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Abstract—Large language models (LLMs) excel at general
question-answering (Q&A) but often fall short in specialized
domains due to a lack of domain-specific knowledge. Commercial
companies face the dual challenges of privacy protection and
resource constraints when involving LLMs for fine-tuning. This
paper propose a novel framework, Self-Evolution, designed
to address these issues by leveraging lightweight open-source
LLMs through multiple iterative fine-tuning rounds. To enhance
the efficiency of iterative fine-tuning, Self-Evolution employ a
strategy that filters and reinforces the knowledge with higher
value during the iterative process. We employed Self-Evolution on
Qwen1.5-7B-Chat using 4,000 documents containing rich domain
knowledge from China Mobile, achieving a performance score
174% higher on domain-specific question-answering evaluations
than without using Self-Evolution and even 22% higher than
Qwen1.5-72B-Chat. Self-Evolution has been deployed in China
Mobile’s daily operation and maintenance for 117 days, and it
improves the efficiency of locating alarms, fixing problems, and
finding related reports, with an average efficiency improvement
of over 18.6%. In addition, we release Self-Evolution framework
code in https://github.com/Zero-Pointer/Self-Evolution.

Index Terms—large language model, question answering, do-
main alignment, data mining

I. INTRODUCTION

With the emergence of large language models (LLMs) such
as Qwen [1], LLaMA [2], and GPT [3], their exceptional gen-
eration, understanding of complex language structures and di-
alogue capabilities have garnered widespread attention [4], [5].
However, in specific domains, their performance often fails to
meet practical requirements. For instance, GPT-4 may cite in-
correct legal provisions when answering legal questions, lead-
ing to erroneous analytical conclusions. ChatLaw-MoE [6],
fine-tuned on high-quality law data, has outperformed GPT-
4 across multiple application scenarios. Therefore, enabling
general models to acquire domain-specific knowledge allows
for deploying a domain model with minimal computational
resources, potentially outperforming general models with ten
times the number of parameters.

State-of-the-art approaches extensively utilize instruction
fine-tuning (IFT) to align general-purpose models with spe-
cific application domains and maximize their effectiveness.
InstructGPT [7] employed instruction fine-tuning to bridge
the performance gap between models with a hundredfold
difference in parameter count. In the absence of instruction
data, certain approaches [8]–[11] use advanced LLMs to

construct instruction datasets, achieving performance close to
GPT-3.5 and GPT-4. However, these methods cannot guarantee
the correctness and diversity of the generated instruction
data. Fortunately, high-quality instruction data is scarce in
most scenarios, while the volume of knowledge documents
is enormous.

In summary, applying general-purpose models to specific
domains presents the following challenges:

1) Limitation of Computational Resources. Model per-
formance is typically proportional to the scale of the
model’s parameters. However, fine-tuning and deploying
powerful general-purpose language models requires sub-
stantial computational resources. For example, a LLM
with 72B parameters using fp16 precision requires five
Tesla V100-32GB GPUs for inference. Fine-tuning such
a model incurs even greater costs. This is prohibitively
expensive and impractical for tasks that must be contin-
uously available.

2) High-quality data scarcity. Domain-specific high-
quality instruction data is often scarce. Manually cor-
recting instruction data requires significant human effort,
making it expensive. A solution is needed to automat-
ically construct high-quality data without human assis-
tance.

3) Lack of diversity and correctness. Firstly, using a fixed
model to construct instruction data tends to generate
overly similar data. Additionally, relying solely on the
model’s internal capabilities for data generation may
result in incorrect or irrelevant data for the domain. The
model might need more domain understanding or have
learned incorrect knowledge, leading to hallucination
issues. We hope the model can dynamically learn from
unsupervised domain documents, continually improving
its capabilities while ensuring the diversity and accuracy
of data generation.

4) Data privacy. Due to the inclusion of private information
in domain-specific data, fine-tuning commercial LLMs
poses major challenges when dealing with sensitive in-
ternal company data, including privacy leakage and high
costs.

In this paper, we propose a novel framework Self-Evolution
to address the aforementioned challenges. The contributions of
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this paper are summarized as follows:
1) Considering the costs and privacy concerns during actual

deployment, we select an open-source model with 7B
parameters as the data generation, scoring model, and
model for QA tasks in real scenarios. All phases in
Self-Evolution can be completed with just one Tesla
V100-32GB GPU, significantly reducing computational
resource requirements. (Addressed challenges 1 and 4.)

2) Self-Evolution uses LLM to generate instrutiondata based
on a large number of unlabeled knowledge documents,
ensuring domain relevance and correctness while avoid-
ing the need for manual assistance. Additionally, the LLM
undergoes iterative updates, generating a new batch of
data each time. This process ensures diversity between
different batches of data. (Addressed challenges 2 and
3.)

3) We conducted extensive evaluation experiments using
real-world data from China-Mobile, a top-tier telecom-
munications provider providing services for one billion+
monthly active users (MAU). Self-Evolution achieves
a performance score 174% higher on domain-specific
question-answering evaluations than without using Self-
Evolution and even 22% higher than Qwen1.5-72B-Chat.
The Self-Evolution has been deployed in China Mobile’s
daily operation and maintenance for 117 days.

II. RELATED WORK

A. Instruction Fine-tuning

The potential of LLMs in the specific domain is vast
and promising. For example, Microsoft deployed GPT to
summarize anomalous events in its services [12]. However,
as task complexity and requirements increase, instruction fine-
tuning (IFT) is widely adopted to enhance model performance.
FLAN [13] achieved significant improvements in generaliza-
tion by fine-tuning a high-quality instruction dataset. Instruct-
GPT [7] successfully aligned GPT-3 [3] with human intent by
fine-tuning a dataset rich in real-world instruction forms and
task types. OWL [14] collected numerous operation domain
instructions and achieved remarkable results in log parsing
and anomaly detection. However, these methods require a
large amount of manually annotated data, which becomes a
bottleneck for widespread application due to the high cost.

B. Instruction Data Generation

Researchers have extensively explored methods to reduce
human involvement in generating instruction data. Some meth-
ods [8]–[10], [15] use advanced commercial models to create
instruction datasets. For instance, Alpaca [8] uses a small
amount of manually constructed data to extract knowledge
from DaVinci-003 [16], creating a 52k instruction dataset. It
fine-tunes LLaMA to achieve performance close to GPT-3.5,
significantly reducing the cost of obtaining instruction datasets.
Peng et al. [9] extract knowledge from GPT-4, resulting in
higher quality and more diverse responses.

Another class of methods [11], [17], [18] employs a self-
guided approach. These methods extract knowledge from

the model and then use this newly constructed data to
enhance domain or task capabilities. Self-Instruct [17], for
instance, proposes using self-generated samples to enhance the
instruction-following ability of pre-trained language models.
Self-Align [18] mainly adopts topic-guided red-blue adversar-
ial self-guidance and principle-driven self-calibration to con-
struct data and fine-tune models, requiring less than 300 lines
of manually constructed data (including 195 seed prompts,
16 principles, and five examples) to achieve high-quality fine-
tuned model. The potential of these self-guided methods is
certainly worth exploring further.

However, these methods still require manually constructed
supervision data and are limited by the model’s inherent
knowledge constraints, preventing them from generating in-
struction data beyond the model’s capabilities.

C. Instruction Data Selection

In the early stages of IFT research, many works improved
model capabilities by building large instruction datasets. How-
ever, LIMA [19] proposed that “less alignment is more”
showing that fine-tuning the model with only 1,000 high-
quality samples can achieve a performance comparable to
GPT-4. Appropriate data filtering strategies can improve learn-
ing efficiency and help reduce hallucinations caused by over-
training [2], [20].

ALPAGASUS [21] uses ChatGPT for scoring, though this
method may overlook the target model’s capabilities and lacks
interpretability. The forgetting score [22] tracks changes in
sample classification during training. GraNd [23] prunes data
based on the gradient norm of the sample. While the forgetting
score and GraNd require significant overhead since they need
to continuously update the scoring model, thus increasing the
overall model training time.

Instruction Following Difficulty (IFD) [24] stands out for
its efficiency, using the representation features of the target
model to identify high-quality instruction data. It provides
a simpler, cheaper, and interpretable approach by computing
the generation complexity of the answer using a single fixed
scoring model.
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Fig. 1. Self-Evolution
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III. METHOD

The overview of Self-Evolution is illustrated in Fig. 1.
To start, Self-Evolution requires a LLM θ0 as the initial
QA1 generation model and scoring model and a collection
of domain-related documents T . Self-Evolution consists of
three phases. In the first stage, the QA generation model
generates QA pairs based on the domain-related documents.
In the second phase, the scoring model and a scoring metric
are employed to identify valuable samples from all histori-
cal instruction QA pairs. In the third phase, these valuable
instruction samples are used to conduct a new round of IFT,
reinforcing the model’s domain knowledge. These three phases
iterate continuously until the desired performance is achieved.
The following sections will provide a detailed description of
these phase.

A. QA generation

More new QA data are generated in the QA generation
phase. Self-Evolution constructs new questions and answers
based on each domain-related document rather than deriving
them from manually constructed questions.

This questions generation process is represented as qij =
LLM(θi, tj), where tj is the j-th document in T . During
this process, we design delicated prompt to prioritize two key
aspects: 1) Question conciseness: Preventing the generation
of content with multiple sub-questions, which could lead to
model hallucinations (Note 2). 2) Question validity: Ensuring
each generated question is answerable (Note 6). The detailed
prompt used for question generation is as follows:

TABLE I
QUESTION GENERATION PROMPT.

Domain Knowledge:
Reference document: {Knowledge}
Role Description:
You are an expert in the operations domain.
Based on your comprehensive knowledge and the information provided above......
Rules Description:
Note 1: The question should be as concise as possible.
Note 2: The question should not contain multiple sub-questions, only one question is permitted.
......
Note 6: Do not output declarative sentences; it must be a question!
Please formulate a question now.
Question:

This answer generation process is represented as aij =
LLM(θi, tj , qij). Incorporating tj , ensures that the questions
are correctly answered. In this process, we emphasize response
completeness, ensuring that the generated content is a com-
plete answer rather than one containing pronouns referring
back to the document. The prompt used for answer generation
is as follows:

After obtaining the newly generated questions and answers,
Self-Evolution combines them into new instruction data Di =
{(qi0, ai0), (qi1, ai1), . . . , (qi|T |, ai|T |)}.

1As the instruction data in this paper consistently takes the form of question-
answer pairs, the terms “instruction data”, “QA” and “question-answer pairs”
are used interchangeably in the following text.

TABLE II
ANSWER GENERATION PROMPT.

Role Description:
You are an expert in the field of operations......
You must generate responses based on the requirements.
Workflow Description:
1. Receive and parse the user’s question.
2. Read and analyze the document provided by the user.
3. Provide a concise and comprehensive answer by combining your knowledge
with the document content.
In Context Learning:
Examples:
Question: Which is the largest planet in the solar system?
Knowledge fragment: The solar system consists of eight planets, with Jupiter
being the largest. Its mass is 2.5 times that of all other planets combined.
Answer: The largest planet in the solar system is Jupiter.
Warnings:
Your answer will be sent independently of the document after generation......
Your response must ensure two points: conciseness and accuracy.
Domain Knowledge and Question:
Question: {Question}
Knowledge fragment: {Knowledge}

B. Data Selection And Training

Prior to conducting the i-th round of IFT, we can filter and
select a subset of instruction data from the previous i − 1
rounds to enhance the training process. Self-Evolution em-
ploys the IFD metric [24] to identify more valuable instruction
data. Equation 3 represents the calculation method for the IFD
score, while Equations 1 and 2 denote the Conditioned Answer
Score and Direct Answer Score, respectively.
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IFDθ(Q,A) =
sθ(A | Q)

sθ(A)
(3)

The Conditioned Answer Score quantifies a model’s ability
to produce responses that align with both the given instructions
and the correct answers. It assesses the model’s output congru-
ence with the directive and the expected solution. The Direct
Answer Score evaluates the LLM’s capacity to independently
generate correct answers, reflecting the answer’s intrinsic
complexity in the absence of contextual instructions. A high
IFD score indicates the model’s difficulty in aligning responses
with instructions, thereby highlighting the instruction’s com-
plexity.

Therefore, Self-Evolution extract k instruction data with the
highest IFD scores from D0, D1, . . . , Di−1 to form IFDi.
This set IFDi is then combined with Di for the i-th round
of training, leveraging historical high-quality data alongside
newly generated data, potentially enhancing the efficiency and
effectiveness of each training iteration.

C. Next Iteration

Self-Evolution employs a model self-evolution scheme. To
elucidate the principles underlying this scheme, we define a
scoring function score = f(q, a) that evaluates the quality
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of an answer a with respect to a question q. As previously
mentioned, a = LLM(θi, q) denote the response of model
θi to q, and a = LLM(θi, t, q) represent the response of
model θi to q given a highly relevant knowledge document t.
We define θi+1 = IFT (θi, q, a) as the next-generation model
θi+1 resulting from fine-tuning θi on the instruction data pair
(q, a). We leverage In-context Learning [25] to establish the
first inequality:

f(q, LLM(θi, q)) ≤ f(q, LLM(θi, t, q)) (4)

This inequality demonstrates that the instruction data
((q, LLM(θi, t, q)) provides valuable learning opportunities
for model θi. Consequently, we derive θi+1 through θi+1 =
IFT (θi, q, a). Post-training, we obtain the second inequality:

f(q, LLM(θi, q)) ≤ f(q, LLM(θi+1, q)) (5)

Thus, model θi completes one iteration of evolution. The
iterative process can be terminated by setting an iteration
threshold. Empirically, this threshold is proportionally related
to the model’s parameter count and inversely related to the data
volume. Smaller parameter counts tend to be more suscepti-
ble to hallucinations [26], necessitating threshold adjustments
based on both parameter count and data volume.

IV. EXPERIMENTAL SETUP

A. Model and Dataset

The base model selected for our experiments is Qwen1.5-
7B-Chat [1], denoted as θ0. We use the LoRA (Low-Rank
Adaptation) [27] method to fine-tune models. The LoRA
hyperparameters are configured as follows: lora-rank is set
to 4, and lora-alpha is set to 8. Notably, we set lora-target
to “all” [11], which enables us to achieve superior training
results. The model chosen for IFD scoring is Qwen1.5-7B-
Chat, denoted as θifd. It is important to note that θifd does
not participate in the subsequent training process. Its param-
eters remain fixed throughout the iteration process, ensuring
consistent scoring criteria in each round of evaluation.

We select 4,000 valuable internal knowledge documents
from China Mobile, denoted as T , where |T | = 4000. As
shown in Table III, T contains crucial operational knowledge
such as alert analysis, configuration analysis, and operational
experience, enabling operation engineers to quickly familiarize
themselves with and solve problems. These knowledge docu-
ments are incorporated into the training process. Specifically,
they are converted into corresponding instruction data and
subsequently used for IFT.

We collected 100 real-world question-answer pairs related to
these documents, as shown in Table IV. These pairs correspond
to the knowledge that operations engineers need to acquire
on an ad hoc basis during their work. Due to their close
association with the knowledge contained in the documents,
we consider this set as a test set to evaluate the model’s
performance.

TABLE III
EXAMPLE FOR KNOWLEDGE DOCUMENT.

Alarm: {Alarm instance}
Alarm explanation:
-{This is the reason for the alarm to appear}
-{This is the condition for the alarm to be cleared}
-{This is the specific threshold for the occurrence and resolution of alarms}
Possible reasons:
-Reason 1: {This is the first possible reason that may occur}
-Reason 2: {This is the second possible reason that may occur}
Processing steps:
-Reason 1:

-{Step 2 of reason 1}
-{Step 2 of Reason 1}

-Reason 2:
-{Step 1 of Reason 2}

TABLE IV
EXAMPLE FOR QUESTION AND ANSWER.

Question:
How to gradually troubleshoot and solve the problem when device A starts
and device B cannot function properly?
Answer:
When the alarm of B not working properly appears after device A is started,
the following steps can be followed for troubleshooting and handling:
1. Check component C.

-If C is firm, proceed to step 3.
-If it is not secure, try reinstalling component C.

2. After reinstalling component C, check if the alarm disappears.
-If the alarm disappears, the problem has been resolved, and the process ends.
-If the alarm still exists, proceed to step 3.

3. Check if component C is damaged.
-If damaged, proceed to step 4.
-If not damaged, please contact technical personnel.

4. Replace component C with a new one and check if the alarm is cleared.
Throughout the entire process, it is essential to backup data before
operation to prevent data loss.

B. Baseline

1) Qwen1.5-7B-Chat-Fine-Tuned by High Quality QA:
The Qwen1.5 series of language models has demonstrated
exceptional performance in the Chinese language domain [1],
with Qwen1.5-72B-Chat achieving capabilities comparable to
GPT-3.5 on certain tasks. Consequently, we utilized Qwen1.5-
72B-Chat to generate 4,000 high-quality question-answer pairs
following the approach outlined in Section III-A. These pairs
were subsequently used to train a Qwen1.5-7B-HQ model
for evaluation purposes, denoted as θHQ. This methodology
of extracting knowledge from documents using a superior
model emulates the industrial scenario of constructing IFT data
from operational documentation, which often yields favorable
results [8], [10].

2) Original LLM: We employed the untrained Qwen1.5-
7B-Chat and Qwen1.5-72B-Chat models in our evaluation to

TABLE V
COMPARISON OF DIFFERENT BASELINE METHODS.

Model Name Is Aligned? Data Source

Qwen1.5-7B-HQ Yes Generated by Qwen1.5-72B-Chat
with documents

Qwen1.5-7B-Chat No -
Qwen1.5-72B-Chat No -

GPT-3.4 No -
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simulate the scenario of using open-source models directly for
domain-specific question answering. Additionally, we included
GPT-3.5 in our evaluation to simulate the scenario of utilizing
a closed-source model for domain-specific question answering.

V. EVALUATION METRICS

We use the BLEU [28] score of θHQ, denoted as
BLEU(θHQ), as a benchmark score and calculate the relative
scores of other models in comparison to it. The performance
score for a model θ is calculated as:

Score =
BLEU(θ)

BLEU(θHQ)
(6)

To better illustrate the differences between methods, we
let θHQ serves as a target model for comparison. We col-
lected 100 valuable subjective questions internally from China
Mobile, which are related to the knowledge documents T .
These questions can reflect the model’s learning of T through
question-answering performance. This score represents how
closely a given model’s performance in the domain-specific
task approaches that of the optimally fine-tuned model θHQ.

VI. EXPERIMENTAL RESULTS
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Fig. 2. The x-axis represents the number of iterations of the Self-Evolution,
while the y-axis shows the performance scores of different models. The
horizontal lines in the graph represent the performance of four distinct models,
and the line graph depicts the performance of the Self-Evolution at each
iteration.

We compare Qwen1.5-7B-Chat, trained using Self-
Evolution, with multiple baseline models. As shown in Fig-
ure 2, untrained models perform poorly in domain-specific
knowledge question answering tasks. The θHQ model, fine-
tuned with high-quality data, demonstrates excellent perfor-
mance. Notably, Self-Evolution surpasses the performance of
both GPT-3.5 and Qwen1.5-72B-Chat in its first iteration.
As the iterations progress, the model’s performance gradually
approaches that of θHQ, ultimately surpassing it by the seventh
round. Based on the above experiments, we can conclude
that Self-Evolution enables Qwen1.5-7B-Chat to surpass the

performance of Qwen1.5-72B-Chat-assisted alignment. This
demonstrates the effectiveness of the proposed method.

VII. ABLATION EXPERIMENT
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Fig. 3. Ablation Experiment Results.

A. Historical Data Retrieval Module

One of the core components of Self-Evolution is the histor-
ical data retrieval module. To investigate its specific role, we
designed targeted experiments. After generating the instruction
data Di in the i-th iteration, instead of performing historical
data retrieval, we directly used it as the complete training
dataset. The results, as shown in Figure 3, indicate that the
iterated model failed to surpass the performance of HQ, and
the training effectiveness was compromised to some extent.
This demonstrates that historical instruction data is valuable
and needs to be retrieved and relearned.

B. Historical Data Retrieval Strategy

To validate the effectiveness of using IFD scores for effi-
cient historical instruction data filtering in Self-Evolution, we
designed two experiments.

To demonstrate the rationality of our data filtering motiva-
tion, the corresponding experiment employed a full retrieval
strategy during the recall phase, using all previously generated
data as a part for training. The results, as shown in Figure
3, indicate that the performance of the iterated model rapidly
deteriorated. Due to repeated training on excessive low-quality
data, the model quickly began to exhibit hallucinations. More-
over, in the eight-iteration experiment, the total training time
for full retrieval strategy was approximately three times that
of Self-Evolution. This proves that discarding a portion of
the data not only accelerates training speed but also enhances
training effectiveness.

To demonstrate the superiority of our data filtering strat-
egy, we designed an experiment using a random retrieval
strategy during the recall phase, where k instruction data
were randomly recalled from historical instruction data and

5



added to the training set. As shown in Figure 3, performance
improvements were observed only in the first two generations
of the iteration process, with continued training producing
negative effects. This proves that an appropriate data filtering
strategy is necessary, as an unstable retrieval strategy can lead
to a decline in model performance.

In the aforementioned experiments, we tested three alterna-
tive approaches: removing the historical data retrieval module,
employing a full retrieval strategy, and using a random retrieval
strategy. All of these approaches resulted in some degree of
performance degradation compared to Self-Evolution. These
results demonstrate that the data retrieval module in Self-
Evolution is essential, and the data filtering strategy centered
on IFD plays a crucial role in the method’s effectiveness.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we address a key challenge in applying LLMs
to the specific domain: the difficulty in utilizing vast amounts
of unlabeled knowledge documents. To tackle this issue, we
employ self-Alignment in Self-Evolution to rapidly construct
a large volume of Instruction data. As the iteration progresses,
both the model’s capabilities and the quality of generated
data improve. To maximize the utilization of instruction data
generated in each iteration, we use IFD scores to filter out
high-quality data to assist in training. In the China Mobile
business question-answering evaluation, our approach, using
only a 7B model throughout, outperforms solutions assisted by
72B models, conserves a significant amount of computational
resources.

In current business scenarios, multi-turn dialogue capabili-
ties are becoming increasingly important. Therefore, in future
work, we plan to extend Self-Evolution to improve the model’s
domain-specific multi-turn dialogue capabilities using only
unsupervised text data.
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