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Abstract—Automatic failure diagnosis is crucial for large microservice systems. Currently, most failure diagnosis methods rely solely
on single-modal data (i.e., using either metrics, logs, or traces). In this study, we conduct an empirical study using real-world failure
cases to show that combining these sources of data (multimodal data) leads to a more accurate diagnosis. However, effectively
representing these data and addressing imbalanced failures remain challenging. To tackle these issues, we propose DiagFusion, a
robust failure diagnosis approach that uses multimodal data. It leverages embedding techniques and data augmentation to represent
the multimodal data of service instances, combines deployment data and traces to build a dependency graph, and uses a graph neural
network to localize the root cause instance and determine the failure type. Our evaluations using real-world datasets show that
DiagFusion outperforms existing methods in terms of root cause instance localization (improving by 20.9% to 368%) and failure type
determination (improving by 11.0% to 169%).
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1 INTRODUCTION

Microservices architecture is becoming increasingly popular
for its reliability and scalability [1]. Typically, it is a large-
scale distributed system with dozens to thousands of service
instances running on various environments (e.g., physical
machines, VMs, or containers) [2]. Due to the complex and
dynamic nature of microservice systems, the failure of one
service instance can propagate to other service instances,
resulting in user dissatisfaction and financial losses for the
service provider. For example, Amazon Web Service (AWS)
suffered a failure in December 2021 that impacted the whole
networking system and took nearly seven hours to diagnose
and mitigate [3]. Therefore, it is crucial to timely and accu-
rately diagnose failures in microservice systems.

To effectively diagnose failures, microservice system
operators typically collect three types of monitoring data:
traces, logs, and metrics. Traces are tree-structured data that
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Fig. 1: Multimodal data of a microservice system. S1 - S7 are
different microservices.

record the detailed invocation flow of user requests. Logs
are semi-structured text that records hardware and software
events of a service instance, including business events, state
changes, hardware errors, etc. Metrics are time series indi-
cating service status, including system metrics (e.g., CPU
utilization, memory utilization) and user-perceived metrics
(e.g., average response time, error rate). From now on, we
use the term modality to describe a particular data type.
Figure 1 shows an example of the three modalities of a
microservice system.

Automatic failure diagnosis of microservice systems has
been a topic of great interest over the years, particularly
when identifying the root cause instance and determining
the failure type. Most approaches rely on single-modal data,
such as traces [1], [4]–[6], logs [7]–[10], or metrics [11]–
[14], to capture failure patterns. However, relying solely on
single-modal data for diagnosing failures is not effective
enough for two reasons. First, a failure can impact multiple
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aspects of a service instance, causing more than one modal-
ity to exhibit abnormal patterns. Using just one data source
cannot fully capture these patterns and accurately distin-
guish between different types of failures. Second, some
types of failures may not be reflected in certain modalities,
making it difficult for methods relying on that modality to
identify these failures.

Moreover, we conduct an empirical study on an open-
source dataset to verify the necessity of combining multi-
modal data for robust failure diagnosis. As listed in Table 1,
the dataset contains failures caused by various reasons: high
memory usage, incorrect deallocation, code bug, misconfig-
uration, network interruption, etc. We examine hundreds
of service instance failures and conclude that combining
traces, logs, and metrics (multimodal) is crucial for accurate
diagnosis. For example, the microservice shown in Figure 1
is experiencing a failure due to missing files. It generated
error messages in logs and a significant increase in status
code 500 in related traces. Additionally, one of its metrics,
network out bytes, dropped dramatically during this failure.

These observations highlight the importance of incorpo-
rating multimodal data for robust failure diagnosis. How-
ever, combining multimodal data for diagnosing failures in
microservice systems faces two major challenges:

1) Representation of multimodal data. The formats of
metrics, logs, and traces are significantly different from
each other. Service instance metrics are often in the form
of time series (the bottom of Figure 1), while logs are
usually semi-structured text (the middle of Figure 1)
and traces often take the form of tree structures with
spans as nodes (the top of Figure 1). It is challenging to
find a unified representation of all this multimodal data
that fully utilizes complementary information from
each data type.

2) Imbalanced failure types. Fault tolerance mechanisms
in microservice systems often result in a high ratio
of normal data to failure-related data. Some types of
failures are much rarer than others, leading to an imbal-
ance in the ratio of different types of failures (Table 1).

To tackle the above challenges, we present DiagFusion, an
automated failure diagnosis approach that integrates trace,
log, and metric data. To form a unified representation of
the three modalities with different formats and natures, Di-
agFusion combines lightweight preprocessing and represen-
tation learning, which maps data from different modalities
into the same vector space. Since the labeled failures are
usually inadequate to train the representation model effec-
tively, we propose a data augmentation mechanism, which
helps DiagFusion to learn the correlation between the three
modalities and failures effectively. To further enhance the
accuracy of our diagnosis, DiagFusion uses historical failure
patterns to train a Graph Neural Network (GNN), capturing
both spatial features and possible failure propagation paths,
which allows DiagFusion to conduct root cause instance
localization and failure type determination.

Our contributions are summarized as follows:

• We propose DiagFusion, a multimodal data-based ap-
proach for failure diagnosis (Section 4). DiagFusion
builds a dependency graph from trace and deployment
data to capture possible failure propagation paths. Then

it applies a GNN to achieve a two-fold failure diagnosis,
i.e., root cause instance localization and failure type
determination. To the best of our knowledge, we are
among the first to learn a unified representation of the
three modalities for the failure diagnosis of microser-
vice systems (i.e., trace, log, and metric).

• We leverage data augmentation to improve the quality
of the learned representation, which allows DiagFusion
to work with limited labeled failures and imbalanced
failure types.

• We conduct extensive experiments on two datasets,
one from an open-source platform and another from a
real-world microservice system (Section 5). The results
show that when DiagFusion is trained on 160 and 80
cases, it achieves Avg@5 of 0.75 and 0.76 on the two
datasets, respectively, improving the accuracy of root
cause instance localization by 20.9% to 368%. Moreover,
DiagFusion achieves F1-score of 0.84 and 0.80, improv-
ing the accuracy of failure type determination by 11.0% to
169%.

Our implementation of DiagFusion is publicly available 1.
The rest of the paper is organized as follows: Section 2

introduces the necessary background. Section 3 presents the
results of an empirical study of failures in microservice sys-
tems. Section 4 describes the overview and detailed imple-
mentation of DiagFusion in failure diagnosis. In Section 5, we
evaluate the performance and time efficiency of DiagFusion
using two datasets. Section 6 discusses the technical ratio-
nale, robustness, and threats to validity. Section 7 presents
the related work in failure diagnosis. Section 8 concludes
the paper.

2 BACKGROUND

2.1 Microservice Systems and Multimodal Data
Microservice systems allow developers to independently
develop and deploy functional software units (microser-
vice). For example, when a user tries to buy an item on
an online shopping website, the user will experience item
searching, item displaying, order generation, payment, etc.
Each of these functions is served by a specific microservice.
A failure at a specific service instance can propagate to other
service instances in many ways, bringing cascading fail-
ures. However, diagnosing online failures in microservice
systems is difficult due to these systems’ highly complex
orchestration and dynamic interaction. To accurately find
the cause of a failure, operators must carefully monitor the
system and record traces, logs, and metrics. These three
modalities of monitoring data stand as the three pillars of
the observability of microservice systems. The collection and
storage of instances’ monitoring data are not in the scope of
this paper. The three modalities: trace, log, and metric, and
their roles in failure diagnosis are described below.

Trace. Traces record the execution paths of users’ re-
quests. Figure 1 shows an example of trace at the top. Google
formally proposed the concept of traces at Dapper [15], in
which it defined the whole lifecycle of a request as a trace
and the invocation and answering of a component as a span.
By examining traces, operators may identify microservices

1. https://anonymous.4open.science/r/DiagFusion-378D
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TABLE 1: Detailed information of the failures in the empirical study

Failure Type Root Cause Metric Log Trace # Failures

System stuck High memory usage memory_usage_pct ↑ - - 505
Process crash Incorrect deallocation memory_stats_active_anon ↓ - - 16

Login failure Network interruption - ERROR | 0.0.0.1 | 172.17.0.5 | M1 | uuid: 78fef9f0
information has expired, mobile phone login is invalid

S1->S2: RT=11s 527

File missing Code bug -
ERROR | 0.0.0.3 | W2 | get an error [Errno 2] No such

file or directory: ’resources/source_file/source_file.csv’
S2->S3: RT=1.5s 36

Access denied Misconfiguration - ERROR | 0.0.0.2 | B2 | 2768e0e0037e | service refuse S2->S4: RT=1.1s 15

that have possibly gone wrong [4], [6], [16]–[21]. Traces can
be viewed as trees, with microservices as nodes and invoca-
tions as edges. Each subtree corresponds to a span. Typically,
traces carry information about invocations, e.g., start time,
caller, callee, response time, and status code.

Log. Logs record comprehensive events of a service
instance. Some examples of logs are shown in the middle
of Figure 1. Logs are generated by developers using com-
mands like printf, logging.debug, logging.error. They provide
an internal picture of a service instance. By examining logs,
operators may discover the actual cause of why an instance
performs not well. Typically, logs consist of three fields:
timestamp, verbosity level, and raw message [22]. Four com-
monly used verbosity levels, i.e., INFO, WARN, DEBUG,
and ERROR, indicate the severity of a log message. The
raw message of a log conveys detailed information about
the event. To utilize logs more effectively, researchers have
proposed various parsing techniques to extract templates
and parameters, e.g., FT-Tree [23], Drain [22], POP [24],
MoLFI [25], Spell [26], and Logram [27].

Metric. Various system-level metrics (e.g., CPU uti-
lization, memory utilization) and user-perceived metrics
(e.g., average response time) are configured for monitor-
ing system instances. Each metric is collected at a pre-
defined interval, forming a time series, as shown at the
bottom of Figure 1. These metrics track various aspects of
performance issues. By examining metrics, operators can
determine which physical resource is anomalous or is the
bottleneck [28]–[33].

In addition to trace, log, and metric, deployment data is
also important to failure diagnosis. A microservice system
comprises many hardware and software assets that form
complicated inter-relationships. Operators must carefully
record these relationships (a.k.a. deployment data) to keep
high maintainability of the system. Leveraging deployment
data enables the understanding of failure propagation paths
and characteristics.

2.2 Preliminaries

Representation learning. Representation learning has been
widely used in natural language processing tasks, usually
in the form of word embedding. Popular techniques of
representation learning include static representation like
word2vec [34], GloVe [35], fastText [36], and dynamic rep-
resentation like ELMo [37], BERT [38], GPT [39]. With the
similarities between logs and natural languages, representa-
tion learning can be applied to extract log features [40]. We
employ fastText to learn a unified representation of events
from multimodal data. Compared to word2vec and GloVe,
fastText can utilize more information [36]. We employ fast-

Text to learn a unified representation of the multimodal
data.

In essence, fastText is a neural network model that pro-
cesses words as input and takes the output from the hidden
layer (a vector of real numbers) as its representation. It can
be trained in both supervised and unsupervised modes,
but the supervised mode generally yields more accurate
results due to its incorporation of label information. In the
supervised training mode, the neural network is optimized
by predicting the class of the document. Once the training
is completed, fastText can be used to provide vectorized
representations (i.e., embeddings) for any given input.

Graph neural network. GNN can effectively model data
from non-euclidean space, thereby being popular among
fields with graph structures, e.g., social networks, biology,
and recommendation systems. Popular GNN architecture
includes Graph Convolution Network (GCN) [41], Graph-
SAGE [42], Graph Attention Network (GAT) [43], etc. GNNs
apply graph convolutions, allowing nodes to utilize their
information and learn from their neighbors through mes-
sage passing. There are numerous components in microser-
vice systems that interconnect with each other. Thus graph
structure is suitable to model microservice systems, and we
employ GNN to learn the propagation patterns of historical
failure cases.

2.3 Problem Statement

When a failure occurs, operators need to localize the root
cause instance and determine what has happened to it to
achieve timely failure mitigation. For large-scale microser-
vice systems, the first task is a ranking problem: to rank
the root cause instance higher than other instances. We use
the term root cause instance localization to name this task
(Task #1). The second task is a classification problem: to
classify the failure into a predefined set of failure types.
We use the term failure type determination to name this task
(Task #2).

After each failure, operators will carefully conduct a
post-failure analysis: labeling its root cause instance and its
failure type. Additionally, chaos engineering can generate a
large number of failure cases [44]. It can enlarge the number
of failure cases and enrich the types of failures. We train
DiagFusion based on these failure cases.

3 EMPIRICAL STUDY

Most existing failure diagnosis methods are based on single-
modal data. However, these methods cannot fully capture
the patterns of failed instances, leading to ineffective failure
diagnosis. We conduct an empirical study conducted on
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Generic AIOps Atlas (GAIA)2 dataset to show the ineffec-
tiveness of these methods. The dataset is collected from
a simulation environment consisting of 10 microservices,
two database services (MySQL and Redis), and five host
machines. The system serves mobile users and PC users.
Operators injected five types of failures, including system
failures (System stuck and Process crash) and service fail-
ures (Login failure, File missing, and Access denied). The
failure injection record is provided along with the data.
Table 1 lists some typical symptoms of failures. We can see
that no modality alone can distinguish the patterns of these
five types of failures. It also shows that traces, logs, and
metrics may display different anomalous patterns when a
failure occurs. Mining the correlation between multimodal
data can provide operators with a more comprehensive
understanding of failures.

Besides, Table 1 shows that some failures occur much
more frequently than others. For example, the total occur-
rences of Process crash, File missing, and Access denied (67)
equals only 12% of the occurrences of Login failure (527).

To further understand the distribution of failure types
in the production environment, we investigated N failures
in a microservice system of Microsoft. Due to the company
policy, we have to hide some details of these failures. The
failures of the studied system are recorded in the Incident
Management System (IcM) of Microsoft, where a failure
is centralized handled, including the detection, discussion,
mitigation, and post-failure analysis of failures. The IcM
data of failures are persistently stored in a database. We
query the failure records from the database within the time
range from 2021 August to 2022 August. We only keep
the failures with the status of “completed”, for their post-
failure analyses have been reviewed. In the root cause field
of post-failure analysis, operators categorize the failures into
the following types: code, data, network, hardware, and
external. We can see from Figure 2 that different failure types
are imbalanced regarding the number of failure cases. The
imbalanced data poses a significant challenge because most
machine learning methods perform poorly on failure types
with fewer occurrences.

hardware data network external code
0

1
10N

2
10N

3
10N

4
10N

Fig. 2: The distribution of failure types at a large-scale real-
world microservice system.

4 APPROACH

4.1 Design Overview

In this paper, we propose DiagFusion, which combines the
modality of trace, log, and metric for accurate failure di-
agnosis. The training framework of DiagFusion is summa-
rized in Figure 3. First, DiagFusion extracts events from
raw traces, logs, and metrics data and serializes them by

2. https://github.com/CloudWise-OpenSource/GAIA-DataSet

their timestamps. Then, we train a neural network to learn
the distributed representation of events by encoding events
into vectors. The challenge of data imbalance is overcome
through data augmentation during model training. We unify
three modalities with different natures by turning unstruc-
tured raw data into structured events and vectors. Then we
combine traces with deployment data to build a dependency
graph (DG) of the microservice system. After that, the
representations of events and DG are glued together by a
GNN. We train GNN using historical failures to learn the
propagation pattern of system failures.

After the training stage, we save the event embedding
model and the GNN. Figure 5 depicts the real-time failure
diagnosis framework of DiagFusion. The trigger of DiagFu-
sion can be alerts generated through predefined rules. When
a new failure is alerted, DiagFusion will perform a real-time
diagnosis and give the results back to operators.

Historical
Failure

Deployment
data

Trace

Log

Metric

DG

Event
Sequence

Event
Representation

Data
Augmentation

Event
Embedding

Model

GNN

Fig. 3: The training framework of DiagFusion.

4.2 Unified Event Representation

DiagFusion unifies the three modalities by extracting events
from the raw data and encoding them into vectors. Specifi-
cally, it collects failure-indicative events by leveraging effec-
tive and lightweight methods, including anomaly detection
techniques for metrics and traces and template parsing
techniques for logs. Then, it trains a fastText [36] model on
event sequences to generate embedding vectors of events.

First, we introduce the instances in a microservice system.
Microservice systems have the advantage of dynamic de-
ployment by utilizing the container technique. In this paper,
we use the term instance to describe a running container
and the term service group to describe the logical component
that an instance belongs to. For example, Billing is a service
group in a microservice system, and Billing_cff19b denotes
an instance, where cff19b is the container id. Below we will
describe the event extraction from different modalities.

Trace event extraction. Traces record calling relation-
ships between services. We group trace data by its caller
and callee services. DiagFusion will examine multiple fields
inside a trace group. Under different implementations of
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Fig. 4: The event extraction and serialization process using
traces, logs, and metrics.

trace recording, trace data can carry different fields, e.g., re-
sponse time and status code, which reflect different aspects
of operators’ interests. We apply an anomaly detection algo-
rithm (i.e., 3-sigma) for numerical fields like response time
to detect anomalous behaviors. For categorical fields like
status code, we count the number of occurrences of each
value. If the count of some value increases dramatically,
we determine that this field is anomalous. We determine
that a group of caller and callee is anomalous if one of its
fields becomes anomalous. The extracted trace events are in
the form of tuple <timestamp, caller-instance-id, callee-instance-
id>.

Log event extraction. Logs record detailed activities of
an instance (service or machine). We perform log parsing for
log event extraction using Drain [22], which has been proven
to be effective in practice. Drain uses a fixed depth parse tree
to distinguish the template part and the variable part of log
messages. For example, in the log message “uuid: 8fef9f0
information has expired, mobile phone login is invalid”,
“uuid: ****** information has expired, mobile phone login
is invalid” is the template part, and “8fef9f0” is the variable
part. After we get the template part of a log message, we
hash the string of the template part to obtain an event
template id. The extracted log events are in the form of tuple
<timestamp, instance-id, event-template-id>.

Metric event extraction. Metrics are also recorded at the
instance level. We perform 3-sigma to detect anomalous
metrics. When the value of a metric exceeds the upper
bound of 3-sigma, the anomaly direction is up. Similarly, the
anomaly direction is down if the value is below the lower
bound. The extracted metric events are in the form of tuple
<timestamp, instance-id, metric-name, anomaly-direction>.

The above extraction provides events from different
modalities. Despite the differences in raw data, all extracted
events share two fields, namely timestamp and instance-id.
These are the keys to unifying different modalities. We
group events by instance-id and serialize events in the same
group by timestamp. Figure 4 shows the event extraction and
serialization process for one instance. The event sequence of
instance i is denoted by Ei.

After getting the event sequence of every instance, we

further assign labels to every event sequence according to
operators’ post-failure analysis. Original failure labels are
often in the form of tuple <root cause instance-id, failure
type>. To fully utilize the label information, we relabel event
sequences in an instance-wise manner. Specifically, the root
cause instance’s event sequence is labeled by the actual fail-
ure type, while other instances’ event sequences are labeled
as “non-root-cause”. A microservice system with p historical
failures and q instances results in N = p×q event sequences
after relabeling. Then, we learn unified representations from
these relabeled historical event sequences using the event
embedding model.

With event sequence and instance labeling, we can trans-
form events into vectors. We use the term event embedding
to describe the mapping of events to real number vectors.
Specifically, we train a fastText model on the event se-
quences to obtain the vectorized representation for events
from all three modalities. FastText is a neural network orig-
inally proposed for text classification. For a document with
word sequences, fastText extracts n-grams from it and pre-
dicts its label. In our scenario, we replace word sequences
with event sequences and replace document labels with
failure types. The training of fastText minimizes the negative
log-likelihood over classes:

min
f

− 1

N

N∑
n=1

yn log (f (xn)) (1)

where xn is the normalized bag of features of the n-th event
sequence, yn denotes the relabeled information, and f is the
neural network. We treat fastText’s output as the vectorized
representation of events. The training detail of the event
embedding model is described in Section 4.4.

4.3 Graph Neural Network

In the event representation process, DiagFusion captures the
local features of instances. However, failures can propagate
between instances, so we need to have a global picture of
the system, i.e., how a failure will affect the system. To this
end, we employ a GNN to learn the failure propagation
between service instances and integrate all the information
of the whole system.

To leverage a GNN, it is essential to consider both nodes
and edges within a graph. The nodes in a GNN corresponds
to the instances in a microservice system. An instance is
characterized by its anomalous events in DiagFusion. We
represent an instance i by averaging all of its events:

h
(0)
i =

1

|Ei|
∑

∀e∈Ei

V1(e) (2)

where Ei is the extracted event sequences, and V1(e) is the
vectorized representation of event e learned by the event
embedding model.

The edges in a GNN correspond to the dependency graph
in a microservice system. There are two dominant ways
of propagation failure between services: function calling
or resource contention [45]. So we combine traces and
deployment data to capture probable failure propagation
paths. Specifically, we aggregate traces to get a call graph.
Then we add two directed edges for each pair of caller and
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Fig. 5: Real-time failure diagnosis.

callee, with one pointing from the caller to the callee and the
other in the reverse direction. From deployment data, we
add edges between two instances if they are co-deployed,
i.e., sharing resources.

After obtaining the dependency graph and instance rep-
resentations, we employ GNN to learn the failure propa-
gation pattern by its message-passing mechanism. At the
K-th layer of GNN, we apply topology adaptive graph
convolution [46] and update the internal data of instances
according to:

HK =
K∑

k=0

(
D−1/2AD−1/2

)k
XΘk (3)

where A denotes the adjacency matrix, Dii =
∑

j=0 Aij is
a diagonal degree matrix, Θk denotes the linear weights to
sum the results of different hops together.

Finally, we add a MaxPooling layer as the readout
layer to integrate the information of the whole microservice
system. Following the MaxPooling layer, there is a fully
connected layer where each neuron corresponds to either a
service group with possible root cause instances for task #1
or a failure type for task #2.

4.4 Training of DiagFusion
DiagFusion applies a two-phase training strategy to learn the
failure pattern of a microservice system. First, it trained the
event embedding model with data augmentation. Then it
trains the GNN with a joint learning technique.

4.4.1 Training of Event Embedding Model
DiagFusion employs a data augmentation strategy to enrich
the training dataset and reduce the model’s bias towards the
majority class. First, we train our event embedding model
on the original data. The trained neural network, denoted
by f0, maps events to the vector space V0. To increase the
number of failure cases, we add new event sequences for
each failure type (including “non-root-cause”) by randomly
taking an event sequence of that type and replacing one
of the events with its closest neighbor (determined by Eu-
clidean distance) in V0. After all failure types are expanded
to a relatively large size, e.g., 1000, we can obtain a more
balanced training set. Further details on the choice of the
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Fig. 6: Integration of DiagFusion with a microservice system.

expanding size can be found at Section 5.5. Then we train
the event embedding model again (f1) on the expanded data
and regard the representations generated in this round (V1)
as the final unified event representations.

4.4.2 Training of Graph Neural Network
We train the GNN in a joint learning fashion to fully utilize
the shared information between tasks #1 and #2. Then we
combine the trained GNN with a ranking strategy to better
fit the nature of microservice systems.

Ranking strategy. One of the advantages of microservice
systems is that the architecture allows dynamic deployment
of service instances. Thus, service instances are constantly
being created and destroyed. However, when it comes to
failure diagnosis, this kind of flexibility raises a challenge for
learning-based methods. The failure diagnosis model will
have to be retrained frequently if the output layer directly
outputs the probability of being the root cause instance
for each instance since many instances can be created or
destroyed after the model training is finished. We add an ex-
tract step in DiagFusion to overcome this challenge. Instead
of directly determining the root cause instance, DiagFusion is
trained on service groups, the logical aggregation of service
instances, for task #1. Then DiagFusion ranks the instances
inside a candidate service group by the length of their event
sequences. The instance with more anomaly events will be
ranked higher and likely be the root cause instance.

Joint learning. Intuitively, the two tasks of failure diag-
nosis, i.e., root cause instance localization and failure type
determination, share some knowledge in common. For a
given failure, the only difference between task #1 and task #2
lies in their labels. So DiagFusion integrates a joint learning
mechanism to utilize the shared knowledge and reduce
the training time. (Training two models separately requires
twice the time otherwise.) Specifically, the joint loss function
is:

− 1

F

F∑
i=1

 S∑
j=1

y(s)i,j log p(s)i,j +
T∑

k=1

y(t)i,k log p(t)i,k


(4)

where F is the number of historical failures, S is the number
of service groups, T is the number of failure types, y (s) is
the root cause service group labeled by operators, y (t) is the
failure type, p (s) is the predicted service group, and p (t) is
the predicted failure type.
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Fig. 7: A running example of DiagFusion. (a): the serialized multimodal event sequence of the root cause instance (B1); (b):
the original data corresponding to the event sequence; (c): part of the dependency graph in this failure.

4.5 Real-time failure diagnosis
After the training stage, we save the trained event embed-
ding model and the GNN. When a new failure is alerted,
DiagFusion performs a real-time diagnosis process as shown
in Figure 5.

4.5.1 Running Example
Figure 6 shows how DiagFusion can be integrated with
microservice systems. To better explain how DiagFusion di-
agnoses failure, we demonstrate the workflow of DiagFusion
using one real-world failure from D1. At 10:46, service
instance B1 encounters a failure of access denied. Figure 7
shows the original data, event sequence, and the DG. From
Figure 7(a), we can see that failure-indicative events from
different modalities are temporally intertwined. Then the
GNN predicts service group “B” and failure type “access
denied”. Further ranking within the service group “B” gives
“B1” as the Top1 instance. The overall process takes less than
10 seconds. Thus, DiagFusion effectively addresses tasks #1
and #2.

5 EVALUATION

In this section, we evaluate the performance of DiagFusion
using two real-world datasets. We aim to answer the follow-
ing research questions (RQs):
RQ1: How effective is DiagFusion in failure diagnosis?
RQ2: Does each component of DiagFusion have significant
contributions to DiagFusion’s performance?
RQ3: Is the computational efficiency of DiagFusion sufficient
for failure diagnosis in the real world?
RQ4: What is the impact of different hyperparameters?

5.1 Experimental Setup
5.1.1 Dataset
To evaluate the performance of DiagFusion, we conduct
extensive experiments on two datasets collected from two
microservice systems under different business backgrounds
and architectures, D1 and D2. To prevent data leakage, we
split the data of D1 and D2 into training and testing sets
according to their start time, i.e., we use data from the earlier
time as the training set and data from the later time as the

TABLE 2: Detailed information of datasets

Dataset # Instances # Training # Test # Records

D1 17 160 939
trace 2,321,280
log 87,974,577
metric 56,684,196

D2 18 80 79
trace 1,123,200
log 21,356,923
metric 8,228,010

test set. Detailed information is listed in Table 2. The systems
that produce D1 and D2 are as follows:

1) D1. The details of D1are elaborated in Section 3.
2) D2. The second dataset is collected from the management

system of a top-tier commercial bank. The studied system
consists of 14 instances, including microservices, web
servers, application servers, databases, and dockers. Due
to the non-disclosure agreement, we cannot make this
dataset publicly available. Two experienced operators
examined the failure records from January 2021 to June
2021. They classified the failures into five types of fail-
ures, i.e., CPU-related failures, memory-related failures,
JVM-CPU-related failures, JVM-memory-related failures,
and IO-related failures. The classification was done sep-
arately, and they checked the labeling with each other to
reach a consensus.

5.1.2 Baseline Methods

We select six advanced single-modal-based methods (two
for trace (i.e., MicroHECL [5], MicroRank [6]), two for
log (i.e., Cloud19 [8], LogCluster [7]), and two for metric
(i.e., AutoMAP [13], MS-Rank [12])), and two multimodal-
based methods (i.e., PDiagnose [47], CloudRCA [48]) as the
baseline methods. More details can be found in Section 7.
Among the baseline methods, Cloud19, LogCluster, and
CloudRCA cannot address Task #1 (root cause instance
localization), while MicroHECL, MicroRank, AutoMAP, MS-
Rank, and PDiagnose cannot address Task #2 (failure type
determination). Therefore, we divide the baseline methods
into two groups to evaluate the performance of Task #1 and
Task #2, respectively: MicroHECL, MicroRank, AutoMAP,
MS-Rank, and PDiagnose for Task #1, Cloud19, LogCluster,
and CloudRCA for Task #2.
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Fig. 8: Effectiveness of root cause instance localization (Task #1).

We configure the parameters of all these methods ac-
cording to their papers. Specifically, we use the same con-
figuration for parameter settings explicitly mentioned in the
papers and not limited to a particular dataset (e.g., signifi-
cance level, feature dimension). For parameter settings that
apply to a particular dataset (e.g., window length, period),
we adapt them according to the range the papers provide or
to our data.

5.1.3 Evaluation Metrics
As stated in Section 2.3, DiagFusion aims to localize the root
cause instance and determine the failure type. We carefully
select different evaluation metrics for both tasks to better
reflect the real-world performance of all selected methods.

For Task #1, we use Top-k accuracy (A@k) and Top-5
average accuracy (Avg@5) as the evaluation metrics. A@k is
a well-adopted metric that quantifies the probability that
top-k instances output by each method indeed contain the
root cause instance [5]. Formally, given |A| as the test set
of failures, RCi as the ground truth root cause instance,
RCs [k] as the top-k root cause instances set generated by
a method, A@k is defined as:

A@k =
1

|A|
∑
a∈A

{
1, if RCia ∈ RCsa [k]

0, otherwise
(5)

Avg@5 is another popular metric that evaluates a method’s
overall capability of localizing the root cause instance [49].
In practice, operators often examine the top 5 results. Avg@5
is calculated by:

Avg@5 =
1

5

∑
1≤k≤5

A@k (6)

For Task #2, which is a multi-class classification problem,
we use the weighted average precision, recall, and F1-score
to test the performances. These metrics have been selected
based on a previous study [50] as a reliable way to assess the
model’s effectiveness in this specific context. With True Pos-
itives (TP), False Positives (FP), and False Negatives (FN),
the calculation is given by F1-score = 2 × precision×recall

precision+recall ,
where precision = TP

TP+FP and recall = TP
TP+FN .

5.1.4 Implementation
We implement DiagFusion and baselines with Python 3.7.13,
PyTorch 1.10.0, scikit-learn 1.0.2, fastText 0.9.2, and DGL
0.9.0. We run the experiments on a server with 12 × In-
tel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 128G RAM
(without GPUs). We repeat every experiment five times and
take the average result to reduce the effect of randomness.

TABLE 3: Effectiveness of failure type determination (Task
#2)

Method
D1 D2

Precision Recall F1-score Precision Recall F1-score

DiagFusion 0.860 0.829 0.839 0.822 0.797 0.800
Cloud19 0.774 0.774 0.756 0.526 0.278 0.297

LogCluster 0.615 0.477 0.336 0.521 0.722 0.605
CloudRCA 0.436 0.453 0.357 0.589 0.506 0.538

5.2 Overall Performance (RQ1)

To demonstrate the effectiveness of DiagFusion, we compare
it with the baseline methods on Task #1 and Task #2.

The comparison result of Task #1 is shown in Figure 8.
DiagFusion achieves the best performance. Specifically, the
A@1 to A@5 of DiagFusion are almost the best on D1 and
D2. More specifically, the Avg@5 of DiagFusion exceeds 0.75
on both D1 and D2, respectively. It is at least 0.13 higher on
both datasets than baselines using single-modal data due to
the advantage of using multimodal data. Compared with
PDiagnose, which also uses multimodal data, the Avg@5
of DiagFusion is higher by at least 0.18. This indicates that
learning from historical failures improves the accuracy of
diagnosis significantly.

The result of Task #2 is shown in Table 3. For this task,
DiagFusion is better than almost all baselines. On D1, the
precision, recall, and F1-score of DiagFusion are over 0.80.
On D2, DiagFusion manages to maintain an F1-score of
0.80, which is at least 0.195 higher than the baselines. Con-
sidering both systems and tasks, DiagFusion consistently
demonstrates superior performance, thereby substantiating
its effectiveness.

5.3 Ablation Study (RQ2)

To evaluate the effects of the three key technique contri-
butions of DiagFusion: 1) data augmentation; 2) fastText
embedding; 3) DG and GNN, we create five variants of
DiagFusion. C1: Remove the data augmentation. C2: Use
word2vec embedding instead of fastText. C3: Use GloVe
embedding instead of fastText. C4: Replace the GNN output
layer with a decision tree. C5: Replace the GNN output layer
with a kNN model.

Table 4 lists that DiagFusion outperforms all the variants
on D1 and D2, demonstrating each component’s signifi-
cance. When removing the data augmentation (C1), the
performance reduces across the board as models trained
from imbalanced data are more likely to bias predictions
toward classes with more samples. Data augmentation can
alleviate this problem. The performance becomes worse
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TABLE 4: Contributions of components

Method
Task #1 Task #2

A@1 A@3 A@5 Avg@5 Precision Recall F1-score

D1

DiagFusion 0.419 0.813 0.914 0.750 0.860 0.829 0.839
C1 0.341 0.678 0.833 0.641 0.809 0.793 0.779
C2 0.306 0.639 0.780 0.594 0.780 0.765 0.768
C3 0.309 0.632 0.770 0.588 0.773 0.797 0.781
C4 0.359 0.657 0.760 0.616 0.351 0.102 0.104
C5 0.419 0.809 0.905 0.744 0.089 0.102 0.095

D2

DiagFusion 0.646 0.848 0.873 0.790 0.822 0.797 0.800
C1 0.304 0.506 0.646 0.471 0.567 0.608 0.576
C2 0.646 0.823 0.861 0.780 0.793 0.734 0.753
C3 0.671 0.823 0.848 0.785 0.787 0.747 0.747
C4 0.494 0.620 0.646 0.587 0.780 0.595 0.639
C5 0.582 0.709 0.709 0.671 0.778 0.797 0.764

TABLE 5: The comparison of training time
(Offline) and diagnosis time (Online) per case
(“-” means no need training)

Method
D1 D2

Offline Online Offline Online

DiagFusion 11.02 10.95 3.59 3.26
MicroHECL - 65.98 - 28.40
MicroRank 22.9 34.47 53.2 54.94

Cloud19 0.41 0.03 0.03 0.03
LogCluster <0.1 <0.01 0.2 <0.01
AutoMap - 0.299 - 0.511
MS-Rank - 1.14 - 12.94

PDiagnose - 42.51 - 68.74
CloudRCA 1.43 0.06 0.83 0.07

when replacing fastText embedding strategy (C2 & C3).
The reason is that fastText can learn from operators’ failure
labeling as well as co-occur relationships, while word2vec
and GloVe can only learn from the co-occur relationships
between events. Replacing the GNN output layer with clas-
sifiers such as decision trees and kNN (C4 & C5) degrades
performance because the GNN can capture the interaction
patterns and fault propagation among instances in microser-
vice systems, but traditional classifiers cannot understand
the graph structure information.

5.4 Efficiency (RQ3)

We record the running time of all methods and compare
them in Table 5. The offline training time of DiagFusion
is acceptable, particularly when considering its infrequent
need for retraining. It shows that DiagFusion can diagnose
one failure within 12 seconds on average online, which
means it can achieve quasi-real-time diagnosis because the
interval of data collection in D1 and D2 is at least 30 seconds.
Although DiagFusionmay not possess apparent advantages
among the methods in Table 5, DiagFusion can meet the
needs of online diagnosis.

5.5 Hyperparameter Sensitivity (RQ4)

We discuss the effect of four hyperparameters of DiagFusion.
Figure 9 shows how Avg@5 (Task #1), F1-score (Task #2)
change with different hyperparameters.

Embedding dimension. The performance of DiagFusion
reacts differently on different datasets in terms of sensitivity
to dimensionality (D1 remains stable while D2 fluctuates
more), and the optimal dimensionality is inconsistent across
datasets and tasks. We choose the 100 dimensions in our
experiments because it has the best overall performance.

The number of augmented samples. The experiments
in Section 5.2 show that data augmentation has some im-
provement in the model’s performance. However, when the
number of samples increases to a certain amount, the in-
formation in the training set has already been fully utilized.
Instead, the performance may be degraded due to the exces-
sive introduction of noise. Generally speaking, DiagFusion
does not need an excessive number of augmented samples
as long as the samples are balanced.

The number of layers in GNN. As the layer number of
GNN varies from 1 to 5, the performance of DiagFusion in
three tasks shows a decreasing trend. The model performs

best when the layer number is lower than 3. We do not
recommend setting the layer number too large since training
deep GNN requires extra training samples, which is hard to
meet in real-world microservice systems.

Time window. The length of the time window has little
impact on performance because the moments when failures
occur are sparse, and the anomaly events reported in a
time window are only relevant to the current failure. With
accurate anomaly detection, the performance of DiagFusion
is stable.

6 DISCUSSION

6.1 Why Learning-Based Methods?
The DiagFusion approach incorporates several learning-
based techniques, such as fastText in the Unified Event Rep-
resentation (Section 4.2) and GNN (Section 4.3). By doing so,
DiagFusion significantly outperforms baseline approaches.
We chose to build DiagFusion using learning-based methods
for the following reasons: (1) Accuracy: learning-based meth-
ods provide high accuracy (Section 5) and are therefore ideal
for diagnosing failures. (2) Generalization ability: failure cases
used to train DiagFusion contain different patterns of failure
propagation for different systems. A strong generalization
ability allows DiagFusion to perform robust diagnosis for
each system. (3) Ability to handle complicated data: as microser-
vice systems become increasingly complex and monitoring
data more high-dimensional, manually setting up rules for
failure diagnosis becomes time-consuming and error-prone.
Learning-based methods, on the other hand, take this data
as input and learn their relationships, making them well-
suited to handle complicated data.

Why fastText? FastText was chosen because trace, log,
and metric data have very different formats. However, they
all share timestamps, meaning they can be sequenced ac-
cording to their temporal order. FastText provides superior
performance over other static embeddings like word2vec
and GloVe, which was demonstrated in Section 5.3. Al-
though deep dynamic embeddings like ELMo, BERT, and
GPT are popular in Natural Language Processing, they
are not suitable for microservice settings as the number of
failure cases is insufficient to train these large models.

Why GNN? GNN was chosen because the structure
of microservice systems involves many instances and their
relationships, which form the structure of a graph. Vari-
ous approaches incorporating Random Walk [12], [13] exist
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Fig. 9: The effectiveness of DiagFusion under different hyperparameters.

to accomplish failure diagnosis on such graph structures.
However, their ability to generalize is limited since domain
knowledge can vary greatly between different systems.
The domain knowledge contained in graph data can be
effectively learned by GNNs [51], giving them a stronger
generalization ability than approaches based on Random
Walk.

Concerns about learning-based methods. While
learning-based methods offer several advantages, they do
require labeled samples for training. This can be addressed
by (1) utilizing the well-established failure management
system in microservice systems as a natural source of failure
labeling, (2) DiagFusion not requiring too many training
samples to achieve good performance (the sizes of the train-
ing set of D1 and D2 are 160 and 80, respectively), and (3)
the increasing adoption of chaos engineering, which enables
operators to quickly obtain sufficient failure cases. Several
successful practices with the help of chaos engineering have
been reported [6], [16], [18], [52].

6.2 Robustness

In practice, some modalities can be absent, hindering a suc-
cessful failure diagnosis system to some extent. The cause
of missing modalities can be generally classified into three
categories. The first category refers to missing modalities
caused by data collection problems. Modern microservice
systems are developing rapidly; the same truth applies to
their monitoring agents. Therefore, it is hard to guarantee
that all monitoring data are ideally collected and transmit-
ted. As a result, missing data is inevitable, which can give
rise to missing modalities when specific modalities of the
monitoring data are having collection problems. The second
category refers to missing modalities caused by data avail-
ability problems. In some large corporations, monitoring
data is individually collected by many different divisions.
Sometimes, specific modalities can be exclusively governed
by a division that does not want to disclose its service
maintenance data. Thus, these modalities are collected but
not available to general operators. The third category stands
for missing modalities caused by data retrieval problems.
In practice, we often encounter situations where it is very
inconvenient to retrieve monitoring data from the data
pool. Multimodal failure diagnosis requires much more
data to be collected than single-modal-based methods and
may face missing modality problems. However, an excel-

lent multimodal-based approach should perform well even
when some modalities are missing. We discover that 62
failure cases of D1 lack metric data. DiagFusion is compared
with PDiagnose in these cases. As PDiagnose cannot address
Task #2, we only present the results of Task #1.

TABLE 6: Robustness compared to PDiagnose (Task #1)

Modality
DiagFusion PDiagnose

A@1 A@3 A@1 A@3

Trace, Log, Metric 0.419 0.813 0.272 0.554
Trace, Log 0.274 0.661 0 0.161

As shown in Table 6, the performance of PDiagnose
drops dramatically in these cases, while DiagFusion presents
salient robustness. Although DiagFusion also witnesses a
performance degradation, it is still better than PDiagnose
and other Task #1 baselines. DiagFusion has seen com-
plete data modalities during training and learned a unified
representation, allowing it to capture anomalous patterns’
correlation to failures better than single-modal-based meth-
ods. On the other hand, PDiagnose treats each modality
independently, making it ineffective when facing missing
modalities. To sum up, DiagFusion demonstrates robustness
since it achieves satisfactory performance even when work-
ing with data with incomplete modalities.

6.3 Concerns about Deployment and Validity
There are some concerns about deploying DiagFusion to real-
world microservice systems: (1) DiagFusion needs to adapt
to the highly dynamic nature of microservice architecture.
The stored model of DiagFusion can still be effective when
service instances are created or destroyed, for DiagFusion
utilizes the concept of service group as a middle layer. The
only situation in which DiagFusion needs to be retrained is
when new service groups are created. However, the creation
of service groups is very rare in practice. (2) Some pro-
duction systems do not monitor all three modalities at the
same time. The workflow of DiagFusion is general because
the event embedding model is trained on event sequences
and does not rely on any specific modality. Besides, the
GNN module deals with feature vectors rather than original
monitor data. DiagFusion can work given that any two of the
three modalities are available.

There are two main threats to the validity of the study.
The first one lies in the limited sizes of the two datasets used
in the study. D1 and D2 are relatively smaller than complex
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TABLE 7: Comparison of DiagFusion and existing representative approaches

Modality Representative Approach Core Technique Diagnosis Result

Metric AutoMAP [13] Causal inference & random walk Root Cause Instance
Metric MS-Rank [12] Causal inference & random walk Root Cause Instance
Log LogCluster [7] Word2vec & traditional classifier Failure Type
Log Cloud19 [8] Clustering Failure Type
Trace MicroRank [6] Spectrum analysis & PageRank Root Cause Instance
Trace MicroHECL [5] Graph traverse & Pearson correlation Root Cause Instance
Multimodal CloudRCA [48] Bayesian inference Failure Type
Multimodal PDiagnose [47] Vote-based strategy Root Cause Instance
Multimodal DiagFusion (ours) Event embedding & GNN Root Cause Instance & Failure Type

industrial microservice systems. The second one lies in the
limitation of the failure cases used in the study. Some failure
cases of D1 are simpler than industrial failures and represent
only a limited part of different types of failures. However,
according to our experiments, DiagFusion is effective and
robust. It is very promising that DiagFusion can also be
effectively applied to much larger industrial microservice
systems and more complex failure cases.

7 RELATED WORK

Metric-based failure diagnosis methods. Monitoring met-
rics are one of the most important observable data in mi-
croservice systems. Many works try to build a dependency
graph to depict the interaction between system components
during failure, such as Microscope [11], MS-Rank [12], and
AutoMAP [13]. However, the correctness of the above works
heavily depends on the parameter settings, which degrades
their applicability. Besides, many methods extract features
from system failures, such as Graph-RCA [53] and iSQUAD
[50]. Nonetheless, failure cases are few in microservice sys-
tems because operators try to run the system as robustly as
possible, severely affecting the performance of these feature-
based methods.

Trace-based failure diagnosis methods. Trace can be
used to localize the culprit service, for example, TraceRCA
[4], MEPFL [18], MicroHECL [5], and MicroRank [6]. How-
ever, these trace-based methods often focus on the global
feature of the systems and do not deal with the local features
of a service instance.

Log-based failure diagnosis methods. LogCluster [7]
performs hierarchical clustering on log sequences and
matches online log sequences to the most similar cluster.
Cloud19 [8] applies word2vec to construct the vectorized
representation of a log item and trains classifiers to identify
the failure type. Onion [9] performs contrast analysis on
agglomerated log cliques to find incident-indicating logs.
DeepLog [10] and LogFlash [54] integrate anomaly detection
and failure diagnosis. They calculate the deviation from
normal status and suggest the root cause accordingly. Log-
based methods often ignore the topological feature of mi-
croservice systems.

Multimodal data-based failure diagnosis methods. Re-
cently, combining multimodal data to conduct failure di-
agnosis has drawn increasing attention. CloudRCA [48]
uses both metric and log. It uses the PC algorithm to
learn the causal relationship between anomaly patterns of
metrics, anomaly patterns of logs, and types of failure.
Then it constructs a hierarchical Bayesian Network to infer

the failure type. PDiagnose [47] combines metric, log, and
trace. It uses lightweight anomaly detection of the three
modalities to detect anomaly patterns. Then its vote-based
strategy selects the most severe component as the root cause.
However, these two methods ignore the topology feature of
microservice systems. Groot [55] integrates metrics, status
logs, and developer activity. It needs numerous predefined
rules to conduct accurate failure diagnosis, which degrades
its applicability to most scenarios.

We compare DiagFusion and existing representative ap-
proaches in Table 7. In conclusion, compared to single-
modal-based methods, DiagFusion takes the three important
modalities into account. Compared to existing multimodal-
based methods, DiagFusion is among the first to represent
different modalities in a unified manner, thus performing
more robustly and accurately.

8 CONCLUSION

Failure diagnosis is of great importance for microservice sys-
tems. In this paper, we first conduct an empirical study to il-
lustrate the importance of using multimodal data (i.e., trace,
metric, log) for failure diagnosis of microservice systems.
Then we propose DiagFusion, an automatic failure diagnosis
method, which first extracts events from three modalities of
data and applies fastText embedding to unify the event from
different modalities. During training, DiagFusion leverages
data augmentation to tackle the challenge of data imbal-
ance. Then it constructs a dependency graph by combining
trace and deployment data. Moreover, DiagFusion integrates
event embedding and the dependency graph through GNN.
Finally, the GNN reports the root cause instance and the
failure type of online failure. We evaluate DiagFusion using
two real-world datasets. The evaluation results confirm the
effectiveness and efficiency of DiagFusion.
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that it is infeasible to do a fair comparison with [19] in the
evaluation section.

IX. CONCLUSION
For an additive KPI with multi-dimensional attributes, it is
a hard problem to localize the overall KPI’s anomaly to
the root cause, which is one (or more) combination of
attribute values in multiple dimensions. Firstly, we consider
this anomaly localization as a search problem with a huge
space. To deal with the huge search space, our proposed
framework, HotSpot, adopts the MCTS approach (the first
time in anomaly localization literature) whose action value
is our novel potential score based on the ‘‘ripple effect’’,
which captures how anomalies propagate from the root cause
throughout the aggregation hierarchy. In addition, we propose
a hierarchical pruning approach to further reduce the search
space. Our experiments based on the data from a real-world
search engine show that HotSpot achieves much better accu-
racy than previous approaches. Our operational experiences
show that HotSpot can reduce the localization time from
about more than 1 hour in manual efforts to less than 20 sec-
onds, and that HotSpot is an approach generally applicable to
the anomaly localization for additive KPI metrics.
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