𝐼𝐿𝐷𝑖 for all instances, indicating the degree of anomaly
of the instance. Then we select the 𝑞 instances with the highest
degree of the anomaly to form the set 𝑄 and get the weighted
sum SLD, i.e., 𝑆𝐿𝐷 =

∑
𝑖∈𝑄 (∥𝐼𝐿𝐷𝑖 ∥1 × 𝐼𝐿𝐷𝑖 ) ∈ R𝐾 . In addition

to specifying the number 𝑞 directly, we also provide a manner of
aggregation by probability in the open-source code. That is, the
∥𝐼𝐿𝐷𝑖 ∥1 is treated as a probability after softmax normalization,
and the top 𝑧 instances are selected such that their sum exceeds a
threshold (e.g., 0.9). 𝑧 is of variable size. ART defaults to the former
one because of its simplicity and effectiveness. Each dimension
of SLD represents the deviation of the microservice system from
the expectation on the corresponding channel. Additionally, the
𝐿1-norm of SLD reflects the overall level of anomaly in the system.

There are two levels of unified failure representations: ILD and
SLD. These 𝑘-dimensional vectors, including their 𝐿1-norms, are
associated with semantic information of the microservice system,
laying the foundation for downstream unsupervised solutions.

4.4 Unsupervised Solutions for Diagnostic Tasks
Inspired by the empirical study in Section 2.1, ART uses ILD and
SLD to accomplish the diagnostic task in an unsupervised manner.

Anomaly Detection. As detailed in Section 2.1.1, the system
typically displays more pronounced deviations in failure hours.
Therefore, ART utilizes a threshold to detect anomalies, determined
automatically and accurately using Extreme Value Theory (EVT)
[46]. EVT is a statistical theory that identifies occurrences of ex-
treme values without making assumptions about data distribution.
EVT can be utilized to estimate the likelihood of observing extreme
values for AD, which has been proven effective by previous anomaly
detection methods [38, 39, 62]. Specifically, we collect the 𝐿1-norm
of SLD in normal hours as the initialization set and compute the
EVT threshold. For a new coming snapshot sequence, an anomaly
is detected if the ∥𝑆𝐿𝐷 ∥1 exceeds the EVT threshold. However,
anomalies may be occasional fluctuations due to non-failure factors
such as increased task load. Hence, we set a delay time window in
which if a second anomaly is detected, we consider the occurrence
of a system failure. Subsequently, the FT module is triggered to
make an initial assessment of the failure type.

Failure Triage. As detailed in Section 2.1.2, different failure
types are associated with deviations in specific data channels. Ad-
ditionally, channels with frequent fluctuations often demonstrate

higher sensitivity to system conditions, showing stronger discrimi-
native abilities. ART designs a cut-tree-based clustering approach
to partition failure representations based on system-level channel
deviations, specifically each dimension of SLD. As shown in Figure
4, We collect several failure cases and calculate their SLDs to form
an initialization set, then construct the cut tree in two steps.
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Figure 4: The steps of the cut-tree-based clustering

Step 1: Cutting Divisions. Referring to the decision tree but with-
out labels, we should divide all the SLDs based on certain rules. Each
node of the cut tree represents a set of SLDs associated with failure
cases and the root contains all the SLDs. For each cutting operation,
we need to first select a leaf node. Considering the discriminative
power of different channels regarding system conditions, we first
compute the variance of the SLDs in each dimension for every leaf
node, and take the maximum variance as the gain of cutting the
node. To swiftly and accurately divide the nodes, we iteratively
select the leaf node with the maximum gain and perform the cut-
ting operation on the corresponding dimension without repetition.
Then select a criterion to partition the SLDs within the node into
two child nodes. Specifically, to maximize the distinction between
the two child nodes, we traverse all the values on the cut dimension
within the chosen node, one of which is selected as the division
criterion if the cosine distance between the SLDs of two children is
maximized after division by it. Repeat the cutting operation until
reaching the maximum tree depth or the minimum number of SLDs
within a node.

Step 2: Backtracking Merge. To optimize the cut tree and reduce
the number of leaf nodes, we calculate the average cosine distance
between the SLDs within each immediate parent node of the leaves,
which assesses the compactness of the node. Then we choose the
least compact immediate parent node to merge iteratively until
the number of leaves is no larger than a specified threshold. The
resulting leaf nodes form the clusters.

For a new coming SLD, we transfer it from the root to the leaf
node (i.e., the cluster) based on the cut dimensions and criteria. The
failure type is determined by that of the central node of the cluster.
Moreover, during the top-down traversal process, all data channels
corresponding to the cut dimensions are attached, providing inter-
pretable channel-level details for FT. The initialization set involved
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in the tree-building process does not necessitate labels, which are
only required to map the clusters to failure types during inference.

Root Cause Localization. As detailed in Section 2.1.3, due
to the significant contribution of root cause instances to system
fluctuations, the fluctuation patterns of root cause instances of-
ten exhibit greater similarity to that of the system. Based on the
semantic information of the unified failure representations, 𝐼𝐿𝐷𝑖
and 𝑆𝐿𝐷 describe the fluctuation patterns of instance 𝑖 and the en-
tire system through deviations on each data channel, respectively.
Therefore, ART calculates the cosine similarity between 𝐼𝐿𝐷𝑖 of all
instances and 𝑆𝐿𝐷 as suspicious scores and ranks them accordingly,
i.e., 𝑃 = [𝑝1, . . . , 𝑝𝑁 ] ∈ [0, 1]𝑁 . A higher similarity indicates a
higher probability of being the root cause.

In summary, when the AD module detects an incident, the FT
module initially assesses the failure type and assigns it to the appro-
priate engineering team for resolution. Channel-level details from
the FT module and instance-level culprits from the RCL module
help the engineering team restore system health more accurately
and quickly.

5 EVALUATION
In this section, we address the following research questions:
RQ1: How well does ART perform in AD, FT, and RCL?
RQ2: Does each component contribute to ART?
RQ3: How do the major hyperparameters of ART influence its
performance?

5.1 Experimental Setup
5.1.1 Datasets. To evaluate the performance of ART, we conduct
extensive experiments on two microservice system datasets, D1 and
D2. We use the earliest timestamp in the last 40% of failure cases as
the split point. The period before this point forms the training set
for the baselines, while the remaining forms the test set. The cases
in the training set are used to initialize the FT module’s cut tree
in ART, ensuring that the failure numbers are sufficient to build a
relatively stable cut tree. Note that the initialization process does
not involve manual labels. Table 4 lists more details.

• D12 is collected from a simulated e-commerce microservice
system, which is deployed in a real cloud environment with
traffic consistent with real business flow. The system com-
prises 46 instances, including 40 microservice instances and
6 virtual machines. Failure records were collected by replay-
ing the failures over several days in May 2022. The failure
scenarios are derived from actual failures (Container Hard-
ware, Container Network, Node CPU, Node Disk, and Node
Memory-related failures). The collected records were labeled
with their respective root cause instances and failure types.

• D2 is collected from the management system of a top-tier
commercial bank, which comprises 18 instances, including
microservices, servers, databases, and dockers. Two experi-
enced operators examined the failure records from January
2021 to June 2021 and labeled the root cause instances and
failure types (Memory, CPU, Netowork, Disk, JVM-Memory,
and JVM-CPU-related failures). Each operator conducted
the labeling process separately and cross-checked the labels

2https://github.com/bbyldebb/ART

to ensure consensus. D2 has been used in the International
AIOps Challenge 20213. Due to the non-disclosure agree-
ment, we cannot make it publicly available.

Table 4: Detailed information of datasets

Dataset # Instances # Failure # Normal # Failure Types # Records

D1 46 210 3,714 5
trace 44,858,388
log 66,648,685
metric 20,917,746

D2 18 133 12,297 6
trace 214,337,882
log 21,356,870
metric 12,871,809

5.1.2 Baseline Approaches. First, we select all existing advanced
multi-task methods (i.e., Eadro [27], Dejavu [31], DiagFusion [60])
except for ShapleyIQ [29]. Because ShapleyIQ’s causal assumption
and data requirements regarding queries per second, conditional
events, etc. , do not align well with D1 and D2. Secondly, we select
three representative unsupervised or semi-supervised multimodal
methods (i.e., Hades [28] for AD, MicroCBR [35] for FT, and PDiag-
nose [19] for RCL). Especially for RCL, we favor the methods with
instance-level localization granularity to align with ART. More de-
tails are given in Section 7.We configure the parameters as specified
in the papers. For dataset-specific settings (e.g., window length),
we adjust them based on the ranges provided or according to our
data. Additionally, due to the absence of an AD module in some
methods and to maintain independent performance evaluation for
each task, we assume known timestamps of failures during FT and
RCL evaluations.

5.1.3 Evaluation Metrics. Both AD and FT are classification tasks.
The former is a binary classification of whether a failure occurs,
while the latter is a multi-classification problem of which type the
current failure belongs to. During evaluations, we adopt True Posi-
tive(TP), False Positive (FP), and False Negative (FN), and then calcu-
late 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑃), 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 +𝐹𝑁 ), 𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙). Additionally, we use the
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1-𝑠𝑐𝑜𝑟𝑒[10] for FT considering the imbalanced
failure types. For RCL, we introduce𝑇𝑜𝑝𝐾 = 1

𝑁

∑𝑁
𝑖=1 (𝑔𝑖 ∈ 𝑃𝑖,[1:𝐾 ] )

to calculate the probability of the root cause within the top-𝑘 pre-
dicted candidates 𝑃𝑖,[1:𝐾 ] , where 𝑔𝑖 is the groundtruth root cause
for the 𝑖-th failure case, 𝑁 is the number of failures for evaluation.
𝐴𝑉𝐺@5 is calculated by 𝐴𝑉𝐺@5 = 1

5
∑5
𝐾=1𝑇𝑜𝑝𝐾 .

5.1.4 Implementation. We implement ART and baselines with
Python 3.9.13, PyTorch 1.12.1, scikit-learn 1.1.2, and DGL 0.9.0. We
run the experiments on a server with 12 × Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz and 128G RAM (without GPUs). We repeat
each experiment five times and average the results to minimize the
effect of randomness.

5.2 RQ1: Overall Performance
As shown in Tabel 5, ART outperforms baseline methods in terms
of AD (improving by 5.65% to 60.8%), FT (improving by 13.2% to
95.7%), and RCL (improving by 13.3% to 205%). Both MicroCBR and
3https://aiops-challenge.com
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Table 5: Performance comparison for AD, FT, and RCL. "-" means the method does not cover the problem.

# Method
D1 D2

AD FT RCL AD FT RCL
Precision Recall F1 Precision Recall F1 Top1 Top3 AVG@5 Precision Recall F1 Precision Recall F1 Top1 Top3 AVG@5

m
ul
tip

le ART 0.899 0.990 0.942 0.836 0.809 0.812 0.667 0.810 0.776 0.877 0.960 0.917 0.851 0.796 0.802 0.722 0.889 0.870
Eadro [27] 0.425 0.946 0.586 - - - 0.137 0.315 0.302 0.767 0.935 0.842 - - - 0.157 0.315 0.310
Dejevu [31] - - - 0.369 0.621 0.415 0.411 0.679 0.625 - - - 0.718 0.340 0.417 0.402 0.667 0.619

DiagFusion [60] - - - 0.675 0.500 0.568 0.310 0.452 0.467 - - - 0.797 0.527 0.593 0.582 0.709 0.695

si
ng

le Hades [28] 0.866 0.863 0.865 - - - - - - 0.867 0.868 0.868 - - - - - -
MicroCBR [35] - - - 0.667 0.796 0.717 - - - - - - 0.629 0.678 0.636 - - -
PDiagnose [19] - - - - - - 0.615 0.692 0.685 - - - - - - 0.037 0.296 0.285

PDiagnose methods overlook the relationships between multimodal
data (CHA), and in PDiagnose, the analysis results of each modality
are influenced by the preceding one, causing potential cascading
effects. Hades fuses information between metrics and logs but only
detects anomalies for a single instance, ignoring interactions be-
tween multiple instances (CAL). Compared to the above single-task
methods, ART achieves the best results by leveraging shared knowl-
edge across closely related tasks, which prevents overfitting and
facilitates joint improvement of multiple tasks. Multi-task methods
(Eadro, Dejavu, DiagFusion) treat AD, FT, and RCL as classification
problems using supervised classifiers. This black-box approach is
straightforward but ignores the semantic consistency of abstract
features. Conversely, ART maps representations to physical mean-
ings of microservice systems and designs unsupervised solutions
around the semantic information, achieving better scores and im-
proved interpretability. The results demonstrate the effectiveness
of ART’s dependency-aware status learning, and the well-designed
unsupervised solutions elicit shared knowledge better than a fully
connected layer. Additionally, SSL’s ability to learn inherent gener-
alized data representations also contributes to ART outperforming
supervised methods to some extent.

As for the efficiency comparisons in Table 6, ART completes
more tasks in less time than other baseline methods due to its uni-
fied modeling approach, which ensures high performance with
a lightweight structure. Efficient data preprocessing (multimodal
data serialization) also plays a significant role. Moreover, baseline
methods encounter practical challenges that are difficult to quantify
experimentally, such as manual label acquisition [27, 28, 31, 60],
customized data organization [19, 60], multiple model selection
[19, 28, 35], and manual rule integration [35]. These challenges sig-
nificantly impact incident management efficiency, adding burdens
on OCEs. In conclusion, the results illustrate the applicability of
ART to real-world applications, exhibiting its capability to perform
real-time AD, FT, and RCL in a unified and efficient manner.

5.3 RQ2: Ablation Study
To evaluate the effects of the key technique contributions of ART:
(a) three types of dependency modeling (i.e., CHA, TEM, CAL); (b)
dependency extraction order, we create eight variants of ART. A1:
Remove the Transformer Encoder for CHA. A2: Remove the GRU
for TEM. A3: Remove the GraphSAGE for CAL. Apart from ART’s
choice of CHA-TEM-CAL, five orders for dependency extraction
remain: B1: CHA-CAL-TEM. B2: CAL-CHA-TEM. B3: CAL-TEM-
CHA. B4: TEM-CHA-CAL. B5: TEM-CAL-CHA.

Table 6: The comparison of training time (Offline) and diag-
nosis time (Online) per case. The unit is second. "-" means no
need for training.

Method Target D1 D2

AD FT RCL Offline Online Offline Online

ART ✓ ✓ ✓ 460.262 0.872 1085.767 1.363
Eadro ✓ ✓ 510.570 0.627 795.416 0.899
Dejavu ✓ ✓ 1182.468 0.427 1937.330 1.028

DiagFusion ✓ ✓ 621.309 4.145 310.357 3.297
Hades ✓ 1214.528 0.104 2073.0413 0.415

MicroCBR ✓ - 0.278 - 0.306
PDiagnose ✓ - 4.342 - 9.919

Table 7: The evaluation results of ablation study

Method D1 D2

AD: F1 FT: F1 RCL: AVG@5 AD: F1 FT: F1 RCL: AVG@5

ART 0.942 0.812 0.776 0.917 0.802 0.870
A1 0.900 0.558 0.727 0.891 0.727 0.851
A2 0.914 0.671 0.672 0.783 0.754 0.853
A3 0.922 0.700 0.725 0.858 0.638 0.857

B1 0.936 0.794 0.748 0.906 0.717 0.855
B2 0.926 0.728 0.770 0.881 0.621 0.866
B3 0.893 0.680 0.770 0.892 0.728 0.863
B4 0.931 0.769 0.755 0.845 0.786 0.862
B5 0.893 0.758 0.714 0.888 0.570 0.844

Table 7 lists that ART outperforms all the variants on D1 and D2,
demonstrating each component’s significance. When any of the
dependencies (i.e., CHA, TEM, and CAL) is removed (A1-A3), the
performance of ART drops. This is particularly evident in FT, which
requires fine-grained analysis at the channel level. The results illus-
trate that the combined three dependencies enable comprehensive
modeling of the microservice system status and facilitate the ex-
traction of a more effective failure representation. When adjusting
the dependency extraction order (B1-B5), we find that the variants
generally outperform omitting any single dependency. However,
a decrease remains evident compared to the CHA-TEM-CAL se-
quence of ART. It indicates that the order of dependency extraction
matters. When modeling dependencies, we strive to follow the or-
der that progresses from fine-grained and shallow to coarse-grained
and abstract. The experiments in this section corroborate the theo-
retical analysis in Section 2.2.
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Figure 5: The effectiveness of ART under different hyperparameters

5.4 RQ3: Hyperparameters Sensitivity
We discuss the effect of four hyperparameters on ART’ performance.
As shown in Figure 5, the performance of AD and RCL demonstrates
relative stability when varying the number of neural network layers
in dependency-aware status learning (i.e., Layers of Transformer
Encoder, GRU, and GraphSAGE). FT experiences a slight degra-
dation as the number of layers increases, likely due to overfitting
from the more complex models on limited samples. We recommend
setting the number of layers to 1 for each component if it works
well. In addition, ART exhibits an overall trend of performance
improvement followed by a decline with varyingWindow Sizes
in acquiring failure representations. Clearly, a window that is too
small fails to encompass complete failure information, while an
excessively large window contains too much irrelevant data. In our
study, setting it to 5 proves to be a suitable choice.

6 DISCUSSION
6.1 Limitations and Possible Solutions
We identify two major limitations of ART and try to suggest possi-
ble solutions: (1) Addressing Unknown Failures. AD and RCL are
not subject to this limitation because they do not rely on historical
failures. For FT, ART needs to collect multiple failure cases to build
a cut tree and cover as many failure types as possible, necessitat-
ing high-quality historical failure sets. In the early stage of model
deployment, ART may fail to achieve good FT results due to fewer
historical failures; as the number of failure cases accumulates, it is
advisable to periodically rebuild the cut tree to adapt to new failure
types. (2) Accommodating frequent creation or destruction at the
instance level of a microservice system. In the dependency learning
module, ART inputs instance-dimensional channel tokens into the
Transformer Encoder to model CHA. To some extent, ART trades
flexibility to refine localization to the instance level. To mitigate
this, we can aggregate instance data channels by service (i.e., the
channel token’s dimension becomes the number of services) and
then train a version of service-level localization at deployment.
Retraining ART is only necessary when system services change,
which is rare in a stable business.

6.2 Threats to Validity
Twomain threats challenge the validity of ART: (1) The limited sizes
of the two studied datasets. D1 and D2 may be less complex and
dynamic than large-scale industrial microservice systems. However,
they still hold value for evaluation. They originate from represen-
tative systems with diverse architectures and businesses. Experi-
mental results support the validity and generalizability of ART. We
believe that ART is promising for application in large industrial
microservice systems with more complex failure scenarios. (2) The
prerequisites for multimodal data collection. ART is designed for
three modalities of data (i.e., metrics, logs, and traces), but some
real-world systems may lack the ability to collect multimodal data.
While it is optimal to provide all data types, the low-coupled na-
ture of multimodal serialization permits the absence of certain data
sources. Additionally, if some data sources suddenly disappear due
to a failure, the corresponding data channel will be significantly
dropped, exhibiting large anomalous deviations. This is consistent
with the premise assumptions of ART and theoretically does not
impact ART’s performance.

7 RELATEDWORK
Single-task Techniques. A great deal of effort has been devoted to AD
[7, 22, 28, 36, 38, 41, 47, 55, 62, 63], FT [32, 35, 37, 48, 59, 61], and RCL
[6, 12, 16, 19, 34, 52, 57, 58, 64]. These single-task techniques cover
only certain stages and cannot span the entire lifecycle. In prac-
tice, operators must select and combine different techniques based
on their understanding of specific scenarios to meet the diverse
requirements of each stage. Unfortunately, different techniques
may require customized data preprocessing, personalized feature
extraction, offline model training, specific configurations, etc. , ac-
companied by lots of redundant yet unavoidable work. Additionally,
the simple combination of single-task techniques treats each stage
of the failure lifecycle as independent, wasting the rich correla-
tion in closely related tasks. Furthermore, the trade-off between
efficiency and accuracy hinders the straightforward integration
of state-of-the-art anomaly detectors, classifiers, and root cause
localizers [27]. Specifically, using advanced techniques to complete
AD, FT, and RCL sequentially often fails to meet the demands of
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real-time analysis. Therefore, some solutions may apply oversim-
plified methods, such as N-sigma for AD [57], expert rules for FT
[34], and voting mechanism for RCL [19]. However, if the model
cannot deliver satisfactory analysis results in the previous stage,
it will introduce noise to the next stage, ultimately affecting the
effectiveness of the entire process.

Multi-task Techniques. To overcome the limitations of the simple
combination approaches, researchers turn to multi-task techniques
[27, 29, 31, 60, 66]. For instance, ShapleyIQ [29] employs multi-
modal data to build a causal graph for RCL via counterfactual eval-
uation and Shapley values. However, it relies on physical law-based
models that require expert knowledge and may not be universally
applicable. Its AD module uses seasonal-trend decomposition and
statistical tests, which may suffer from oversimplification. Dejavu
[31] and MEPEL [66] train classifiers based on historical incidents,
intuitively and concisely outputting failure types and locations.
DiagFusion [60] and Eadro [27] pay attention to shared knowledge
in similar tasks. They adopt joint learning to prevent models from
overfitting on individual tasks while reducing training overheads.
Existing multi-task techniques aim to design models that cover
as many incident life-cycle stages as possible to improve overall
performance and efficiency while reducing operational burdens.
However, they still fail to cover the full process of AD, FT, and RCL.
Moreover, most of these techniques are supervised [27, 31, 60, 66]
or rely on artificial rules [29]. In practice, high-quality labels and
expert laws are scarce resources, consolidating a large amount of
time and effort from experienced operators. OCEs call for a unified
unsupervised model to address the challenges at various stages of
incident management. This is precisely the work of ART.

8 CONCLUSION
Ensuring reliability in microservice systems is critical. Our study
presents ART, an innovative unsupervised framework for auto-
mated incident management that encompasses AD, FT, and RCL
using multimodal data. We investigate shared knowledge in anoma-
lous deviations across multiple tasks and employ Transformer En-
coder, GRU, and GraphSAGE to model channel, temporal, and call
dependencies. This enhances deviation calculations and knowledge
extraction. Unified failure representations are then enriched with
explicit semantic information, improving interpretability and sup-
porting end-to-end unsupervised solutions. We believe that the
approach to extracting shared knowledge across closely related
tasks will benefit more areas beyond microservice systems.
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