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Abstract—In major tech companies, monitoring server per-
formance data with anomaly detection algorithms is crucial
for assessing operational status. Existing models often require
separate training or fine-tuning for each server due to gener-
alization limitations, leading to increased storage, memory, and
training costs. As the number of servers grows, this approach
becomes impractical. To address this, we propose using pre-
trained language models for time series anomaly detection,
leveraging their strong generalization capabilities. Specifically,
we employ two pre-trained GPT-2 models as backbones and
implement a two-stage fine-tuning strategy to retain learned
knowledge while adapting to specific business data character-
istics. Our experiments on multiple anomaly detection datasets
demonstrate that our method achieves the best average F1-Score,
outperforming the leading baseline by 7%.

Index Terms—Anomaly Detection, Software Reliability, Multi-
variate Time Series

I. INTRODUCTION

Internet services have become increasingly integral to daily
life, and the scale of the infrastructure supporting these
services continues to expand [1]–[3]. Large-scale platforms
deploy tens of thousands of servers, and telecom opera-
tors maintain extensive networks of base stations. Failures
in individual components can degrade overall performance,
negatively impacting user experience and causing significant
commercial losses. Recent incidents, such as Meta’s service
interruption on March 5, 2024 [4], and OpenAI’s outages
on June 4 and June 17, 2024 [5], [6], underscore the need
for robust anomaly detection systems to maintain service
reliability and prevent economic losses.

To address these challenges, operation engineers configure
multiple monitoring indicators to track the operational status of
various components (hereafter referred to as entities). These
indicators are collected at regular intervals, forming a time
series, while data from multiple indicators form a multivariate
time series (MTS). Common monitoring indicators include
server metrics (CPU load, memory usage, network throughput,
disk I/O), cloud service metrics (average response latency,
page views, error rates), and base station metrics (wireless
connection rate, traffic volume, switch success rate).

Figure 1 illustrates the multivariate time series (hereafter
referred to as MTS) of multiple entities within a large-scale in-
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Fig. 1: The multivariate time series of system entities.

frastructure. In real-world industrial production environments,
ensuring the stable and reliable operation of tens of thousands
of entities is crucial [7]. The highlighted section in the figure
1 represents an example of anomaly, where one or more
indicators deviate from their normal patterns. Thus, detecting
anomalies in entities essentially means identifying these de-
viations within the multivariate time series, pinpointing data
points or segments that diverge from expected behaviors.

Traditional anomaly detection methods rely on operations
experts setting custom thresholds for various indicators. This
manual approach is impractical for the vast scale of modern
internet services, requiring significant expertise and effort.
Popular unsupervised techniques [8] like such as USAD [9]
and OmniAnomaly [10], use structures like autoencoders (AE)
[9], variational autoencoders (VAE) [10]–[13], or recurrent
neural networks (RNN) [13], [14] to automate the detection.
These methods, however, often necessitate separate models
for each entity, leading to high storage and memory costs.
Moreover, they struggle with generalization and capturing both
temporal and inter-indicator relationships [13].

In contrast, models in NLP and computer vision have
demonstrated strong generalization abilities [15]–[18]. The
time series domain lacks such base models due to data
heterogeneity, as different datasets have varying indicators and
collection frequencies [19]. Despite this, research shows that
pre-trained language models, like BERT, can be adapted for
time series tasks through fine-tuning [20]. Leveraging this, we
propose using pre-trained NLP models for time series anomaly
detection. However, this approach faces two main challenges.
Firstly, pre-trained language models capture relationships in
one direction, while time series data requires capturing both
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Fig. 2: Illustration of MTS data xi
t ∈ XM

N . Each row Xi is
called a metric, while each column Xt represents the values
of all metrics at a certain moment t.

temporal and inter-metric relationships. Secondly, fine-tuning
must ensure the model retains pre-trained knowledge while
adapting to specific domain data.

To address these challenges, we parallel two training models
to solve the first challenge, and then employ a two-step fine-
tuning strategy to train models to address the second challenge.
Experiments show that when multiple entities share one model,
our proposed anomaly detection method achieves the best
results. We summarize our main contributions as follows:

• We introduce a novel approach, DualLMAD, which lever-
ages pre-trained language models for anomaly detection
in time series data. By addressing the distinct characteris-
tics of MTS, such as temporal and inter-metric relation-
ships, through a dual attention mechanism, DualLMAD
significantly improves generalization and accuracy.

• To ensure pre-trained models retain learned knowledge
while adapting to specific domain data, we propose a
staged training strategy. In the first stage, only the input
and output layers are updated. In the second stage, we
fine-tune the add & norm layers, enhancing the model’s
ability to handle diverse time series datasets.

• Extensive experiments comparing with popular anomaly
detection and time series algorithms across multiple
datasets show that DualLMAD achieves superior per-
formance. This highlights the transferability and effec-
tiveness of pre-trained language models in time series
anomaly detection. Additionally, we developed and val-
idated an internal anomaly detection framework at a
globally renowned internet company, demonstrating that
DualLMAD meets the company’s requirements for MTS
anomaly detection.

II. BACKGROUND

A. Problem Statement

Multivariate time series (MTS) consist of consecutive ob-
servations sampled at regular intervals, as illustrated in Fig. 2.
Each observation xi

t ∈ XM
N includes M metrics over a data

length N . Metrics refer to quantifiable measures such as CPU
usage and TCP active opens. In Fig. 2, the vertical axis
represents different metrics, while the horizontal axis shows
data collected at various timestamps. To detect anomalies at a
given time point, we use a sliding window Xt−W+1:t, where

W is the window length, combining data from the current and
several previous time points.

MTS Anomaly Detection analyzes these sliding windows to
determine whether the data patterns in each window deviate
from historical patterns. This analysis helps us decide if the
detection result should be classified as an anomaly.

B. Related Work

1) Unsupervised MTS anomaly detection: USAD [9] lever-
ages the advantages of AE and adversarial training. A straight-
forward model structure and a small of parameters. Omni-
Anomaly [10] models explicit temporal dependence. Employs
a VAE to map input observations to stochastic variables.

2) Time Series Analysis: TimesNet [21] extends the analy-
sis of temporal variations into the 2D space by transforming
the 1D time series into a set of 2D tensors based on multiple
periods and then modeling the time series by 2D kernels.
Time-LLM [22] re-purposes LLMs for general time series
forecasting with the backbone language models kept intact.
iTransformer [23], a transformer-based method utilizes the
global representation of the whole series and applies attention
to these metric-wise representations to capture multivariate
correlations. GPT4TS [24] uses a pre-trained model for time
series but neglects the metric-wise attention module.

3) Transfer Learning: OmniTransfer [25], a model-agnostic
framework that combines weighted hierarchical agglomerative
clustering with an adaptive transfer learning strategy, making
MTS anomaly detection models efficient and effective. How-
ever, a model for each entity still needs to be saved.

C. Motivation

Deploying anomaly detection systems for tens of thousands
of machines creates significant storage and memory overhead
due to the need for separate models for each entity. Managing
these models involves maintaining a complex table of entities
and their corresponding models. During detection, loading
models increases disk I/O, while keeping all models in mem-
ory incurs substantial overhead, limiting the number of entities
a single node can handle.

Therefore, for MTS anomaly detection, we aim to develop
a more generalized model that can be trained on historical
data from multiple entities. Once trained, this model should
perform accurate anomaly detection across multiple entities.

III. APPROACH

A. Model Structure

DualLMAD employs two pre-trained GPT-2 [18] models
to simultaneously capture temporal dependencies within the
time series and inter-metric dependencies. Each model is
dedicated to one dimension of the data, and their outputs
are merged for decoding. This dual approach allows us to
comprehensively understand both the time-based and metric-
based relationships within the data. We use GPT-2 in this
work because the heterogeneity of time series data presents
significant challenges in organizing a large-scale training set
for a base model, especially when considering pretrained time
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Fig. 3: Overview of DualLMAD.

series foundation models like MOMENT [26], Moirai [27],
TimesFM [28]. These models, while advanced, are often not
tailored for anomaly detection [26] and tend to ignore critical
inter-metric relationships. Should more advanced pre-trained
models for anomaly detection become available, DualLMAD
is designed for easy replacement of GPT-2 to further enhance
performance. The structure of DualLMAD is depicted in Fig. 3.

Input embedding To adapt time series data for a pre-trained
model, we introduce an input embedding layer that maps the
dimensionality of the time series to a dimension acceptable to
the pre-trained model. A fully connected layer is introduced
for this purpose. Additionally, we add position embeddings for
tokens to capture temporal attention since temporal sequence
differences are meaningful. However, we do not add position
embeddings for inter-metric attention, as the order of metrics
does not impact the final prediction.

Time-wise self attention We use the transformer layers
from a pre-trained model as the backbone. Suppose the dimen-
sion of a time window is M ×W , where M is the number of
metrics and W is the window size. After passing the data at
each time point through the input embedding layer, we obtain
a result of W ×D, where D is the hidden layer dimension of
the pre-trained model (e.g., 768 in the case of GPT-2). This
W×D output serves as the input to GPT-2 to capture temporal
dependencies. We only fine-tune the add & norm layers of the
transformers [24].

Metric-wise self attention To capture inter-metric depen-
dencies, we transpose the M ×W input to W ×M , treating
each metric as a token, following [23], [29]. After applying
input embedding, we obtain M×D, which is fed into the pre-
trained model to extract relationships between metrics. Unlike
temporal attention, the order of metrics is arbitrary and does
not affect prediction results. Thus, we do not apply position
embeddings to different metrics before feeding them into the
transformer model.

Feature fusion Finally, we concatenate the information

TABLE I: Dataset Information.

Dataset # entities # metrics time points
Train

time points
Test

SMD 28 38 708405 708420
SMAP 55 25 135183 427617
MSL 27 55 58317 737729

Data1 200 19 134400 672*200
Data2 200 25 288000 576*200

extracted from the two GPT-2 models to form the final
encoding, which is then used for decoding. A fully connected
layer serves as the decoding layer.

B. Offline Training

For machines deployed with the same type of business, we
collect data over a period of 7 to 14 days. Missing values
are replaced using linear interpolation, and the dataset is
standardized using a standard scaler. To enable the use of a
single model for detecting anomalies across multiple entities,
we combine data from these machines into a single training
set. During the training phase, we train DualLMAD to learn the
historical data patterns of multiple entities, aiming to minimize
the reconstruction error. To achieve optimal training results,
we employ a two-step fine-tuning strategy. In the first stage,
we freeze all parameters of the two GPT-2 models and train
only the input-output mapping and decoder parameters. This
method prevents the pre-trained model from forgetting its
learned knowledge while accommodating updates in the input-
output mapping and decoder parameters. In the second stage,
we fine-tune the add&norm layers of the pre-trained model to
better adapt to specific business scenarios.

C. Online Detection

The model reconstructs the input time series and computes
the reconstruction error, which serves as the anomaly score.
To dynamically determine the anomaly threshold, we apply
the SPOT algorithm [30], which is effective for its ability
to adapt to varying data distributions. If the anomaly score
exceeds this threshold, the instance is classified as an anomaly.
To further enhance efficiency, we batch data windows from
different entities leveraging the model’s capacity to handle
multiple inputs simultaneously [29].

IV. EVALUATION

In this section, we answer the following research questions:
RQ1 Performance Comparison: How does DualLMAD

compare to existing anomaly detection methods and state-of-
the-art time series algorithms?

RQ2 Design Effectiveness: How effective are the individual
design components of DualLMAD?

RQ3 Production Performance: Can DualLMAD effec-
tively perform anomaly detection in a real-world environment?
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TABLE II: Best F1 Scores for DualLMAD and Baselines.

Method SMD SMAP MSL Data1 Data2

GPT4TS [24] 0.8481 0.6887 0.8415 0.648 0.7511
TimesNet [21] 0.8457 0.6972 0.8184 0.7004 0.8146

iTransformer [23] 0.7119 0.6935 0.7254 0.6081 0.7793
USAD [9] 0.7892 0.6994 0.8849 0.2611 0.3653

OmniAnomaly [10] 0.6233 0.7036 0.8257 0.1767 0.3768

DualLMAD 0.8661 0.7246 0.8739 0.8308 0.9180

A. Experimental Setup

Dataset We selected three publicly available
datasets—SMD [10], SMAP [31], and MSL [31]—and
two private datasets, Data1 and Data2, to validate the
performance of DualLMAD. The statistics of these datasets
are shown in Table I. SMD is a server machine dataset.
SMAP and MSL are datasets publicly released by NASA.
SMAP contains soil samples and telemetry data while MSL
dataset includes sensor data from the Mars rover. Data1 is
collected from a global content service provider, while Data2
consists of metric data collected from different base stations
in a specific region by a network supplier.

Baselines For comparison, we selected two unsupervised
anomaly detection algorithms: USAD [9] and OmniAnomaly
[10]. Additionally, we included three popular time series
algorithms: TimesNet [21], iTransformer [23], and GPT4TS
[24]. These baselines provide a comprehensive benchmark for
evaluating the performance of DualLMAD.

Evaluation metrics Anomaly detection is a binary clas-
sification task where both precision and recall are crucial.
High precision avoids false alarms, while high recall ensures
anomalies are detected. Therefore, we use the F1 score, the
harmonic mean of precision and recall, as our performance
metric. In our experiments, we use point-adjustment [32],
which considers an entire anomaly segment correctly predicted
if at least one point within it is correctly identified. This
approach is practical in production, as a single alert during
an anomaly is enough to notify maintenance staff.

Implementation DualLMAD is implemented in Python 3.8
using the PyTorch framework. The source code is publicly
available [33]. All experiments were conducted on a Linux
server equipped with 64 cores, two NVIDIA V100 32GB
GPUs, and 192 GB of RAM.

B. Overall Performance (RQ1)

Table II presents the F1 scores of DualLMAD in com-
parison to baseline methods. For public datasets, all entities
were combined into a single dataset for training and testing,
and the overall F1 score was calculated from the merged
test sets. For private datasets with numerous entities, we
combined all training entities into one dataset and trained the
model accordingly. Each entity was then evaluated separately,
calculating TP, TN, FN, and FP for each before computing the
total F1 score. To ensure a fair comparison, various anomaly
thresholds were tested for each model, and the highest F1 score
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Fig. 4: Performance of DualLMAD and Its Variants.

was reported. Merging entities for training and testing aimed to
enhance the model’s generalization capability, ensuring robust
performance across diverse datasets.

Overall, DualLMAD achieved the best results. While popu-
lar algorithms performed adequately on smaller datasets like
SMD, SMAP, and MSL, their performance declined on larger
datasets such as data1 and data2, each with 200 entities. This
decline is due to these algorithms being designed for individual
entity training, leading to poor generalization and an inability
to learn patterns from multiple entities. Other time series algo-
rithms like TimesNet and iTransformer also showed inferior
performance compared to DualLMAD due to not leveraging
extensive pre-trained knowledge. Additionally, iTransformer
lacks an effective attention mechanism for capturing temporal
information. GPT4TS, although using a pre-trained language
model, only extracts information along the time dimension and
does not capture inter-metric relationships or employ a two-
step fine-tuning strategy, contributing to its lower performance.

It is worth noting that despite the use of a dual-attention
mechanism, the training and detection efficiency of DualL-
MAD remain within the same magnitude as those of other
baseline algorithms. Details are omitted to conserve space.

C. Ablation Study (RQ2)

To demonstrate the effectiveness of different components in
DualLMAD, we designed the following variants (Fig. 4):

• C1 uses a single GPT-2 model to capture inter-metric
relationships. This tests the importance of capturing re-
lationships between different metrics.

• C2 uses a single GPT-2 model to capture temporal
relationships. This evaluates the significance of modeling
temporal dependencies.

• C3 freezes the self-attention and FFN layers, performing
a single-stage fine-tuning. This variant examines the
impact of the two-stage fine-tuning strategy.

• C4 freezes all parameters in the pre-trained models. This
tests the baseline performance without any fine-tuning.

• C5 fine-tunes all parameters in the pre-trained models
during the second training stage. This tests the effect of
fine-tuning all parameters in the second stage.

• C6 randomly initializes the parameters in the pre-trained
models. This variant serves as a control to evaluate the
benefit of pre-training.
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Fig. 5: NoSQL Storage Business Cyber Exercise. DualLMAD
detected the anomaly by identifying significant deviations in
memory and CPU metrics.

Dual-attention mechanism C1 and C2 each used a single
attention mechanisms, and their performance was not as good
as DualLMAD. Dual-attention mechanisms provides a more
comprehensive understanding of the temporal dynamics and
inter-metric relationships in the time series data. This leads to
better reconstruction and anomaly detection.

Two-stage fine-tuning strategy C3, C4, and C5 employed
different fine-tuning strategies, but none matched the perfor-
mance of the two-stage fine-tuning strategy used by DualL-
MAD. In the first stage, C3 simultaneously fine-tuned the
output mapping layer and the parameters of the add&norm lay-
ers. However, because the output mapping layer was initially
randomly initialized, this could lead to suboptimal optimiza-
tion of the add&norm layers. C4, by freezing all pre-trained
model parameters, could not adapt to specific data, resulting
in reduced flexibility and performance. In contrast, C5, fine-
tuning all parameters, risked overfitting to new data and losing
a significant amount of knowledge learned during pre-training.

Fine-tuning based on pre-trained models The results of
C6 underscore the necessity of fine-tuning based on a pre-
trained model. They demonstrate that the knowledge learned
from language data by the pre-trained model is transferable to
time series data, highlighting the effectiveness of leveraging
pre-trained models for anomaly detection in time series.

D. Case Study (RQ3)

To verify the effectiveness of DualLMAD in a production
environment, we conducted two case studies:

a) NoSQL-Storage Business Cyber Exercise: Monthly
drills involve injecting faults into production machines to test
service robustness. During the drill on January 26th, faults
were injected into a designated machine. Fig. 5 displays
system metrics used by DualLMAD for detection and the real-
time anomaly scores reported by the algorithm. Significant
anomalies were observed in memory (remaining memory)
and CPU metrics before and after the fault injection. The
anomaly scores generated by DualLMAD began to rise sig-
nificantly from 14:49, triggering an alert. This demonstrates
that DualLMAD successfully detected the anomaly, validating
its effectiveness in a real-world scenario.

b) Cache Penetration: As the company extensively uti-
lizes caching technologies across its operations, improper

Read B/s

Disk Util

IO Wait CPU Usage

15:00 15:17 15:35 15:52 16:10 16:27

Alert:16:24Anomaly Score 

Fig. 6: Cache Penetration. After improper memory recycling
strategies led to cache penetration risks, DualLMAD enabled
operations personnel to quickly identify and address the issue.

memory recycling strategies can sometimes lead to cache
penetration risks. We conducted validation experiments for
this scenario. Fig. 6 shows relevant metrics and anomaly
scores reported by DualLMAD. Upon detecting anomalies,
we recommend specific metrics based on their reconstruc-
tion error. During cache penetration incidents, memory pages
used by the business cannot be found in memory and must
be read from disk, causing significant increases in metrics
such as read bps (read bytes per second) and disk util (disk
utilization). Our accurate recommendation of metrics such as
read bps and disk util allows operations personnel to quickly
identify cache penetration issues, distinguishing them from
network or scheduling failures.

These studies demonstrate that DualLMAD can effectively
detect anomalies in a production environment, by validating its
practical applicability and reliability. However, potential limi-
tations can include the dependency on the quality of collected
metrics and the adaptability of DualLMAD to new, unseen
scenarios or drastic changes in the operational environment.

V. CONCLUSION

Traditional anomaly detection frameworks typically use
small models, requiring a separate model for each entity. To
enhance model generalization and enable a single model to
detect anomalies across multiple entities, we leveraged pre-
trained models from the language domain as the backbone.
These models serve as robust checkpoints, which we fine-
tuned to adapt to specific application scenarios. Recognizing
the unique characteristics of time series data, involving both
temporal and inter-metric relationships, we employed dual pre-
trained models in parallel to effectively captures comprehen-
sive information. Our extensive experiments on three public
and two private datasets demonstrated superior performance
compared to existing methods. Furthermore, case studies in
real-world production environments validated its practicality
and effectiveness. These findings highlight the potential for
using pre-trained language models in time series anomaly de-
tection and open avenues for future research, such as exploring
other pre-trained models and applying this method to various
types of time series data.
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